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We study the visible compression of a sourceE5$uw i&,pi% of pure quantum signal
states or, more formally, the minimal resources per signal required to represent
arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor
is given the identity of the input state sequence as classical information. According
to the quantum source coding theorem, the optimal quantum rate is the von Neu-
mann entropyS(E) qubits per signal. We develop a refinement of this theorem in
order to analyze the situation in which the states are coded into classical and
quantum bits that are quantified separately. This leads to a trade-off curveQ* (R),
whereQ* (R) qubits per signal is the optimal quantum rate for a given classical
rate of R bits per signal. Our main result is an explicit characterization of this
trade-off function by a simple formula in terms of only single-signal, perfect fidel-
ity encodings of the source. We give a thorough discussion of many further math-
ematical properties of our formula, including an analysis of its behavior for group
covariant sources and a generalization to sources with continuously parametrized
states. We also show that our result leads to a number of corollaries characterizing
the trade-off between information gain and state disturbance for quantum sources.
In addition, we indicate how our techniques also provide a solution to the so-called
remote state preparation problem. Finally, we develop a probability-free version of
our main result which may be interpreted as an answer to the question: ‘‘How many
classical bits does a qubit cost?’’ This theorem provides a type of dual to Holevo’s
theorem, insofar as the latter characterizes the cost of coding classical bits into
qubits. © 2002 American Institute of Physics.@DOI: 10.1063/1.1497184#
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I. INTRODUCTION

When the term ‘‘quantum information’’ was first coined, it would have been hard to pre
how thorough and fruitful the analogy between quantum mechanics and classical inform
theory would ultimately prove to be. The general approach, characterized by the treatm
quantum states as resources to be manipulated, has yielded a promising collection of appli
ranging from unconditionally secure cryptographic protocols1–3 to quantum algorithms.4–6 More-
over, the analogy, which was initially unavoidably vague, has gradually been filled in by a di
variety of rigorous theorems describing achievable limits to the manipulation of quantum s
such as the characterization of the classical information capacity of quantum sources,7,8 the iden-
tification of optimal strategies for entanglement concentration and dilution9 and many more. One
of the pivotal results of the emerging theory is the quantum source coding theorem,10–12 demon-
strating that for the task of compressing quantum states, the von Neumann entropy plays
directly analogous to the Shannon entropy of classical information theory. Indeed, the qu
theorem subsumes the classical one as the special case in which all the quantum state
compressed are mutually orthogonal.

A quantum source~or ensemble! E5$uw i&,pi% is defined by a set of pure quantum signal~or
‘‘letter’’ ! statesuw i& with given prior probabilitiespi ~cf. below for precise definitions of these an
other terms used in the Introduction!. In this article we will study the so-calledvisiblecompression
of E. More specifically, we wish to characterize the minimal resources per signal that are nec
and sufficient to represent arbitrarily long strings of signals with arbitrarily high fidelity, when
compressor is given the identity of the input state sequence asclassical information ~as the
sequence of labelsi 1 ,...,i n rather than the quantum statesuw i 1

&,...,uw i n
& themselves, for example!.

According to the quantum source coding theorem the optimalquantumrate in this scenario is the
von Neumann entropyS(E) qubits per signal. We will develop a refinement of this theorem
which the states are coded into classical and quantum bits which are quantifiedseparately. This
leads to a trade-off curveQ* (R) whereQ* (R) qubits per signal is the optimal quantum rate th
suffices for a given classical rateR bits per signal. The quantum source coding theorem imp
thatQ* (0)5S(E) and evidently we also haveQ* (H(p))50 whereH(p) is the Shannon entropy
of the prior distribution of the source.@By standard classical compression, the compressor
represent the full information of the input sequence inH(p) classical bits per signal.# Thus the
trade-off curve extends between the limits 0<R<H(p).

There are various reasons why we might wish to maintain a separation between classi
quantum resources in an encoding.13 On a purely practical level it seems to be far easier
manufacture classical storage and communication devices than it is to make quantum on
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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perhaps the primary reason is conceptual: classical and quantum information have quite d
fundamental characters, with classical information exhibiting special properties not shar
quantum information in general. For example, classical information is robust compared to
tum information—it may be readily stabilized and corrected by repeated measurement that
destroy quantum information. Also, unlike quantum information, it may be cloned or co
These and other singular properties indicate that for many purposes it may be useful to
classical information as a separate resource, distinct from quantum information. Classical
mation is sometimes formally regarded as a special case of quantum informationviz. the quantum
information of a fixed set of orthogonal states. While this characterization is useful for fo
analyses, it is unsatisfactory conceptually because it relies on the essentially nonphysical
precision of orthogonality. It is, therefore, desirable to view classical information as a sep
resource.

Exploring the trade-off possibilities between the two resources will lead to a better u
standing of the interrelation of these concepts and the nature of quantum information itself.
can always be represented as qubits~and indeed, by Holevo’s information bound,14 one qubit per
bit is necessary and sufficient!, what are the limitations on representing qubits as bits? Under w
conditions is it possible at all? If there is a penalty to be paid, how large is it? In this articl
will give answers to these questions.

Our main result is a simple characterization of the trade-off functionQ* (R) which may be
paraphrased as follows. Given the ensembleE5$uw i&,pi% comprisingm statesuw i& we consider
decompositions ofE into at most (m11) ensemblesEj with associated probabilitiesqj , i.e., the
ensemblesEj5$uw i&,q( i u j )% have the same states asE and their unionø jqjEj reproducesE. This
is equivalent to the condition

pi5(
j

q~ i u j !qj ~1!

on the chosen probabilitiesqj and q( i u j ) defining the decomposition. LetS̄5( jqjS(Ej ) be the
average von Neumann entropy of any such decomposition and letH( i : j ) be the classical mutua
information of the joint distributionq( i , j ). For any R let S̄min(R) be the least average vo
Neumann entropy over all decompositions that haveH( i : j )5R. Then we will prove that the
trade-off function is given byQ* (R)5S̄min(R).

The prescription of a decompositionE5ø jqjEj may be equivalently given in terms of
visible encoding mapE of the states ofE:

E~ i !5uw i&^w i u ^ (
j

p~ j u i !u j &^ j u. ~2!

Here p( j u i ) are chosen freely subject only to the condition thatH( i : j )5R and the previous
probability distributions are constructed asqj5( i p( j u i )pi and q( i u j )5p( j u i )pi /qj . Under this
map, i is encoded into a quantum register, simply containing the stateuw i& itself, and a classica
register, containing a classical mixture ofj values. Note that this is asinglesignal encoding with
perfectfidelity since the stateuw i& may be regained perfectly from the encoded version by sim
discarding the classical register. Hence our result characterizes optimal classical and q
resources in compression, in terms of very simple single-signal perfect-fidelity encodings, d
the fact that compression is defined asymptotically in terms of arbitrarily long signal string
fidelities merelytendingto 1. This is a remarkable and unexpected simplification—even in c
sical information theory it is by no means the rule that coding problems have solutions that dnot
involve asymptotics~despite a few well-known examples such as Shannon’s source and ch
coding theorems15!. The situation is even more tenuous in quantum information theory, w
seems to be plagued by further nonadditivity~or unresolved additivity questions! for some of its
basic quantities so that, at the present stage, many basic constructions require a limit ov
mization problems of exponentially growing size.
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Using our formula we will give a thorough discussion of further properties of the trade
curve including a generalization to group covariant sources and to sources with infinitely
~continuously parametrized! states. We show that our result also leads to a number of coroll
characterizing the trade-off between information gain and state disturbance for quantum s
~yielding the results of Ref. 13 on blind compression as a corollary!, and we indicate how our
techniques for characterizingQ* (R) provide a solution to the so-called remote state prepara
problem as well. Finally, we develop a probability-free version of our main result which ma
interpreted as an answer to the intuitive question: ‘‘How many classical bits does a qubit c
This may also be interpreted as a kind of dual to Holevo’s theorem, insofar as the latter c
terizes the qubit cost of coding classical information into qubits.

The presentation of these results is organized as follows. At the top level, the article is d
broadly into two parts. The first part, Secs. II–VIII, sets up a precise formulation of the b
definitions and the trade-off problem and gives the proof of the main theorem characte
Q* (R), as well as a discussion of some of its important basic properties. The second part
IX and X, then goes on to provide some further generalizations of the main result. In more
the contents of the various sections are as follows.

In Sec. II, we will define the notions of blind and visible compression, the essential differ
being that in the blind setting the encoder is given the actual quantum states, while in the
setting the encoder is given the names of the quantum states as classical data. We then
these definitions to quantum-classical trade-off coding and introduce the trade-off fun
Q* (R).

In Sec. III we will prove a lower bound to the trade-off curve in terms of the simple sin
letter formula of the ensemble decomposition construction paraphrased above. In Sec. IV w
in turn, show that the lower bound is achievable so that the trade-off curve is identical t
single-letter formula. This is our main result, Theorem 4.4.

In Sec. V we use our characterization of the trade-off curve to evaluateQ* (R) numerically for
a selection of particular ensembles, chosen to illustrate various important properties of the
off function. In Sec. VI we extend our results to a different asymptotic setting, known as
arbitrarily varying source~AVS!, in which there is no~or only limited! knowledge of the prior
probability distribution of the states to be compressed. This provides a probability-free gen
zation of our main result. In Sec. VII we show that our main result can be reinterpreted to pr
statements about the trade-off between information gain and state disturbance for blind sou
quantum states~in particular entailing a new proof of the main result of Ref. 13!. Finally, in Sec.
VIII we indicate how our techniques—developed to studyQ* (R) –can also be used to characteri
the trade-off curve for the coding problem of remote state preparation posed in Refs. 16 a

Sections IX and X treats two significant further issues. In Sec. IX we show how to appl
results in the setting of group covariant ensembles, which leads to considerable further e
simplifications. Section X is devoted to the technicalities of generalizing our main result to so
with infinitely many ~continuously parametrized! states. Finally, in the Appendix, we collec
proofs of various auxiliary propositions that have been quoted in the body of the article.

II. BLIND AND VISIBLE COMPRESSION

We begin by introducing a number of definitions that are required to give a precise stat
of the variations of quantum source coding that we will be considering in this article. We
denote an ensemble of quantum statesw i with prior probabilitiespi asE5$w i ,pi%. In turn, we will
write S(E)5S(( i piw i) for the von Neumann entropy of the average state of the ensem
S(r)52Trr logr. ~Throughout this article log and exp will denote the logarithm and expone
functionsto base2.! Starting from an ensembleE, we can consider the quantum source produc
quantum states that are sequentially drawn independently fromE. Such a source corresponds to
sequence of ensemblesE ^ n5$w I ,pI%, where

Iª i 1¯ i n , ~3!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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w Iªw i 1
^ ¯^ w i n

, ~4!

pIªpi 1
¯pi n

. ~5!

This sequence will be referred to as an independent identically distributed~i.i.d.! source and the
states ofE ^ n are called blocks of lengthn from E. In this article we will focus on sources of pur
quantum statesuw i&, often making use of the notationw i5uw i&^w i u. The measure that we will us
to determine whether two quantum states are close is the fidelityF. For two mixed statesr andv,
F is given by the formula

F~r,v!ª~TrAv1/2rv1/2!2. ~6!

~Note that some authors use the name ‘‘fidelity’’ to refer to the square-root of this quantit! If
v5uv&^vu is a pure state, then the fidelity has a particularly simple form:

F~r,v!5^vuruv&5Tr~rv!. ~7!

Finally, we will use the notationHd to denote the Hilbert space of dimensiond andBd to denote
the set of all mixed states onHd . Likewise,H d

^ n will refer to then-fold tensor product ofHd and,
in a slight abuse of notation,B d

^ n will refer to the set of density operators onH d
^ n . We are now

ready to introduce the definition ofblind quantum compression.
Definition 2.1: Ablind coding schemefor blocks of length n, to R qubits per signal and

fidelity 12e, comprises the following ingredients:
(1) a completely positive, trace-preserving (CPTP) encoding map En :B d

^ n→B 2
^ nR , and

(2) a CPTP decoding map Dn :B 2
^ nR→B d

^ n ,
such that average fidelity

(
I

pI^w I uDn~En~w I !!uw I&>12e. ~8!

We say that an i.i.d. sourceE can be blindly compressed to R qubits per signal if for alld,e
.0 and sufficiently large n there exists a blind coding scheme to R1d qubits per signal with
fidelity at least12e.

The definition of visible compression is the same except that the~CPTP! restrictions on the
encoding mapEn are relaxed; for visible compressionEn can be an arbitrary association of inp
states to output states. Equivalently,En is a mapping from thenamesof the input states to outpu
states. Thus, we writeEn(I )PB 2

^ nR . Note that blind and visible compression schemes differ o
in the set of encoding maps that are permitted. For blind~respectively visible! compression, the
input states are given as quantum~respectively classical! information. In both cases the decodin
must be CPTP. In this language, the central result on the compression of quantum informati
be expressed as follows.

Theorem 2.2 „Quantum source coding theorem10–12
…: A sourceE of pure quantum states

can be compressed toa qubits per signal if and only ifa>S(E). The result holds for both blind
and visible compression.

