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Abstract. In previous work, we devised an approach for multilabel clas-
sification based on an ensemble of Bayesian networks. It was character-
ized by an efficient structural learning and by high accuracy. Its short-
coming was the high computational complexity of the MAP inference,
necessary to identify the most probable joint configuration of all classes.
In this work, we switch from the ensemble approach to the single model
approach. This allows important computational savings. The reduction
of inference times is exponential in the difference between the treewidth
of the single model and the number of classes. We adopt moreover a more
sophisticated approach for the structural learning of the class subgraph.
The proposed single models outperforms alternative approaches for mul-
tilabel classification such as binary relevance and ensemble of classifier
chains.

1 Introduction

In traditional classification each instance is assigned to a single class. Multilabel
classification generalizes this idea by allowing each instance to be assigned to
multiple relevant classes. Multilabel classification allows to deal with complex
problems such as tagging news articles or videos.

A simple approach to deal with multilabel classification is binary relevance
(BR), which decomposes the problem into a set of traditional (i.e., single label)
classification problems. Given a problem with n classes, binary relevance trains
n independent single-label classifiers. Each classifier predicts whether a specific
class is relevant or not for the given instance. Binary relevance is attractive
because of its simplicity. Yet, it ignores dependencies among the different class
variables. This might result in sub-optimal accuracy, since the class variables are
often correlated [8]. According to the global accuracy metric, a classification is
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accurate only if the relevance of every class is correctly predicted. A sound model
of the joint probability of classes given the observed features is thus necessary
(see [13] and the references therein). This requires identifying the maximum a
posteriori (MAP) configuration of the class relevances.

The classifier chain [12] is a state-of-the-art approach to model dependen-
cies among classes. It achieves good accuracy; however, it has no probabilistic
interpretation.

Bayesian networks (BNs) are an appealing tool for probabilistic multilabel
classification, as they compactly represent the joint distribution of class and fea-
ture variables. When dealing with multilabel classification they pose two main
challenges: structural learning and predictive inference. As for structural learn-
ing, the graph is typically partitioned into three pieces [14, 3]: the class subgraph,
namely the structure over the class variables; the feature subgraph, namely the
structure over the features variables; the bridge subgraph, namely the structure
linking the feature to the class variables [14, 3, 4].

In a previous work [1] we introduced the multilabel naive assumption, which
provides an interesting trade-off between computational speed of structural learn-
ing and effectiveness of the learned dependencies. The assumption is that the
features are independent given the classes, thus generalizing naive Bayes to the
multilabel case. As a consequence, the feature subgraph is empty. The bridge
subgraph is optimally learned by independently looking for the optimal parents
set of each feature. It does not require iterative adjustments. This allows for ef-
ficient structural learning. We accompany the multilabel naive assumption with
a simple but effective algorithm for feature selection.

Our previous approach [1] was based on an ensemble of different Bayesian
networks. Under the multilabel assumption the different BNs had an empty fea-
ture subgraph and shared the same optimal bridge subgraph. Each model had
a different naive Bayes class subgraph. The ensemble approach achieved good
performance. Its main shortcoming was the high complexity of the MAP infer-
ence regarding the most probable joint configuration of all classes. The high cost
of MAP inference in multilabel Bayesian network classifiers has been discussed
previously in the literature. In [5], the authors limit the MAP inferential com-
plexity by constraining the underlying graph to be a collection of small disjoint
graphs. However, this severely limits the expressivity of the models.

In this work, we aim at largely decreasing the computational times of our
previous approach while keeping accuracy as high as possible. To this end, we
move from the ensemble to a single model. Single models are known to be less
accurate than ensembles. To compensate this effect, we introduce a more sophis-
ticated structural learning procedure for the class sub-graph. We allow the class
subgraph to be either a naive Bayes or a forest-augmented naive Bayes (FAN).
This yields two different multilabel classifiers, called in the following mNB and
mFAN. Both models optimize in two steps the class subgraph. In the first step
each class is considered as a possible root of mNB (or mFAN). For each pos-
sible root, we identify the optimal naive (or FAN) structure. We thus identify
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n different naive (or FAN) structures. In the second step we select the highest
scoring naive (or FAN) structure.

