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Abstract

The trust-free nature of blockchain-based systems challenges the role of traditional
platform providers and enables the creation of new, intermediary-free markets. Despite
the growing number of such markets, the impact of the blockchain’s configuration on
market outcomes remains unclear. In this study, we utilize order-level data from real-
world financial markets to explore the impact of the blockchain parameters block size
and block creation time on the quality of decentralized markets. More specifically,
we find that increasing the blocks’ capacity improves market activity, while higher
block frequencies impose a trade-off between higher turnovers and lower trade sizes.
In addition, we identify the block creation time and block size as core drivers of daily
and intraday liquidity, respectively. In consequence, improving liquidity goes hand in
hand with a higher activity. However, the reciprocal relationship between blockchain
parameters and the increasing price impact of a block also indicate that faster and
bigger blocks are no silver bullet to scale decentralized markets and may facilitate
volatility. In total, we contribute an initial, technology-agnostic assessment of the
quality of decentralized markets that aims to guide interdisciplinary researchers and
innovative practitioners.
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1. Introduction

As an infrastructure for economic systems, blockchain technology challenges the role of

traditional intermediaries and enables the creation of novel market designs that disrupt the

traditional value chain of securities trading. Fully and partially decentralized market setups,

such as Polymath, IDEX, or Sharevest, claim to utilize this potential to enable users to trade

financial and crypto assets and settle their trades without the involvement of intermediaries.

In addition, first academic studies such as Malinova and Park (2017) and Notheisen, Gödde,

and Weinhardt (2017b) begin to explore trader behavior and market design theoretically.

However, while practical approaches promise leaner value chains and cheaper trading, the

decentralization’s impact on market quality remains unclear.

This study aims to fill this gap by examining the impact of performance-related design

parameters – namely the block size (BS) and the block creation time (BCT) – on the quality

of decentralized markets. This includes the identification of quality drivers and inhibitors, the

assessment of trade-offs between design parameters, and the derivation of design implications

to guide market engineers (Weinhardt and Gimpel, 2007). To do so, we replicate 5 years

of blockchain-based equity trading with the help of time-stamped order-level data from the

Stuttgart stock exchange. This detailed information enables us to conduct a technology-

agnostic evaluation of the performance-quality relationship on blockchain-based platforms

from a real-world perspective that covers the scope of modern financial markets.

In consequence, our study design comprises a three-step approach: The first step focuses

on the data generation process. This includes the development and implementation of a

decentralized market mechanism that formalizes and integrates the technological character-

istics of blockchain-based infrastructures. To minimize confounding effects, we closely follow

the implementation and trading rules of the Stuttgart stock exchange. Then, we utilize the

order-level data to replicate market outcomes under 9 parameter combinations that repre-

sent different blockchain configurations. To ensure the fit between the input sample and the

blockchain parameters, we furthermore set BCTs according to prominent blockchain proto-

cols and previous findings from periodic auctions and calibrate BSs based on the trading

data from Stuttgart. To measure the quality of the resulting market outcomes, the sec-

ond step builds on the market quality framework of Zhang, Wagener, Storkenmaier, and

Weinhardt (2011) and adapts activity, liquidity, and information measures from established

market quality literature. In addition, we derive an empirical strategy to guide our analyses

in following third step. In this third and final step, we use the data panel generated in step 1

to compute the 6 market quality measures defined in step 2 and investigate the quality effects

of parameter variations. More specifically, we study the time and size effects that come with
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different blockchain configurations as well as interactions with activity and quality controls.

In these analyses, we find evidence that decreasing the blocks’ capacity increases the

daily number of trades but also limits daily trading volume and the average size of a trade.

In addition, increasing the block frequency boosts the number of trades and turnover per

day but reduces the number of shares included in a trade. As a result, higher BSs offer a

means to improve market activity, while lowering BCTs remains ambiguous and imposes a

trade-off between rising turnovers and declining trade sizes. With respect to the liquidity

of decentralized markets, we furthermore identify the blocks’ intervals and size as drivers

of daily and intraday liquidity, respectively. As a result, improving liquidity goes hand in

hand with increasing throughput, while market engineers can exercise control over daily

and intraday liquidity almost separately. Eventually, our analysis on a market’s information

processing capability indicates that the price impact of a new block is stronger for larger and

more frequent blocks. In consequence, blockchain configurations that facilitate activity and

liquidity also intensify the price impact of a block, and thus may lead to higher volatility.

Moreover, our evidence indicates a reciprocal relationship between blockchain parameters

across all quality dimensions.

In total, these findings highlight that increasing the BS and decreasing the BCT is no

silver bullet to scale decentralized markets and illustrates the need for a holistic blockchain

engineering approach that combines all three quality dimensions with the market’s objec-

tives (Notheisen, Hawlitschek, and Weinhardt, 2017c; Hawlitschek, Notheisen, and Teubner,

2018). In consequence, our contribution is threefold: First, we contribute to the growing

body of interdisciplinary research on blockchain-based economic systems by providing a first

technology-agnostic quantitative analysis of the relationship between performance-related

blockchain parameters and market quality. Second, we pave the way for future research that

examines decentralized markets by highlighting points of interest, such as changes in investor

behavior or the detailed analysis of the liquidity of decentralized markets. Third, we utilize

real-world data that resembles to scale and scope of modern financial markets to offer some

initial guidance for innovate practitioners to engineer and design new and enhance existing

decentralized market platforms.

Finally, the remainder of this paper is structured as follows: Section 2 presents the

related literature, identifies a research gap, and formulates our research question. More

specifically, we provide an overview of blockchain-based market platforms and illustrate the

related blockchain design parameters, introduce the utilized market quality framework, and

review recent literature on frequent batch auctions. In Section 3, we describe the data

generation process and provide summary statistics. Section 4 introduces the utilized market

quality measures and our empirical strategy, while section 5 comprises the empirical results
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and tests their robustness. Eventually, sections 6 and 7 outline and discuss limitations and

conclude this study with opportunities for future research.

2. Related Literature

This paper builds on multiple streams of research and utilizes findings from market

quality and market design literature to examine the impact of the underlying blockchain’s

parameter configuration on the quality of decentralized markets. In order to establish a

common understanding for the analysis in section 5, we introduce the concept of blockchain-

based markets, outline the current state of research regarding the quality of decentralized

markets, and briefly review related literature on market quality and frequent batch auctions

in this section. Eventually, we integrate these views to illustrate our study design, identify

a research gap, and highlight our contribution.

2.1. The Concept of Blockchain-based Markets

As a peer-to-peer system, blockchain technology enables secure transactions without the

necessity of a trusted central authority. From a technical perspective, the blockchain pre-

vents double spending within a network of interacting parties by managing and maintaining

an immutable distributed ledger. This ledger is publicly disclosed to all market partici-

pants while the cryptographic concatenation of data blocks establishes the timely order of

transactions (Donet, Prez-Sol, and Herrera-Joancomart, 2014). When new transactions oc-

cur, the network aggregates them into blocks, checks the validity, votes on the correctness,

and updates the append only database by the means of a consensus mechanism. In addi-

tion, smart contracts enable the implementation of decentralized applications that function

reliably despite the absence of intermediaries (Buterin, 2013; Szabo, 1997).

In financial markets, decentralized applications go beyond the conventional tokenization

of assets and crypto assets (Peterson, 2018) and include transparent transaction systems

(Notheisen, Cholewa, and Shanmugam, 2017a), efficient settlement systems (Mills et al.,

2016; Chiu and Koeppl, 2018), and decentralized stock markets (Lee, 2016; Jessel and Mar-

shall, 2016; Notheisen et al., 2017b; Workie and Jain, 2017). As a result, blockchain technol-

ogy promises improvements in corporate governance, transparency, and liquidity (Yermack,

2017; Malinova and Park, 2017). However, fully decentralizing securities trading is a chal-

lenging task, while the actual consequences remain unclear. On one hand, the underlying

value chain is rather complex and includes many process steps, such as matching, clearing,

and settlement, the blockchain engineer needs to take into account. On the other hand, the
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blockchain’s block-based nature limits the transaction throughput and shifts trading from

continuous to discrete time.

In consequence, the first practical decentralization efforts focus on the clearing and settle-

ment processes instead of market mechanisms. In 2016 for instance, Deutsche Bundesbank

and Deutsche Börse issued a joint press release, presenting a functional prototype for the

blockchain-based settlement of securities. Similarly, the Australian stock exchange ASX

aims to settle equity transactions with a blockchain-based system1. In recent years how-

ever, we observe a growing number of fully decentralized exchange concepts and market

platforms that trade a variety of assets. Augur and Gnosis for instance, aim to decentralize

prediction markets2 by building market frameworks based on the Ethereum platform. In

addition, there are multiple decentralized market platforms – such as Bancor, Bitsquares,

CryptoBridge, OpenLedger DEX, or the Waves platform – that claim to enable investors

to trade crypto assets and currencies without the involvement of intermediaries. In the fi-

nancial sector, start ups – such as BitShares, Polymath, or Sharevest – aim to enable users

to trade financial assets in a fully decentralized environment. In addition, there are hybrid

approaches that combine decentralized and centralized elements. IDEX, for instance, limits

blockchain-based processes to the settlement of transactions and uses a centralized server to

update account balances and match orders. Table 10 in appendix B provides a brief overview

of selected ventures.

Academic literature, on the other side, has made little progress in developing and evalu-

ating the increasingly popular phenomenon of decentralized markets and exchanges. Patel

(2014), for instance, presents a theoretical implementation concept, while Clark, Bonneau,

Felten, Kroll, Miller, and Narayanan (2014) derive design principles for matching orders

in a decentralized way. In addition, Malinova and Park (2017) study how the increasing

transparency that comes with a blockchain-based market affects the trading behavior of dif-

ferent (large/small) investors. In their theoretic model, they show that despite the risk of

front-running full transparency improves welfare, because it decreases the costs of finding

liquidity. In addition, Notheisen et al. (2017b) implement a proof-of-concept prototype of

a blockchain-based exchange and identify the number of transactions processed per block

– the block size (BS) – and the periodic creation of new data blocks – the block creation

time (BCT) – as obstacles to decentralized trading.

More specifically, these parameters limit transaction throughput of a blockchain-based

exchange, and thus affect the way new orders are processed. In the following, we define

1More information about the ASX’s efforts to replace their current post-trading system CHESS with a
blockchain-based alternative is available under https://www.asx.com.au/services/chess-replacement.htm.

2For an introduction to the concept of prediction markets, we kindly refer to Kranz (2015).
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the BS as the maximum number of trades that fit into one block and the BCT as the fixed

time interval between two blocks. The Bitcoin BS, for instance, is currently limited to one

megabyte (Kogias, Jovanovic, Gailly, Khoffi, Gasser, and Ford, 2016). In Ethereum, the size

of a block is also affected by the gas limit and currently between 20 and 30 kilobytes (Buterin,

2013)3. The BCT of an application depends on the applied consensus mechanism and its

robustness towards malicious actors. In the case of Bitcoin, a new block is created every 10

minutes, whereas the Ethereum protocol requires approximately 15 seconds to create a block

(Kogias et al., 2016). In combination, the BS and the BCT determine the throughput of

a blockchain-based system. For the Bitcoin system this leads to 7 transactions per second,

while Ethereum reaches up to 15 transactions within the same amount of time. However,

in blockchain-based markets, the impact of the underlying blockchain configuration goes

beyond scalability but also affects market outcomes.

2.2. Market Quality

To assess the outcomes of decentralized markets, we build on established market quality

literature. In consequence, the following paragraphs create a basic understanding of the con-

cept of market quality, outline its dimensions, and briefly describe their measurement. To do

so, we utilize the market quality framework introduced by Zhang et al. (2011) and illustrated

in figure 1. According to this framework, market quality has three dimensions – activity,

liquidity, and information – and depends on the business structure, IT systems, a market’s

microstructure, and its socio-economic environment. The business structure comprises the

business model of market and defines revenue models, target groups, and products and ser-

vices offered to them. The trading system is borne by the exchange’s IT system, which allows

traders to connect to the market platform, implements the matching engine, and determines

a market’s degree of automation. Eventually, the market microstructure formalizes the rules

for the exchange of assets (O’Hara, 1998). The resulting trading mechanism transforms la-

tent demand and supply of investors into actual transactions (Madhavan, 1992), while the

market model specifies the utilized auction model (Zhang et al., 2011). In combination, the

trading mechanism and the market model determine the attributes of a market, such as

trading times, matching algorithms, price determination, or order types (Madhavan, 1992).

In total, the characteristics of these components affect trading behavior, price formation,

transaction costs, and information disclosure (O’Hara, 1998; Pagano and Rell, 1996). In

addition, platform characteristics and market outcomes are shaped by external factors, such

as regulatory constraints, the current state of technology, and competition.

3For up to date information on average BSs we kindly refer to blockchain.com for Bitcoin and etherscan.io
for Ethereum.
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Fig. 1. Market quality framework
This figure illustrates the market quality framework introduced by Zhang et al. (2011) and presents the three
dimensions of market quality (activity, liquidity, and information) as well as their determinants (business
structure, IT systems, market microstructure, and environmental factors).

The activity dimension captures the trading intensity and can be measured by the num-

ber, average size, or the total volume of trades conducted within a specific period of time

(e.g., a day). In addition, price-based measures, such as the stock-return volatility and

the stock-price momentum shed light on the impact of new information on market activity

(Barclay, Hendershott, and McCormick, 2003).

Liquidity refers to a market’s ability to execute a trade without affecting the price (Has-

brouck, 1991b) and can be characterized by a immediacy, width, depth, and resiliency (Har-

ris, 2002). Immediacy captures how fast a trade of a given size and cost can be executed.

Moreover, wide markets are characterized by the presence of many orders close to the cur-

rent price, while deep markets are characterized by the presence of large orders close to the

current price. Finally, resiliency refers to a market’s ability to revert to prior price levels

following uninformed order flow. Liquidity is a central element of market quality and a

principal criterion for attractiveness and success of securities exchanges (Zhang et al., 2011).

However, liquidity is also an elusive concept that comprises multiple aspects, and thus is

hard to measure with a single indicator (Amihud, 2002). In consequence, a variety of mea-

sures is required to capture the multi-faceted nature of liquidity (Hasbrouck, 1991b). Spread

measures for instance use microstructure data such as bid and ask prices to capture the im-

pact of orderflow on prices (Copeland and Galai, 1983). More specifically, spread measures

provide ex-ante and ex-post measures of liquidity that enable traders to assess transaction

costs (Huang and Stoll, 1996) and (potential) losses due to inferior information (Hasbrouck,

1991a). However, while spread measures are easy to calculate and interpret (Hasbrouck,

1991b), the required order-level data may be hard to obtain (Amihud, 2002). In contrast,
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volume- or quantity-based measures such as Amihud (2002)’s illiquidity measure or the or-

der book imbalance (Cao, Hansch, and Wang, 2009; Brogaard, Hendershott, and Riordan,

2014) provide a more coarse but robust and readily available means to study market quality

developments (Hasbrouck, 1991b).

The third and last dimension of market quality refers to the information content of prices

and the way new information is incorporated. Price discovery describes the competitive

process by which informed traders drive prices to their efficient value (Hasbrouck, 1991b).

Moreover, this process can happen on multiple exchanges simultaneously, while the informa-

tion share measures the relative contribution of each exchange (Hasbrouck, 1995). Measures

to capture the information content of a trade include the price impact and the permanent

information impact. The price impact is based on the idea that after a certain period of time

only the actual information remains, while inventory effects, other temporary effects, and

noise vanish over time (Riordan and Storkenmaier, 2012; Hendershott, Jones, and Menkveld,

2011). The permanent information impact on the other hand, utilizes a vector autoregressive

model to analyze the unanticipated component of a trade (Hasbrouck, 1991a). Moreover, the

decomposition of the price variance into trade-correlated and trade-uncorrelated components

allows a differentiated perspective on the informativeness of a trade (Hasbrouck, 1991c).

To examine the quality of decentralized markets, we consider all three dimensions and

include activity, liquidity and information measures in our analysis. A introduction of the

applied measures follows in section 4.1.

2.3. Periodic Auctions

In blockchain-based markets, order matching and price determination is tied to the dis-

crete consensus process that limits the addition of new data blocks to periodic time intervals.

As a result, the growing body of research on periodic and frequent batch auctions allows a

first peak on the impact of discrete market mechanisms on a market’s quality.

In contrast to continuous market models, periodic and frequent batch auctions differ in

one central aspect: They treat time as a discrete variable (Budish, Cramton, and Shim, 2015).