It is interesting to study a refinement of quantum source coding in which the states are
into classical and quantum resources which are quantified separately. Because of restrict
the manipulation of quantum states such as the no-cloning theorem,18 blind compression is typi-
cally weaker than visible. In Refs. 13 and 19, for example, it was shown that in blind compre
it is typically impossible to make use of classical storage. The same is not true in the v
setting, where it is possible to trade classical storage for quantum. In this article we stud
trade-off for visible compression but, before we begin, we need to recall some basic defin
introduced in Ref. 13.
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Consider an encoding operationEn which maps a signal stateuw I& into a joint state on a
quantum registerB and a classical registerC. If $u j &% is the classical orthonormal basis ofC, then
the most general classical state onC is a probability distribution overj values, implying that the
most general form of the encoded state can be written as

En~ I !5(
j

p~ j uI !v I , j
B

^ u j &^ j uC. ~9!

The quantum and classical storage requirements~i.e., resources! of the encoding map are simpl
the sizes of the registersB andC, respectively.

Definition 2.3: Thequantum rateof the encoding map En is defined to be

qsupp~En ,E ^ n!5
1

n
log dimHB ,

while theclassical rateof the encoding is defined to be

csupp~En ,E ^ n!5
1

n
log dimHC .

With these definitions in place, we can make precise the notion of compression with a
tum and a classical part.

Definition 2.4: A sourceE can be compressed to R classical bits per signal plus Q qubits
signal if for all e,d.0 there exists an N.0 such that for all n.N there exists an encoding
decoding scheme(En ,Dn) with fidelity 12e satisfying the inequalities

csupp~En ,E ^ n!<R1d, ~10!

qsupp~En ,E ^ n!<Q1d. ~11!

The main result of this article will be a complete characterization of the curve describin
trade-off betweenR andQ. As mentioned above, for blind encodings there is usually no trade
to be made: generically,Q>S(E), regardless of the size ofR. The reason is essentially tha
making effective use of the classical register amounts to extracting classical information f
quantum system in a reversible fashion, which is impossible unless the quantum states of
obey some orthogonality condition. The more interesting case, therefore, is to study the st
of the trade-off curve for visible encodings. As it turns out, our technique will yield the o
results for blind compression as a corollary.

Definition 2.5: For a given sourceE5$uw i&,pi%, define the function Q* (R) to be the infimum
over all values of Q for which the source can be visibly compressed to R classical bits per
and Q quantum bits per signal.

Some properties of the curveQ* (R) are immediate. For example, the endpoints of the cu
are easily found. IfR50, then the compression must be fully quantum mechanical and
quantum source coding Theorem 2.2 applies:Q* (0)5S(E). More generally, the theorem implie
that Q* (R)1R>S(E) for all R. Similarly, for R5H(p) we haveQ* (R)50, by Shannon’s
classical source coding theorem. Moreover, for intermediate values ofR, the curve is necessarily
convex because one method of compressing with classical ratel1R11l2R2 is simply to timeshare
between the optimal protocols forR1 and R2 individually, resulting in quantum rate o
l1Q* (R1)1l2Q* (R2).

Example (Parametrized BB84 ensemble):Let us consider in more detail the example of
parametrized version of the BB84 ensemble in order to see what sorts of protocols are p
beyond simple timesharing. For 0,u<p/4, let EBB(u) be the ensemble consisting of the stat
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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uw1&5u0&, ~12!

uw2&5cosuu0&1sinuu1&, ~13!

uw3&5u1&, ~14!

uw4&52sinuu0&1cosuu1&, ~15!

as illustrated in Fig. 1, each occurring with probabilitypi51/4. We then haveS(E)51 and
H(p)52. From the argument above, we therefore already know two points on the (R,Q* (R))
curve, namely~0,1! and~2,0!. To get a better upper bound than the straight line joining these
points, suppose we were to partition the four states into two subsets,X15$uw1&,uw2&% and X2

5$uw3&,uw4&%. For a given input stringI 5 i 1i 2¯ i n , the classical register could be used to e
code, for eachk, whetheruw i k

&PX1 or uw i k
&PX2 . The classical rate required to do so would

1 classical bit per signal. Independent of the value of the classical register, the quantum re
required to compress the subensembles is then just the quantum resource required to com
pair of equiprobable quantum states subtended by the angleu. Therefore,

Q* ~1!<S~ 1
2uw1&^w1u1 1

2uw2&^w2u!5H2~ 1
2~11cosu!!. ~16!

By timesharing between the point corresponding to this protocol and the two endpoints
curve that we already calculated, we get a piecewise linear upper bound onQ* . As we will see
later, however, the true curve is strictly below this upper bound.~The impatient reader is allowe
to peek at Fig. 5 in Sec. V.!

With this example in mind, let us move on to our analysis of the general case.

III. SINGLE-LETTER LOWER BOUND ON Q* „R…

In this section we will prove a lower bound on the quantum-classical trade-off curv
reducing the asymptotic problem to a single-copy problem. Because compression is only p
asymptotically, however, we need to shift the emphasis away from the quantum and cla
resources towards quantum and classical mutual information quantities. In the next section w
then prove that nothing was lost by making this shift—we will show that the resulting lower b
to Q* (R) is actually achievable.

A. Mutual information and additivity

The information quantities in question will be the mutual information between the name o
state being compressed and the quantum and classical registers containing the outpu
encoding mapEn . Thus, we define the state

FIG. 1. Parametrized BB84 ensembleEBB(u).
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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rABC
ª(

I , j
pI uI &^I uA^ p~ j uI !v I , j

B
^ u j &^ j uC. ~17!

The namesI are stored in orthogonal states on systemA while the quantum and classical encodin
registers are labeledB andC, respectively. We can then make the following definitions:

S~A:C!ªS~A!1S~C!2S~AC!, ~18!

S~A:BuC!ªS~AC!1S~BC!2S~ABC!2S~C!, ~19!

where, for any subsystemX, S(X) denotes the von Neumann entropy of the reduced state oX.
Note thatS(A:C) is just the classical mutual informationH(I : j ) betweenI and j . To interpret
S(A:BuC), observe that for a given classical outputj , we can write down a conditional ensemb

Ej5$v I , j ,q~ I u j !%, ~20!

whereq(I u j ) is calculated using Bayes’ rule to beq(I u j )5p( j uI )pI /qj , with qj5( I p( j uI )pI .
The conditional quantum mutual informationS(A:BuC) is just the average Holevo informationx
of the conditional ensemblesEj :

S~A:BuC!5(
j

qjx~Ej !, ~21!

wherex is defined, for an ensembleE5$rk ,pk%, as14

x~E!ªSS (
k

pkrkD 2(
k

pkS~rk!. ~22!

BecauseEj is an ensemble supported on systemB, x(Ej )<nqsupp, which implies that

nqsupp>S~A:BuC!. ~23!

Therefore, roughly speaking, we will derive a lower bound onQ* (R) by minimizing S(A:BuC)
subject to the constraintS(A:C)<nR and developing further properties of that minimum. To th
end, defineTe(E ^ n,nR) to be the set of all encoding mapsE for which S(A:C)<nR and there
exists a decoding mapD satisfying

(
I

p~ I !F~w I ,~D+E!w I !>12e. ~24!

Next defineM e(E ^ n,nR) to be the infimum ofS(A:BuC) over allEPTe(E ^ n,nR). We begin by
noting the following basic properties ofM e(E,R).

Lemma 3.1: Me(E,R) is a monotonically decreasing function of R. Moreoever, it is jointly
convex ine and R, in the sense that, for any set ofek.0 and Rk>0 as well as probabilities
(klk51,

M e~E,R!<(
k

lkM ek
~E,Rk!, ~25!

wheree5(klkek and R5(klkRk .
Proof: Monotonicity follows immediately from the definitions. IfR1<R2 andS(A:C)<R1 ,

thenS(A:C)<R2 . Thus the setTe(E,R1) is contained inTe(E,R2) andM e(E,R1)>M e(E,R2).
To prove joint convexity, letek , Rk andlk be as in the statement of the lemma and assu

thatEkPTek
(E,Rk). Furthermore, suppose that the encoding mapsEk map into orthogonal sector
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Ck of the classical registerC. We construct an encoding map with information rateR<(klkRk

and fidelitye<(klkek by applying the mapEk with probability lk . The first inequality follows
from the fact that the sectorsCk are orthogonal:

S~A:C!5(
k

lkS~A:Ck!<R. ~26!

The decoding map for the new encoding consists of first determining which sectorCk was used
and then applying the decoding map corresponding toEk . The output of the encoding-decodin
scheme will, therefore, be the average of the outputs of the individual schemes, yielding2e
>(klk(12ek) by the concavity of the fidelity. Finally, if we defineSk(A:BuC) to be the condi-
tional quantum mutual information for the encoding mapEk , then we can calculate the value fo
the new scheme,

S~A:BuC!5(
k

lkSk~A:BuC!. ~27!

SinceM e(E,R)<S(A:BuC) by definition and this inequality must hold for all encoding mapsEk ,
we can conclude thatM e(E,R)<(klkM e(E,Rk). h

The particular usefulness of theM e function derives from an additivity property with respe
to the input ensemble given in the next lemma, a property that can be converted into a singl
lower bound onQ* (R).

Lemma 3.2: For any ensembleE, numbers R,e>0 and non-negative integer n,

M e~E ^ n,nR!>nMe~E,R!. ~28!

Proof: To begin, recall thatI 5 i 1i 2 ¯ i n and decomposeA into A1A2 ¯ An , with u i k& stored
on Ak . We will frequently make use of the notationA,k5A1A2 ¯ Ak21 and the analogous
I ,k5 i 1i 2 ¯ i k21 , as well the similarA.k and I .k . For a fixedEPTe(E ^ n,nR), the chain rule
for mutual information~cf. Appendix C of Ref. 13! implies that

S~A:BuC!5 (
k51

n

S~Ak :BuC,A,k!. ~29!

The bulk of the proof will consist of definitions for the purpose of interpreting the individ
summands in the chain rule in terms of single-copy encoding maps. Consider one such
S(Ak :BuC,A,k), which we can express as

S~Ak :BuC,A,k!5 (
I ,k , j

p~ I ,k , j !x~EI ,k , j !, ~30!

whereEI ,k , j is the ensemble of states

EI ,k , j5H(
I .k

p~ I .k!v I , j ,qI ,k
~ i ku j !J , ~31!

with

qI ,k
~ i ku j !5

( I .k
p~ i k!p~ I .k!p~ j uI !

( I >k
p~ I >k!p~ j uI !

. ~32!

Now define the encoding mapEI ,k
on the ensembleE to be
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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EI ,k
~ i k!ª(

I .k

p~ I .k!E~ I !5(
I .k

(
j

p~ I .k!p~ j uI !v I , j ^ u j &^ j u. ~33!

The output ofEI ,k
on the quantum register is described by the set of ensemblesEI ,k , j . Next,

define the decoding mapDk5TrÞk+D and the fidelity

FI ,k
ª12e I ,k

ª(
i k

p~ i k!F~r i k
,~Dk+EI ,k

!~ i k!!. ~34!

We can then calculate that

(
I ,k

p~ I ,k!FI ,k
5(

I ,k

p~ I ,k!(
i k

p~ i k!F~r i k
,~Dk+EI ,k

!~ i k!!

5(
I <k

p~ I <k!FS r i k
,TrÞkDS (

I .k

p~ I .k!E~ I ! D D
5(

I <k

p~ I <k!FS (
I .k

p~ I .k!r i k
,(
I .k

p~ I .k!~TrÞk+D+E!~ I ! D
>(

I
p~ I !F~TrÞkr I ,~TrÞk+D+E!~ I !!

>(
I

p~ I !F~r I ,~D+E!~ I !!>12e. ~35!

The first three lines are by definition and using linearity to shuffle the terms. The first ineq
comes from the joint concavity of the fidelity, the second from its monotonicity under partial t
and the last from the fidelity condition onD+E.

Therefore, if we writej (EI ,k
) for the random variable representing the classical output of

encoding map EI ,k
and RI ,k

for the corresponding mutual information, thenEI ,k

PTe I ,k
(E,RI ,k

). Defining Rkª( I ,k
p(I ,k)RI ,k

for the average classical information and app

ing the joint convexity ofM then finally yields

S~Ak :BuC,A,k!>M e~E,Rk!. ~36!

A simple calculation allows us to bound theRk from above; however,

(
k

Rk5(
k

(
I ,k

p~ I ,k!H~ i k : j ~EI ,k
!! ~37!

5(
k

S~Ak :CuA,k! ~38!

5S~A:C!<nR. ~39!

Combining Eqs.~36! and~39! with the chain rule, and applying the convexity ofM one more time
gives the simple inequality

S~A:BuC!>(
k

M e~E,Rk!>nMe~E,R!. ~40!
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Since this lower bound must hold for all encoding maps inTe(E ^ n,R), that concludes the proo
of the lemma. h

B. Perfect encodings and their properties

Within the setT0(E,R) of encoding maps withperfectfidelity decodings there is a particularl
simple subset, in terms of which we will phrase our final bound onQ* (R). Let T(E,R),T0(E,R)
be the set of all encoding mapsE of the form

E~ i !5uw i&^w i uB
^ (

j
p~ j u i !u j &^ j uC. ~41!