Both mNB and mFAN are less accurate than the original ensemble. Yet, the
accuracy gap is not huge. Moreover, mNB and mFAN outperform both binary
relevance and the ensemble of classifier chains (implemented using naive Bayes
as base classifier). The single model approach allows large computational savings
compared to the ensemble. The saving is exponential in the difference between
the number of classes and the treewidth of the single model which has been
learned.

We then analyze the learned class sub-graphs. Define the relevance of a class
as the percentage of instances for which it is relevant. We found a positive cor-
relation between the relevance of the root class, the score of the class sub-graph
and the number of non-root classes being to the root class. The explanation is as
follows. Most classes have low relevance. A class which is labeled more often as
relevant allows for better estimating the correlations with the remaining classes.
This yields more non-root classes being connected to the root and also a higher
score of the resulting graph. This might explain why our previous ensemble is
only slightly more accurate than the single model. Many models of the ensemble
had as a root of the class subgraph a class with low relevance. Such models were
unlikely to convey helpful information when classifying the instances.

As a final contribution we discuss the need for preventing the empty predic-
tion. A prediction is empty if all classes are predicted to be not relevant.

2 Probabilistic Multilabel Classification

We denote the array of class relevances as C := (C1, . . . , Cn); this is an array
of Boolean variables, with variable Ci, i = 1, . . . , n, expressing the relevance of
the i-th class for the given instance. Thus, C takes its values in {0, 1}n. We
denote the set of features as F := (F1, . . . , Fm). We assume the availability
of a set of complete training instances D = {(c, f)}, where c = (c1, . . . , cn)
and f = (f1, . . . , fm) represent an instantiation of class relevances and features,
respectively.

A probabilistic multilabel classifier estimates a joint probability distribution
over the class relevances conditional on the features, P (C|F). Such model can
predict the class relevances on new instances. We denote as c and ĉ respectively
the set of actual and predicted class relevances. The actual and the predicted
relevance of class Ci are denoted respectively by ci and ĉi.

A common metric to evaluate multilabel classifiers on a given instance is
global accuracy (also called exact match):

acc := I(c = ĉ) , (1)

where I is the indicator function.
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Another measure of performance is Hamming accuracy (also called mean
label accuracy):

Hacc :=
1

n

n∑
i=1

I(ĉi = ci) . (2)

Commonly Hamming loss (1-Hacc) rather than Hamming accuracy is re-
ported. We report Hamming accuracy to simplify results readability: both acc
and Hacc are better when they are higher. Global accuracy is often zero on
data sets with many classes. On such data sets Hamming accuracy is thus more
meaningful than global accuracy.

When classifying an instance with features f , two different inferences are
performed depending on whether the objective is to maximize global accuracy
or Hamming accuracy.

To maximize global accuracy we search for the most probable joint configu-
ration of the class relevances (joint query):

ĉ = arg max
c∈{0,1}n

P (c|f) = arg max
c∈{0,1}n

P (c, f) . (3)

In the context of Bayesian networks, the above problem is known as Maximum
A Posteriori (MAP) or Most Probable Explanation (MPE) inference. Unlike
in standard MAP inference problems, the prediction of all classes being non-
relevant (empty prediction) is considered invalid. Each instance should be as-
signed to at least one class. If the most probable joint configuration is the empty
prediction, we ignore it and return the second most probable configuration, which
is necessarily non-empty. To our knowledge this issue has not yet been pointed
out. For instance the algorithms implemented by MEKA1 do not prevent the
empty prediction. We show empirically in Section 5 that preventing the empty
prediction can increase accuracy in some domains.