Consequently, orders are not processed serially but in batches. Within each batch, an auction

determines a uniform price, which then applies to all orders accumulated and executed in

that batch (Budish, Cramton, and Shim, 2014). Similar to continuous limit order markets,

orders comprise a limit, a quantity, and a trade direction and can be submitted, modified,

and deleted. The list of orders also contains previously submitted orders that could not

be executed in preceding auctions. Based on this list, the auction mechanism determines a

uniform price that maximizes the executed quantity. To manage excess demand or supply,
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Budish et al. (2014) suggest pro-rata execution with time priority across but not within

batch intervals. Eventually, the resulting price, the traded quantities, and the remaining

orders are disclosed.

With respect to market quality, Madhavan (1992) shows that periodic auctions offer

greater price efficiency than continuous market models, while the unobservability of order

books before a trade increases information costs. In comparison with dealer markets, price

and execution risk increases as execution depends on the price limit instead of guaranteed

quotes (Pagano and Rell, 1996). In addition, discrete market models may lead to lower

commission costs due to easier order handling, are less susceptible to manipulations, and

simplify governance by less complex audit trails (Economides and Schwartz, 1995). The

theoretic model of Pancs (2012) supports these findings but also indicates that continuous

markets offer a higher allocative efficiency, when information asymmetries are low and traders

are impatient.

However, if batch intervals are too short, prices may not reach equilibrium as the number

of orders within each auction is too low. If on the other hand intervals are too long, prices may

not reach equilibrium, because the market equilibrium might have changed in the meantime

(Fricke and Gerig, 2018). As a result, it is important to determine the optimal batch interval

and Fricke and Gerig (2018) indicate that intervals should be shorter for securities with

higher trading intensities, higher volatility, a higher correlation with the market, and more

concentrated reservation prices. Based on these factors, they estimate the optimal batch

interval for S&P 500 stocks and find that intermediate batch intervals in the range of a few

seconds maximize market quality. Budish et al. (2014) aim to support the implementation

of frequent batch auctions by providing practical details. More specifically, they highlight

the elimination of speed advantages and the shift from speed to price competition as core

drivers of liquidity and welfare improvements. Budish et al. (2015) build on this study and

propose frequent batch auctions as a countermeasure to prevent mechanical arbitrage by high

frequency traders (HFTs) and suggest an optimal time interval from 10 to 100 milliseconds to

improve liquidity provision and social welfare. More specifically, the welfare of slow traders

increases in frequent call markets, while they seek protection from faster traders (Wah, Hurd,

and Wellman, 2016). Farmer and Skouras (2012) also support the negative value of speed

from a regulatory perspective and propose to replace continuous markets with frequent call

auctions with randomized interval lengths. By setting the average batch interval length to

one second while keeping the length of each single interval unpredictable they hope to prevent

a last-mover advantage of HFTs. In contrast, Economides and Schwartz (1995) propose to

incorporate batch auctions into continuous markets. More precisely, the authors suggest to

use three auctions per day: One auction to open the market, one auction during the trading
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day, and one auction to close the market. One of their key arguments is that opening and

closing the trading day this way may facilitate price discovery.

However, a blockchain-based market mechanism is not only restricted by time but also

by the number of transactions processed per batch, as each block has a maximum capacity.

In consequence, we utilize these findings as a foundation, complement them with a capacity

restriction, and formulate our research question in the following paragraph.

2.4. Research Gap & Research Question

After establishing a common understanding of the concept of blockchain-based markets,

the dimensions of market quality, and periodic auctions, we highlight the resulting research

gap in this section and formulate a research question. While some papers, such as Urquhart

(2016) or Wei (2018), analyze the liquidity and efficiency of cryptocurrency markets, other

studies, such as Hendershott and Moulton (2011), focus on the impact of technological ad-

vancements and automation on market quality. In addition, there is a growing number of

studies on the quality effects of periodic auctions that offer some implications for blockchain-

based markets. More specifically, these studies indicate that the quality of decentralized

markets should be highest for intermediate auction intervals (Budish et al., 2015; Fricke and

Gerig, 2018; Farmer and Skouras, 2012). In consequence, improving performance by lowering

BCTs may not be a preferable solution from a market quality perspective. However, despite

the growing number of decentralized exchanges, none of these streams of literature takes

the specific infra- and microstructure features of blockchain-based exchanges into account.

In consequence, the current research on the quality of decentralized markets can be sum-

marized as follows: First, blockchain research mainly focuses on theoretical concepts and

rarely considers the implementation of securities markets and the resulting implications on

an economic level. Second, market quality literature offers a valuable toolbox to examine the

quality of decentralized markets but has not been applied to this area, yet. Third, studies on

periodic call and frequent batch auctions offer an initial foundation to study the quality of

decentralized markets but do not consider the impact of blockchain design features, such as

the BS or the relationship between the BS and auction intervals (BCT). Within this study,

we take a first step towards filling this research gap by using data from real-world financial

markets to empirically investigate the following research question:

Research question. How do different design parameters that determine the performance

of blockchain-based markets impact market quality?
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By answering this research question, we aim to evaluate the potential of intermediary-free

market setups, assess their quality characteristics, and identify facilitation and impeding

factors and trade-offs between blockchain design parameters (BS, BCT). Based on these

findings, we furthermore hope to identify and quantify quality-performance trade-offs that

come with different blockchain configurations and derive implications to guide the engineers

of decentralized markets. To do so, we replicate five years of equity trading from the Stuttgart

stock exchange, while taking different blockchain configurations – i.e., combinations of differ-

ent BSs and BCTs – into account. Based on the resulting market outcomes, we then assess

the impact of blockchain parameter variations on the activity, liquidity, and price formation

on decentralized markets.

3. Data

To examine the quality of decentralized markets, we utilize message-level data from the

Boerse Stuttgart Research Database to replicate market outcomes in a blockchain-based

setup. The Boerse Stuttgart Research Database is jointly managed and maintained by the

Stuttgart stock exchange and the Karlsruhe Institute of Technology and provides detailed

time-stamped (milliseconds) order and trade data for all instruments traded in Stuttgart.

For our analysis, we obtain order data for German blue chips listed in the DAX4 index from

this database. To ensure consistency throughout our observation period, we focus on the

30 stocks included in the DAX as of December 31, 2017. In this section, we describe the

data generation process and provide summary statistics to illustrate the data panel used to

conduct our empirical analyses in section 5.

3.1. Data Generation Process

The data generation process comprises the following steps: First, we refine the raw

data acquired from the Boerse Stuttgart Research Database to create the input sample

for the market mechanism. Based on this input sample, we calibrate the size and time

parameters of 9 different blockchain configurations and replicate 5 years of equity trading.

Eventually, the output data is refined in a last step. The following paragraphs report the

pre-processing procedures, illustrate the resulting input sample, outline the calibration of

the blockchain parameters, specify the blockchain-based market mechanism, and describe

the post-processing procedures.

4The index is composed of the 30 most liquid stocks with respect to the free-float market capitalization
and the total order book turnover. For further details, we kindly refer to the website of Deutsche Börse.
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3.1.1. Pre-processing & Input Sample

The raw data initially acquired from the Stuttgart stock exchange contains 5.63 million

transaction messages including order submissions, updates, and cancellations, trade execu-

tions, and messages related to the initialization and closing of the trading system. Each

message comprises a time stamp, an order and stock identifier, a trade direction, an order

quantity and limit, a limit type, the traded quantity, a trade price, and other fields.

At the beginning of the pre-processing, we drop irrelevant fields and delete initializa-

tion and closing messages. To reduce computational complexity, we furthermore exclude

cancellations from the input sample and condense to remaining orders. More specifically,

we remove all messages related to these orders including their initial submission, updates

and changes, and eventually their deletion. In addition, we translate stop orders and other

event-driven orders into limit or market orders, if the triggering time and all other needed

information could be derived from the raw data. If this was not the case, we delete these

observations. Jointly with the existing market and limit orders, the translated orders are

condensed to the most recent specification. This includes updating each (limit) order to the

most recently submitted quantity (and price limit), replacing its time stamp with the time

stamp of the update, and deleting all changes. As a result, every order is represented by a

single data tupel that comprises a unique order number, the stock’s name and identifier, a

buy-sell flag, the limit price5, a trade quantity, and a time stamp. Based on this sample,

we finally adjust trade prices, quantities, and limits by stock splits that occurred during the

observation period6. This way, we ensure that prices remain comparable over time. In this

last step, we also remove corrupted data as well as duplicates.

The resulting input sample comprises 1,231 trading days, and covers a period from Jan-

uary 1, 2013 to December 31, 20177. Within this period, 0.79 million market orders and 0.61

million limit orders have been submitted. On a daily level, this corresponds to an average

of 1,138 orders per day. From the perspective of the Stuttgart stock exchange, these 1.40

million submissions resulted in 1.32 million trade executions and 1,075 trades per day. On

average, each trade comprised a traded quantity of 552 shares. The median of 150 shares per

trade is considerably lower. Eventually, the trading volume sums up to EUR 22.57 billion

over 5 years, which corresponds to a daily trading volume of EUR 18.34 million.

5In case of a market order the limit price is set to zero.
6Within our observation period there were two relevant stock splits: The first one was a 10:1 reverse split

of the Commerzbank stock (ISIN: DE000CBK1001), which was conducted on March 23, 2013. The second
one happened on August 4, 2014 and splitted the Fresenius stock (ISIN: DE0005785604) in a ratio of 1:3.
In addition, there was a third split (Merck, DE0006599905, June 30, 2014) that retained a ratio of 1:1, and
thus no adjustments were required.

7Due to a server problem, the data contains a gap from December 16, 2016 to January 13, 2017.
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3.1.2. Parameter Calibration & Blockchain Configurations

To capture the impact of changing blockchain parameters on market quality, we create

9 blockchain configurations that combine a low, medium, and high BS with a low, medium,

and high BCT. To take the variations in trading volumes and quantities of the DAX stocks

into account and minimize confounding effects that arise from incorporating blockchain pa-

rameters in Stuttgart’s market model, we fit the BSs and BCTs to the actual trading data

from the Stuttgart stock exchange (Budish et al., 2015; Fricke and Gerig, 2018). More specif-

ically, we utilize the trades corresponding to the orders from the input sample to set both

blockchain parameters to reach a specific throughput – measured by the number of trades –

per day. Moreover, we set the blockchain parameters for each stock i individually.

To do so, we compute the average number of trades per day for each stock between 2013

and 2017. In order to remove outliers, we winsorize the daily number of trades by replacing

values below the first percentile by the value of the first percentile and values above the 99th

percentile by the value of the 99th percentile. Columns 2 to 4 in table 1 report the number

of trading days as well as the resulting average number of trades per day and corresponding

standard deviations. In addition, the example of Daimler (129 trades per day) and Beiersdorf

(5 trades per day) highlights the need to calibrate the simulation parameters on the stock-

level. From a technical perspective, this calibration setup also represents a decentralized

exchange with a separate blockchain for each stock.

In the next step, we set the BCT to constant intervals of 10, 60, or 300 minutes for each

stock. The minimum and maximum specifications are based on the average BCT of Bitcoin

(Nakamoto, 2008) and the study of Economides and Schwartz (1995), who suggest to conduct

three auctions per day to maximize market quality. More specifically and consistent with

Stuttgart’s trading time of 14 hours, we set the BCT to 300 minutes in the maximum scenario.

Eventually, we also include a BCT of 60 minutes to create an intermediate scenario8.

In addition, we set the BS for a stock i to achieve a minimum, medium, and maximum

daily throughput at a given BCT. The medium throughput is equal to the average amount

of trades per day given in column 3 in table 1. The minimum and maximum configurations

also consider shifts by one standard deviation (column 4 in table 1). As a result, we calibrate

the minimum, medium, and maximum BS for stock i’s market by equation (1), where x̄i

8Note that we discarded Ethereum’s BCT of 10 to 20 seconds (or other protocols with a BCT below 10
minutes), because of the substantially lower trade frequency in our data.
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denotes the average number of trades per day and σi the corresponding standard deviation.

BSmin
i (BCT) = max

{⌊

x̄i − σi

14 · 60

BCT

⌋

, 2

}

,

BSmed
i (BCT) = max

{⌊

x̄i

14 · 60

BCT

⌋

, 2

}

,

BSmax
i (BCT) = max

{⌊

x̄i + σi

14 · 60

BCT

⌋

, 2

}

.

(1)

In combination with a BCT ∈ {10, 60, 300}, this leads to 9 blockchain configurations for each

stock. For instance, BSmax(60) for the Daimler stock is computed as follows: Based on a trad-

ing time of 14 hours there is a new block every 60 minutes, while 128.65 + 86.63 = 215.28

trades have to be processed within these 14 blocks (i.e., 15.38 trades per block). However,

as a block cannot contain fractions of trades, we set the BS to 15. In some cases – especially

in the min-configurations – the calibration yields BSs below 2. In these cases, we set the BS

to 2, since an execution requires at least one buy and one sell order to be feasible. Columns

5 to 13 in table 1 report the BS of all 9 configurations and 30 stocks.

3.1.3. Replication of Market Outcomes

To replicate market outcomes, we extend the market model of the Stuttgart stock ex-

change with the blockchain parameters BS and BCT, set them according to the calibrated

blockchain configurations from subsection 3.1.2, and feed the resulting market mechanism

with the input sample from subsection 3.1.1. In consequence, the replication of market

outcomes is guided by the following steps:

First, the pre-processed orders from the input sample are submitted to the market, while

order books collect the time-stamped buy and sell orders in ascending order (time). Based

on this sorted list, the first order of a day triggers the first auction and sets the schedule

for the rest of the day. Assuming a BCT of 10 (60, 300) minutes, the auction mechanism

then determines a price and executes trades every 10 (60, 300) minutes. Consistent with the

trading days at Stuttgart, we furthermore halt trading during the night, on weekends, and

on public holidays. To realize these halts, we set the market’s clock to the time stamp of

the next incoming order, if there is a gap of at least 5 hours between 2 orders and continue

trading at this time. To align the market mechanism with our input sample, we utilize the

exchange and implementation rules published on the Stuttgart stock exchange’s website to

implement priority rules, price determination, and the execution algorithm. In consequence,

the price determination algorithm scans all orders gathered in the order book, sets a price to
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

BCT = 10 BCT = 60 BCT = 300

Stock i

Number of
trading
days

Daily
average
(x̄i)

Standard
deviation

(σi)
BSmin

i BSmed
i BSmax

i BSmin
i BSmed

i BSmax
i BSmin

i BSmed
i BSmax

i

High Trading Volume
Daimler AG 1,231 128.65 86.63 2 2 3 3 9 15 15 46 77
BASF SE 1,231 74.79 50.31 2 2 2 2 5 9 9 27 45
Allianz SE 1,231 63.11 40.69 2 2 2 2 5 7 8 23 37
Volkswagen AG 1,231 64.14 67.21 2 2 2 2 5 9 2 23 47
Deutsche Bank AG 1,231 77.00 55.98 2 2 2 2 5 9 8 27 47
Commerzbank AG 1,153 74.59 54.53 2 2 2 2 5 9 7 27 46
Siemens AG 1,231 48.68 34.01 2 2 2 2 3 6 5 17 30
Deutsche Telekom AG 1,231 59.70 41.49 2 2 2 2 4 7 7 21 36
E.ON SE 1,231 56.88 42.25 2 2 2 2 4 7 5 20 35
Munich Re AG 1,231 29.75 19.06 2 2 2 2 2 3 4 11 17

Medium Trading Volume
Bayer AG 1,231 30.73 18.98 2 2 2 2 2 4 4 11 18
Deutsche Post AG 1,231 36.61 25.07 2 2 2 2 3 4 4 13 22
Deutsche Lufthansa AG 1,230 39.15 29.57 2 2 2 2 3 5 3 14 25
BMW AG 1,231 27.08 17.81 2 2 2 2 2 3 3 10 16
Infineon Technologies AG 1,231 29.58 18.31 2 2 2 2 2 3 4 11 17
SAP SE 1,231 29.51 19.65 2 2 2 2 2 4 4 11 18
RWE AG 1,229 29.03 24.00 2 2 2 2 2 4 2 10 19
Linde AG 1,231 18.76 14.79 2 2 2 2 2 2 2 7 12
Adidas AG 1,229 21.03 17.02 2 2 2 2 2 3 2 8 14
Continental AG 1,227 14.26 9.49 2 2 2 2 2 2 2 5 8

Low Trading Volume
thyssenkrupp AG 1,231 21.76 16.78 2 2 2 2 2 3 2 8 14
Fresenius SE & Co. KGaA 1,228 15.94 11.80 2 2 2 2 2 2 2 6 10
ProSiebenSat.1 Media SE 1,060 15.11 14.12 2 2 2 2 2 2 2 5 10
HeidelbergCement AG 1,221 9.63 7.08 2 2 2 2 2 2 2 3 6
Fresenius Medical Care AG 1,213 9.85 8.47 2 2 2 2 2 2 2 4 7
Henkel AG & Co. KGaA 1,216 9.18 7.76 2 2 2 2 2 2 2 3 6
Merck KGaA 1,202 8.43 7.13 2 2 2 2 2 2 2 3 6
Deutsche Brse AG 1,187 9.21 7.93 2 2 2 2 2 2 2 3 6
Vonovia SE 961 10.03 8.54 2 2 2 2 2 2 2 4 7
Beiersdorf AG 1,161 5.10 4.33 2 2 2 2 2 2 2 2 3

Average 1,207 35.58 26.03 2.00 2.00 2.03 2.03 2.97 4.53 4.00 12.77 22.03

Table 1: BS calibration
This table illustrates the data basis for the parameter calibration as well as the resulting BS for each
configuration. More specifically, column 1 presents the respective stock i and assigns it to the high, medium,
or low trading volume tertiary. Columns 2 to 4 comprise the number of trading days, the average number
of trades per day, and the daily standard deviation for each stock. Column 5 to 13 report the BS for all 9
blockchain configurations based on equation (1).

maximize turnover, and returns this price as well as the corresponding executable quantities.