In other words,T(E,R) consists of the encoding maps in which a perfect copy of the state t
compressed is placed in registerB. The decoding map is simply to trace over the registerC. While
such encodings, which simply reproduce the input, are obviously useless for compressio
turn out to be quite sufficient for minimizingS(A:BuC). Indeed, let us define

M ~E,R!5 inf$S~A:BuC!:EPT~E,R!% ~42!

5 inf
p(•u•)

$S~A:BuC!:S~A:C!<R%. ~43!

By construction, this optimization is no longer over general CPTP maps but only over diff
possible conditional probability distributions on registerC.

Let us collect a few properties ofM for later use: First of all,M inherits the convexity ofM e

in the variableR. Also, it is clearly nonincreasing, andM (E,0)5S(E) is immediate from the
definition. Furthermore, for any choice ofp(•u•), we have

S~A:C!1S~A:BuC!5S~A:BC!>S~A:B!5S~E!, ~44!

from which we conclude thatR1M (E,R)>S(E). This, together with the convexity, implie
continuity in R, and the estimates

M ~E,R!>M ~E,R1d!>M ~E,R!2d. ~45!

In what follows, it will also frequently be helpful to use the following fact:
Proposition 3.3:

M ~E,R!5 inf
p(•u•)

$S~A:BuC!:S~A:C!5R%, ~46!

with an equality condition in the infimum [rather than the inequality of Eq. (43)].
The proof is given in the Appendix, Sec. 1.
In principle one might envisage a limit with larger and larger classical registerC. This would

constitute a serious obstacle to calculatingM (E,R) and carrying through our larger program
evaluatingQ* (R). Fortunately, the next proposition ensures that the range ofj ’s we need to
consider in the definition ofM (E,R) is bounded universally. Since the mutual informations
volved are continuous, the infimum in the definition ofM (E,R) can be replaced by a minimum

Proposition 3.4: In the definition of M(E,R) given in Eq. (43), it suffices to consider enco
ings of the form Eq. (41) with at most(m11) j values, where m is the number of states inE.

The proof is given in the Appendix, Sec. 2.

C. Completing the lower bound

Returning to the main argument, we are now prepared to relateM (E,R) to the trade-off curve:
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Theorem 3.5: If a sourceE can be visibly compressed to Q qubits per signal and R class
bits per signal, then Q>M (E,R). Equivalently, Q* (R)>M (E,R).

Proof: By the definition of compression and the previous lemma, we note that, for alle,d
.0, the inequalityQ* (R)>M e(E,R1d) must hold. We will give a proof thatM e is continuous at
e50, from which the stronger lower bound in terms ofM (E,R) will follow.

So, fix e,d for now and suppose thatEPTe(E,R1d). Let D be the decoding map associate
to E. As usual,

E~ i !5(
j

v i , j
B

^ p~ j u i !u j &^ j uC. ~47!

For a givenj value, the decoding map will produce the ensemble of states$s i , j ,p( i u j )% where
s i , j5D(v i , j

B
^ u j &^ j uB). Therefore, applying Markov’s inequality~cf. Lemma 6.3 of Ref. 13! and

the fidelity condition in the definition ofTe(E,R), the probability weight of thej ’s with

(
i

q~ i u j !F~w i ,s i , j !>12Ae ~48!

is at least 12Ae. In other words, for these goodj values, the output of the decoding map is clo
to Ej . Therefore, for these same goodj values, by the monotonicity and continuity ofx, we must
have

x(Ej )>SS (
i

q( i u j )uw i&^w i u D 2 f (e), ~49!

where we may choosef (e)54(A4 e logd2A4 e log(2A4 e)) ~as shown in Appendix A of Ref. 13!.
Consequently,

S(A:BuC)5(
j

qjx(Ej )>(
j

qjSS (
i

q( i u j )uw i&^w i u D 2 f ~e!. ~50!

Sincef (e)→0 ase→0 we conclude that lime↓0M e(E,R1d)5M0(E,R1d) and, moreover, in the
limit e→0 it suffices to consider encoding maps of the type

E~ i !5uw i&^w i uB
^ (

j
p~ j u i !u j &^ j uC. ~51!

Thus we obtainQ* (R)>M (E,R1d), for all d.0, which, by Eq.~45! above yields our claim.h

Remark:The estimatef (e) above may also be derived using Fannes’ inequality,20 which states
that for density operatorsr ands on ad-dimensional space,

ir2si1<e⇒uS~r!2S~s!u<dh~e/d!. ~52!

where

h~x!5H 2x logx for x< 1
4,

1
2 for x. 1

4.
~53!

We will use this inequality again later. h

D. On alternative definitions

Inspecting the proofs of Lemma 3.2 and Theorem 3.5 reveals that we do not actually ne
block-based fidelity condition
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^F&ª(
I

pIF~w I ,~D+E!~ I !!>12e ~54!

of Eq. ~8!, but only the weaker mean letterwise fidelity

^F̄&ª(
I

pI F̄ I>12e, ~55!

where

F̄ Iª
1

n F (
k51

n

F~w i k
,~TrÞk+D+E!~ I !!G . ~56!

By the monotonicity of the fidelity under partial traces, the latter is directly implied by the for
The lower bound Eq.~35! is then replaced by 12ek , with (1/n) (kek5e, and we conclude,

instead of Eq.~36!, that

S~Ak :BuC,A,k!>M ek
~E,Rk!. ~57!

The remaining argument is only altered at Eq.~40!:

S~A:BuC!>(
k51

n

M ek
~E,Rk!>nMe~E,R!, ~58!

using joint convexity once more.
Hence, we could define the functionM̄ e(E,R) in a fashion analogous toM e(E,R) but using

the fidelity functionF̄ instead ofF and Lemma 3.2 would continue to hold for the new functio
In fact, M̄ e(E,R) will be strictly additive, in the sense that

M̄ e~E ^ n,nR!5nM̄e~E,R!, ~59!

because any single-letter encoding with fidelity 12e repeatedn times gives rise to ann-block
coding with mean letterwise fidelity 12e.

We also note at this stage that we could have opted for a slightly more sophisticated defi
of the quantum resource of the encoding. In particular, if we introduce qsj

5 (1/n)log RankEj as the minimal number of qubits per signal required to support the conditi
ensembleEj , then we could have defined the quantum rate of the encoding map as

qsupp5(
j

qjqsuppj . ~60!

In this picture, the quantum resource would be the average over classicalj values of the minimal
number of qubits per signal required to support the quantum portion of the encoded stateEn(I ).
Such a definition, by treating the classical and quantum storage requirements differently,
the possibility of variable-length quantum encodings, where the length is a function of the
sical messagej . Such encodings could potentially be more powerful than the encodings
fixed-sized quantum supports used to define the original qsupp. However, becausej
>x(Ej ), the analog of Eq.~23! continues to hold.~For a more detailed investigation of th
properties of such variable-length quantum memories, see Ref. 21.! More precisely,

nqsupp>S~A:BuC!. ~61!
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Therefore, the lower bound of Theorem 3.5 on the trade-off curveQ* (R) would apply equally
well if we had definedQ* (R) usingqsupp instead of qsupp.

Thus, while replacing eitherF by F̄ or qsupp byqsupp in the definition of compression cou
potentially have reduced the resource requirements, we find that our lower bounds would a
the modified definitions. Since we will see later in the article that the lower bounds are achie
using the original, restrictive formulation of compression, we can conclude that no advantag
be gained by relaxing the definitions to useF̄ andqsupp.

IV. ACHIEVING THE LOWER BOUND M„E,R…

Recall that the trade-off functionQ* (R) gives the minimal quantum resourceQ* qubits per
letter that is sufficient to encode arbitrarily long strings with arbitrarily high fidelity 12e for any
e.0, given a classical resource ofR bits per letter. On the other hand, the lower boundM (E,R)
is defined as the minimal quantum resource for a particular kind ofsingle-letter perfectfidelity
~i.e., e50! encoding given in Eq.~51!, subject to the constraint that the classicalmutual infor-
mation S(A:C) betweeni and j is R. Hence in the latter case, the classical resource will gener
exceedR bits per letter. Thus by implementing the simple encodings of Eq.~51! we can attain
M (E,R) as the quantum resource but not generally with a classical resource bounded byR. We
now argue that, nevertheless, the classical resource can be reduced toR while retaining the
quantum resource atM (E,R) i.e., that the lower boundM (E,R), to Q* (R) is attainable, so we
must then haveQ* (R)5M (E,R).

Our strategy intuitively is the following. We think of the conditional distributionp( j u i ) with
mutual informationS(A:C) in Eq. ~51! as a noisy channel fromi to j . Then the reverse Shanno
theorem22 states that this noisy channel can be simulated with a noiseless channel of ca
S(A:C) if the receiver and sender have shared randomness, i.e., in the presence of shar
domness, the classical resource can be reduced toR5S(A:C) bits per letter. Finally, we show tha
only O(logn) bits of shared randomness suffice to provide a high fidelity encoding-deco
scheme for blocks of lengthn. Hence this amount of shared randomness can be included in
classical resource of the encoding with asymptotically vanishing cost per letter.

To make the above intuitions mathematically rigorous, we begin by recalling some basic
from the theory of typical sequences23,24 and typical subspaces12,25 in the following two subsec-
tions.

A. Typical sequences

For a sequenceI 5 i 1¯ i nPI n define thetype PI of I as its empirical distribution of letters
i.e.,

PI~ i !ª
1

n
N~ i uI !ª

1

n
u$ku i k5 i %u. ~62!

The number of types of sequences is polynomial inn: it is ( uIu21
n1uIu21)<(n11)uIu.

The type classTP of P is the set of all sequences with typeP:

TPª$I PI nuPI5P%. ~63!

Consider now any probability distributionP on I, and letd.0. Then the set oftypical sequences
~with respect to the distributionP andd! is

TP,dª$I PI:; i uPI~ i !2P~ i !u<d/An%. ~64!

Note that this set is a union of certain type classes.
The following are standard facts:23,24
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P^ n~TP,d!>12
1

d2 , ~65!

~n11!2uIu exp~n~H~P!!!<uTPu, ~66!

exp~n~H~P!!!>uTPu, ~67!

~n11!2uIu exp~n~H~P!2uIuh~d/An!!!<uTP,du, ~68!

~n11! uIu exp~n~H~P!1uIuh~d/An!!!>uTP,du. ~69!

Note that the latter two follow from the former two by the following well–known explicit estim
on the difference of two entropies23 @this being a classical case of the Fannes inequality, Eq.~52!#:
if P andQ are probability distributions on a set ofk elements, then

iP2Qi1<e⇒uH~P!2H~Q!u<khS e

kD , ~70!

where the functionh is given in Eq.~53!.
For sequencesI PI n, JPJ n, the conditional type WJuI of J ~conditional onI ! is defined as

the stochastic matrix given by

; i j P I~ i !WJuI~ j u i !5PIJ~ i j !, ~71!

wherePIJ is the joint type ofIJ5( i 1 j 1 , . . . ,i nj n). It is undetermined ifPI( i )50.
The conditional type classof W given I is defined as

TW~ I !ª$J:WJuI5W%5$J:; i j P IJ~ i j !5PI~ i !W~ j u i !%. ~72!

Let W be now an arbitrary stochastic matrix andd.0. Theset of conditionally typical sequence
of W given I is defined as

TW,d~ I !ª$J:; i j uWJuI~ j u i !2W~ j u i !u<d/AN~ i uI !%. ~73!

Again, there are a couple of standard facts:

WI~TW,d~ I !!>12
uIu
d2 , ~74!

for the product distributionWI5Wi 1
^¯^ Wi n

, and

~n11!2uIuuJu exp~nH~WuPI !!<uTW~ I !u, ~75!

exp~nH~WuPI !!>uTW~ I !u, ~76!

~n11!2uIuuJu exp~n~H~WuPI !2uIuuJuh~duIu/An!!!<uTW,d~ I !u, ~77!

~n11! uIuuJu exp~n~H~WuPI !1uIuuJuh~duIu/An!!!>uTW,d~ I !u, ~78!

whereH(WuPI) is just the conditional Shannon entropy( i PI( i )H(W(•u i )).

B. Typical subspaces

The concepts in the previous subsection translate straightforwardly to their Hilbert
versions via the following recipe:
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For a stater choose a diagonalizationr5( i PIr i uei&^ei u, with eigenvectorsuei& and eigen-
valuesr i , which define a probability distribution onI. Then we have a diagonalization ofr ^ n:

r ^ n5(
I PI

r I ueI&^eI u, ~79!

with

ueI&5uei 1
& ^¯^ uei n

&, ~80!

r I5r i 1
¯r i n

. ~81!

Now for any subsetA,I n we can define the subspace spanned by the vectors$ueI&:I PA%, which
is most conveniently described by the subspace projector

PAª(
I PA

ueI&^eI u. ~82!