To maximize Hamming accuracy we select the most probable configuration
(relevant or non-relevant) of each class Ci (marginal query):

ĉi = arg max
ci∈{0,1}

P (ci|f) = arg max
ci∈{0,1}

P (ci, f) , (4)

where P (ci|f) =
∑

C\{Ci} P (c|f). If all classes are predicted to be non-relevant,
the empty prediction is avoided by predicting as relevant only the class Ci with
the highest posterior probability of being relevant.

We model the joint distribution P (C,F) as a Bayesian network, and ob-
tain classifications by running standard algorithms for either MAP inference or
marginal inference in the network, according to the chosen performance measure.
Once a structure (i.e., a directed acyclic graph over C,F) for the corresponding
Bayesian network has been defined, the model parameters are efficiently com-
puted using Bayesian estimation. Learning a good structure is a challenging
problem, which we tackle by making a number of assumptions on the struc-
ture that enable fast and exact learning. We detail the assumptions in the next
section.
1 http://meka.sourceforge.net
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3 Structural learning

We address structural learning assuming the data set to be complete. The prob-
lem of how to efficiently learn the structure of a probabilistic multilabel classifier
has been studied in the past [14, 3]. The graph is typically partitioned into three
pieces: the class subgraph, namely the structure over the class variables modeling
class-to-class (in)dependences; the feature subgraph, namely the structure over
the features variables modeling feature-to-feature (in)dependences; the bridge
subgraph, namely the structure linking the feature to the class variables and
modeling the (in)dependences between features and classes.

The approach of [14] constrains both the class subgraph and feature subgraph
to be a tree-augmented naive Bayes (TAN). A bridge subgraph is proposed, and
the TANs of the two subgraphs are correspondingly learned. The bridge subgraph
is iteratively updated following a wrapper approach [11]. Every time the bridge
subgraph is updated, the two TANs are re-learned. Also [3] adopts a similar
approach, considering a wider variety of topologies for the class and the feature
subgraphs. Such approaches can result in high computational times because
the bridge subgraph is incrementally improved at each iteration, requiring to
correspondingly update also the other subgraphs. Conversely, [4] keeps empty
both the class subgraph and the feature subgraph. This approach is fast but
cannot properly model correlated class variables.

Instead, we assume the features to be independent given the classes as in
a previous work of ours [1]. Since the feature nodes cannot have children, the
feature subgraph is empty. This allows us to optimally learn the bridge subgraph
by independently looking for the optimal parents set of each feature.

Our procedure is based on maximizing the BDeu score, which decomposes,
in the case of complete data, as the sum of the BDeu scores of each node:

BDeu(G) :=
∑

Xi∈{C,F}

BDeu(Xi,Pa(Xi)) ,

where G denotes the entire graph (i.e., the union of class, feature and bridge
subgraphs), Xi a generic node and Pa(Xi) its parents set in G. The number of
joint configurations of the parents of Xi is denoted by qi. The score function for
a single node is:

BDeu(Xi,Pa(Xi)) :=

qi∑
j=1

log
Γ (αij)

Γ (αij + nij)
+

|Xi|∑
k=1

log
Γ (αijk + nijk)

Γ (αijk)

 , (5)

where nijk is the number of records such that Xi is in its k-th state and its
parents in their j-th configuration, while nij =

∑
k nijk. Finally, αijk is equal to

the equivalent sample size α divided by the number of states of Xi and by the
number of (joint) states of the parents, while αij =

∑
k αijk.

Class and feature nodes have only class nodes as parents (i.e., Pa(Xi) ⊆ C for
every node/variable Xi). Hence, the BDeu decomposes in two terms, referring
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respectively to the class and the bridge subgraphs:

BDeu(G) =

n∑
i=1

BDeu(Ci,Pa(Ci)) +

m∑
j=1

BDeu(Fj ,Pa(Fj)) .