To take the maximum BS into account, an intermediate step determines the number of ask

and bid trades that fit into one block and ensures that the traded bid and ask quantities are

the same. Eventually, the execution algorithm finalizes the trades according to the price-

time priority principle and outputs the resulting trade data including an uniform clearing

price, a traded quantity, an unique trade ID, a time stamp reflecting the time of a block’s

creation, and a remaining quantity9. If two orders have the same price limit, the one with the

older time stamp is prioritized. In addition, market orders are prioritized over limit orders.

Partially executed orders are updated and stay in the order book for the next auction along

9If an order was fully executed, the remaining quantity is equal to 0.
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with unexecuted orders, while fully executed orders are removed. Figure 2 summarizes these

steps and highlights the integration of the BS and the BCT parameters within the replication

of market outcomes.

The following paragraphs will introduce the price determination, the following execu-

tion, and the resulting market outcomes in detail. In addition, appendix D.1 illustrates the

software structure of the market mechanism in detail.

Blockchain parameter

Block creation time 

(BCT)

Blockchain parameter

Block size 

(BS)

Order input

Pre-processed order data from the 

Stuttgart stock exchange forms the 

input sample.

Time-stamped orders are submitted 

to the market and written in order 

books in ascending order (time).

Price determination

Implements the Stuttgart stock 

exchange’s trading rules to 

determine the price that maximizes 

turnover within each block.

Considers the whole order book.

Return: Price with the highest

turnover and corresponding orders.

Market outcomes

Trade database including a trade id, 

price, traded quantity, time stamp, 

and other trade information.

Post-processed data forms the basis 

for the empirical analysis.

Execution

Determines, which orders are 

included in a block (price-time-

priority) and redirects unexecuted or 

the remainder of partially executed 

orders back to the order book.

Return: Final order matching and 

order book updates.

Generates

Forwards tradeable

orders

Restricts 

number 

of trades

per auction

Provides order

data and starts 

the trading day

Periodically 

triggers

an auction

Controls timing of 

order input

Fig. 2. Process steps to replicate market outcomes

Price Determination. Stuttgart’s trading rules state that the price levels ”that have

the largest turnover within the given framework [...] must be identified”. In addition, ”if

there are several possible price levels, the price level with the lowest surplus must be iden-

tified”. To minimize frictions that arise from the integration of the blockchain parameters

in the market mechanism, we use these and other rules to guide the implementation of the

price determination. However, there are also some aspects, where our algorithm differs from

Stuttgart’s implementation rules. First and foremost, we determine prices independently

from any reference price, in order to remain fully decentralized and prevent dependencies on
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central authorities. Second, at Stuttgart, specialized market makers called ’Quality Liquid-

ity Providers’ offer quotes that constitute lower and upper price limits for each instrument.

However, the data acquired from the Boerse Stuttgart Research Database is already cleansed

and does not contain their orders or trades. In consequence, we neglect them in the replica-

tion.

Figure 3 summarizes the resulting price determination algorithm, illustrates potential

matching schemes in form of 10 cases, and indicates the resulting market outcomes in each

case (price, quantity). In the first attempt, we always try to determine the price with limit

orders. However, this is only possible, if either the bid or the ask side crosses the spread and

either the highest bid is at least as high as the lowest ask or vice versa. If neither is the case,

we extend our scope and include market orders as well. The 10 cases describe the approaches

utilized to determine prices given different order book situations. In addition, it is possible

that no orders in the book are executable. If this is the case, no price can be determined,

no trades occur, and all orders remain in the order book for the next auction in 10, 60,

or 300 minutes. Each time a new block is created, the price determination algorithm goes

through all cases and returns the determined price along with the tradeable quantity. The

BS however, is not considered in this step, yet. Instead, it is incorporated in the execution

algorithm, which is introduced in the next paragraph.

Execution. Before orders are executed, we take the BS parameter into account. To do

so, we limit the number of trades to the respective BS given in table 1, while the total ask

and bid volumes at the uniform clearing price have to be equal. Note that there can be an

imbalance between the number of bid and ask orders within a block. In addition, we iterate

through all possible combinations of bid and ask orders within a block to find the order

matching with the highest turnover10. To ensure price-time priority during this process,

we fill the blocks with the most recent orders that maximize the price (see 3). Eventually,

the execution algorithm returns the bid and ask orders included in a block, determines the

corresponding trades, and generates the resulting output data.

Market Outcomes. To illustrate the market outcomes, figure 4 depicts the daily average

trade prices and total volumes throughout 2013 in a exemplary manner. Panels (a), (c), and

(e) highlight that prices vary substantially across blockchain configurations, while panels (b),

(d), and (f) indicate that larger blocks increase turnover at a given BCT.

10If we assume a BS of 5 trades for instance, the execution algorithm tries to fill a block with 4 asks and
1 bid order in the first and ask-bid ratios of 3:2, 2:3, and 1:4 in the following iterations. Eventually, the
algorithm terminates, after checking all possible combinations or when turnover goes down (because then
we are outside of the maximum identified in the price determination).
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Fig. 3. Price determination algorithm
This figure illustrates the price determination algorithm. Blue indicates decisions, grey the results and cases,
and green, orange, and red market outcomes. Green implies that a trade is possible, orange that a trade may
be possible, and red that no trade is possible. The black box highlights the start of the price determination.
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More specifically, a high volatility and the occurrence of extreme prices seem more pro-

nounced in boundary scenarios such as (Min, 10) or (Max, 300). The reason for this can

be found in the order books: If there are multiple market orders on one side of the market,

one odd limit order (e.g., with a limit of 1 EUR) can disturb prices and lead to abrupt and

extreme returns11. This effect becomes even more severe for small BSs, because incoming

market orders have a higher priority. As a result, the limit order remains in the order book

and may trigger a similar price movement in the future. In addition, the chance that an odd

order sets the price is higher for scenarios with a high throughput as orders are processed

faster and order books become thinner. However, a detailed analysis of the relationship be-

tween prices and blockchain parameters will follow in section 5. Furthermore, we can observe

a constant price between September and December in Deutsche Börse’s (Min, 10) configu-

ration. This effect is caused by a relatively large ask limit order with a quantity of 18,700

(compared to an average of 275) and a limit of 50 EUR, which is partially executed over

time. After the first execution, its limit serves as a reference price (i.e., the last determined

price), while mostly bid market orders are submitted to the market. As a result, the price

determination algorithm (figure 3) stays in case 3.4.3, until the price can be determined

by other limit orders again. In total, these issues highlight the need to post-process the

replicated data.

3.1.4. Post-processing

To accommodate for the shortcomings of our market mechanism, such as the lack of

reference prices or circuit breakers, we post-process the trade data in several ways: To prevent

the most extreme prices from distorting our analysis in section 5, we remove all observations

with a price difference of at least four standard deviations compared to the actual stock

price observed at Stuttgart. This way, we aim to compensate for the absence of reference

prices, replicate the impact of circuit breakers (Subrahmanyam, 1994), while preserving price

variations. In addition, if the first order of a day was submitted late in the morning, this

could lead to block creations shortly after midnight in 300 minute configurations. To correct

these faulty time stamps, we set them to 11.59 p.m. of the previous day.

11We are aware that exchanges use circuit breakers and reference prices to prevent such effects. However,
for the sake of simplicity and computational efficiency of the replication, we deal with these issues outside
of the market mechanism by post-processing the market outcomes (see section 3.1.4).
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(c) SAP SE – Trade prices
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(e) Deutsche Börse AG – Trade prices
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Fig. 4. Market outcomes
This figure illustrates the replicated average trade prices and volumes for BASF (high volume tertiary),
SAP (intermediate volume tertiary), and Deutsche Börse (low volume tertiary) in 2013 (253 trading days).
Prices are computed as daily averages and volumes as daily totals. The line color indicates the respective
blockchain configuration (BS, BCT). In the case of redundant configurations, only the first configuration is
included.
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3.2. Summary Statistics

Eventually, the data generation process described in the previous subsection (3.1) spans

the data panel for the empirical analysis over a cross-section of 9 blockchain configurations

and 30 DAX stocks. It is based on 5 years of actual trading activity at Stuttgart and

covers a period from January 1, 2013 to December 31, 2017, while 12.5 million real-world

submissions result in 12 million replicated executions (trades) with a turnover of EUR 122

billion. Eventually, the final data panel comprises 302,493 stock-day-configurations12 and

4,546,605 blocks. Within each trading day, 9,818 trades lead to a turnover of EUR 100 million

on average. Within each block, a mean of 4.67 trades generates a turnover of EUR 59,121

per block. In addition, each trade comprises an average amount of 340 stocks. Note that the

variation of the blockchain parameters across different configuration results in a substantial

variation of the number of shares per trade (SD 857.32) and the turnover per block (SD

EUR 80,528). Table 2 presents summary statistics on the replication’s input sample from

Stuttgart (column 2), all 9 blockchain configurations (columns 2 to 11), and the aggregated

data panel (columns 12 to 14). Another noteworthy aspect is that none of the 9 blockchain

configurations reaches the actual trading volume observed at Stuttgart13. However, this effect

may be due to the winsorization and rounding procedures within the calibration and the

removal of simulation outliers in the post-processing. In addition, (min,min)-configurations

restrict the maximum turnover by design.

In total, these summary statistics provide some initial insights into the impact of different

blockchain configurations on market activity. A comparison between the different scenarios

indicates that increasing the BS is beneficial for total trading volume, the total number

of executions, and the average trade size. In addition, the impact of a lower BCT seems

more pronounced in scenarios with a smaller BS. On the block-level, the turnover per block

increases with a larger BS, while a longer BCT also has a positive effect. In addition, the

number of executions per block increases in larger blocks. Surprisingly, we can also see that

in the scenario with the longest BCT (column 11), the BS is not a limiting factor. More

specifically, the average number of executions per block (12.61) is substantially smaller than

the calibrated average BS of 22.03 (table 1, column 13).

12Note that this is below 332,370 (= 1, 231 days ∗ 30 DAX stocks ∗ 9 configurations) days, since some
shares are not traded daily. Column 2 of table 1 provides the number of trading days for each stock in detail.

13The most productive scenario (Max, 10) creates a turnover of EUR 17.92, which is substantially below
the actual turnover of EUR 22.57 billion at Stuttgart.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Input sample Market outcomes (BS, BCT) Data panel

Stuttgart (Min, 10) (Med, 10) (Max, 10) (Min, 60) (Med, 60) (Max, 60) (Min, 300) (Med, 300) (Max, 300) Total Mean Median

Total Submissions 1,400,444 1,400,444 1,400,444 1,400,444 1,400,444 1,400,444 1,400,444 1,400,444 1,400,444 1,400,444 12,603,996 1,400,444 1,400,444
Total Executions 1,323,857 2,100,934 2,100,934 2,109,755 803,027 1,139,912 1,365,068 371,944 979,934 1,114,968 12,086,476 1,342,942 1,139,912
Total Trading Volume [EUR] 22,574,487,089 17,329,482,335 17,329,482,335 17,924,368,004 5,768,869,557 11,849,980,042 16,549,085,490 3,933,958,256 14,456,286,388 16,901,262,445 122,042,774,852 13,560,308,317 16,549,085,490
Trading Days 1,231 1,231 1,231 1,231 1,231 1,231 1,231 1,231 1,231 1,231 11,079 1,231 1,231

Executions per Day
Mean 1,075.43 1,706.69 1,706.69 1,713.85 652.34 926.00 1,108.91 302.15 796.05 905.74 9,818.42 1,090.94 926.00
Median 997.00 1,742.00 1,742.00 1,755.00 689.00 984.00 1,160.00 318.00 843.00 921.00 10,154.00 1,128.22 984.00
Standard Deviation 487.57 645.14 645.14 661.69 180.79 268.04 365.44 76.29 249.38 349.64 3,441.55 382.39 349.64

Trading Volume per Day
Mean [EUR] 18,338,332 14,077,565 14,077,565 14,560,819 4,686,328 9,626,304 13,443,611 3,195,742 11,743,531 13,729,701 99,141,166 11,015,685 13,443,611
Median [EUR] 16,925,251 14,327,298 14,327,298 14,722,189 4,915,441 10,082,046 13,813,772 3,259,503 12,153,912 13,893,371 101,494,830 11,277,203 13,813,772
Standard Deviation [EUR] 8,241,854 5,232,808 5,232,808 5,562,499 1,353,566 2,980,153 4,687,971 895,737 3,828,617 5,500,881 35,275,040 3,919,449 4,687,971

Shares per Trade
Mean 551.91 277.94 277.94 280.71 198.13 319.20 402.27 317.85 483.08 505.29 340.27 317.85
Median 150.00 100.00 100.00 100.00 79.00 100.00 110.00 100.00 135.00 150.00 108.22 100.00
Standard Deviation 1,761.46 674.79 674.79 674.40 462.90 755.59 988.90 756.33 1,318.39 1,409.80 857.32 755.59

Executions per Block
Mean 2.00 2.00 2.05 2.04 2.93 3.81 3.98 10.65 12.61 4.67 2.93
Median 2.00 2.00 2.00 2.00 2.00 3.00 3.00 8.00 9.00 3.67 2.00
Standard Deviation 0.00 0.00 0.22 0.19 1.48 2.42 2.88 8.58 11.52 3.03 1.48

Trading Volume per Block
Mean [EUR] 16,497 16,497 17,407 14,639 30,411 46,184 42,074 157,178 191,202 59,121 30,411
Median [EUR] 8,324 8,324 8,791 7,738 13,889 21,904 18,840 88,992 107,083 31,543 13,889
Standard Deviation [EUR] 26,599 26,599 27,944 22,390 48,358 69,102 63,523 194,991 245,246 80,528 48,358

Table 2: Summary Statistics
This table summarizes key figures on the trade data from Stuttgart (column 2), the replicated market outcomes (columns 3 to 11), and the resulting
aggregated data panel (column 12 to 14). The parameters of the blockchain configurations are reported in parentheses (BS, BCT). Column 1 specifies
the respective measures and indicates whether a measure was computed on a daily or block-level (intraday). To provide a benchmark, column 2
reports statistics on submissions, executions, trading volume, and shares per trade of the input sample from Stuttgart. Columns 3 to 5 comprise
blockchain configurations with a BCT of 10 minutes, 6 to 8 with 60 minutes, and 9 to 11 with 300 minutes, respectively. The BS varies according to
the calibration (table 1). Columns 12 to 14 show the total, mean, and median measures of the final data panel. If a measure was not applicable, the
corresponding cells are left empty.
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4. Methodology

This section introduces the methodology used to assess the quality of decentralized mar-

kets. In consequence, we present the utilized market quality measures in subsection 4.1 and

embed them into our empirical strategy in subsection 4.2.

4.1. Market Quality Measures

To perform a holistic analysis of blockchain-based exchanges, we consider all three di-

mensions of market quality. To do so, we utilize established quality, liquidity, and price

measures and adapt them to take the specific characteristics of the input sample, the data

generation process, and the resulting data panel into account. However, Stuttgart’s hybrid

market design and the blockchain’s discrete nature complicate the use of traditional depth

and spread measures. In consequence, we introduce 6 market quality measures (3 activity,

2 liquidity, 1 information) in the following paragraphs. For a better overview, appendix E

also summarizes the main characteristics of these measures.

4.1.1. Activity

To assess market activity, we follow Barclay et al. (2003) and Hendershott et al. (2011)

and use the trade count (TC) and the turnover (TO) as well as an adapted version of the

average trade size (ATS) as activity measures. For each measure, a high value indicates a

high level of activity. In combination, all three measures facilitate an integrated analysis of

a market’s activity.