In this way we can define, for any distributionP on I,

PPª (
i PTP

ueI&^eI u, ~83!

~note that this is not uniquely specified by the distributionP alone, but also requires specificatio
of the basisuei&!, and

Pr,dª (
i PTr ,d

ueI&^eI u. ~84!

Statements on the cardinality of sets translate into statements on the dimension of the corre
ing subspaces~i.e., rank, or equivalently, trace, of the projectors!.

Similarly, if we have statesWi with diagonalizationsWi5( jW( j u i )uej u i&^ej u i u, we can define,
for any subsetA,J n and I PI n,

PA~ I !ª (
JPA

ueJuI&^eJuI u. ~85!

This leads to the concept ofconditional typical subspace projector, for d>0,

PW,d~ I !ª (
JPTW,d

ueJuI&^eJuI u, ~86!

and again probability and cardinality statements about the typical sequences translate into
lent statements about certain traces.

In particular we shall use the following estimate of the rank of the conditional typical
space projector:

TrPr,d~ I !<~n11! uIud exp~n~S~ruPI !1uIudh~duIu/An!!!. ~87!

@Here we make use of the notationS(ruPI)ª( iS(Wi) in an attempt to match the statements ab
typical sequences as closely as possible.# We’ll also use the important probability estimate

Tr~WITW,d~ I !!>12
uIu
d2 . ~88!
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C. Trade-off coding

We will use the coding technique that is summarized in the following proposition. The s
ment is slightly more technical and the estimates more explicit than we would need to prov
main Theorem 4.4. This is because we will reuse it in Secs. VI and X.

Proposition 4.1: For a probability distribution p onI and a classical noisy channe
p(•u•):I→J consider the tripartite state

r5(
i

pi u i &^ i uA^ uw i&^w i uB
^ (

j
p~ j u i !u j &^ j uC.

Then there exists a visible code(E,D) such that

;I PTp,d F~ uw I&^w I u,~D+E!~ I !!>12
4uIuuJu

d2 ,

and having classical and quantum resources

nS~A:C!1nKuIuuJuh~d/An!1K8uIuuJu log~n11! classical bits,

nS~A:BuC!1n•3duIuuJuh~2duIuuJu/An!1duJu log~n11! quantum bits,

where K and K8 are absolute constants.
Proof: We design ann-block code as follows~typicality conditions throughout are with

respect to a previously fixedd!:
~a! Encoding:

~1! Given I generateJ according top(JuI ).
~2! Compress~i.e., project! the quantum stateuw I&^w I u to the conditional typical subspac

Pr̃ IJ,d(J), wherer̃ j
IJ5( iWI uJ( i u j )uw i&^w i u.

If I is typical andJ is conditionally typical, sendJ and the joint type ofI andJ as classical
data, and send the projected state onPr̃ IJ,d(J) as quantum data.

~b! Decoding:
Given J, one can isometrically embed the quantum state transmitted back into the am

Hilbert space.
The fidelity of this scheme is analyzed as follows.~We assume that if, at any point of th

above protocol, an ‘‘if’’ is not satisfied, then some fixed failure action is taken. Such would b
case when the POVM involving the above subspace projection yields an orthogonal resu
example.! With probability at least 12uIu/d2, J is conditionally typical, and in this case th
projection is successful with probability at least 12uJu/d2 @by virtue of Eq.~88!#, leaving a state
which ~cf. Ref. 12! has fidelity>122uJu/d2 to uw I&^w I u.

Looking at the classical cost of this procedure, we see that it is dominated by sendingJ, which
requires too many, namelynS(C), classical bits. Here the reverse Shannon theorem22 is invoked.
~For a precise statement, see Theorem 4.2 below.! Using this theorem we can simulate the chan
p on the typical sequencesI sendingnS(A:C)1o(n) classical bits, but at the same time needi
an amount of shared randomness. The simulation, in fact, has the property that it endows
and receiver with a commonJ, the distribution of which isuIuuJu/d2-close top(JuI ). Taking all
these points into account, we see that the fidelity of this protocol is at least 12 3uIuuJu/d2 for
every individualuw I&^w I u for which I is typical.

The analysis of the quantum resources needed is equally straightforward. By Eq.~87! the
number of qubits needed to transmit the projected state is

nS~ r̃ IJuPJ!1dnuJuh~d/An!1duJu log~n11!. ~89!

Note that the leading term is a conditional von Neumann entropy of the bipartite state
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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r5(
j

r̃ j
IJ

^ PJ~ j !u j &^ j u, ~90!

which has trace norm distance at most 2duIuuJu/An from

v5(
i j

p~ i !uw i&^w i u ^ p~ j u i !u j &^ j u. ~91!

~This follows from the typicality ofI and conditional typicality ofJ.! Next, using the Fannes
inequality ~52!, we can upper bound Eq.~89! by

nS~ r̃uq!12dnuJuh~2duIuuJu/An!1dnuJuh~d/An!1duJu log~n11!, ~92!

with qj5( i P( i )p( j u i ) and r̃ j5qj
21( i P( i )p( j u i )uw i&^w i u.

We are left with one remaining feature to address: the protocol uses shared randomne~and
to a considerable extent, according to Theorem 4.2!. We shall now show that we can reduce th
requirement toO(logn) shared random bits using a technique very much like the derandomiz
argument in Ref. 26. The proof will then be complete because setting up these bits can be ab
into the classical communication with asymptotically vanishing cost per letter.~Actually, in order
to achieve high average fidelity, no random bits are needed at all, but our goal is to prove tha
fidelity can be achieved for every state in the typical subspace, a more stringent requireme
is used later in our study of arbitrarily varying sources.!

Observe that a protocol using shared randomness can be viewed as a probabilistic mix
ordinary, deterministic protocols. Index these by a variablen, accompanied by a probabilityxn .
For eachn we have a corresponding fidelityFI(n) for each individualI . Our construction shows
that for typicalI ,

(
n

xnFI~n!>12
3uIuuJu

d2 5..m. ~93!

Note that the left hand side is exactly the expectation of the random variableFI . We now choose
n1 ,...,nL independently and identically distributed~i.i.d.!, according to the probabilitiesxn . For
fixed I the FI(n l), l 51,...,L are i.i.d. as well, and in the interval@0, 1#. Thus we can apply the
Chernoff–Hoeffding bound for their arithmetic mean~Lemma 4.3 below!:

PrH 1

L (
l 51

L

FI~n l !,~12e!mJ <expS 2L
e2m

2 ln 2D . ~94!

By the union bound we can estimate the probability that the above event occurs for a single
I to be less than or equal to

expS 2L
e2m

2 ln 2D uIun. ~95!

Choosinge5uIuuJu/d2, this bound is itself less than 1 if

L.
2d4 ln 2

uIu2uJu2m
n loguIu, ~96!

in which case we can conclude that there exist valuesn1 ,...,nL such that, for all typicalI , we have

1

L (
l 51

L

FI~n l !>12
4uIuuJu

d2 .
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Therefore, a shared uniform distribution over the numbers 1,...,L is sufficient, whereL need only
satisfy Eq.~96!. This can be accomplished withO(logn) shared random bits, which is what w
wanted. h

Here are the auxiliary results we needed in the proof:
Theorem 4.2 „Reverse Shannon Theorem; see Refs. 22 and 27…: For any channel W:I

→J, distribution P onI, and 0,l,1 there exist maps

En :I n→$1,...,M %,

Dn :$1,...,M %→J n,

n51,...,N, such that

;I PTP,d

1

2 IW~ I !2
1

N (
n51

N

Dn~En~ I !!I
1

<
uIuuJu

d2 .

Moreover, with an absolute constant K,

logM<nH~P:W!1nKuIuuJuh~d/An!1KuIuuJu log~n11!,

logN<nH~WuP!1nKuIuuJuh~d/An!1KuIuuJu log~n11!.

h

Lemma 4.3 (Chernoff-Hoeffding bound.28,29) Let X1 ,...,XL be independent, identically distri
uted random variables, taking real values in the interval@0, 1#, and with expectationEXl>m.
Then, fore.0,

PrH 1

L (
l 51

L

Xl,~12e!mJ <expS 2L
e2m

2 ln 2D .

h

With this we are ready to state our main result:
Theorem 4.4:Q* (R)5M (E,R).
Proof: The inequality ‘‘>’’ is theorem 3.5. For the opposite inequality choose ap(•u•) such

that S(A:C)<R and S(A:BuC)<M (E,R)1e. Then, according to Proposition 4.1, there ex
n-block codes (E,D) with classical and quantum rates bounded byR1o(1) and M (E,R)1e
1o(1), respectively, which have fidelity 12e for all typical I. But since these carry almost all th
probability weight~say, larger than 12e! of all sequences, the fidelity of the scheme is at le
122e, regardless of what is done on nontypical sequences. Ase was arbitrary, we getQ* (R)
5M (E,R). h

Remark:The proof of Proposition 4.1, as the eventual ‘‘derandomization’’ shows, does no
the full power of the reverse Shannon theorem, but only a consequence that is actually als
in rate-distortion coding: that one can map the typical sequencesI onto exp(nH(P:W)1o(n)) many
J’s such that all the pairs (I , f (I )) are jointly typical. h

V. EXPLORING THE TRADE-OFF CURVE

In this section we use our formula for the trade-off curve to evaluateQ* (R) numerically for
a selection of particular ensembles chosen to illustrate further important properties of the tra
function.

To begin, let us consider the simplest possibility, a pair of nonorthogonal states. Figure 2
the trade-off curve for the pair$u0&,(1/&) (u0&1u1&)%, each occurring with probability12. At first
glance,Q* (R) appears to coincide with the linear upper bound given by interpolating betw

(0,S(E)) and (H2( 1
2),0). A more detailed examination, however, reveals that the curve is act
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



oding
timal

urves

at

om the

r bound

4423J. Math. Phys., Vol. 43, No. 9, September 2002 Trading quantum for classical resources

Downloaded 1
very slightly nonlinear. Therefore, somewhat surprisingly, the simple quantum-classical c
scheme given by timesharing between fully quantum and fully classical coding is nearly op
but not completely so. As we will see below, this need not always be true.

In general, more complicated ensembles with internal structure will have trade-off c
reflecting that structure. Consider, for example, the three-state ensembleE3 illustrated in Fig. 3,
consisting of the statesuw1&5u0&, uw2&5 (1/&) (u0&1u1&) and uw3&5u2& with equal probabili-
ties. Since the set of states decomposes into two subsetsX15$uw1&,uw2&% andX25$uw3&% with
mutually orthogonal supports, it is possible to encode whether a givenuw i&PX1 or uw i&PX2

efficiently usingH2( 1
3) classical bits. Indeed, Fig. 4 plotsQ* (R) for this ensemble and we see th

the Schumacher limit is achieved for values ofR<H2(1/3). For values ofR.H2( 1
3), or once the

classical information in the ensemble has been exhausted, the trade-off curve departs fr

Schumacher lower bound to meet the point (H( 1
3,

1
3,

1
3),0).

FIG. 2. The trade-off curve for a pair of equiprobable, nonorthogonal states. The dashed line represents the lowe
Q* (R)1R>S(E) imposed by the Schumacher limit.

FIG. 3. The three-state ensembleE3 consists of the statesuw1&, uw2&, uw3& occurring with equal probabilities.
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Our third example, the parametrized BB84 ensembleEBB(u) introduced in Sec. II, is an
ensemble that, likeE3 above, decomposes naturally into subensembles. On the other hand,
for E3 , the subensembles are generally not orthogonal. The trade-off curve foru5p/8 is plotted
in Fig. 5. As usual, the dashed lower bound is the Schumacher limit. The dashed-dot line
piecewise linear upper bound constructed in Sec. II. Squeezed into the intermediate region,
that Q* (R) is typically strictly less than the upper bound and, especially in the region 0,R

,1, quite strongly curved. The point (1,H2( 1
2(11cosp/8)) provides another surprise:Q* (R) and

the upper bound coincide there. Therefore, the partitioning scheme is optimal if exactly one
classical storage is to be consumed per copy but not otherwise.

We now turn to another interesting property of the trade-off curve. Contrary to what one m
expect, the functionM (E,R) is not concave in the ensemble, violating the intuition that it should

FIG. 4. The trade-off curve for three-state ensembleE3 . The dashed line again represents the Schumacher lower bo

which in this case is achievable forR<H(
1
3).

FIG. 5. Trade-off curve for the BB84 ensembleEBB(p/8). The dashed line represents the Schumacher lower bound an
dashed-dot line represents the upper bound from partitioning into the setsX1 andX2 .
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be harder to send the mixture of two ensembles than it is to probabilistically send either one.@Note
that M (E,0), however, is just the von Neumann entropyS(E) and is, therefore, concave inE.# In
fact, counterexamples to concavity can be constructed without even making use of nonorth

states. LetE15$u i &,1
4% i 50

3 be an ensemble consisting of four equiprobable orthonormal states

let E25$u i &, 1
2% i 50

1 . We can also consider the mixture of ensembles

Eª 1
2E11 1

2E25$~ u0&,3
8!,~ u1&,3

8),~ u2&,1
8),~ u3&,1

8)%. ~97!