Moreover, the two terms can be optimized separately, as the combined directed
graph is necessarily acyclic. The optimizations of each term require different
approaches:

Bridge subgraph We optimize the BDeu score of the bridge subgraph by inde-
pendently searching for the optimal parents set of each feature. This strategy is
optimal since: (i) the feature subgraph is empty, thus preventing the introduc-
tion of directed cycles; (ii) the BDeu scores decompose over the different feature
variables.

Any subset of C is a candidate for the parents set of a feature, this reducing
the problem to m independent local optimizations. The optimal parents set of
Fj is found as follows:

CFj := arg max
Pa(Fj)⊆C

BDeu(Fj ,Pa(Fj)) , (6)

for each j = 1, . . . ,m. The optimization in Equation (6) becomes more efficient
by considering the pruning techniques proposed in [6].

Feature selection Naive Bayes is surprisingly effective in traditional classification
despite its simplicity. Moreover, careful feature selection allowed naive Bayes
even to win data mining competitions [9].

We thus perform feature selection before learning the bridge graph. We rely
on the correlation-based feature selection (CFS) [15, Chap. 7.1], which has been
developed for traditional classification. We perform CFS n times, once for each
different class variable. Eventually, we retain the union of the features selected
in the different runs. This is a useful pre-processing step which reduces the
number of features, removing the non-relevant ones (Table 2). It also helps from
the computational viewpoint. Feature selection for multilabel classification is
however an open problem, and more sophisticated approaches can be designed
to this end.

Class subgraph Unlike the feature subgraph, the optimizations of the class vari-
ables cannot be carried out independently, as this might introduce directed cy-
cles. Instead, we enable efficient structure learning by restricting the class of
allowed structures. We allow the class subgraph to be either a naive Bayes or a
forest-augmented naive Bayes (FAN). This yields two different multilabel classi-
fiers, called in the following mNB and mFAN. The leading ’m’ shows that such
classifiers are designed for multilabel classification.

Let us assume that the class which serves as root node (Croot) of naive Bayes
or FAN is given. We then search for the class subgraph which maximizes the
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BDeu score. As for mNB, the highest scoring naive Bayes is obtained by comput-
ing for each non-root class Ci the two scores BDeu(Ci, ∅) and BDeu(Ci, C

root).
Class Ci is linked to the root class if

BDeu(Ci, C
root) > BDeu(Ci, ∅) (7)

and unlinked otherwise. The above procedure is repeated n times. Every time
a different class C1, . . . , Cn is taken as root of the naive Bayes. This yields
n different naive Bayes structures. The structure with maximum score among
them is taken as class subgraph for the multilabel classifier. Summing up, we
perform a two-steps optimization: first we compute the optimal naive structure
for each possible root. Then we select the highest scoring structure among those
identified in the first step.

C1

C2 C3 C4 C5 C6

F1 F2 F3 F4 F5

Fig. 1. Example of a mNB model. The class subgraph is a naive Bayes, with C5 and
C6 unlinked from the root class. The arcs of the class subgraph are thicker and shown
in blue.

An analogous two-step optimization is adopted when a FAN structure is
looked for. The difference between FAN and TAN is that the former augments
naive Bayes by a forest, while the latter augments naive Bayes by a tree (i.e.,
the underlying graph of a TAN is necessary connected). TAN is thus a special
case of FAN, and therefore the latter can achieve a higher BDeu score than the
former, as its structure has more degrees of freedom. To identify the optimal
FAN we do not independently optimize the parents set of each non-root node, as
this approach could introduce cycles. We instead solve an optimization problem
characterized by the following constraints: cycles are not allowed; the root node
has no parents; each non-root node Ci has three feasible configuration for its
parents set: the empty set; the root class; the root class and another non-root
class. Strategies for efficiently learning the optimal FAN structure are discussed
for instance in [6, 7].

Figure 1 depicts an example of mNB, with the multilabel naive assumption
for the bridge subgraph and a naive Bayes as class subgraph.