Trade count. The TC is defined as the daily number of trades and measures the execution

frequency within a market. Equation (2) formalizes this definition, while ni,d,s denotes the

number of trades on day d for stock i under configuration s.

TCi,d,s = ni,d,s. (2)

As a result, a higher TC implies a higher level of market activity. However, the TC’s

meaningfulness is also limited, because it does not consider prices or traded quantities. In

consequence, we need additional measures to take these aspects into account.
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Turnover. One of these measures is the TO. It measures the aggregated daily trading

volume and is specified as

TOi,d,s =

TCi,d,s
∑

j=1

Pricei,d,s,j ·QuantityTi,d,s,j, (3)

where Pricei,d,s,j and QuantityTi,d,s,j denote the price and the number of traded (T ) stocks

of a trade j on day d and in a stock i. In addition, s represents the underlying blockchain

configuration. Similar to the TC, a higher value indicates a higher level of market activity.

Moreover, it comprises both price and quantity information and therefore improves the

activity assessment. However, a drawback of the TO measure is that it may be biased by

very large trades. Thus, to avoid a misleading interpretation, one needs to consider both the

TO and the TC.

Average trade size. Eventually, the ATS measures the average amount of shares included

in a trade. To tailor this measure and to study the activity of blockchain-based markets, we

compute the ATS on the block-level. As a result, the ATS is equal to the ratio of the total

trade quantity within a specific block b to the amount of trades within that block:

ATSi,b,s =

TCi,b,s
∑

j=1

QuantityTi,b,s,j

TCi,b,s

(4)

Analogous to TC and TO, a higher ATS corresponds to a more active market.

4.1.2. Liquidity

To assess the second market quality dimension, we use the daily Amihud illiquidity

measure (DILLIQ) and the remaining quantity proportion (RQP) to approximate liquidity.

A high value for either measure, indicates low levels of liquidity. Note that we do not consider

spread-based liquidity measures as they may be biased by large market orders that have to

be eroded over time. More specifically, the limited BS prevents that large market orders are

filled immediately and their remaining quantity stays in the order book, while smaller orders

from the other side of the market fill it over time. As a result, spreads are equal to zero,

despite the actually illiquid market situation on the other side of the market.

Daily illiquidity. The DILLIQ measure formalizes the notion of liquidity as the ability

to trade without affecting prices and quantifies the elasticity of liquidity as the ratio of
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stock returns to trading volume. In other words, it captures the daily price contribution

associated with one monetary unit of trading volume (Næs, Skjeltorp, and Ødegaard, 2011).

In consequence, we follow Amihud (2002) and define DILLIQ as

DILLIQi,d,s =
|Returni,d,s|

TOi,d,s

. (5)

The Returni,d,s represents the daily logarithmic return of stock i under configuration s.

To compute returns, we furthermore compare the last price of day d with the closing price

of the previous day d − 1. In general, a security with a lower DILLIQ can be interpreted

as more liquid, while high values indicate a low liquidity, and thus a high price impact of

trades (Næs et al., 2011). The main advantage of the DILLIQ measure is its simplicity and

robustness, as well as the fact that daily trade data is sufficient for the calculation. On the

other hand, this also implies that short-term microstructure aspects cannot be considered.

Remaining quantity proportion. To facilitate the analysis of shorter time intervals,

we utilize the RQP measure. It follows Cao et al. (2009) and Brogaard et al. (2014)14 and

captures the proportion of unexecuted orders on the block-level on a scale from 0 to 1. More

specifically, the RQP is defined as the ratio of the total remaining quantity (QuantityRi,b,s,j)

within a specific block b to its total submitted quantity (QuantitySi,b,s,j):

RQPi,b,s =

TCi,b,s
∑

j=1

QuantityRi,b,s,j

TCi,b,s
∑

j=1

QuantitySi,b,s,j

. (6)

In equation (6), i denotes the stock, b the block of the trades, and s the underlying

blockchain configuration. In addition, j enumerates the orders within a block, while TCi,b,s

specifies the number of potentially included orders. The remaining quantity QuantityRi,b,s,j

is equal to the remaining quantity of partially or fully executed orders within a block. The

submitted quantity QuantitySi,b,s,j is equal to the trade quantity specified in the order. If

an order is partially executed within a block, we update QuantitySi,b,s,j accordingly for the

following blocks.

Consistent with Cao et al. (2009) and Brogaard et al. (2014), we utilize the ”scaled

imbalances in quantity between demand and supply” to approximate imbalances in the

14Brogaard et al. (2014), for instance, define the limit order book imbalance as LOBIi,t =
(Size

Offer
i,t

−SizeBid
i,t )

(Size
Offer
i,t

+SizeBid
i,t

)
, where Size is the dollar volume of orders, i the stock, and t the respective period.
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order books across different blockchain configurations and over time. More precisely, a RQP

of 0 indicates that all orders included in a block are fully executed (i.e., QuantityRi,b,s,j =

0), while a RQP of 1 implies that all submitted orders were neither partially nor fully

executed (QuantityRi,b,s,j = QuantitySi,b,s,j). In consequence, a value closer to 1 indicates a

lower liquidity (QuantityRi,b,s,j < QuantitySi,b,s,j). If no orders were submitted to the order

books (QuantitySi,b,s,j = 0), the RQP is not defined and set to 1, because there is no trading

and the market is not liquid. This way, we aim to measure a traders ability to trade in

a market and within a block. In liquid markets, even large orders can be filled almost

immediately, while illiquid markets are characterized by a high fraction of un- or partially

executed orders. As a result, the RQP captures the ability to trade a large market order

or a competitive limit order, while lower vlaues indicate higher liquidity and vice versa. In

addition, figure 5 summarizes the interpretation of the RQP.

. . .RQP
0

QR
i,b,s,j = 0

High liquidity

. . .

QR
i,b,s,j < QS

i,b,s,j

Intermediate liquidity

1

QR
i,b,s,j = QS

i,b,s,j

Low liquidity

∞

QS
i,b,s,j = 0

Low liquidity

Fig. 5. Interpretation remaining quantity proportion (RQP)
This figure illustrates the interpretation of the RQP. A high value implies low and a low value implies high
liquidity. More specifically, if less of the ordered quantity remains after an execution, the ability to trade
is higher and vice versa. QR

i,b,s and QS
i,b,s denote the total remaining (unexecuted) and submitted order

quantities, while i, b, s indicate the stock, block, and configuration.

4.1.3. Information

Block impact. Finally, we build on Hendershott et al. (2011)’s price impact measure to

analyze price formation and capture volatility effects on the block-level. The resulting block

impact (BI) measures the logarithmic price change that comes with a block b and is equal

to

BIi,b,s = BDi,b,s · ln

(

Pricei,b,s

Pricei,b−1,s

)

. (7)

Pricei,b,s and Pricei,b−1,s denote the uniform clearing prices of the current and the pre-

vious block of stock i and configuration s. The block direction BDi,b,s furthermore indicates

whether buy or sell orders dominate within block b. To determine a block’s direction, we

apply a heuristic approach that sets BDi,b,s = −1, when supply exceeds demand within the

current block. If on the other hand, demand exceeds supply BDi,b,s is set to 1. If demand

equals supply, we set BDi,b,s = 0. In total, this allows us to identify buyer and seller dom-

inated blocks and disentangle the price effects of bullish and bearish markets. In total, the

BI represents the price movement between two blocks and a higher value indicates a greater
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price impact of a block. This way, the BI allows us capture volatility effects that come with

different blockchain configurations (see figure 4).

4.2. Empirical Strategy

To analyze how different parameter combinations affect market quality, we apply linear

OLS regressions with stock and time fixed effects to the data panel generated in section 3.1

and summarized in table 2. Within this panel, the cross-sections of 9 blockchain configura-

tions and 30 DAX stocks enable us to measure the impact of a varying BS and BCT on a

market’s activity, liquidity, and price formation.

To do so, we evaluate the impact of variations in the BS and BCT on the 6 market

quality measures (MQMs) introduced in section 4.1 with the help of multiple regression

models. More specifically, TC, TO, and DILLIQ measure market quality on a daily and

ATS, RQP, and BI on an intraday block-level. Equation (8) provides the full specification

of our empirical model:

MQMi,t,s = α + β1BSi,s + β2BCTi,s + β3BSi,sBCTi,s

+ β4V Gi + β5V GiBSi,s + β6V GiBCTi,s

+ β7OQi,t,s + β8OQi,t,sBSi,s + β9OQi,t,sBCTi,s

+ β10LnReturni,t,s + β11SDPricei,t,s + β12LnSizei

+ ~γS + ~δT + ~ωD + εi,t,s

(8)

The dependent variable MQM denotes the market quality measure at hand, while i and s

indicate the underlying stock and and blockchain configuration. t represents either a block b

or a day d depending on the MQM’s frequency. For each measure, we perform 8 regressions

(model 1 to 8) that build towards the full specification given in equation (8) (model 6) and

relax the included fixed effects (model 7 and 8). In the first stage, we limit our analyses to the

blockchain parameters at hand and focus on the effect of the BS (model 1), the BCT (model

2), the combination of both (model 3), and how they affect each other (model 4). The fourth

specification furthermore serves as the basis for the second stage, where we sequentially add

controls.

The fist group of control variables comprises activity controls and includes the trading

volume of a stock and the order quantity within a block or day in model 5. More specifi-

cally, the corresponding model specification adds the variables volume group (VG) and order

quantity (OQ) as well as interactions with the BS and the BCT. The VGi ∈ {1, 2, 3} of

stock i is equal to 1 for stocks in the low volume tertiary, equal to 2 for stocks in medium
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volume tertiary, and equal to 3 for stocks in the high volume tertiary15. In addition, we add

the OQ of a block b or day d as well as its interaction with BS and BCT. A stock-block’s

or stock-day’s OQ is equal to the total submitted order quantity of completely and partially

executed orders.

Adding the second group of control variables incorporates established controls from mar-

ket quality literature and yields the full specification (model 6). The logarithmic daily

return (LnReturn) of day d and stock i is computed as the logarithm of the ratio of a day’s

closing price to the closing price of the previous day. In addition, we include the daily stan-

dard deviation of the uniform price (SDPrice) to control for unobservable volatility patterns.

Note that the LnReturn and the SDPrice are always measured on a daily basis and are

computed with the replicated trade data. Eventually, we use the total logarithmic market

capitalization (LnSize) of stock i to control for firm size16. Eventually, model 6 comprises

all variables, controls, and fixed effects, and thus is equal to equation (8).

Across models 1 to 6, we control for stock, year, and intraday fixed effects through

the terms ~γS, ~δT , ~ωD.17 By including stock and time fixed effects, we aim to control for

unobserved heterogeneity across the DAX 30 stocks and over time. On the stock-level,

this may be due to investor preferences in Stuttgart (e.g., a local preference for Daimler),

differences in risk, the opinions of analysts, and other stock-specific characteristics. With

the help of year fixed effects, we aim to take the development of Stuttgart’s market share as

well as long-term economic trends into account. Intraday fixed effects absorb heterogeneity

due to the extended trading hours at Stuttgart and the time of the day (e.g., lunch breaks,

etc.). Note that intraday fixed effects are only included for measures on the block-level. In

models 7 and 8, we relax the fixed effects included in the regression and drop time fixed

effects (7) and both time and stock fixed effects (8), respectively. Eventually, εi,t,s denotes

the error term included in each specification.

15We classify the 30 DAX stocks into tertiaries based on the actual EUR trading volume observed at the
Stuttgart stock exchange during the sample period. Table 11 in appendix C provides details on the resulting
classification.

16Market capitalization data for all 30 DAX stocks was gathered as of December 31, 2017 from either the
annual report or the investor relations website of the corresponding company.

17S, T , and D represent identity matrices. While S is a 30× 30 matrix accounting for each stock individ-
ually, T is a 5× 5 matrix considering each year of the sample period. D is a 24× 24 matrix, which takes 24
hours of a day into account. Note that we allow for 24 hours, because in some configurations (BCT = 300)
the last block creation can happen in the late evening. Also recall that block creations that happen on
the early morning of the following day were backdated accordingly (see section 3.1.4). Accordingly, the

regression parameters ~γ, and ~δ, ~ω are vectors with 30, 5, and 24 dimensions, respectively.

27



5. Empirical Results

In the following section, we present and interpret the results of our panel regressions.

To do so, we apply model 1 to 8 to the MQMs introduced in section 4.1 and analyze each

quality dimension in a separate subsection. Hence, subsection 5.1 evaluates market activity

(TC, TO, and ATS), subsection 5.2 presents our findings on liquidity (DILLIQ and RQP),

and subsection 5.3 investigates price formation (BI). In addition, we ensure the robustness

of our findings in subsection 5.4, by aggregating block-based measures to days, considering

alternative trading hours, adding additional controls, taking a closer look at trade directions,

and disentangling BCT effects.

5.1. Activity

To assess the first dimension of market quality, we examine how different blockchain

configurations affect the daily number of trades (TC), daily turnover (TO), and the average

trade size on the block-level (ATS). In total, we find that increasing the BS affects market

activity in various ways: First, the amount of trades per day is higher for smaller blocks.

Second, a larger BS results in an increased trading volume per day. Third, increasing blocks

leads to a higher average amount of shares per trade. With respect to the BCT, we identify

the following effects: First, the number of trades per day increases with the number of blocks

created (lower BCT). Second, increasing the block frequency results in a higher turnover per

day. Third, a shorter BCT reduces the average amount of shares per trade. The following

subsections introduce and discuss these findings in detail.

5.1.1. Trade Count

First, we take a closer look at the TC regressions and examine how the TC is affected by

the BS, BCT, and their interaction. Each regression model is based on 392,493 observations,

while the average number of trades per stock-day is equal to 39.96. Table 3 summarizes the

regression outputs for models 1 to 8.

Except for models 3 and 8, the BS coefficient is always negative and significant on a

0.1% level. Consequently, a larger BS may lead to a lower amount of trades per day. More

specifically, models 6 and 7 imply that increasing the BS by 1 reduces the number of trades

per day by 1. However, compared to the average number of trades per day this is equal to a

change of 2.5%. In addition, the interaction between BS and VG indicates that the BS effect

depends on trading volume and is more pronounced for high volume stocks. This result

seems counter-intuitive at first. However, since we calibrate the BS based on actual trading
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Dependent Variable: Size Time Blockchain Size-Time Robustness Full Full Full
TC (per Day) Effect Effect Configuration Interaction Market Activity Specification Specification Specification

(no TFE) (no FE)

Independent Variables (1) (2) (3) (4) (5) (6) (7) (8)

Intercept 17.22 *** 28.66 *** 29.43 *** 34.98 *** -9.04 *** 629.50 *** 739.28 *** -85.59 ***
(40.09) (70.34) (72.35) (82.78) (-15.54) (15.19) (17.70) (-38.85)

0.43 0.41 0.41 0.42 0.58 41.45 41.78 2.20

Blockchain Parameters
BS -0.64 *** 0.34 *** -2.26 *** -0.91 *** -0.97 *** -0.96 *** 1.01 ***

(-88.43) (40.77) (-40.05) (-12.38) (-13.31) (-13.06) (13.48)
0.01 0.01 0.06 0.07 0.07 0.07 0.07

BCT -0.10 *** -0.12 *** -0.14 *** -0.00 0.00 0.00 0.04 ***
(-221.56) (-205.21) (-192.70) (-0.48) (0.50) (0.37) (28.48)

0.00 0.00 0.00 0.00 0.00 0.00 0.00

BS·BCT 0.01 *** 0.01 *** 0.01 *** 0.01 *** 0.00 ***
(46.50) (65.53) (65.81) (64.92) (17.81)

0.00 0.00 0.00 0.00 0.00

Activity Controls
VG 32.62 *** 51.78 *** 55.80 *** 30.18 ***

(135.14) (35.75) (38.23) (256.40)
0.24 1.45 1.46 0.12

VG·BS -0.68 *** -0.67 *** -0.67 *** -0.30 ***
(-36.26) (-35.72) (-35.45) (-16.28)

0.02 0.02 0.02 0.02

VG·BCT -0.08 *** -0.07 *** -0.07 *** -0.09 ***
(-109.62) (-108.49) (-107.36) (-132.19)

0.00 0.00 0.00 0.00

OQ 0.00 *** 0.00 *** 0.00 *** 0.00 ***
(95.49) (95.51) (97.05) (107.12)

0.00 0.00 0.00 0.00

OQ·BS 0.00 *** 0.00 *** 0.00 *** 0.00 ***
(71.92) (72.68) (71.93) (58.30)

0.00 0.00 0.00 0.00

OQ·BCT -0.00 *** -0.00 *** -0.00 *** -0.00 ***
(-37.33) (-38.06) (-35.61) (-29.37)

0.00 0.00 0.00 0.00

Quality Controls
LnReturn -1.55 * -1.67 * -1.64

(-2.11) (-2.25) (-2.09)
0.74 0.74 0.79

SDPrice 1.09 *** 1.05 *** 0.64 ***
(33.06) (31.55) (18.45)

0.03 0.03 0.03

LnSize -27.74 *** -32.50 *** 3.01 ***
(-15.25) (-17.73) (32.23)

1.82 1.83 0.09

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes Yes No No
Intraday Fixed Effects No No No No No No No No
Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes No

Number of observations 392,493 392,493 392,493 392,493 392,493 392,493 392,493 392,493
Average 39.96 39.96 39.96 39.96 39.96 39.96 39.95 39.95
F-statistics 4,918.72 *** 6,756.09 *** 6,646.60 *** 6,568.19 *** 8,441.38 *** 8,092.82 *** 8,607.93 *** 22,191.30 ***
R2

adj 0.3560 0.4316 0.4347 0.4387 0.5336 0.5352 0.5262 0.4684

Table 3: Regression trade count (TC)
This table presents β coefficients of models 1 to 8 (see section 4.2) with TC as dependent variable. The results
are based on daily trade data, while the variable BS represents the number of trades that fit into a block and
BCT denotes the block frequency. The activity controls comprise a stock’s volume group (VG) and the daily
order quantity (OQ). VG is either set to 1, 2, or 3, whereas larger values indicate higher trading volumes.
Quality controls include the daily mean LnReturn, the corresponding standard deviation SDPrice, and a
firm’s LnSize as of December 31st, 2017. We report β coefficients, t-statistics (in parentheses), and standard
errors for each independent variable and the intercept. ***, **, and * indicate statistical significance at the
0.1%, 1% and 5% level, respectively.