Since each of these ensembles is effectively classical, the Schumacher lower bound is at
and their trade-off curves are just straight lines with slope21. From there, we can also evalua
1
2(M (E1 ,R)1M (E1 ,R)) and compare it toM (E,R). This is done in Fig. 6, revealing a violatio
of concavity whenR comes close to 2.

In the same spirit, note that an analogous construction shows that, while

M ~E1^ E2,2R!<M ~E1 ,R!1M ~E2 ,R! ~98!

always holds, equality~i.e., the natural ‘‘additivity’’ property ofM under tensor products! may be
violated if the ensembles are sufficiently different from each other. More generally we hav
following.

Proposition 5.1:

M ~E1^ E2 ,R!5min$M ~E1 ,R1!1M ~E2 ,R2!:R11R25R%.

Also, while M (E,R) may not be concave in the ensembleE, it does obey a weaker conditio
analogous to Schur concavity.

Proposition 5.2: LetE5$uw i&,pi% be an ensemble. Let$ak% be a set of probabilities with
corresponding unitary operators Uk and F be the ensembleF5$Ukuw i&,piak%. Then M(E,R)
<M (F,R).

The proofs of these propositions can be found in Appendix Secs. 3 and 4, respectively
As our last example, we include the trade-off curve for the uniform~unitarily invariant!

ensemble on a single qubit as Fig. 7. Devetak and Berger30 actually calculated an explicit param
etrization of the optimal trade-off curve for a restricted class of encodings. Our lower bou

FIG. 6. Violation of concavity in the ensemble. IfQ* were concave in the ensemble, the solid line representingM (
1
2E1

1
1
2E2 ,R) would always exceed the dashed line of

1
2M (E1 ,R)1

1
2M (E2 ,R). For large values ofR we see that is not the

case in this example.
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



t their
quote

ct
ong

pplies
ave
ge be-

tion
limi-

u-

4426 J. Math. Phys., Vol. 43, No. 9, September 2002 Hayden, Jozsa, and Winter

Downloaded 1
Theorem 3.5, or, rather, its infinite source ensemble variant, Theorem 10.1, proves tha
construction is optimal within all possible quantum-classical coding strategies. Thus, we can
their result that, forlP(0,̀ ),

R5
l

el21
211 logS lel

el21D , ~99!

Q* ~R!5H2S 1

l
2

1

el21D , ~100!

gives a parametrization ofQ* (R). This curve will also play an important role when we constru
a probability-free version of our main result in Sec. VI. We will find that, in an extremely str
sense, it describes the cost of a qubit in classical bits.

VI. ARBITRARILY VARYING SOURCES

Our main result does not yet say, however, what a qubit costs in bits because it only su
the trade-off curveQ* (R) for a given set of quantum states once a set of prior probabilities h
been prescribed. Without the probabilities, the curve is undefined and the rate of exchan
tween bits and qubits cannot be uniquely identified. However, using the theory ofarbitrarily
varying sources (AVS)~see Ref. 31 for an exposition of this concept in classical informa
theory!, we can develop a probability-independent version of our trade-off curve that will e
nate the ambiguity.

Throughout this section, letE denote not an ensemble, but just a set of states, and letP,PE
be a subset of probability distributions onE. For each stringI PI n of lengthn we will consider
product distributions

pn~ I !ªp1~ i 1!¯pn~ i n!, ~101!

where eachpkPP. An AVS-code of fidelity12e is defined as a visible code, as before~see
Definition II!, only that now the fidelity condition is required to hold for all probability distrib
tions in P:

FIG. 7. Trade-off curve for the uniform qubit ensemble. Note that the curve never reaches theQ50 axis, encoding the fact
that no finite amount of classical information is sufficient to perfectly transmit an arbitrary qubit state.
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;pnPPn (
I

pn~ I !F~w I ,~D+E!~ I !!>12e. ~102!

The classical and quantum rates are exactly as in Definition 2.3 and, likewise, Definition 2
be used unchanged to characterize attainable rate pairs (R,Q). This leads to the definition of the
trade-off functionQ* (R,P) as the minimumQ such that (R,Q) is attainable.

Intuitively, the encoder-decoder pair plays a game against a clairvoyant adversary who
is to minimize their average fidelity and who can control the source mechanism so as to crea
of the distributionspnPPn. Their goal is to win by keeping the average fidelity above 12e
against arbitrary strategies of the adversary.

A special case is that ofP5PE , in which case we have no restriction on the source, so tha
possible state strings are to maintain high fidelity.

We shall use the notationM (E,p,R) to designate our earlier functionM for the ensemble
consisting of the statesE and the probabilitiesp, and define now

M ~E,P,R!ª sup
pPQ

M ~E,p,R!, ~103!

whereQªconv(P) is the convex hull ofP.
Theorem 6.1:Q* (R,P)5M (E,P,R).
Proof: The inequality ‘‘>’’ follows almost directly from Theorem 3.5: only observe that t

adversary can simulate any source ensemblepPQ, and then Theorem 3.5 applies.@More formally,
choose a probability distributions on P such thatp5(kskpk , and note that averaging Eq.~102!
over the measures^ n gives ~102! for p^ n.#

In the other direction, we only need to exhibit a covering of the union of the ‘‘probable s
of the distributionspnPPn by appropriate sets of typical sequences, and apply Proposition
This is done as follows:

For pn5p1^¯^ pnPPn observe that the set

T pnªH I :; iUN( i uI )2 (
k51

n

pk~ i !U<dAnJ ~104!

carries~by Chebyshev’s inequality! almost all the weight of the distribution:

pn~T pn!>12d22. ~105!

SinceT pn is in fact the same as the set of typical sequencesTp̄,d , for p̄5 (1/n) (kpkPQ, the
union øpnT pn is actually a union of certain type classes, and hence we may choosep̄1 ,...,p̄T ,
T<(n11)uIu, such that

Tª  
pnPPn

T pn5 
t51

T

Tp̄t ,d . ~106!

The coding is very simple: whenI PT the encoder choosest such thatI PTp̄t ,d . He then
communicatest to the decoder, and uses the protocol of Proposition 4.1.~In fact, communication
of t is not even necessary, as in the latter protocol the type ofI is communicated anyway.! When
I ¹T some fixed default choice is sent.

By construction and by Proposition 4.1, for sufficiently larged this scheme usesR1e clas-
sical bits andM (E,P,R)1e qubits per source symbol. For eachpnPPn we obtain high fidelity for
all states outside a set of arbitrarily small probability. h

In particular, for the above-mentioned case of no restrictions at all on the probabilities, w
the trade-off function
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Q* ~R,PE!5 sup
pPPE

M ~E,p,R!. ~107!

which depends only on the states ofE. For a finite ensemble it is quite easy to show th
M (E,p,R) is continuous in the distributionp. This implies that the suprema in Eqs.~103! and
~107! are, in fact,maxima~in the former case over the closure ofQ!.

VII. INFORMATION AND DISTURBANCE

The functionM (E,R), in addition to providing the quantum-classical trade-off curve, ha
number of other useful interpretations. Recall from Proposition 3.3 that

M ~E,R!5 inf
p(•u•)

$S~A:BuC!:S~A:C!5R%, ~108!

with an equality forS(A:C) rather than the inequality we usually use. By the chain rule,

S~A:C!1S~A:BuC!5S~A:BC! ~109!

andS(A:BC) is just the Holevox quantity of the ensemble

F BC
ªH w i

B
^ (

j
p( j u i )u j &^ j uC,pi J . ~110!

Therefore, if we define the functionX(E,R)ªR1M (E,R), then we can rewrite Eq.~108! as

X~E,R!5 inf
p(•u•)

$x~F BC!:S~A:C!5R%. ~111!

The quantity on the right is now perhaps more familiar than the conditional mutual inform
S(A:BuC): it is a standard measure of the distinguishability present in the ensembleF BC, mini-
mized over all possible ways of including a fixed amount of classical information about the
i in registerC. Now suppose that Alice is initially given a stateuw i& from E ~without the namei
this time! and, via a CPTP map, manages to extract an amountR of classical information abouti
without damaging any of the statesuw i&. Then her final Holevox would necessarily be at least a
large asX(E,R), by definition. Typically, however,X(E,R).S(E) @by the Schumacher lowe
bound toQ* (R)5M (E,R)#, so such an operation will be forbidden by the monotonicity ofx.
Therefore, it is impossible for Alice to extract information without disturbing the states.

The simple argument above combined with the additivity ofM e(E,R) from Sec. III A can be
used to prove interesting statements about the trade-off between information gain and sta
turbance in an asymptotic and approximate setting. In contrast to the compression problem
ever, we can make stronger statements if we use the mean letterwise fidelity measureF̄ from Sec.
III D instead of the global fidelity measureF. Therefore, we will express our results in terms
the corresponding functionM̄ e(E ^ n,nR) instead ofM e(E ^ n,nR). Recall that these functions ar
defined identically except that the first uses the mean fidelity functionF̄ and the second uses th
global fidelity F. Likewise, defineX̄e(E,R)5R1M̄ e(E,R). SinceF and F̄ are identical for a
single copy, we haveM̄ e(E,R)5M e(E,R) and similarly forX andX̄. By the discussion in Sec. II
D, we know thatM̄ e(E ^ n,nR)5nM̄e(E,R), which in turn implies

X̄e~E ^ n,nR!5nXe~E,R!. ~112!

Now, generalizing the above single copy argument, suppose that Alice is given a stateuw I& drawn
from E ^ n, which, by a CPTP mapG, she manages to convert into the state
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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r I5(
j

w̃ I , j
B

^ p~ j uI !u j &^ j uC, ~113!

with a quantum and classical part such that the mutual informationH(I : j )>nR and the mean
letterwise fidelity between Alice’s initial states and her final states of systemB satisfies

F̄~E ^ n,TrC+G~E ^ n!!ª(
I

pI

1

n (
k51

n

F~w i k
,TrÞk+TrC~r I !!>12e. ~114!

Writing F BC5$G(w I),pI%, the monotonicity ofx guarantees thatnS(E)>xBC and it is easy to see
that xBC>X̄e(E ^ n,nR). By applying Eq.~112!, we then find

S~E!>Xe~E,R!, ~115!

in which, conspicuously, all dependence onn has vanished. In other words, in order to maximi
her information at a given mean letterwise fidelity, Alice should just repeat the optimal single
strategy for each position; she need not ever apply any collective operations. Summarizing
observations, we have the following.

Theorem 7.1:Suppose we have a set of statesuw I& drawn from the ensembleE ^ n represented
on system B and letG be a CPTP map from B to the joint system BC, where C is classical,
satisfying the following conditions:

~1! H(I : j )>nR, where j is the classical output on system C.
~2! The mean letterwise fidelity F(̄E ^ n,TrC+G(E ^ n))>12e.

Then, for eache.0, the inequality S(E)>Xe(E,R) holds. Moreover, the Holevo quantity of th
ensembleF BC5$G(w I),pI% satisfies the inequalityx(F BC)>nXe(E,R).

h

One application of the theorem is that it provides an alternative method for analyzin
quantum resources required for blind compression, which was the subject of Ref. 13. The
simply to think of the mapG as the compositionDn+En of the encoding and decoding maps f
blocks of sizen. ~Because classical information can be copied, we can assume without lo
generality that the decoder keeps his classical information around after the decoding sta
been completed.! Now suppose that the scheme has classical mutual informationH(I : j )>nR. If
it also has mean letterwise fidelity 12en , then, as for the visible case,

qsupp>
1

n
M̄ en

~E ^ n,nR!5M en
~E,R!. ~116!

By the previous theorem, however, we must also have the inequalityS(E)>Xen
(E,R). Moreover,

if perfect compression is possible asymptotically~using either the block or letterwise fidelit
conditions!, we get the stronger inequality

S~E!> lim
e↓0

Xe~E,R!5X0~E,R!. ~117!

~The continuity ate50 follows from the continuity ofM0 , demonstrated earlier.! Because the
ensembleE can always be recovered by tracing over theC register, the monotonicity ofx guar-
antees that the right hand side is always at least as large as the left, implyingS(E)5X0(E,R). We
are, therefore, interested in the equality conditions for monotonicity.

Recalling some terminology from Ref. 13, we say an ensembleE is reducibleif its states can
be partitioned into two nonempty sets with orthogonal supports. An ensemble is said to b
ducible if it is not reducible. Every ensemble, therefore, can be decomposed into ortho
irreducible subensembles as
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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E5 ø
l 51

L

alEl , ~118!

whereal is the total probability weight of states in subensembleEl .
Proposition 7.2: LetE5ø l 51

L alEl be a decomposition of the pure-state ensembleE into irre-
ducible subensemblesEl5$uw i l &,pi u l% and letF BC5$w i l

B
^ v i l

C ,alpi u l% be a bipartite extension o
the ensembleE. Then S(E)5x(F BC) if and only if v i l 5v j l for all i , j , and l.