An ensemble of Bayesian networks The previously described procedure yields
a single Bayesian network model. Its bridge graph is optimally learned under
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the multilabel naive assumption. Its class graph is either an optimal FAN or an
optimal naive Bayes.

In a previous work [1], we considered instead an ensemble approach. The
ensemble was constituted by n different Bayesian networks (BNs). Each BN
was based on naive multilabel assumption. We recall that, under the multilabel
naive assumption, the optimal bridge subgraph is independent from the class
subgraph. Thus, the BNs shared the same bridge subgraph.

The class subgraph was constituted by a different naive Bayes for each mem-
ber of the ensemble. Each member of the ensemble used a different root for
naive Bayes. The structure of naive Bayes was not optimized. The inferences
produced by the different member of the ensemble were combined through loga-
rithmic opinion pooling. The ensemble approach showed good performance, but
also high computational times, especially for MAP inference (see the discussion
at the end of Section 4).

In this paper we move from the ensemble to a single model. In this way, we
largely reduce the complexity of the inferences. To compensate for the loss of
accuracy due to switching to a single model, we introduce the two-layer opti-
mization for the class subgraph described in the previous section.

4 Computational Complexity

We distinguish between learning and classification complexity, where the latter
refers to the classification of a single instantiation of the features. Both space
and time required for computations are analyzed. The orders of magnitude of
these descriptors are reported as a function of the (training) dataset size d, the
number of classes n, the number of features m, the average number of states
for the features f = m−1

∑m
j=1 |Fj |, and the maximum in-degree of the features

g = maxj=1,...,m ‖CFj
‖ (where CFj

is the optimal parents set of Fj computed
as in Equation (6), | · | returns the cardinality of a variable, and ‖ · ‖ the number
elements in a joint variable). As the class variables cannot have more than two
parents in the mFAN and no more than one in the mNB, g is also the maximum
in-degree of the network ( provided that g > 1).

Regarding space, the conditional probability table (CPT) of the j-th feature,

i.e., P (Fj |CFj ), needs space O(|Fj | ·2‖CFj
‖), while the n CPTs associated to the

classes have size bounded by a small constant (8 numbers for the mFAN and 4
for the mNB). Overall, this means a space complexity O(n+ f2g). These tables
should be available during both learning and classification.

Regarding the time required by the learning, let us first note that, according
to Equation (5), the computation of the BDeu score associated to a variable
takes a time of the same order of the space required to store the corresponding
CPT. The number of scores to be evaluated in order to determine the parents
of Fj as in Equation (6) is of the same order of the binomial coefficient ( n

g ),
that means O(n2g). Then, we sum over the features and obtain O(mn2g) time.
Regarding the class graph, for mNB we only have to evaluate the inequality
in Equation (7), which only takes constant time, on the non-root classes. This
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means O(n) time. Learning a FAN can be instead achieved in O(n2) [7]. Finally,
the quantification of the network parameters requires the scan of the dataset,
i.e., for the whole ensemble, O((n+m)d). Such a learning procedure should be
iterated over the n models of the ensemble, in order to select the one with the
highest likelihood. This only affects the class subgraph, and the relative term
should be therefore additionaly multiplied by n.

Concerning the classification time, both the MAP inference in Equation (3)
and the computation of marginals in Equation (4) can be solved exactly by
junction tree algorithms in time exponential in the treewidth of the network’s
moral graph.2 The treewidth measures the connectivity of the network, which
according to our learning procedure depends on unconditional class correlations,
and the capability of the features to induce additional (conditional) correlations
among classes. In the mFAN, the treewidth is at least 3, while in mNB it is at
least 2. The experiments reported in the next section show that the treewidth of
our models is usually much smaller than the number of classes, and often small
enough to enable exact inference (by junction tree algorithms).

The situation of our previous ensemble was radically different [1]. For each
pair of class variables, say Ci and Cj , there was at least a network in the ensemble
such that Ci was parent of Cj (and vice-versa). Thus, when merging all the
networks of the ensemble in a single Markov random field, there was a clique
including all the classes, which made the treewidth equal to n, the number of
classes. Such a treewidth made exact inference intractable for large n, and we
were forced to resort to approximate methods such as max-product.