29



data, partial executions may lead to this effect. More precisely, a small BS – especially in

the BSmin-configurations – can result in imbalanced matching schemes, where large excess

demand or supply leads to partial executions on one side of the market. As a result, the

remaining quantities in the order books can increase trading activity in less active trading

hours. Blocks with a larger BS, on the other hand, facilitate a more balanced matching, and

thus less partial executions. We verify the robustness of this rationale by controlling for the

effect of order book imbalances in section 5.4.

For the BCT, models 2 to 4 suggest that a faster block creation has a weak negative

effect and leads to less trades per day. However, these findings do not hold after adding

activity and quality controls in models 5, 6, and 7. Instead, the interaction term with

trading volume (VG) assumes the effect and indicates that a fast block creation is only

beneficial for high volume stocks. In total, the negative coefficients for either the BCT or

the VG-BCT-interaction imply that a shorter BCT, i.e., a higher trade frequency, leads to

more trades per day. In addition, our results are consistent with the findings on periodic

auctions (Fricke and Gerig, 2018), and indicate that a shorter BCT and a higher trading

intensity go hand in hand.

Eventually, the interaction between BS and BCT is positive and statistically significant

for all models implying a weak contrarian effect on the number of trades per day. In contrast,

the OQ and corresponding interactions remain economically insignificant for both blockchain

parameters. R2

adj increases while adding blockchain parameters and related interactions from

models 1 to 6, is above 50% in the full specification (6 and 7), and declines by 7 percentage

points after dropping stock fixed effects. Supported by F-statistics at the 0.1% level, this

suggests that both BS and BCT have a substantial impact on the number of trades per day,

while BCT effects are mediated through a volume channel. In addition, the partly inverting

coefficients in model 8 point to towards a distorting influence of unobserved heterogeneity

on the stock-level.

5.1.2. Turnover

Second, we consider the TO to capture a blockchain configuration’s impact on the daily

trading volume of a stock. Models 1 to 8 are based on 392,493 observations with an average

TO of EUR 403,456 per stock-day. Similar to the TC (see section 5.1.1), we examine the

individual effects of the BS and the BCT first (model 1 and 2) and extend our focus and

include interactions to test the robustness of the effects (model 3 to 6). In addition, models

7 and 8 relax the fixed effects gradually.

Across all specifications presented in table 4, the BS has a positive, significant (0.1%

level), and economically large effect on the TO of a stock. More precisely, the full specification
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Dependent Variable: Size Time Blockchain Size-Time Robustness Full Full Full
TO (per Day) Effect Effect Configuration Interaction Market Activity Specification Specification Specification

(no TFE) (no FE)

Independent Variables (1) (2) (3) (4) (5) (6) (7) (8)

Intercept 97,594.95 *** 167,011.27 *** 198,760.92 *** 110,879.64 *** -383,939.58 *** 1,745,006.19 *** 2,020,571.80 *** -2,861,970.25 ***
(19.23) (32.62) (39.97) (21.52) (-54.59) (3.48) (4.02) (-106.69)
5,073.93 5,119.96 4,972.66 5,152.54 7,033.43 501,725.74 502,331.17 26,825.55

Blockchain Parameters
BS 5,792.56 *** 13,853.29 *** 55,056.64 *** 61,365.64 *** 60,828.49 *** 60,826.70 *** 72,471.55 ***

(68.08) (137.40) (79.87) (69.30) (68.67) (68.47) (79.42)
85.08 100.82 689.35 885.53 885.83 888.43 912.54

BCT -418.55 *** -969.24 *** -655.65 *** 467.28 *** 478.10 *** 479.09 *** 983.46 ***
(-71.20) (-139.05) (-75.73) (27.42) (28.04) (28.02) (55.70)

5.88 6.97 8.66 17.04 17.05 17.10 17.66

BS·BCT -136.20 *** -115.58 *** -115.29 *** -115.54 *** -192.60 ***
(-60.41) (-55.85) (-55.71) (-55.67) (-89.60)

2.25 2.07 2.07 2.08 2.15

Activity Controls
VG 401,392.98 *** 461,821.32 *** 472,806.73 *** 241,742.96 ***

(137.57) (26.34) (26.94) (168.65)
2,917.77 17,532.02 17,550.17 1,433.39

VG·BS -5,561.06 *** -5,477.14 *** -5,465.74 *** 842.17 ***
(-24.60) -24.22 (-24.10) (3.77)
226.09 226.11 226.77 223.14

VG·BCT -603.10 *** -596.44 *** -597.23 *** -813.61 ***
(-72.77) (-71.93) (-71.82) (-93.56)

8.29 8.29 8.32 8.70

OQ 0.48 *** 0.48 *** 0.48 *** 0.47 ***
(77.13) (77.04) (77.82) (71.23)

0.01 0.01 0.01 0.01

OQ·BS 0.19 *** 0.19 *** 0.19 *** 0.18 ***
(74.58) (75.05) (74.55) (66.10)

0.00 0.00 0.00 0.00

OQ·BCT 0.00 *** 0.00 *** 0.00 *** -0.00 ***
(9.68) (9.20) (10.53) (-6.28)
0.00 0.00 0.00 0.00

Quality Controls
LnReturn 5,027.18 4,971.67 5,186.04

(0.56) (0.56) (0.54)
8,897.90 8,923.96 9,572.57

SDPrice 8,744.15 *** 8,601.06 *** 10,278.91 ***
(22.01) (21.59) (24.40)
397.33 398.37 421.20

LnSize -92,385.23 *** -104,947.47 107,478.76 ***
(-4.20) (-4.76) (94.57)

22,013.04 22,040.71 1,136.44

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes Yes No No
Intraday Fixed Effects No No No No No No No No
Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes No

Number of observations 392,493 392,493 392,493 392,493 392,493 392,493 392,493 392,493
Average 403,456.50 403,456.50 403,456.50 403,456.50 403,456.50 403,456.50 403,507.10 403,507.10
F-statistics 5,684.94 *** 5,705.59 *** 6,427.96 *** 6,426.18 *** 8,567.15 *** 8,181.84 *** 8,922.79 *** 21,902.30 ***
R2

adj 0.3898 0.3907 0.4265 0.4333 0.5373 0.5379 0.5352 0.4651

Table 4: Regression turnover (TO)
This table presents β coefficients of models 1 to 8 (see section 4.2) with TO as dependent variable. The results
are based on daily trade data, while the variable BS represents the number of trades that fit into a block and
BCT denotes the block frequency. The activity controls comprise a stock’s volume group (VG) and its daily
order quantity (OQ). VG is either set to 1, 2, or 3, whereas larger values indicate higher trading volumes.
Quality controls include the daily mean LnReturn, the corresponding standard deviation SDPrice, and a
firm’s LnSize as of December 31st, 2017. We report β coefficients, t-statistics (in parentheses), and standard
errors for each independent variable and the intercept. ***, **, and * indicate statistical significance at the
0.1%, 1% and 5% level, respectively.
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in model 6 suggests that increasing a block’s size by 1 raises trading volume by EUR 60,828

or 15%. Despite a varying size, this effect is furthermore robust across all 8 specifications.

However, this finding also highlights that a higher TC (that comes with smaller blocks) does

not go hand in hand with a higher TO. In addition, a higher VG weakens the positive effect

of a larger BS on TO.

With respect to the BCT, we observe a similar direction but more inconsistent effect

patterns, as coefficients are negative and statistically significant for models 2 to 4. This

indicates that a shorter BCT enhances daily TOs by EUR 655 per minute (model 4). How-

ever, similar to the TC this effect turns positive, after adding activity controls in model 5,

while the VG-BCT-interaction assumes the negative impact from the BCT coefficient. This

indicates that the negative impact of enhanced BCTs is more pronounced for high- than for

low-volume stocks. However, this finding may be driven by the calibration process, where

we set low-volume stock’s BS to 2 in most BCTmin and BCTmed configurations (although

the input sample suggested lower values). As a result, throughput in these scenarios is not

restricted and increasing the BCT has no negative effect on TO. Unfortunately, the interac-

tion between OQ and BCT also remains economically small, and thus struggles to support

this reasoning.

In aggregate, we furthermore find that a shorter BCT supports the positive effect a larger

BS has on daily TOs. More specifically, we find a negative, statistically significant, and

robust interaction effect between BS and BCT. In consequence, reducing the time between

the creation of two blocks by 1 minute raises TO by EUR 115 (model 6 and 7). Eventually,

R2

adj is equal to 0.3898 and 0.3907 in models 1 and 2 and increases to 0.53 after including

activity controls and interactions. Adding quality controls from literature and dropping

time fixed effects has no effect, while dropping stock fixed effects diminishes the R2

adj to

0.4651. Similar to the TC regressions in table 3, this highlights the presence of unobserved

heterogeneity on the stock-level. However, in combination with significant F-statistics (0.1%)

across all models, the R2

adj supports the relevance of the blockchain configuration for TOs.

5.1.3. Average Trade Size

The third and last activity measure is the ATS. The ATS is computed on the block-level,

measures the number of shares included in a trade, and is equal to 279.31 shares per trade

on average. Table 5 summarizes the results of the regressions (model 1 to 8) and highlights

the impact of BS and BCT on ATS.

The BS parameter is statistically (0.1%) and economically significant across all model

specifications. Models 5 to 7 for instance suggest that including 1 additional trade in a block

adds about 25 shares to a trade (i.e., an increase of 9% on average). Consistent with our
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Dependent Variable: Size Time Blockchain Size-Time Robustness Full Full Full
ATS (per Block) Effect Effect Configuration Interaction Market Activity Specification Specification Specification

(no TFE) (no FE)

Independent Variables (1) (2) (3) (4) (5) (6) (7) (8)

Intercept 232.29 *** 210.42 *** 214.64 *** 187.74 *** 170.75 *** 9293.66 *** 8,999.86 *** 3,528.77 ***
(41.90) (37.20) (37.98) (33.17) (28.47) (36.04) (35.00) (368.61)

5.54 5.66 5.65 5.66 6.00 257.88 257.16 9.57

Blockchain Parameters
BS 7.39 *** 6.63 *** 25.44 *** 24.64 *** 24.83 *** 25.00 *** 35.98 ***

(123.42) (87.49) (96.09) (39.23) (39.48) (39.74) (57.55)
0.06 0.08 0.26 0.63 0.63 0.63 0.63

BCT 0.38 *** 0.09 *** 0.24 *** 0.05 ** 0.04 ** 0.06 *** -0.20 ***
(88.47) (16.12) (41.16) (3.26) (2.90) (4.43) (-14.52)

0.00 0.01 0.01 0.01 0.01 0.01 0.01

BS·BCT -0.07 *** -0.05 *** -0.05 *** -0.05 *** -0.04 ***
(-74.13) (-59.04) (-59.03) (-59.72) (-53.21)

0.00 0.00 0.00 0.00 0.00

Activity Controls
VG -35.66 *** 249.00 *** 239.85 *** 107.20 ***

(-26.08) (27.25) (26.32) (191.43)
1.37 9.14 9.11 0.56

VG·BS -2.73 *** -2.76 *** -2.77 *** -6.78 ***
(-13.83) (-13.98) (-14.03) (-34.70)

0.20 0.20 0.20 0.20

VG·BCT -0.03 *** -0.03 *** -0.03 *** -0.00
(-4.04) (-4.36) (-4.11) (-0.18)

0.01 0.01 0.01 0.01

OQ 0.04 *** 0.04 *** 0.04 *** 0.04 ***
(784.35) (783.76) (784.35) (878.63)

0.00 0.00 0.00 0.00

OQ·BS -0.00 *** -0.00 *** -0.00 *** -0.00 ***
(-87.05) (-87.31) (-87.41) (-103.03)

0.00 0.00 0.00 0.00

OQ·BCT 0.00 *** 0.00 *** 0.00 *** 0.00 ***
(31.81) (32.20) (32.17) (42.87)

0.00 0.00 0.00 0.00

Quality Controls
LnReturn 9.08 ** 10.18 ** 13.90 ***

(2.82) (3.16) (4.24)
3.22 3.22 3.28

SDPrice -1.64 *** -1.62 *** -9.57 ***
(-12.23) (-12.04) (-72.04)

0.13 0.13 0.13

LnSize -396.49 *** -385.63 *** -148.87 ***
(-34.99) (-34.12) (-369.13)

11.33 11.30 0.40

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes Yes No No
Intraday Fixed Effects Yes Yes Yes Yes Yes Yes No No
Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes No

Number of observations 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605 4,541,841 4,541,841
Average 279.31 279.31 279.31 279.31 279.31 279.31 279.40 279.40
F-statistics 14,385.70 *** 14,223.10 *** 14,125.00 *** 13,984.80 *** 27,638.60 *** 26,721.50 *** 42,401.80 *** 118,680.00 ***
R2

adj 0.1436 0.1422 0.1437 0.1447 0.2673 0.2673 0.2669 0.2387

Table 5: Regression average trade size (ATS)
This table presents β coefficients of models 1 to 8 (see section 4.2) with ATS as dependent variable. The
results are based on block-level trade data, while the variable BS represents the number of trades that fit into
a block and BCT denotes the block frequency. The activity controls comprise a stock’s volume group (VG)
and the order quantity (OQ) per block. VG is either set to 1, 2, or 3, whereas larger values indicate higher
trading volumes. Quality controls include the daily mean LnReturn, the corresponding standard deviation
SDPrice, and a firm’s LnSize as of December 31st, 2017. We report β coefficients, t-statistics (in parentheses),
and standard errors for each independent variable. ***, **, and * indicate statistical significance at the 0.1%,
1% and 5% level, respectively.
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findings on the TC in subsection 5.1.1, this effect may result from an increasing number of

partial executions that comes with smaller blocks. More specifically, we hypothesize that

reducing blocks’ sizes could intensify imbalances between demand and supply, stretch the

remaining quantities of large orders over time, and thereby result in an increasing number of

partial executions but also lower the size of each trade. However, whether this rationale holds

is subject to the robustness tests that follow in section 5.4. Furthermore, the interaction

between VG and BS is negative and statistically significant indicating an inverse relationship

between trading volume and the positive impact of larger BSs on the ATS. In consequence,

moving to a higher trading volume tertiary (e.g., from the medium to the high volume)

is accompanied by a loss of about 2.7 trades (1%). The same holds for the relationship

between OQ and BS. However, despite a statistical significance at the 0.1% level, it remains

economically negligible.

For BCTs, we observe similar but inverse results. In consequence, the positive and

statistically significant coefficients indicate that longer BCTs are beneficial for the number

of shares included in a trade. Models 5 to 7 imply that increasing BCT by 1 minute increases

the ATS by 0.05 shares. For increasing block frequencies from 10 to 60 minutes, for instance,

the ATS grows by about 2.5 shares or 1% compared to mean ATS. However, similar to the

impact of the BS, this effect may be driven by order book imbalances. The interactions

with a stock’s VG is statistically significant (0.1%) and indicates that the positive impact

of creating fewer blocks is more pronounced for stocks with a lower trading volume. The

interactions with the OQ remain economically insignificant.