A proof is given in the Appendix, Sec. 5. The meaning of the proposition is essentially tha
only information that can be stored on registerC without increasingx is the classical information
already present on registerB, so thatv i l must be a function ofl alone. Therefore, in order to
satisfy Eq.~117! it is necessary thatR<H(a1 , . . . ,aL). Conversely, provided the inequality hold
it is possible to extractR bits per signal without disturbance at the encoding stage, at which p
the encoding scheme we used for visible compression can be used to achieve the quant
S(E)2R. Putting these observations together, we obtain an alternative demonstration of the
theorem of Ref. 13:

Theorem 7.3:Let E5ø l 51
L alEl be a decomposition of the ensembleE into orthogonal, irre-

ducible subensembles. Then blind compression ofE to Q qubits per signal plus auxiliary classica
storage is possible if and only if

Q>(
l

alS~El !5S~E!2H~a1 , . . . ,aL!. ~119!

h

Thus, the techniques we have introduced to analyze the visible compression problem pro
unified framework for analyzing blind compression as well. In fact, we will see in the next se
that the trade-off curve for yet another related problem—remote state preparation—can a
calculated using similar methods.

VIII. APPLICATION TO REMOTE STATE PREPARATION

Remote state preparation, introduced in Ref. 17 following a conjecture of Lo’s,16 is very
similar to what we have considered here: it is a visible coding problem for quantum s
involving classical resources, in the form of communication, and quantum resources, this t
the form of entanglement. Furthermore, these two types of resources can be traded again
other so it is natural to study the optimal trade-off curve.

Without giving formal definitions, letE* (R) be the minimum rate of entanglement sufficie
for a remote state preparation protocol with classical rateR, such that the average fidelity tends
1 with growing blocklength.

Given that entanglement can be set up using quantum communication at a cost of on
per ebit, and that, on the other hand, quantum communication can be accomplished
teleportation32 at a cost of two cbits and one ebit per qubit, it is clear that coding methods fo
one problem immediately yield~possibly suboptimal! procedures for the other.~In fact, by making
use of quantum-classical trade-off coding, this resulted in the ‘‘cap-method’’ of Ref. 17, which
further refined in Ref. 30.!

In Ref. 33 a method of remote state preparation is developed that works for visible cod
product states and is more efficient than teleportation: we really need only to useonecbit and one
ebit per qubit, asymptotically.

Theorem 8.1„See Ref. 33…: Given a finite setX of states (density operators) onK, there is a
probabilistic exact (one-shot) remote state preparation protocol working for all states inX and
with failure probability uniformlye, using a maximally entangled stateuF& on K^ K and classical
communication of a message out of
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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M<11
2 ln 2

e2 log~2uXudimK!dimK.

h

This leads immediately to the following.
Theorem 8.2:For the sourceE5$uw i&,pi% of quantum states, if R>0 and Q5Q* (R), then

E* (R1Q)<Q.
As a consequence, we obtain

E* ~R!<N~E,R!ª min
p(•u•)

$S~A:BuC!:S~A:BC!<R%,

minimization over the same set of tripartite states as in the definition of M.
Proof: We apply Theorem 8.1 to the spaceK of encoded statesof an optimal trade-off coding

usingR cbits andQ qubits per source symbol, and to the set of all possible encoded states
that uXu<(uIuuJu)n.

By that result, we needQ ebits to do this, and an additionalQ1o(1) cbits to theR cbits from
the trade-off coding. h

In fact, in Ref. 33 it is shown, by methods very similar to those in Sec. III, that the ab
estimate forE* is in fact an equality, and that our AVS considerations also carry over.

Theorem 8.3:For the state setE and AVSP,

E* ~R,P!5 sup
pPQ

N~E,p,R!,

with Q5conv(P). h

For P the set of all distributions on the pure states~as indeed for any symmetric family o
distributions! we can prove symmetry results like those in the upcoming Sec. IX, and arrive a
conclusion that theabsolute trade-offbetween cbits and ebits in remote state preparation is g
by the curveN(P(H),u), whereu is the uniform~i.e., unitarily invariant! measure on the se
P(H) of all pure states onH. Devetak and Berger30 arrived at a slightly different curve as a
upper bound to the true trade-off, starting fromM (P(H),u) as we did, but employing teleporatio
instead of the newer technique in Theorem 8.1. For this reason their conjecture that their bo
tight is not correct.

IX. SYMMETRY IN THE ENSEMBLE

Our formulas for the trade-off curve, both in the known and arbitrarily varying source c
can be considerably simplified if there is symmetry in the set of states.

Assume that there is a groupG acting on the labelsi of the states by a projective unitar
representationUg ,

;gPG,i PI uwgi&^wgiu5Uguw i&^w i uUg
† . ~120!

~We will present the following arguments for a finite group, but they also apply to compact gr
in fact, we only need the existence of an invariant measure, see Ref. 34.! The action ofG on I
induces an action on the probability distributions onI in a natural way: ifpPP(I) is a distribu-
tion, thenpg( i )5p(g21i ) defines the translated distribution. Assume now further that the a
tarily varying sourceP is stable under this induced action:

;pPP pgPP. ~121!

@In the ‘‘known source’’ case,P5$p%, this simply means thatp(gi)5p( i ) for all i PI and g
PG.#

By the formula for the trade-off curve, Eq.~103!, we may assume thatP is convex. Letting
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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PG
ª$pPP:;gPGpg5p%, ~122!

we can then prove the following.
Theorem 9.1:For any G-invariant state set and AVSP,

M ~E,P,R!5M ~E,PG,R!. ~123!

Proof: The lhs is by definition greater than or equal than the rhs.
For the opposite inequality we make use of the ‘‘restricted concavity’’ given in propos

5.2. For the rotationsUg applied with equal probabilities to the ensemble (E,p), we get

M S ø
g

UgEUg
† ,

1

uGu (g
pg,RD>

1

uGu
M ~UgEUg

† ,pg,R!5M ~E,p,R!. ~124!

Note that (1/uGu) (gpgPPG and, since the state set isG invariant, we haveøgUgEUg
†5E, which

proves our claim. h

If G acts transitively, this leads to a dramatic simplification of the formula for the AV
trade-off curve~Theorem 6.1!: in this case the onlyG-invariant distribution is the uniform distri-
bution, so from Theorem 6.1 we obtain the following.

Corollary 9.2: For an AVS(E,P) with transitive group action under whichP is stable, (e.g.,
for P5PE), we have

Q* ~R,P!5M ~E,u,R!,

where u is the uniform distribution onE. h

The particular example ofE being the set of all pure states onH andP being the set of all
distributions onE is arguably the setting forthe trade-off between classical and quantum bits:
trade-off coding becomes a statement solely about states, with no mention of prior probab
Of course we have not yet justified the application of our results to infinite state sets
corresponding but more involved treatment of the coding bounds will be given in Sec. X.

Given this generalization to infinite state sets, we conclude that theabsolute trade-offfor pure
states onH is given byM (P(H),u), with the uniform~i.e., unitarily invariant! measureu on the
setP(H) of all pure states. The Devetak-Berger curve introduced earlier corresponds to th
H5C2.

Remark:From the proof of Theorem 9.1, we see that we may always restrict the clas
encodingsp(•u•) to be group covariant as well, in the sense that, for eachj PJ, the distribution
q(•u j ) has the property that for eachgPG there exists aj 8 satisfying qj 85qj and q(giu j )
5q( i u j 8) for all i PI:

Define a new encodingp8 by letting

p8~ j ,gugi !ª
1

uGu
p~ j u i !. ~125!

For aG-invariant distributionp on the ensemble states this does not change the values ofS(A:C)
andS(A:BuC). However, the resulting probabilitiesqj ,g8 5qj andq8(giu j ,g)5pip( j u i )/qj ,g8 have
a useful property: there is a group action ofG on the indices (j ,g) under which the distributionq8
is invariant, and the set of conditional distributionsq8(•u j ,g) is stable. More precisely,h acts on
( j ,g) by h•( j ,g)5( j ,hg). Obviously,q8 is invariant under this, and

q8~giuh•~ j ,g!!5q8~giu j ,hg!5q8~h21hgiu j ,gh!, ~126!

saying thatq8(•uh•( j ,g))5(q8(•u j ,hg))h.
Hence, when discussing optimal codings given byqj andq(•u j ) such that( jqjq(•u j )5p, we

may always assume thatG also acts on the set ofj ’s, and that
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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; j ;g qg j5qj and q~•ug j !5~q~•u j !!g. ~127!

h

We close this section by giving a bound on the size of the classical register for a
ensemble with symmetry, which sometimes improves our earlier result in Proposition 3.4:

Proposition 9.3: Let the group G act on the ensembleE5$w i ,pi% i PI in the way described a
the beginning of this section, and assume that p is G-invariant. If the group action partitionsI
into t G-orbits, then for every R there exists a classical encoding p(•u•):I→J which is covariant
in the above sense, and satisfies

uJu<uGu~ t11!, S~A:C!<R, S~A:BuC!5M ~E,R!.

In fact, J partitions into t11 G-orbits, in the sense described above.
The proof is given in the Appendix, Sec. 6
Example:Let E consist of any two states:E5$uw i&% i 51

2 . By choosing a reflection that swap
uw1& and uw2&, we get a transitiveZ2 action on the indicesi . Therefore, for the AVS (E,PE), we
haveQ* (R,P)5M (E,u,R), whereu is the uniform distributionpi5

1
2. This distribution is clearly

G-invariant, so Proposition 9.3 ensures that there is an optimal encoding for whichJ partitions
into at mostt1152 orbits, each of size either 1 or 2. h

Example:For states in the BB84 ensembleEBB(u), the groupZ23Z2 acts transitively via
reflection along theu/2 axis and rotation byp/2. Therefore, once again, the unrestricted AVS c
be reduced to the uniform ensemble, for which the optimal encoding can be assumedG-covariant,
with J partitioning into at most two orbits of length 1, 2 or 4. h

X. INFINITE SOURCE ENSEMBLES

It should be noted that, even in the technical parts of our proofs, and, indeed, in the
statements of thecoding theorems, we assumed that the sets of states under consideration
finite.

As there are interesting examples of ensembles with infinite state sets, including perhap
notably the whole manifold of pure states in a Hilbert space, we show here how a certain ap
mation technique~used in Ref. 25 to deal with coding for nonstationary quantum channels! can be
used to transfer our main results quite directly. The procedure, unfortunately, is not en
painless; we have to go through the proof of Proposition 4.1 again with a modified and
technical version of the typical subspace. That is why we have chosen to treat the infinite
case separately, confining the details to this section.

A. Formulation of information quantities and the lower bound

To be able to consider infinite ensembles and encodings, we have to reformulate our n
from Secs. II and III in terms of general measure spaces~for the background and terminology se
any textbooks on probability, such as Ref. 35, and measure theory34!:

The source ensembleE is described by a measure spaceV ~with probability measureP!, and
a measurable mapw:V→P(H),S(H) from V into the set of pure states on the Hilbert spaceH
~which is still of finite dimensiond!, mappingvPV to uwv&^wvu. We can then easily define
encoding and decoding (E,D) for blocks of lengthn:

E:Vn→S~HB!3VC , ~128!

D:B~HB! ^ B~,2~VC!!→B d
^ n , ~129!

whereE is a Markov kernel,VC is afinite set, andD is CPTP. The quantification of classical an
quantum resources we adopt unchanged, and the fidelity condition reads as follows: the co
encoding and decoding gives rise to a Markov kernel

D+E:Vn→B d
^ n , ~130!
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and, using the abbreviation

~D+E!~v1¯vn!5E
B(HB)

~D+E!~dsuv1¯vn!s, ~131!

we require that

F5E
Vn

P^ n~dv1¯vn!F~wv1¯vn
,~D+E!~v1¯vn!!>12e. ~132!

Let us denote bym the measure induced byP and this Markov kernel onV3S(HB)3VC :

m~FA3GBC!ªE
FA

P~dv!E~GBCuv!. ~133!

We denote its restrictions~marginals! to factorsVA5V, S(HB), VC by P5mA , mB , qªmC ,
respectively, and analogouslymAC , etc.

With the help of Radon–Nikodym derivatives we can always construct the Bayesian
verse’’ Markov kernel

q:VC→VA3S~HB! ~134!

that gives rise to the same joint distribution:

E
GC

mC~dj !q~FABu j !5m~FAB3GC!. ~135!

In fact, mC-almost everywhere,

q~FABu j !5
dm~FAB3$ j %!

dmC~ j !
. ~136!

To follow the procedure of Sec. III we have to define the relevant information quantities~for
their properties, see Refs. 36 and 37!:

First, S(A:C) can be expressed asD(mACimA^ mC), in terms of the relative entropy~or
Kullback–Leibler divergence! of two measures

D~mil!ªE m~dx!logS dm~x!

dl~x! D , ~137!

where dm(x)/dl(x) denotes the Radon–Nikodym derivative. If this does not existm-almost
everywhere, we defineD(mil)5`. It is a fact that in Eq.~137! the Radon–Nikodym derivative
always exists, and it can be checked that in the finite case the new definition coincides w
old.