The ratio of the inference time of the ensemble to the inference time of the
single model increases exponentially with the difference between the number of
classes and the actual treewidth of the single model. Yet, there are no theoretical
guarantees for the treewidth of the single model being small (i.e., bounded by a
constant) [10]. In fact, as the inference problem is NP-hard even in structures as
simple as the bridge graph alone, we expect the treewidth of the single models to
be at least super logarithmic (i.e., greater than log(n)) in the worst case. When
this is the case, (i.e., when the treewidth is too high), approximate algorithms
are used instead. In these cases the time complexity is O(n2g).

Summarizing, the maximum in-degree represents the bottleneck for space,
learning time, and the classification time with approximate methods. Since, as
proved by [6], g = O(log d), the overall complexity is polynomial. Regarding the
classification time with exact inference, this is exponential in the treewidth.

5 Experiments

We compare mNB and mFAN against different alternative models: the ensemble
of BNs we proposed in [1]; the binary relevance algorithm; the ensemble of chain
classifiers (ECC). For both binary relevance and ECC we use naive Bayes as

2 The moral graph of a Bayesian network is the undirected graph obtained by link-
ing nodes with a common child and dropping arc directions; its treewidth is the
maximum size of a clique after being triangulated.
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base classifier. Binary relevance thus runs n independent naive Bayes classifiers,
where n is the number of classes.

ECC stands for ’ensemble of chain classifiers’. Each chain is characterized by
a different order of the labels in the chain. We set to 20 the number of chains in
the ensemble. Therefore, ECC runs 20·n naive Bayes, We use the implementation
of these methods provided by MEKA.3

It has not been possible to include in our experiments other multi-label clas-
sifiers based on BNs [14, 3] because of the lack of public domain software.

Regarding the parameters of our model, we set the equivalent sample size for
the structural learning to α = 5. No other parameter needs to be specified.

We have implemented the high-level part of the algorithm in Python. For
structural learning, we adopted the GOBNILP package.4 We performed the in-
ferences using the junction tree and belief propagation algorithms implemented
in libDAI, a library for inference in probabilistic graphical models.5

We compare the classifiers on 8 different data sets, whose characteristics
are given in Table 1. The density is the average number of relevant labels per
instance.

Data set Classes Features Instances Density

Emotions 6 72 593 .31
Scene 6 294 2407 .18
Yeast 14 103 2417 .30
Slashdot 22 1079 3782 .05
Genbase 27 1186 662 .04
Enron 53 1001 1702 .06
Cal500 174 68 502 .15
Medical 45 1449 978 .03

Table 1. Datasets used for experiments.

We validate the classifiers by a 5-folds cross-validation. We stratify training
and test sets according to the least relevant label (i.e., the label which is less
often annotated as relevant, and whose distribution among folds risks to be very
uneven if not stratified).

Before training any classifier, we perform two pre-processing steps. First, we
discretize numerical features into four bins. The bins are given by the 25-th, the
50-th and 75-th percentile of the value of the feature. Then we perform feature
selection as described in Section 3. The effectiveness of feature selection can be
appreciated from the third column of Table 2.

3 http://meka.sourceforge.net
4 http://www.cs.york.ac.uk/aig/sw/gobnilp
5 http://www.libdai.org
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Data set Treewidth Features
(mNB/ensemble) (selected/original)

Emotions 5/6 22/72
Scene 6/6 184/294
Yeast 8/14 28/103
Slashdot 22/22 465/1079
Genbase 23/27 82/1186
Enron 32/53 220/1001
Cal500 10/174 66/68
Medical 35/45 436/1449

Table 2. Treewidth and feature selection on the benchmark data sets.