Eventually, the interaction between BS and BCT is always negative and significant at

the 0.1% level. We interpret this result as a consequence of order book imbalances and

hypothesize as follows: If blocks are limited by a smaller BS, a longer BCT leads to a higher

amount of submitted orders and therefore improves the balance between buy and sell orders.

This results in more balanced order books, reduces remaining quantities, and finally in a

higher ATS. Again, imbalance implications are discussed in the robustness section. In total

and similar to the other activity measures, R2

adj rises while adding blockchain parameters,

interaction effects, and controls and peaks in models 5, 6, and 7 at 0.27. Together with

highly significant F-statistics this underlines the explanatory contribution of the BS and

BCT, whereas the drop in model 8 illustrates the hetergeneity among the 30 DAX stocks.

5.2. Liquidity

To evaluate liquidity effects, we utilize an adapted version of the Amihud (2002) illiquidity

measure (DILLIQ) on the daily and order book imbalances in form of the RQP on the block-
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level. The DILLIQ examines the response of price to order flow, while RQP captures the

ability to trade on a more granular intraday level. In total, the evidence provided in this

section indicates that daily liquidity is driven by the BCT and profits from a reduction of the

number of blocks per day. On the intraday level on the other hand, we identify an increasing

BS as the central determinant of liquidity improvements. However, in both analyses low

values for R2

adj indicate incomplete models, while the blurry nature of both measures impedes

interpretability. On the other hand, we also obtain robust and highly significant F-statistics

across all specifications. In total, this supports the relevance of the BCT and the BS as

determinants of daily and intraday liquidity but also highlights the need for more detailed

analyses with liquidity measures tailored to the characteristics of decentralized markets. In

the following subsections we introduce, discuss, and interpret these findings in detail.

5.2.1. Daily Illiquidity

To assess the impact of the blockchain configuration on a daily level, we utilize the

DILLIQ ratio. It measures the logarithmic price change (i.e., return) that comes with 1

EUR of turnover and is equal 18.87 · 10−6 on average. Note that we follow Amihud (2002)

and transform the values in the data panel by scaling them up by a factor of 106. Thereby,

we aim to improve the interpretability of the small coefficients. Table 6 summarizes the

resulting regressions.

First, models 3 and 5 indicate a negative relationship between BS and daily liquidity

as increasing the size of blocks is positively correlated with a high DILLIQ. In addition,

the VG interaction suggests that the liquidity improvement that comes with smaller blocks

is stronger for high volume stocks. At first, this finding seems counter-intuitive but may

result from the fact that smaller blocks stretch large trades over time, and therefore improve

liquidity on trading days with a lower trading activity. However, both effects are not robust

across specifications and fade after adding activity and quality controls in models 5 and 6.

Instead, the LnReturn and the SDPrice become statistically and economically significant.

The OQ interaction is neither statistically nor economically significant.

In contrast, the BCT coefficients are significant at the 0.1% level and negative throughout

all specifications. This implies a robust negative relationship between BCT and illiquitiy

and suggests that daily liquidity improves with longer BCTs. More specifically, the full

specification in model 6 estimates an improvement of 0.2046 · 10−6 per minute. For an

increase of the block frequency from 10 to 60 minutes, this constitutes an improvement

of 10.23 · 10−6 or 54% relative to the daily average. The interaction term with a stock’s

VG is positive and significant at the 1% level in model 5 but does not hold robustly after

adding quality controls in models 6 to 8. In addition, the interaction with the OQ is neither
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Dependent Variable: Size Time Blockchain Size-Time Robustness Full Full Full
DILLIQ ·106 (per Day) Effect Effect Configuration Interaction Market Activity Specification Specification Specification

(no TFE) (no FE)

Independent Variables (1) (2) (3) (4) (5) (6) (7) (8)

Intercept 13.1725 20.4386 * 22.0338 * 24.7200 * 33.1713 * -1,668.1469 -1,848.3094 145.4711 **
(1.33) (2.04) (2.19) (2.36) (2.10) (-1.49) (-1.65) (2.61)
9.9310 10.0277 10.0384 10.4640 15.8069 1,119.4426 1,117.5611 55.6558

Blockchain Parameters
BS -0.0101 0.6959 *** -0.5635 4.3834 * 3.8179 3.8362 2.3635

(-0.06) (3.42) (-0.40) (2.20) (1.93) (1.94) (1.25)
0.1665 0.2035 1.3998 1.9898 1.9765 1.9765 1.8933

BCT -0.0572 *** -0.0849 *** -0.0945 *** -0.2156 *** -0.2046 *** -0.2043 *** -0.1959 ***
(-4.97) (-6.03) (-5.37) (-5.63) (-5.38) (-5.37) (-5.35)
0.0115 0.0141 0.0176 0.0383 0.0380 0.0380 0.0366

BS·BCT 0.0042 0.0035 0.0039 0.0038 0.0051
(0.91) (0.75) (0.84) (0.83) (1.13)
0.0046 0.0046 0.0046 0.0046 0.0045

Activity Controls
VG -8.3860 -67.5199 -74.5467 -14.2910 ***

(-1.28) (-1.73) (-1.91) (-4.81)
6.5571 39.1172 39.0447 2.9739

VG·BS -1.7243 *** -1.6462 -1.6488 -1.3529 **
(-3.39) (-3.26) (-3.27) (-2.92)
0.5080 0.5045 0.5045 0.4630

VG·BCT 0.0568 ** 0.0630 0.0632 0.0663 **
(3.05) (3.41) (3.41) (3.68)
0.0186 0.0185 0.0185 0.0180

OQ -0.0000 -0.0000 -0.0000 -0.0000 *
(-1.10) (-1.34) (-1.43) (-2.10)
0.0000 0.0000 0.0000 0.0000

OQ·BS 0.0000 0.0000 0.0000 0.0000
(0.40) (0.67) (0.73) (1.69)
0.0000 0.0000 0.0000 0.0000

OQ·BCT -0.0000 -0.0000 -0.0000 -0.0000 *
(-0.90) (-1.06) (-1.19) (-2.25)
0.0000 0.0000 0.0000 0.0000

Quality Controls
LnReturn -1,295.8555 *** -1,296.1314 *** -1,295.8915 ***

(-65.27) (-65.28) (-65.25)
19.8528 19.8536 19.8605

SDPrice 8.7206 *** 8.8000 *** 10.0039 ***
(9.84) (9.93) (11.45)
0.8865 0.8863 0.8739

LnSize 74.1777 82.3650 -3.8306
(1.51) (1.68) (-1.62)

49.1152 49.0351 2.3578

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes Yes No No
Intraday Fixed Effects No No No No No No No No
Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes No

Number of observations 302,493 302,493 302,493 302,493 302,493 302,493 302,493 302,493
Average 18.87 18.87 18.87 18.87 18.87 18.87 18.87 18.87
F-statistics 10.38 *** 11.11 *** 11.13 *** 10.84 *** 9.97 *** 110.84 *** 121.38 *** 373.93 ***
R2

adj 0.0011 0.0011 0.0012 0.0012 0.0012 0.0154 0.0153 0.0146

Table 6: Regression daily Amihud illiquidity measure (DILLIQ)
This table presents β coefficients of models 1 to 8 (see section 4.2) with DILLIQ as dependent variable.
A higher DILLIQ indicates lower liquidity (higher illiquidity). The results are based on daily trade data
and scaled by the factor 106 to improve intrepretability (Amihud, 2002). The variable BS represents the
number of trades that fit into a block, while BCT denotes block frequency. The activity controls comprise
a stock’s volume group (VG) and its daily order quantity (OQ). VG is either set to 1, 2, or 3, while larger
values indicate higher trading volumes. Quality controls include the daily mean LnReturn, the corresponding
standard deviation SDPrice, and a firm’s LnSize as of December 31st, 2017. We report β coefficients, t-
statistics (in parentheses), and standard errors for each independent variable and the intercept. ***, **, and
* indicate statistical significance at the 0.1%, 1% and 5% level, respectively.
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statistically nor economically significant.

Eventually, we do not find any evidence for a relationship between BS and BCT. In

combination, these findings indicate that daily liquidity is driven by BCTs, while a block’s

size seems to play a minor role. However, despite a steady improvement from models 1 to 6,

R2

adj remains low across all specifications pointing out that substantial independent variables

are missing in the current specification. On the other hand, F-statistics are consistently

significant at the 0.1% level and thereby underline relevance of the BCT as a determinant

of daily liquidity.

5.2.2. Remaining Quantity Porportion

To measure liquidity on a more granular, intraday level we utilize the RQP. The RQP

is defined as ratio of unexecuted to submitted orders and ranges between 0 and 1, while the

sample average is equal to 0.5486. If all orders in a block are completely executed, liquidity

is high and the RQP equal to 0. A value of 1, on the other hand, is assumed if none of

the submitted orders are executed and implies low liquidity. Table 7 presents the regression

outputs for models 1 to 8 with RQP as dependent variable.

The BS is statistically significant at the 0.1% level across all and economically large

in most specifications and thereby robustly indidcates that larger blocks improve intraday

liquidity. More specifically, increasing the BS by 1 lowers the RQP within a block by up

to 0.092 (models 5 to 7). Compared to the average RQP of 0.5486 across our sample, this

constitutes an improvement of 17%. However, this finding may be driven by the growing

number of trades that comes with smaller blocks (see 5.1.1). As a result of the limited

capacity of a block, the number of partially executed orders grows and their remaining order

quantity spills over to the following blocks – especially when there are large orders on one

side of the market. By including activity controls, we are furthermore able to identify a

statistically significant (0.1%) and robust alleviating effect of higher trading volumes (VG).

This suggests that despite bigger blocks, the liquidity of low-volume stocks is adversely

affected by more severe spill over effects among blocks.

The impact of increasing BCTs is characterized by consistently negative and statistically

significant but small coefficients. Thus, a higher BCT may be beneficial for liquidity but

remains economically negligible. In addition, the significantly negative but also small in-

teraction between VG and BCT suggests that the liquidity improvements that come with

longer BCTs are weakly reinforced by higher trading volumes.

Finally, the OQ is statistically significant but economically too small to interpret reason-

ably for both blockchain parameters. In contrast, the relationship between BS and BCT is

positive and statistically significant. As a result and consistent with our ATS findings, liq-
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Dependent Variable: Size Time Blockchain Size-Time Robustness Full Full Full
RQP (per Block) Effect Effect Configuration Interaction Market Activity Specification Specification Specification

(no TFE) (no FE)

Independent Variables (1) (2) (3) (4) (5) (6) (7) (8)

Intercept 0.5342 *** 0.6944 *** 0.6894 *** 0.7462 *** 0.7827 *** -1.2313 *** -1.8870 *** 0.5118 ***
(188.61) (241.48) (240.84) (262.90) (245.32) (-8.98) (-13.79) (102.32)
0.0028 0.0029 0.0029 0.0028 0.0032 0.1371 0.1368 0.0050

Blockchain Parameters
BS -0.0145 *** -0.0079 *** -0.0476 *** -0.0919 *** -0.0919 *** -0.0919 *** -0.0912 ***

(-474.60) (-205.79) (-358.46) (-275.05) (-274.85) (-274.57) (-279.26)
0.0000 0.0000 0.0001 0.0003 0.0003 0.0003 0.0003

BCT -0.0011 *** -0.0008 *** -0.0011 *** -0.0000 *** -0.0000 *** -0.0000 ** -0.0001 ***
(-512.47) (-279.81) (-374.44) (-4.43) (-4.43) (-2.97) (-8.68)

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BS·BCT 0.0001 *** 0.0002 *** 0.0002 *** 0.0002 *** 0.0002 ***
(311.98) (344.97) (344.79) (344.09) (350.11)
0.0000 0.0000 0.0000 0.0000 0.0000

Activity Controls
VG -0.0181 *** -0.0802 *** -0.1022 *** -0.0241 ***

(-24.83) (-16.50) (-21.08) (-82.41)
0.0007 0.0049 0.0048 0.0003

VG·BS 0.0150 *** 0.0150 *** 0.0150 *** 0.0146 ***
(142.55) (142.51) (142.53) (143.08)
0.0001 0.0001 0.0001 0.0001

VG·BCT -0.0005 *** -0.0005 *** -0.0005 *** -0.0005 ***
(-142.09) (-142.07) (-141.85) (-140.70)

0.0000 0.0000 0.00000342 0.0000

OQ 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 ***
(373.63) (373.54) (373.52) (382.33)
0.0000 0.0000 0.0000 0.0000

OQ·BS -0.0000 *** -0.0000 *** -0.0000 *** -0.0000 ***
(-63.50) (-63.56) (-63.42) (-63.63)
0.0000 0.0000 0.0000 0.0000

OQ·BCT -0.0000 *** -0.0000 *** -0.0000 *** -0.0000 ***
(-18.99) (-18.87) (-19.02) (-19.39)
0.0000 0.0000 0.0000 0.0000

Quality Controls
LnReturn -0.0024 -0.0016 ** -0.0012

(-1.41) (-0.92) (-0.68)
0.0017 0.0017 0.0017

SDPrice -0.0001 0.0000 ** 0.0001
(-1.72) (0.38) (1.65)
0.0001 0.0001 0.0001

LnSize 0.0875 *** 0.1147 *** 0.0097 ***
(14.52) (19.07) (45.83)
0.0060 0.0060 0.0002

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes Yes No No
Intraday Fixed Effects Yes Yes Yes Yes Yes Yes No No
Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes No

Number of observations 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605
Average 0.5468 0.5468 0.5468 0.5468 0.5468 0.5468 0.5468 0.5468
F-statistics 5,304.63 *** 6,018.15 *** 6,745.97 *** 8,534.76 *** 10,931.90 *** 10,570.40 *** 16,583.20 *** 53,397.30 ***
R2

adj 0.0582 0.0655 0.0742 0.0936 0.1261 0.1261 0.1246 0.1246

Table 7: Regression remaining quantity proportion (RQP)
This table presents β coefficients of models 1 to 8 (see section 4.2) with RQP as dependent variable. A
RQP close to 1 indicates low and a value close to 0 high liquidity. The results are based on block-level trade
data, while the variable BS represents the number of trades that fit into a block and BCT denotes the block
frequency. The activity controls comprise a stock’s volume group (VG) and the order quantity (OQ) per
block. VG is either set to 1, 2, or 3, while larger values indicate higher trading volumes. Quality controls
include the daily mean LnReturn, the corresponding standard deviation SDPrice, and a firm’s LnSize as of
December 31st, 2017. We report β coefficients, t-statistics (in parentheses), and standard errors for each
independent variable and the intercept. ***, **, and * indicate statistical significance at the 0.1%, 1% and
5% level, respectively.
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uidity in blockchain configurations with smaller blocks may benefit more from longer BCTs.

However, similar to the impact of the block frequency, the effect sizes of the interaction

remain small and economically marginal. Overall and in contrast to the daily level, the

evidence given in table 7 indicates that intraday liquidity is primarily driven by the capacity

of blocks, while their frequency only plays a minuscule role. However, R2

adj is always below

0.13 indicating an omitted variable bias, while strongly significant F-statistics support a

minimum explanatory contribution of the coefficients reported in table 7.

5.3. Information

Within the third and last dimension of market quality, we investigate price formation

effects by taking a closer look at the BI. More specifically, the BI serves as a means to

capture the price change that comes with a block. In total, our analyses suggest that the

BI is higher for larger and more frequent blocks, while both effects support each other. In

consequence, blockchain configurations with a high throughput (i.e., with a large BS and a

short BCT) may also lead to more volatile markets – especially in less active trading times.

We will introduce and discuss these findings in detail in the following paragraphs.

5.3.1. Block Impact

The BI is defined as the logarithmic price change that comes with a block and helps us

to capture the price effects illustrated in figure 4. In order to improve interpretability, we

report the regressions’ coefficients in basis points (bps) and neglect block directions (BDs).

As a result, we limit our analysis to the absolute block impact (ABI), which considers the

only intensity of price changes but not their direction. However, we include BDs in the

robustness checks that follow in section 5.4. Table 8 summarizes the β coefficients of the

ABI regressions in bps, while the average ABI is equal to 48.71 bps.

With respect to the BS, the β coefficients are statistically significant at the 0.1% level

and indicate a robust positive relationship between a block’s price effect and its size. In

consequence, larger blocks create more intense price movements. In model 6, for instance,

1 additional trade per block raises the intensity of the following price change by 30.40 bps.