Second,S(A:BuC)5*VC
q(dj )S(A:BuC5 j ), with S(A:BuC5 j ) denoting the quantum mu

tual information associated to the conditional probability measureq(•u j ) on VA3S(HB): for any
such distributionl, with first marginallA and Markov kernelL:VA→S(H),

Sl~A:B!5SS ES(H)
lB~ds!s D 2E

VA

lA~dv!SS ES(H)
L~dsuv!s D . ~138!

Again, it is possible to check that for discrete probability spaces we obtain the same expre
as before.
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The proofs of Lemmas 3.1 and 3.2 and of Theorem 3.5 are directly adapted to this lang
essentially replacing all sums representing probability averages by integrals.~Note that even the
‘‘continuity in e’’ part in the latter applies as the functionsf andg depend only one andd.! This
is possible since the monotonicity and convexity properties we used are still true in the in
setting.

At the end of the proof we arrive at encodings mappingvPV to uwv&^wvu ^ ( j p( j uv)u j &
3^ j u ~i.e., the corresponding Markov kernel mapsi to the point mass atuwv&^wvu times a discrete
measure onVC!. Such encodings we denote ‘‘p:VA→VC , ’’ and we get

Q* ~R!> inf
p:VA→VC ,uVCu,`

$S~A:BuC!:S~A:C!<R%. ~139!

Dropping the finiteness ofVC can only decrease the lower bound, and we arrive at
following general version of Theorem 3.5:

Theorem 10.1:For the ensembleE5(V,P,w),

Q* ~R!>M ~E,R!ª inf
p:VA→VC

$S~A:BuC!:S~A:C!<R%,

with

S~A:C!5D~miP^ q!,

S(A:BuC)5E
VC

q(dj )SS E
VA

q(dvu j )uwv&^wvu D ,

wherem is the measure onVA3VC induced by P and the Markov kernel p(•u•), q is its marginal
on VC and q(•u•) is the Bayesian Markov kernelVC→VA . h

B. Adaptation of the coding theorem

The obstacles to an application of our coding scheme, Proposition 4.1, are the pote
infinite range of the source register~V! and the classical encoding (VC). Of course, when in the
previous subsection we allowed the latter to be infinite, we only madeM smaller, and at that poin
it was not clear that this was a good move.

The purpose of the present subsection is to show that it is possible to approximate the
of an infinite encoding by a strictly finite one: finitely many possible states onH and finitely many
classical symbols. This will inevitably introduce some error, which we will have to counter
suitably adapted notion of typical subspace.

Lemma 10.2: Fore.0 there exists a partition ofS~H! into m<C(d)e2d2
Borel sets each of

which has radius at moste: in each partSi there exists a states i such that for allrPSi , ir
2s i i1<e. The constant C(d) depends only on d.

Proof: The set of states onH is affinely isomorphic to the set of positive comple
d3d-matrices with trace 1, which is contained in the set of self-adjoint complex matrices wi
d2 real and imaginary parts of entries in the interval@21,1#: this is ad2-dimensional hypercube
This can be partitioned into (2&d3)d2

e2d2
many small hypercubes of edge lengthe/(d3&). It is

easy to check that for anyr,s in the same small cube,ir2si1<e. h

For a source (V,P,w) such a partition entails a partitionZ of V into at mostm measurable
piecesZi , with v iPZi such thatuwv i

&^wv i
u5s i . ~We need only consider pieces that intersect

image ofw.! A central role will be played by the ‘‘contraction’’ of the infinite ensembleE to the
finite ensembleE85$wv i

,P̂( i )5P(Zi)% which is obtained by identifying all ofZt to the single
statewv i

.

We have already defined the set ofP̂-typical sequencesTP̂,d , and now can define the follow
ing typical set forP:
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T P,d
Z

ª ø
I PTP̄,d

Zi 1
3¯3Zi n

. ~140!

It obviously inherits the large probability property ofTp8,d :

P^ n~T P,d
Z !>12

1

d2 . ~141!

Before we can describe the coding scheme we have to introduce a variant of the cond
typical sequences and subspaces: for a channelW:I→J andd,e.0 define

T W,d
(e) ~ I !ª$J:; i j uN~ i j uIJ !2N~ i uI !W~ j u i !u<dAN~ i uI !1eN~ i uI !%. ~142!

~Our previous notion is recovered withe50, and in the sequele will be small, compared tod
which we shall choose large.! Observe that this is a union of conditional type classes. Using
~78! it is quite easy to show that

uT W,d
(e) ~ I !u<~n11! uIuuJu expS nH~WuPI !1(

i
N~ i uI !uJuh~e1dN~ i uI !21/2! D

<~n11! uIuuJu exp~nH~WuPI !1nuJuh~e!1nh~duIu/An!!, ~143!

where we have used the inequalityh(x1y)<h(x)1h(y) and concavity ofh.
Similarly, for a collection of statesWi , which we endow with fixed diagonalizationsWi

5( j 51
d W( j u i )uej u i&^ej u i u, we can define the projector

PW,d
(e) ~ I !ª (

JPT W,d
(e) (I )

ueJuI&^eJuI u, ~144!

and get from Eq.~143! the estimate

TrPW,d
(e) ~ I !<~n11!duIu exp~nH~WuPI !1ndh~e!1nh~duIu/An!!. ~145!

Its other most important property that we shall use is the following: consider a product sts
5s1^¯^ sn such that, with someI 5 i 1¯ i n ,

; i I 1

N~ i uI ! (
k: i k5 i

sk2Wi I
1

<e. ~146!

Then we claim that

Tr~sPW,d
(e) ~ I !!>12

uIu
d2 . ~147!

The proof goes as follows: the left hand side above does not change if we replacesk by sk8
ª( j uej u i k&^ej u i k

uskuej u i k&^ej u i k
u, because the projector is a sum of one-dimensional projec

ueJuI&^eJuI u. Thus we may assume thatsk has diagonal form in the chosen eigenbasis ofWi k
:

sk5( jSk( j )uej u i k&^ej u i k
u.

Note that the left hand side of Eq.~147! can be rewritten as (S1^¯^ Sn)(T W,d
(e) (I )), a

classical probability. Now it is immediate from the definition of the latter set@Eq. ~142!# and from
the condition~146! on s that

T W,d
(e) ~ I !.TS̄,d~ I !, ~148!
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with the channelS̄( j u i )5 @1/N( i uI )# (k: i k5 iSk( j ). Hence

~S1^¯^ Sn!~T W,d
(e) ~ I !!>~S1^¯^ Sn!~TS̄,d~ I !!>S 12

1

d2D uIu

>12
uIu
d2 , ~149!

the second line by Chebyshev’s inequality.
After these preparations we are ready to prove the infinite source version of Propositio
Proposition 10.3: LetE5(Va ,P,w) be a source. For a probability distribution P onV and a

Markov kernel p(•u•):VA→VC , e.0, there exists a partitionZ of VA into m21,C(d)e2d2

measurable sets, corresponding to ane-fine partition of the state space, and ford.0 a visible
code(E,D) such that

;v5~v1¯vn!PT P,d
Z F~ uwv&^wvu,~D+E!~v!!>12

4m2

d2 .

and sending

nS~A:C!1nKm2h~d/An!1K8m2 log~n11! classical bits,

nS~A:BuC!1n~3dm2h~2dm2/An!13dh~e!!1dm log~n11! quantum bits.

Proof: We can find the partition by Lemma 10.2 and the discussion thereafter.
Consider now the~measurable! coarse-graining map

T:v° i P$1,...,m21%for vPZi . ~150!

Applying T to VA @and the identity map toB(HB) and VC# leads to a new distributionm8 on
VA83B(HB)3VC , with VA85$1,...,m21%. By the data-processing inequality23,37 we have

S~A8:C!<S~A:C! and S~A8:BuC!<S~A:BuC!. ~151!

Next we change the quantum part of the encoding by collecting all the weight of a pieZi

into w iªwv i
: we can do this by a similar coarse-graining map

T̃:s°uw i&^w i u for sPZi . ~152!

The resulting distribution will be denoted bym9: it is supported on a finite setVA8 and a finite set
of statesw i ~in fact, the ‘‘contracted’’ ensembleE8 of the discussion after Lemma 10.2!. It is
generated by a Markov kernelp̂:VA8→VC , which in this case is simply a finite collection o
~conditional! distributionsp̂(•u i ) on VC . Note that this is a valid encoding in the sense of
definition of M (E8,R), in the main section. Let us denote the corresponding conditional qua
mutual information byS(A8:B8uC).

By definition of S(A8:BuC) and the partitionZ, we have

S~A8:B8uC!<S~A8:BuC!12dh~e/d!, ~153!

using Fannes’ inequality~52! twice.
To end this step-by-step discretization, we may change the encoding to a stochastic

p8:VA8→$1,...,m%5:VC8 , by the considerations of Sec. III~see also Proposition 9.3!, such that

S~A8:B8uC8!<S~A8:B8uC! and S~A8:C8!5S~A8:C!. ~154!

So, finally, we are in a position to apply the coding method of Proposition 4.1, with the
difference that we use for the quantum encoding the projectorPp8,d

(e) (I ) instead of our previous
conditional typical projector, andI is such thatv1¯vnPZI .
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The fidelity estimate is obtained just like there, only using Eq.~147!. The classical rate
estimate we copy from Proposition 4.1, and for the quantum rate estimate, we follow its deri
in the proof, using Eq.~145! to estimate the range of the projectorsPp8,d

(e) (I ): we have to send

nS~A8:B8uC8!1n~3dm2h~2dm2/An!1dh~e!!1dm log~n11! ~155!

quantum bits, which, by Eqs.~151!–~154!, yields our desired estimate. h

This immediately leads to the result that we wanted:
Theorem 10.4:For any ensembleE5(V,P,w),

Q* ~R!5M ~E,R!.

Proof: ThatM (E,R) is a lower bound toQ* is proved by Theorem 10.1. For its achievabili
choosee.0 and a Markov kernelp such that bothS(A:C)<R andS(A:BuC)<M (E,R)1e.

Choose now a partitionZ according to Proposition 10.3, fixingm. Now choosed large
enough, so that according to that proposition a code exists which has fidelity 12e on a state set
of probability 12e, i.e., it has average fidelity 122e on the ensemble. By the proposition it ha
cbit rateS(A:C)1o(1) and qubit rate

S~A:BuC!12h~e!1o~1!<M ~E,R!12h~e!1e1o~1!, ~156!

asn→`. As e was arbitrary, our claim is proved. h

C. On the AVS in the infinite setting

With the help of the above Proposition 10.3 the case of an arbitarily varying source
infinite ensemble is dealt with easily, in much the same way as we did in the finite case~see Sec.
VI !:

Formally, of course, an arbitrarily varying source is a triple (V,P,w), whereV andw are a
measurable space and a measurable map into states, as before, andP is a set of probability
distributions onV.

With the definitions of encoding and decoding from Sec. X A we require

;PnPPnE
Vn

P^ n~dv1¯vn!F~ uwv&^wvu,~D+E!~v!!>12e. ~157!

Denoting the trade-off function asQ* (R,P), we obtain the expected result:
Theorem 10.5:Q* (R,P)5M (P,R), with

M ~P,R!5 sup
PPQ

M ~P,R!,

whereQ5conv(P) is the convex hull ofP.
Proof: The inequality ‘‘> ’’ is obvious, like in the finite case: the adversary can certai

always mock up an i.i.d. sourcePPQ, hence Theorem 10.1 applies.
For the opposite inequality, we start by choosing ane.0 and a partitionZ according to

Proposition 10.3. Every distributionP in P gives rise to a distributionP̂PPm21 , and we denote

P̂ª$P̂:PPP%. ~158!

Note that, because the mapP° P̂ is affine linear, we getQ̂5conv(P̂).
Now for d.0 we introduce again the set

Tª 
P̂PQ̂

TP̂,d , ~159!
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and it is easy to see@compare Eq.~141!# that

T Z
ª ø

I PT
Zi 1

3¯3Zi n
~160!

carries 12d22 of the probability of everyPnPPn. On the other hand, becauseT is a union of
type classes, we can find ‘‘few’’P̂1 ,...,P̂T , T<(n11)m such that the correspondingTP̂t ,d cover
T. The coding is very simple: on seeing a statewv1 ...vn

the encoder finds the indexI of the piece
ZI in the partitionZ n such thatv1¯vnPZI , and the type ofI . If I PT, he looks upt such that
I PTP̂t ,d and uses the coding scheme of Proposition 10.3 forP̂t . ~Note that he needs not even se
the type ofI as that is part of the protocol of Proposition 10.3.! Choosingd large enough this
recipe gives a code with high fidelity for everyPnPPn; by construction and Proposition 10.3,
has rates ofR1o(1) cbits andM (P,R)1 f (e)1o(1) qubits, with a functionf (e) that tends to 0
ase→0. h

To end this discussion, we would like to point out that a similar treatment of remote
preparation can be done: in fact, as we discussed in Sec. VIII, we always use the ‘‘
11 cbit per qubit’’ technique~Theorem 8.1! on top of an efficient trade-off coding. To do this fo
an infinite ensemble one only has to understand that the bound of Theorem 8.1 is strong
to allow approximation of the set of projected~compressed! product stateswv1

^¯^ wvn
, at

negligible additional classical cost.