The results regarding global accuracy and Hamming accuracy are provided
in Table 3 and 4 respectively. The Friedman test rejects the null hypothesis of all
classifiers having the same median rank. This happens both for global accuracy
(p<0.01) and for Hamming accuracy (p<0.01). The following rank is consistently
found under both accuracies: the first ranked classifier is the ensemble, followed
by mNB, mFAN, binary relevance and ECC.

Data set ensemble mNB mFAN ECC binary rel.

Cal500 0.00 0.00 0.00 0.00 0.00
Emotions 0.28 0.22 0.22 0.25 0.25
Enron 0.12 0.06 0.11 0.02 0.02
Genbase 0.95 0.94 0.93 0.76 0.77
Medical 0.69 0.65 0.62 0.20 0.18
Scene 0.64 0.61 0.59 0.30 0.29
Slashdot 0.49 0.42 0.42 0.44 0.41
Yeast 0.14 0.07 0.09 0.13 0.11

Average rank 1.2 3.1 3.2 3.4 4.0

Table 3. Global accuracy. Classifiers are sorted according to their average rank. Lower
rank is better.

We exclude from the subsequent analysis the mFAN model. It has lower
rank than mNB on both Hamming accuracy and global accuracy, despite higher
complexity. The reason of this phenomenon is not yet clear and it is worth further
investigation. However, according to Occam razor, mNB should be preferred over
mFAN.

We then perform the statistical multiple comparisons among ensemble, mNB,
binary relevance and ECC. We adopt the Wilcoxon signed-rank test to perform
the pairwise comparisons. Before declaring significance, we adjust the p-values
according to the false discovery rate (FDR) correction [2]. FDR adjusts the p-
values of multiple comparisons in a more powerful (i.e., less conservative) way
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Data set ensemble mNB mFAN ECC binary rel.

Cal500 0.86 0.86 0.86 0.59 0.63
Emotions 0.79 0.77 0.77 0.76 0.75
Enron 0.95 0.94 0.94 0.77 0.87
Genbase 1.00 1.00 1.00 0.99 0.98
Medical 0.99 0.99 0.98 0.98 0.69
Scene 0.91 0.90 0.89 0.83 0.82
Slashdot 0.96 0.95 0.95 0.95 0.86
Yeast 0.78 0.77 0.76 0.76 0.75

Average rank 1.3 2.2 2.8 4.0 4.8

Table 4. Hamming accuracy. Classifiers are sorted according to their average rank.
Lower rank is better.

than traditional methods such as Bonferroni. We report a significant difference
when the adjusted p-value is smaller than 0.05.

The ensemble is significantly more accurate than binary relevance, ECC and
mNB. This is verified both on global accuracy and Hamming accuracy. No signif-
icant difference can be detected between ECC and mNB. Moreover, both ECC
and mNB have significantly higher Hamming accuracy than binary relevance. As
for global accuracy, the ECC and mNB have higher rank than binary relevance,
but the difference is not significant. A possible reason is that on the Cal500 data
sets the global accuracy of all classifiers is zero because of the high number of
classes. Thus, global accuracy provides less evidence than Hamming accuracy
when analyzed by a hypothesis test.

Summing up, the ensemble is significantly more accurate than mNB, which
however compares favorably to both binary relevance and ECC. However, mNB
provides huge computational savings compared to the ensemble. The saving is
linear in the number in classes when performing the marginal inference (Equa-
tion 4). The ensemble performs the marginal query n2 times (n members of
the ensemble multiplied by n classes). The mNB classifier performs this query
n times (once for each class). As already discussed in Section 4, even larger
computational savings are obtained on the query about the most probable joint
configuration of the classes (Equation 3). Consider the ratio of the inference
time of the ensemble to the inference time of mNB. This ratio varies between
3 and 280 depending on the data set. Figure 2 shows the relation between the
logarithm of the ratio and the difference between the treewidth of the ensemble
(equal to the number of classes, see Section 4) and the treewidth of mNB (see
the values in Table 2). The relation is roughly linear as expected.