Relative to the sample average this is equal to an increase of 62%. In addition, the interaction

with a stock’s VG is negative and statistically significant, indicating a weakening effect of

increasing trading volumes. This relation may be explained by the lower volatility of large

cap stocks (Fama and French, 1993) but also contradicts previous findings on the relationship

between trading volumes and volatility (Jones, Kaul, and Lipson, 1994; Darrat, Rahman,

and Zhong, 2003).
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Dependent Variable: Size Time Blockchain Size-Time Robustness Full Full Full
ABI ·104 (per Block) Effect Effect Configuration Interaction Market Activity Specification Specification Specification

(no TFE) (no FE)

Independent Variables (1) (2) (3) (4) (5) (6) (7) (8)

Intercept 17.8524 *** 59.7563 *** 62.9621 *** 54.3253 *** 24.6481 *** 2,143.5872 *** 2,021.2881 *** 568.0573 ***
(5.22) (17.11) (18.06) (15.55) (6.17) (12.74) (12.05) (92.56)
0.0003 0.0003 0.0003 0.0003 0.0004 0.0168 0.0168 0.0006

Blockchain Parameters
BS 3.1266 *** 5.0458 *** 11.0837 *** 34.3148 *** 30.4034 *** 30.4776 *** 35.6169 ***

(84.62) (107.81) (67.82) (81.93) (74.12) (74.30) (88.86)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BCT -0.0017 -0.2241 *** -0.1755 *** -0.3240 *** -0.2144 *** -0.2211 *** -0.3069 ***
(-0.65) (-66.75) (-48.94) (-34.62) (-23.39) (-24.24) (-34.81)
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BS·BCT -0.0213 *** -0.0220 *** -0.0217 *** -0.0219 *** -0.0231 ***
(-38.56) (-39.38) (-39.62) (-39.93) (-42.63)
0.0000 0.0000 0.0000 0.0000 0.0000

Activity Controls
VG -0.5150 40.2893 *** 35.6300 *** 5.9893 ***

(-0.56) (6.76) (5.99) (16.68)
0.0001 0.0006 0.0006 0.0000

VG·BS -7.6263 *** -6.9720 *** -6.9786 *** -8.5030 ***
(-57.91) (-54.07) (-54.12) (-67.91)
0.0000 0.0000 0.0000 0.0000

VG·BCT 0.0211 *** 0.0736 *** 0.0752 *** 0.0928 ***
(4.94) (17.55) (17.94) (22.92)
0.0000 0.0000 0.0000 0.0000

OQ -0.0000 0.0000 0.0000 0.0005 ***
(-1.01) (0.37) (0.72) (16.32)
0.0000 0.0000 0.0000 0.0000

OQ·BS -0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *
(-4.64) (7.20) (7.32) (2.16)
0.0000 0.0000 0.0000 0.0000

OQ·BCT 0.0000 -0.0000 *** -0.0000 *** -0.0000 ***
(1.54) (-12.52) (-12.65) (-8.90)
0.0000 0.0000 0.0000 0.0000

Quality Controls
LnReturn 80.2880 *** 80.1862 *** 81.4487 ***

(38.27) (38.22) (38.76)
0.0002 0.0002 0.0002

SDPrice 38.1833 *** 38.1897 *** 36.9332 ***
(435.89) (436.24) (433.88)
0.0000 0.0000 0.0000

LnSize -92.0723 *** -86.5239 *** -24.2811 ***
(-12.46) (-11.74) (-93.91)
0.0007 0.0007 0.0000

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes Yes No No
Intraday Fixed Effects Yes Yes Yes Yes Yes Yes No No
Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes No

Number of observations 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605 4,546,605
Average 48.71 48.71 48.71 48.71 48.71 48.71 48.71 48.71
F-statistics 523.19 *** 387.47 *** 596.51 *** 612.89 *** 634.43 *** 3,725.46 *** 5,879.99 *** 17,742.60 ***
R2

adj 0.0061 0.0045 0.0070 0.0073 0.0083 0.0484 0.0481 0.0448

Table 8: Regression absolute block impact (ABI)
This table presents β coefficients of models 1 to 8 (see section 4.2) with ABI as dependent variable. The
results are based on block-level trade data and reported in basis points (bps). The variable BS represents
the number of trades that fit into a block and the BCT denotes the block frequency. The activity controls
comprise a stock’s volume group (VG) and the order quantity (OQ) per block. VG is either set to 1, 2, or 3,
while larger values indicate higher trading volumes. Quality controls include the daily mean LnReturn, the
daily standard deviation SDPrice, and a firm’s LnSize as of December 31st, 2017. We report β coefficients,
t-statistics (in parentheses), and standard errors for each independent variable and the intercept. ***, **,
and * indicate statistical significance at the 0.1%, 1% and 5% level, respectively.
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With respect to the BCT, we observe a robust, statistically significant, and negative

relationship. This finding is consistent with the anecdotal evidence depicted in figure 4

and appendix D.3 and indicates that the intensity of price changes increases with the block

frequency. More specifically, a shift from 10 to 60 minutes reduces a block’s price impact by

about 10.72 basis points or 22% (model 6). Similar to the BS effects, we also find evidence

for an alleviating effect of a stock’s VG as a higher VG weakens the negative effect of a larger

BCT on the ABI.

Eventually, we also find evidence for statistically significant and negative BS-BCT-

interaction. This implies that lowering the BCT reinforces the impact of a larger BS on

the ABI. As a result, more frequent blocks may increase volatility as larger blocks lead to

larger price changes between successive blocks. However, this effect is economically small

and around 0.02 bps in every model specification. The interaction between both BS and

BCT and OQs remain inconclusive and economically insignificant. In addition, R2

adj remains

below 0.05 throughout all model specifications, while F-statistics at the 0.1% level indicate

significance of the estimated models in total. Also note that both R2

adj and the F-statistic

are boosted, when we add quality controls. In combination with the highly significant co-

efficients, this suggests that the quality controls explain a substantial amount of the BI

variation. However, together with the F-statistics, the robustness of both parameters to-

wards all model specifications supports their (at least minor) role as determinants of price

fluctuations in decentralized markets.

5.4. Robustness

To ensure the validity of the findings illustrated in the previous section, we test their

robustness in several ways: We consider the number of blocks (5.4.1), modify the input

sample (5.4.2), take order book imbalances as independent variable into account (5.4.3),

examine the impact of BDs on prices (5.4.4), and disentangle the effects of BCT changes.

The underlying motivations and analyses are described in the following subsections.

5.4.1. Number of Blocks

In the first robustness test, we focus on the potentially confounding effects of the different

number of blocks in the block-level analyses. More specifically, the results for the ATS, RQP,

and BI may be endogenously driven by the increasing number of blocks that comes with a

higher block frequency (i.e., lower BCT). As a result, 6 blocks of 10 minutes, for instance,

aggregate trading that happens within an hour to 1 block from the corresponding 60-minute

configuration. In addition, the coefficients of our regressions may be driven by the prepon-
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derance of the number of observations of configurations with a lower frequency. To take

these concerns into account, we aggregate the block-level data to stock-day-configurations

by computing equal-weighted averages (ATS, RQP, and BI) and sums (ATS) of the depen-

dent and equal-weighted averages of all independent variables. Based on the resulting input

sample we conduct a full specification regression (model 6) for each new measure. The results

confirm and even strengthen our previous findings for all three measures, as R2

adj improves

substantially. For the sake of brevity and due to their confirmatory nature, the results of

the regressions are reported in table 15 in appendix F.

5.4.2. Alternative Trading Hours

The second robustness check addresses the high number of trading hours at Stuttgart and

aims to exclude effects caused by early and late trading phases. For this purpose, we modify

the input sample and exclude orders submitted outside of the trading times of the reference

market Xetra (Clapham and Zimmermann, 2016). This includes orders submitted before 9

a.m. and after 5.30 p.m. This way, we also eliminate confounding effects linked to the choice

to initiate the first auction of a day by the first submitted order. Table 16 in appendix F

presents the results of the regression analyses ordered by quality dimensions. Note that we

focus on the full specification of our regression model (model 6), which includes all controls,

interactions, and fixed effects. For the sake of computation and to further demonstrate the

robustness of our findings, we additionally limit the replication of market outcomes to the

year 2017.

With respect to market activity, the results with alternative trading hours are largely

consistent with our previous findings and thereby confirm the effects identified in section 5.1

in direction and size. In addition, we find a statistically significant and negative relationship

between the TC and the BCT, which supports the mixed evidence in section 3. On the

other hand, the impact of the BS seems to be slightly lower in the 2017 subsample with

alternative trading hours, while the impact of an increasing block frequency on the ATS

fades completely. Similarly, both liquidity measures DILLIQ and RQP are robust to our

modifications, as well. Moreover, our robustness analysis provides additional evidence for

the existence of a negative BS effect and the relevance of the a stock’s VG on the daily

level (DILLIQ). On the intraday level, all effects are consistent. Eventually, we are able to

confirm all ABI effects and find indications for an even stronger impact than estimated by

model 6 in table 8.

In total, we do not find any contradicting evidence and can confirm most of the findings

from the previous sections. In addition, the regressions with alternative trading hours sup-

port some weak and resolve some inconclusive effects. As a result, we argue that our results
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are not biased by Stuttgart’s extended trading hours or by starting trading with the first

order of a day.

5.4.3. Additional Controls

The aim of the third robustness analysis is to verify our interpretations and to disen-

tangle the effects of partial executions and order book imbalances on market activity. More

specifically, we hypothesize in section 5.1 that some blockchain configurations may facilitate

imbalances between demand and supply, and thereby stretch the remaining quantities of large

orders over time. As a result, we observe an increasing number of partial executions (TC)

with a lower BS, while the TO and the ATS increases with the blocks’ size and frequency.

In consequence, we reexamine our activity measures by extending our regression model (see

equation (8)) with the RQP as an independent variable (see section 4.1.2) to verify this

hypothesis. Table 17 in appendix F illustrates the results of the associated regressions for

the TC, TO, and ATS.

With respect to the TC, these results support our hypothesis as adding the RQP boosts

the impact of the BS, while the RQP and its interaction with both blockchain parameters

remains low. In addition, the R2

adj rises from 0.5352 to 0.6615. Consequently, the RQP is

an important control but a block’s size remains an essential determinant of the number of

trades per day. In addition, we find evidence for a moderating role of order book imbalances

for turnover. More specifically, the significant coefficients for the RQP and both blockchain

interactions indicate the RQP’s role as an effect channel and a moderator and facilitator of

size and time effects. A similar logic applies to the ATS. However, in contrast the results

of the ATS regression remain inconclusive. On one hand, column 3 of table 17 stresses the

importance of the RQP as a control and driver of our findings, as R2

adj jumps from 0.2673

to 0.8638. On the other hand, the coefficients of the BS, BCT, BS-BCT interaction, and

VG-BS interaction change their sign. As a result and in contrast to table 5, a smaller BS

and a shorter BCT may increase the average amount of shares per trade. In total, table 17

in appendix F highlights the role of order book imbalances and underlines that parts of the

activity effects presented in section 5.1 may be driven by partial executions.

5.4.4. Block Directions

Fourth, we aim to analyze the role of BDs on price formation and price changes in

detail. To do so, we utilize two subsets from the data panel illustrated in table 2. More

specifically, we create two new data panels that either include the 2.3 million blocks with

a positive (BD = +1) or the 2.2 million blocks with negative (BD = -1) direction. Blocks
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with a direction of 0 are not included in either panel. To minimize confusion and improve

interpretability, we furthermore stay with the ABI as dependent variable in our regressions.

In total, the results reported in table 17 in appendix F confirm our findings from section

5.3.1. In addition, they highlight that larger and faster blocks may result in more volatile

prices – irrespective of their direction. However, our findings also indicate that the VG

is more important for blocks with excess demand, while blocks with excess supply seem

substantially more affected by higher BS.

5.4.5. Impact of Block Creation Time Variations

In contrast to the BS, which varies substantially across stocks, the BCT is fixed to

either 10, 60, or 300 minutes depending on the underlying blockchain configuration. In

consequence, the findings from the previous sections may be driven by increasing BCTs

from 10 to 60 minutes, 60 to 300 minutes, or both. In this subsection, we take a closer look

at the changes of our 6 MQMs to examine, whether either change has a more pronounced

effect. To do so, we compute the change of a MQM (∆MQM) that comes with an increase

of the BCT from 10 to 60 and 60 to 300 minutes and compare the respective daily averages

to each other. Table 9 summarizes the results and shows that the time effects identified

in this section indeed depend on the change of BCTs18. More specifically, mean differences

reported in panel A indicate that the impact on the ∆TC, ∆TO, ∆DILLIQ, and ∆BI is

more pronounced for increases from 10 to 60 minutes. ∆ATS and ∆RQP on the other hand,

seem to be more affected by increasing the BCT from 60 to 300 minutes. In addition, panel

B confirms these findings in statistical significance, direction, and strength in a multivariate

setup with year and stock fixed effects. In total, these findings indicate that the impact of

changing block frequencies does not only depend on the direction of the change but also on

its severity.

6. Discussion

While our findings highlight the impact of the blockchain configuration on the activity,

liquidity, and price formation on decentralized markets they are bound by several limitations.

In this section, we discuss our results by illustrating the limitations of the underlying data,

the data generation process, the applied market quality measures, and the empirical analyses.

First, our study is based on real-world trading data that reflects the behavioral patterns

of (retail) investors, their decisions, and resembles the scale and size of modern financial

18In addition, figure 10 in appendix F provides complementary illustrations by the means of boxplots.
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∆ MQM ∆ TC ∆ TO ∆ ATS ∆ DILLIQ ·106 ∆ RQP ∆ ABI ·104

Panel A: Compared means

Mean ∆MQM1060 -31.80 -197,607.00 21.39 -25.1604 -0.0799 -44.0079

Mean ∆MQM60300 -8.45 7,242.90 81.29 0.4077 -0.1946 28.9804

Mean difference -23.35 *** -204,850.00 *** -59.91 *** -25.5681 *** 0.1147 *** -72.9883 ***
(-158.22) (-117.00) (-52.85) (-5.74 ) (113.6300) (-47.87 )

F-statistics 11.10 *** 1.66 *** 1.41 *** 8.70 *** 1.57 ** 1.22 ***

Panel B: Regression

Intercept 3.73 *** 55,650.40 *** 51.67 *** 6.4368 -0.1559 *** 6.4773
(8.02) (-117.93) (13.49) (0.43) (-45.74) -1.2300
0.46 1,723.37 3.83 15.0761 0.0034 5.2620

∆BCT -22.91 *** -203,244.16 *** -61.59 *** -26.0059 *** 0.1169 *** -73.6678 ***
(-170.03) (-117.93) (-55.45) (-5.95 ) -118.3200 (-48.28)

0.13 1,723.37 1.11 4.3714 0.0010 1.5260

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Stock Fixed Effects Yes Yes Yes Yes Yes Yes

Number of observations 200,156 200,156 200,156 200,156 200,156 200,156
Average -19.84 -92670.55 52.07 -12.06 -0.14 -6.62
F-statistics 1,782.33 *** 500.35 *** 409.01 *** 4.31 *** 723.84 *** 91.48 ***
R2

adj 0.2323 0.0782 0.0648 0.0006 0.1094 0.0151

Table 9: Robustness – block creation time (BCT) variations
This table reports the results of the assessment of BCT changes on market quality. Panel A shows the results
of the compared means analysis, while mean ∆MQM1060 and mean ∆MQM60300 denote the daily average
change in the considered MQM given a shift from 10 to 60 and 60 to 300 minutes, respectively. t-values are
computed with the Satterthwaite approximation (note that the Cochran approximation provides consistent
results) and reported in parentheses. Panel B provides confirming regressions that take year and stock fixed
effects into account. ∆BCT is a binary variable that is equal to 1 for changes from 10 to 60 minutes and
equal to 0 for changes from 60 to 300 minutes. For each coefficient, we report t-statistics in parentheses and
standard errors below. For both panels (A and B) ***, **, and * indicate statistical significance at the 0.1%,
1% and 5% level, respectively.

markets. However, while this setup offers a realistic environment to evaluate the potential of

future applications, the data does not reflect actual decentralized trading behavior. On the

other side, the scarcity of decentralized trading data complicates the evaluation of decentral-

ized markets, while keeping a practical perspective. As a result, we perceive our approach

as a first educated guess and the best we can do so far. Moreover, the preponderance of

price discovery happens on reference markets (Hasbrouck, 1995). For DAX 30 stocks, this

reference market is Xetra (Clapham and Zimmermann, 2016). In consequence and consistent

with Stuttgart’s market position, traders may not fundamentally change their behavior as

they rely on information from the reference market to make trading decisions.