XI. DISCUSSION AND CONCLUSIONS

Our main result is a simple formula for the trade-off between quantum and classical reso
in visible compression. The formula expresses the trade-off curveQ* (R) in terms of a single-
letter optimization over conditional probability distributions of bounded size. This unexpec
simple resolution places optimal trade-off coding into a small but growing class of problem
quantum information theory whose answers are not only known in principle but can be calc
in practice.~Another notable recent addition is the entanglement-assisted capacity of a qu
channel.22!

At a conceptual level, for any given ensembleE of quantum states,Q* (R) can be thought of
as a quantitative description of how ‘‘classical’’ the ensemble is. Any deviation from classical
captured in the trade-off curve in the form of inefficiency of the classical storage. The amou
information that can be extracted from many copies ofE while causing negligible disturbance, fo
example, can be read directly off the curve by identifying the point at which classical reso
begin to become inefficient as compared to quantum. Much more subtle indicators of class
are also available inQ* (R), however. We saw, for instance, that for the parametrized BB
ensemble,Q* (R) had a kink at the point corresponding to partitioning the ensemble into ne
orthogonal subensembles.

Going beyond the compression of ensembles, we saw that it is possible to formulate a v
of our main result in the setting of arbitrarily varying sources, corresponding to the situati
which the encoder and decoder have only partial or even no knowledge of the distribution of
states. Despite this handicap, compression is frequently still possible and we once again fi
the trade-off curve can be calculated via a tractable optimization problem. For ensemble
symmetry, the problem can even often be reduced to calculatingQ* (R) for one particular en-
semble. Thus, for any given set of pure states, including the whole manifold of states on a
Hilbert space, these tools allow us to calculate the rate of exchange from qubit storage to cl
storage. The answer is given, of course, not in terms of a single number but as the trade-off
~Like in any market, the going rate depends on supply.!

Our view thatQ* (R) encodes the balance of quantum and classical information in a g
ensemble or set of states is further bolstered by the role it was found to play in optimal re
state preparation. In this context, the minimal amount of classical communication required fo
given rate of entanglement consumption can, once again, be read directly off the qua
4 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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classical trade-off curve. That the comparatively exotic process of remote state preparation
reduce, via Theorem 8.1, to visible compression is a tremendous simplification.

Of course, while we have seen that the results of this article resolve some basic que
about trading different types of resources in quantum information, most related questions r
open. To begin, it is possible to trade entanglement, quantum communication and classica
munication all together in a generalized type of remote state preparation. Since our resul
describe the two extremes when first entanglement and then quantum communication a
permitted, it seems likely that similar techniques could resolve the full trade-off surface.
ambitiously, one could define channel capacities for noisy quantum channels that inter
between the fully quantum and classical capacities by studying the usefulness of a chan
simultaneously sending quantum and classical information. The problem analogous to the
off question studied here would be to determine the achievableregion of quantum-classical rate
pairs. Unfortunately, given that neither the fully classical nor fully quantum extremes are
understood, it may be a long time before we develop tools capable of analyzing that probl

Therefore, to end, we offer two related open problems that are perhaps closer to the re
the tractable. First, it would be useful to have a set of rules for extracting qualitative features
trade-off curve, such as the location of any kinks and perhaps more detailed differentia
properties, from the structure of the input states~or ensemble!. Second, it would be an interestin
challenge to apply the observations of Sec. IX on symmetry to the explicit calculation o
trade-off curve for particular examples and, more generally, to find other approaches to sim
ing these calculations.
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APPENDIX: PROOFS OF AUXILIARY PROPOSITIONS

1. Proof of Proposition 3.3

Proof: Suppose the classical registerC decomposes into partsC1 andC2 with corresponding
joint density operator

rABC1C25(
i

pi u i &^ i uA
^ uw i&^w i uB^ (

j ,k
p~ i u j ,k!u j &^ j uC1^ uk&^kuC2. ~A1!

If we define the conditional ensemblesEjk andEj , then

S~A:BuC1C2!5(
jk

qjkS~Ejk!<S~A:BuC1!5(
j

qjS~Ej ! ~A2!

by the concavity of the von Neumann entropy.
Therefore, for any map withS(A:C1),R<H(p), we can always adjoin a second classic

registerC2 such thatS(A:C1C2)5R without increasing the conditional mutual information.h

2. Proof of Proposition 3.4

Proof: W.l.o.g. let i P$1,...,m%. The information quantities in the definition ofM can be
reexpressed as follows:

S(A:BuC)5(
j

qjSS (
i

q( i u j )uw i&^w i u D , ~A3!
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S~A:C!5H~p!2(
j

qjH~q~•u j !!, ~A4!

with qj5( i pip( j u i ) andqjq( i u j )5pip( j u i ). We readq as a probability distribution on the setPm

of all probability distributions on$1,...,m%. Thus the minimization problem in the definition ofM
can be expressed as finding the infimum of( jqjS( f (q(•u j ))) over the set

P~p,R!5H qp.d. on Pm :(
j

qjq~•u j !5p,(
j

qjH~q~•u j !!>H~p!2RJ ,

where f is an affine linear function on probability distributions, mapping the distributionp to the
quantum state( i pi uw i&^w i u.

Now we argue structurally: the setP(p,R) is convex~as a subset of an infinite dimension
probability simplex with additional linear inequality constraints!, and the aim function is linear
Hence the infimum is an infimum over the extreme points ofP(p,R), which are, by Caratheodo
ry’s theorem, distributionsq with support at mostm11, the number of inequalities that defin
P(p,R),P(Pm) ~see, e.g., Ref. 38!. In Sec. IX, Proposition 9.3 and Appendix, Sec. 6, we prov
a detailed exposition of a more general form of this result. h

3. Proof of Proposition 5.1

Proof: The ‘‘< ’’ inequality follows directly by forming the tensor product of two encodin
for E1 andE2 with classical ratesR1 andR2 respectively.

The ‘‘> ’’ inequality is shown by choosing an encoding for the tensor product with class
rate R and then using the chain rule several times for subdivisionsA5A1A2 and B5B1B2 as
follows. First observe that

R>S~A1A2 :C!5S~A1 :C!1S~A2 :CuA1!5:R11R2 ~A5!

and then

S~A1A2 :B1B2uC!5S~A1 :B1B2uC!1S~A2 :B1B2uC,A1!

>S~A1 :B1uC!1S~A2 :B2uC,A1!

>M ~E1 ,R1!1 inf$S~A2 :B2uC,A1!:S~A2 :CuA1!<R2%

>M ~E1 ,R1!1M ~E2 ,R2!

>min$M ~E1 ,R1!1M ~E2 ,R2!:R11R25R%. ~A6!

The second last line is seen as follows: in the line above it, the two mutual information
conditional onA1 , so they both can be written as averages over the values ofA1 . Hence the
inequality follows by the convexity ofM in R. h

4. Proof of Proposition 5.2

Proof: It is sufficient to verify that any encoding operator

rABC5(
ik

piaku i &^ i uA^ uk&^kuA^ Ukuw i&^w i uUk
†B

^ (
j

p~ j u i ,k!u j &^ j uC ~A7!

for F gives rise to a valid encoding operator

sABC5(
i

pi u i &^ i uA^ uw i&^w i uB
^ (

jk
p( j u i ,k)aku j &^ j uC

^ uk&^kuC ~A8!
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for E satisfyingSs(A:BuC)<Sr(A:BuC) andSs(A:C)<Sr(A:C). h

5. Proof of Proposition 7.2

Proof: We will first prove the proposition for irreducibleE. Using a trick introduced by
Holevo,14 we can reduce the problem further to the case of a two-state ensemble: for an ens
$r i

B
^ s i

C ,pi% of states~we assume that allpi.0! and two specific indicesk and l , define a new
index

j ~ i !ªH i i Þk,l ,

* i P$k,l %.
~A9!

~Of course, in the case we have in mind, ther i are the pure states from the ensembleE, and the
s i are commuting mixed states representing the classical information.! Then consider the multi-
partite state

V5(
i

pi u i &^ i uA1^ u j ~ i !&^ j ~ i !uA2^ r i
B

^ s i
C .

The definition ofj ( i ) and the familiar chain rule imply

S~A1 :BC!5S~A1A2 :BC!5S~A2 :BC!1S~A1 :BCuA2!. ~A10!

Note that the second term is an average over the values ofj ( i ) of Holevo quantities for the
corresponding reduced ensembles. Therefore, it has only one nonzero contribution, which

S~A1 :BCuA2!5~pk1pl !x~$r i ^ s i ,pi /~pk1pl !% i 5k,l !. ~A11!

Then, using Eq.~A10! and monotonicity ofx under partial trace repeatedly,

x~$pi ,r i ^ s i%!5S~A1 :BC!5S~A2 :BC!1S~A1 :BCuA2!

>S~A2 :B!1~pk1pl !x~$r i ^ s i ,pi /~pk1pl !% i 5k,l !

>S~A2 :B!1~pk1pl !x~$r i ,pi /~pk1pl !% i 5k,l !

5S~A2 :B!1S~A1 :BuA2!5S~A1 :B!5x~$r i ,pi%!.

Assuming that the first and the last Holevo quantities have the same value, we must have e
in the third line, implying

x~$r i ^ s i ,qi% i 5k,l !5x~$r i ,qi% i 5k,l !, ~A12!

with qi5pi /(pk1pl). Then, applying the general formula

x~$v i ,pi%!5(
i

piD~v i iv! ~A13!

to Eq.~A12!, with v5( i piv i andD the relative entropy function, and using the Lindblad mon
tonicity once more yields

D~rk^ skiqkrk^ sk1qlr l ^ s l !5D~rkiqkrk1qlr l !. ~A14!

~And likewise for l .!
With this we are almost done: invoking a result of Ohya and Petz~see Ref. 37, Theorem 9.12!

we conclude that there exists a CPTP mapR such that
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R~rk!5rk^ sk , ~A15!

R~qkrk1qlr l !5qkrk^ sk1qlr l ^ s l , ~A16!

from which it follows by linearity that

R~r l !5r l ^ s l . ~A17!

Since CPTP maps~R and TrC! cannot decrease fidelity we thus must haverk'r l or sk5s l .
In the particular case that the initial ensemble is irreducible we conclude that alls i must be

equal, or else the partial trace overC strictly decreases the Holevo quantity. If the ensembleE is
not irreducible, a simple variation on the previous argument shows that, for each of the irred
subensemblesEl , x(El) must be equal tox of the corresponding subensemble$w i l ^ s i l ,pi u l% of
F BC. Applying our conclusions to these subensembles finishes the proof of the propositionh

6. Proof of Proposition 9.3

Proof: As explained earlier in the proof of Proposition 3.4, any classical encoding map c
viewed as a probability distributionq on the setPI of probability distributions onI with bary-
centerp: p5( jqjq(•u j ).

Covariance of the encoding means invariance ofq under the natural action ofG on PI , i.e.,
g:p°pg. Hence for each distributionp in the support ofq we must have all thepg in the support
as well. On the other hand, we need far fewer conditions to obey, as it will turn out:

Assume that the covariant encoding is given by the distributions

~q~•u j !!g with probability
1

uGu
qj , gPG, j 51,....

Now choose representativesi 1 ,...,i t of the orbits, and observe that~by G-invariance!

(
j ,g

1

uGu
qj~q~•u j !!g5p ~A18!

if and only if

;t51,...,t (
j ,g

1

uGu
qjq~g21i tu j !5p~ i t!. ~A19!

Similarly, S(A:C)<R if and only if

(
j

qjH~q~•u j !!>H~p!2R, ~A20!

and, finally, our aim function reads

S(A:BuC)5(
j ,g

1

uGu
qjSS (

i
q( i u j )uwgi&^wgiu D . ~A21!

Now consider the affine linear map fromPI to Rt11 defined by

A:p°S H~p!;
1

uGu (g
p~g21i t!:t51,...,t D . ~A22!

Note that the image of this map is in a certaint-dimensional subspace because, ift21 of the
conditions~A19! are satisfied, then thetth is also, automatically. Equations~A19! and ~A20! are
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really conditions on theqj -weighted average of the imagesAj5A(q(•u j )), A5( jqjAj . By Cara-
theodory’s theorem38 the same average can be obtained by convex combination oft11 of these,
i.e., by a distributionq8 on thej ’s with support containing at mostt11 points. In fact,q is easily
seen to be expressible as a convex combination of such small support distributions, sayq8(a) with
weightsla .

To conclude, we observe that our aim function in Eq.~A21! is linear in the distributionq:
hence, it is thela–weighted sum of similar such expressions withq8(a) in place ofq. For one
value of a at least this is smaller thanS(A:BuC), the correspondingq8(a) satisfies( jq8(a)Aj

5A, and hence Eqs.~A19! and ~A20!. As explained in the remark preceding the statemen
Proposition 9.3, to obtain aG–covariant encoding we can split up eachq(•u j ) ~with j in the
support ofq8(a)) into theG translated distributions (q(•u j ))g, proving the claim. h
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