5.1 Insights on the mNB structure

In this section we derive some insights analyzing the structure of the class sub-
graphs learned for the mNB model. Learning the class subgraph according to
the two steps procedure of Section 3 boils down to identify a) which non-root



Trading off speed and accuracy in multilabel classification 13

0 5 10 15 20

1

2

3

4

5

n− treewidthmNB

lo
g
(T

e
n
s
/
T
m

N
B

)

Fig. 2. Logarithm of the ratio of inference times (ensemble/mNB, in log scale) against
difference between the number of classes and the treewidth of the mNB. A log ratio of
2.5 implies a 12-folds speed up. A log ratio of 5 implies a 150-folds speed up.

classes should be connected to each possible root class and b) which is the best
structure, among the n characterized by different roots. Let us call optimal root
the root of the graph which is eventually chosen.

The optimal root is usually among the most relevant classes (i.e., those which
are more frequently tagged as relevant) available in the data set. This point is
illustrated by the following analysis. Each class has its own relevance (% of
instances in which it is relevant). Consider the relevance of the class selected
as optimal root. Sort the classes according to their relevance and compute the
percentile of the root class. This percentile is generally well above 0.8. Often the
root class is the most relevant one (Figure 3, left).
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Fig. 3. Percentile of relevance of the optimal root (left) and connectivity of the optimal
naive Bayes (right).

We then analyze the connectivity of the optimal naive Bayes. If n is the
number of classes, naive Bayes contains at most n − 1 arcs between the root
and the non-root classes. The connectivity of a naive Bayes is how many arcs
are instantiated out of the n− 1 possible ones. Consider the connectivity of the
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naive Bayes selected as optimal. Sort the n different naive Bayes (each charac-
terized by a different root) according to their connectivity. Take the percentile
of the optimal naive Bayes. Such percentile is usually well above 0.6 (Figure 3,
right). An exception is found on the Yeast and Scene data sets. On Scene, the
optimal naive Bayes has connectivity of 4/5 while the alternative naive Bayes
have connectivity 5/5. The optimal model has thus high connectivity, but this is
hidden when computing the percentile. Only on yeast the optimal naive Bayes
has limited connectivity (6/13).

Our explanation is as follows. Consider that most classes have low relevance:
the average relevance of a class is around 10%, with huge differences among
data sets. A class which is more often relevant allows to reliably estimate the
correlations with the relevance of the remaining classes. Using a class of this type
as root of the class subgraph results both in higher score and in higher number
of arcs going from the root to the non-root classes.

5.2 Avoiding empty predictions

The least dense data sets are Slashdot, Genbase, Enron and Medical (see Table
1). On such data sets, global accuracy increases when empty predictions are
prevented (Table 5). The effect is noteworthy on Slashdot. We did not find
empty predictions on the other data sets.

Preventing empty prediction sometimes improves also Hamming accuracy,
but the impact on this indicator is narrow. Preventing empty predictions should
become common practice in multilabel classification because of the following
reasons: it sometimes improves accuracy; it never worsens it. It is trivial to
implement. Most important, it avoids returning a non-sensible prediction.

ensemble mNB

Data set
empty

prevented
empty
allowed

empty
prevented

empty
allowed

Slashdot .49 .40 .42 .34
Genbase .95 .94 .94 .94
Enron .12 .07 .06 .05

Medical .69 .64 .65 .60

Table 5. Change in global accuracy when preventing the empty prediction.

6 Conclusions

A new approach to multilabel classification based on Bayesian networks has been
proposed. Some of the ideas of our previous work [1] are kept: the naive multiclass
assumption (i.e., features are conditionally independent given the joint class), a
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singly connected subgraph over the classes, and no feature-to-class arcs. Yet, we
consider a more sophisticated learning of the structure. We show empirically that
the approximation largely decreases the computational burden while incurring
only a small worsening of accuracy. We also provide an original analysis of the
identified structures. We plan to make our code available in the near future.
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