45



Second, integrating blockchain parameters into the trading system of the Stuttgart stock

exchange shifts the market model from continuous to periodic trading. Thereby, we create

an additional gap between the behavioral patterns (and outcomes) observed in the input

sample and the replicated market outcomes. More specifically, the input sample is based on

orders submitted to trade in continuous limit order books instead of the periodic auctions

of the blockchain-based market mechanism. To minimize the resulting frictions, our market

mechanism closely follows Stuttgart’s trading rules, while the blockchain parameters are

calibrated according to the input sample’s executions. In addition, the price-time priority

adopted from Stuttgart mitigates timing effects of order submissions and time stamps are

utilized as tie-breakers. Nevertheless, in combination with the transparency that comes with

the decentralization of the order books, the discrete nature of the trading process may result

in different trading decisions and offers the possibility to implement trading strategies that

exploit these features. The (public) availability of data blocks and latency-related asymmetry

of information distribution that characterize today’s blockchain-based system, can facilitate

front running (Aune, Krellenstein, O’Hara, and Slama, 2017; Malinova and Park, 2017) or

other manipulative strategies, such as spoofing (Viana, 2018).

Third, low R2

adj-values within the liquidity and information dimension point towards in-

complete empirical models that suffer from an omitted variable bias. In addition, the DILLIQ

and the RQP remain blurry throughout our analyses and robustness tests. In consequence,

our findings also highlight the need to develop tailored liquidity measures that take the

specific characteristics of decentralized markets into account. The same holds for the infor-

mation dimension, where the BI constitutes only a first step towards the assessment of price

formation in decentralized markets. Nevertheless, F-statistics for all three measures remain

significant at the 0.1% level across all model specifications, indicating a basic explanatory

contribution of our regressions.

Eventually, our study may suffer from the p-value problem that comes with the size of

our data panel. According to Lin, Lucas Jr., and Shmueli (2013), standard errors become

extremely small in very large samples and thereby boost statistical significance. In conse-

quence, we follow their recommendation and consider the economic as well as the statistical

significance of β coefficients in our interpretation.

However, despite these concerns, we believe that this study makes the best possible ap-

proximation on how blockchain technology may affect decentralized trading. In consequence,

we are confident to offer initial guidance to the engineers of decentralized markets that sup-

ports them in their endeavors to build and improve their trading platforms.
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7. Conclusion

In total, this study provides a first analytic assessment of the quality of decentralized

(stock) markets by examining the impact of central design parameters – the block size and

block creation time – on a market’s activity, liquidity, and information processing capabil-

ity. To examine the influence of parameter variations, we utilize order-level data from the

Stuttgart stock exchange to replicate and analyze 5 years of blockchain-based equity trading.

Thereby, we contribute a technology-agnostic evaluation of decentralized market platforms

that analyzes performance-related quality drivers with data from real-world financial markets

and find:

First and with respect to the activity of decentralized markets, we find evidence that

smaller blocks lead to a higher number of trades but also limit trading volumes and the

number of shares included in a trade. In addition, the higher number of blocks per day that

comes with increasing the block frequency seems beneficial for the number of trades and

turnover but reduces the average size of trades. As a result, increasing the block sizes offers

a means to maximize the throughput of a system. The effect of lowering block creation times

on the other hand, remains ambiguous and exposes the engineers of decentralized markets

to a trade-off between raising turnover and reducing the average trade size. Second, the

liquidity of decentralized markets depends on the block creation time on the daily and the

block size on the intraday level. More precisely, daily liquidity seems to profit from a higher

block frequency, while increasing a block’s capacity proofs to be beneficial on the block-

level. In consequence, boosting liquidity goes hand in hand with maximizing the throughput

of a system. In addition, market engineers can control liquidity mostly independently on

the daily and intraday level. Third and last, we investigate the influence of a blockchain

configuration on price formation and our analysis indicates that the price impact of a new

block is stronger for bigger and faster blocks. Therefore, blockchain configurations that

maximize market activity by increasing block sizes and decreasing block creation times may

simultaneously lead to more intense price changes and challenge market engineers to find a

balance between throughput and volatility. In general, the significant interactions between

blockchain parameters across all quality dimensions call for a joint perspective that takes the

adverse effects of changing the block creation time into account. As a result, these findings

demonstrate that boosting block size and frequency is no silver bullet to resolve scalability

issues. Instead, blockchain and market engineers need to take a holistic perspective that

aligns all three dimensions of market quality with the platform’s objective to find a balanced

blockchain configuration.
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However, as an initial assessment, this study faces several limitations: First and foremost,

the lack of native decentralized trading data and the resulting data generation process may

lead to biased results. More specifically, the integration of blockchain parameters into the

trading system of the Stuttgart stock exchange and the blockchain’s novel transparency

paradigm (Notheisen and Weinhardt, 2018) may change the behavior of traders beyond the

scope of our replication. Second, we utilize and adapt measures from traditional market

quality literature to evaluate market outcomes. However, the blurry nature of some of the

measures – especially in the liquidity and information dimensions – limits the interpretability

and generalizability of our findings. In addition and third, low R2

adj-values in some analyses

indicate incomplete models. In consequence, future research may focus on the analysis

of native decentralized trading data to bridge the gap between the artificial data in this

study, the development of tailored quality measures, and the analysis of changing trader

behavior. This includes the modelling, measurement, and analysis of behavioral implications

and consequences, as well as the detection of manipulative strategies and the development

of countermeasures. From a technical perspective, this also comprises the preservation of

the decentralized and trust-free character of blockchain-based markets on one hand, while

ensuring a sufficient level of privacy on the other hand (Gencer, van Renesse, and Sirer,

2017). Nevertheless, we are confident to provide a fertile ground to researchers and some

initial guidance for innovative practitioners with this study.
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Appendix A. List of Abbreviations

BS block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

BCT block creation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

HFT high frequency trader. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

TC trade count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

TO turnover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ATS average trade size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

DILLIQ daily Amihud illiquidity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

RQP remaining quantity proportion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

BI block impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

MQM market quality measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

VG volume group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

OQ order quantity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

LnReturn logarithmic daily return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

SDPrice daily standard deviation of the uniform price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

LnSize total logarithmic market capitalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ABI absolute block impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

bps basis points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

BD block direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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Appendix B. Decentralized Markets in Practice

Name Transaction object Functional scope Technology Website (whitepaper)

Augur Expectations Creating of and trading on prediction markets Ethereum https://www.augur.net (X)
ATLANT Real estate Tokenization and trading of subdivided parcels Ethereum https://atlant.io (X)
Bancor Crypto assets Trading cryptocurrencies Bancor protocol https://www.bancor.network (X)
Bisq (Bitsquare) Crypto assets Trading crypto- and fiat currencies P2P network (Tor) https://bisq.network (X)
BitShares Financial assets Trading crypto and financial assets Graphene https://bitshares.org (X, X)
CrowdForce Micro businesses Offer and pay micro tasks and services Ethereum https://token.crowdforce.io (X)
CryptoBridge Crypto assets Trading cryptocurrencies Graphene https://crypto-bridge.org (-)
Dmarket In-game items Trading platform Exonum https://dmarket.io (X)
Gnosis Expectations Creation of and trading on prediction markets Ethereum https://gnosis.pm (X)
IDEX Financial assets Real-time trading and blockchain-based account management Ethereum https://idex.market (X)
OpenBazaar eCommerce Trading digital/physical goods, services, and cryptocurrencies Own protocol https://openbazaar.org (-)
OpenLedger DEX Crypto assets Trading cryptocurrencies Graphene https://dex.openledger.io (-)
Sharevest Financial assets Issuing and trading security tokens Ethereum https://www.sharevest.co (X)
Polymath Financial assets Issuing and trading security tokens Ethereum https://polymath.network (X)
Waves Dex Crypto assets Trading cryptocurrencies and crypto tokens Waves platform https://wavesplatform.com (X, X)

Table 10: Overview of decentralized market platforms
Overview of selected decentralized market platforms including the name of the venture, the type of transaction object, the functional scope implemented
in a decentralized fashion, the utilized (blockchain) technology, and a reference to additional information. Checkmarks indicate the availability of
whitepapers and contain embedded links to them.
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https://www.augur.net
https://www.augur.net/whitepaper.pdf
https://atlant.io/
https://atlant.io/static/docs/Atlant_WP_publish.pdf
https://www.bancor.network/
https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf
https://bisq.network/
https://github.com/bisq-network/bisq-docs/blob/master/exchange/whitepaper.adoc
https://bitshares.org/
http://docs.bitshares.org/bitshares/index.html
http://docs.bitshares.org/
https://token.crowdforce.io/
https://token.crowdforce.io/docs/whitepapers/english.pdf
https://crypto-bridge.org/
https://dmarket.io/
https://dmarket.io/assets/documents/DMarket_white_paper_EN.pdf
https://gnosis.pm/
https://gnosis.pm/assets/pdf/gnosis-whitepaper.pdf
https://idex.market
https://idex.market/static/IDEX-Whitepaper-V0.7.5.pdf
https://openbazaar.org/
https://dex.openledger.io/
https://www.sharevest.co/
http://sharevest.co/WHITEPAPER.pdf
https://polymath.network/index.html
https://drive.google.com/file/d/180nPuOOPOZlDRDKSUoJP84AvFY0T5AuB/view
https://wavesplatform.com/
https://blog.wavesplatform.com/waves-whitepaper-164dd6ca6a23
https://wavesplatform.com/files/docs/white_paper_waves_smart_contracts.pdf


Appendix C. Statistics

DAX Stock Trading volume [EUR] Submissions Executions

High Trading Volume
Daimler AG 2,878,824,761 170,317 161,167
BASF SE 1,895,009,981 97,310 92,951
Allianz SE 1,751,893,157 83,149 78,932
Volkswagen AG 1,709,763,141 87,879 82,535
Deutsche Bank AG 1,625,199,132 103,769 96,536
Commerzbank AG 1,347,282,920 93,959 87,311
Siemens AG 1,128,144,976 63,834 60,560
Deutsche Telekom AG 1,113,196,399 77,900 74,123
E.ON SE 879,639,827 75,053 70,742
Munich Re AG 790,393,581 38,902 36,975
Total (High) 15,119,347,874 892,072 841,832

Medium Trading Volume
Bayer AG 753,049,363 40,316 38,342
Deutsche Post AG 710,822,205 47,692 45,601
Deutsche Lufthansa AG 707,565,780 52,246 48,978
BMW AG 588,956,034 35,811 33,910
Infineon Technologies AG 576,222,195 39,339 37,016
SAP SE 539,192,253 38,576 36,694
RWE AG 472,087,701 38,415 36,265
Linde AG 429,160,228 25,347 24,252
Adidas AG 406,272,085 27,746 26,530
Continental AG 371,871,258 18,602 17,710
Total (Medium) 5,555,199,102 364,090 345,298

Low Trading Volume
thyssenkrupp AG 325,780,643 28,745 27,081
Fresenius SE & Co. KGaA 281,528,879 21,004 20,003
ProSiebenSat.1 Media SE 207,858,196 17,796 16,800
HeidelbergCement AG 188,301,059 12,498 11,962
Fresenius Medical Care AG & Co.
KGaA

187,662,133 12,878 12,215

Henkel AG & Co. KGaA 183,770,006 12,005 11,393
Merck KGaA 167,651,636 10,939 10,351
Deutsche Brse AG 159,721,055 11,738 11,125
Vonovia SE 113,569,486 10,396 9,797
Beiersdorf AG 84,097,020 6,283 6,000
Total (Low) 1,899,940,114 144,282 136,727

Total 22,574,487,089 1,400,444 1,323,857

Table 11: Volume groups
Volume groups based on the EUR trading volume, the number of submissions, and the number of executions
at the Stuttgart stock exchange during the observation period (2013 to 2017).
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Year 2013 2014 2015 2016 2017 Total Year 2013 2014 2015 2016 2017 Total

Trading Days 253 252 253 237 236 1,231 Trading Days 253 252 253 237 236 1,231

Total Submissions Total Executions

Total 324,487 272,297 301,193 281,872 220,595 1,400,444 Total 307,771 257,521 286,388 264,048 208,129 1,323,857
High 207,377 173,235 193,444 189,960 128,056 892,072 High 196,011 163,782 183,782 177,954 120,303 841,832
Medium 86,008 73,755 78,877 65,611 59,839 364,090 Medium 82,137 69,788 75,117 61,261 56,995 345,298
Low 31,102 25,307 28,872 26,301 32,700 144,282 Low 29,623 23,951 27,489 24,833 30,831 136,727

Submissions per Day Executions per Day

Total - Average 1,282.56 1,080.54 1,190.49 1,189.33 934.72 1,137.65 Total - Average 1,216.49 1,021.91 1,131.97 1,114.13 881.90 1,075.43
Median 1,220.00 1,005.50 1,069.00 1,083.00 876.00 1,060.00 Median 1,155.00 929.00 1,019.00 1,015.00 823.00 997.00
Standard Deviation 360.72 402.92 520.22 720.32 320.50 498.39 Standard Deviation 355.08 400.30 514.72 697.01 314.47 487.57

High - Average 819.67 687.44 764.60 801.52 542.61 724.67 High - Average 774.75 649.93 726.41 750.86 509.76 683.86
Median 777.00 630.00 674.00 728.00 512.00 662.00 Median 731.00 587.50 646.00 680.00 473.50 620.00
Standard Deviation 264.24 271.44 364.58 535.85 195.21 359.04 Standard Deviation 262.23 269.55 359.65 516.36 191.24 350.07

Medium - Average 339.95 292.68 311.77 276.84 253.56 295.77 Medium - Average 324.65 276.94 296.91 258.49 241.50 280.50
Median 320.00 263.00 285.00 253.00 235.50 273.00 Median 306.00 246.50 268.00 237.00 222.00 257.00
Standard Deviation 99.70 122.46 135.92 148.37 99.24 125.92 Standard Deviation 98.03 121.21 135.10 144.80 97.90 124.11

Low - Average 122.93 100.42 114.12 110.97 138.56 117.21 Low - Average 117.09 95.04 108.65 104.78 130.64 111.07
Median 116.00 91.50 103.00 101.00 117.00 106.00 Median 109.00 84.00 98.00 97.00 110.00 100.00
Standard Deviation 44.05 45.10 54.43 62.60 84.39 60.77 Standard Deviation 43.40 43.97 53.68 60.85 82.56 59.38

Shares per Trade Trading Volume per Day [EUR]

Total - Average 579.24 565.27 478.15 558.14 588.53 551.91 Total - Average 19,455,634 17,823,060 20,331,201 17,557,332 16,338,639 18,338,332
Median 200.00 160.00 130.00 150.00 150.00 150.00 Median 18,070,182 16,655,422 18,742,236 16,210,178 15,409,822 16,925,251
Standard Deviation 1,955.92 1,721.49 1,422.17 1,891.90 1,754.31 1,761.46 Standard Deviation 6,661,126 7,736,631 9,671,249 9,550,444 6,449,342 8,241,854

High - Average 597.98 598.49 462.84 614.08 711.11 588.14 High - Average 12,942,418 12,161,910 13,794,422 12,056,780 10,307,920 12,282,167
Median 195.00 160.00 110.00 150.00 170.00 150.00 Median 11,941,958 11,343,034 12,674,440 10,842,951 9,471,874 11,159,156
Standard Deviation 2,043.62 1,808.44 1,474.51 2,161.38 2,077.36 1,921.80 Standard Deviation 5,060,658 5,739,640 7,128,774 7,053,992 4,804,935 6,136,795

Medium - Average 592.77 562.77 587.57 493.75 476.19 548.77 Medium - Average 4,886,115 4,305,437 5,082,196 4,059,208 4,178,873 4,512,753
Median 189.00 170.00 192.00 140.00 120.00 150.00 Median 4,515,928 3,793,530 4,706,574 3,605,665 3,808,895 4,138,044
Standard Deviation 2,028.88 1,743.56 1,493.50 1,254.98 1,339.12 1,629.86 Standard Deviation 1,848,190 1,996,051 2,447,861 2,213,432 1,806,268 2,114,017

Low - Average 417.81 345.38 281.53 316.11 317.93 336.73 Low - Average 1,627,102 1,355,713 1,454,584 1,441,344 1,851,846 1,543,412
Median 200.00 160.00 110.00 120.00 100.00 150.00 Median 1,468,654 1,144,763 1,241,672 1,225,662 1,610,711 1,342,409
Standard Deviation 818.41 765.61 606.61 778.06 683.28 734.30 Standard Deviation 764,644 847,508 779,826 947,779 1,043,229 895,423

Table 12: Detailed summary statistics of the input sample by year and volume group.
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Appendix D. Market Mechanism

D.1. Software Structure Market Mechanism

Fig. 6. Class diagram market mechanism

D.2. Data Structure Market Outcomes

Attribute Data type Value (example) Description

trade id Integer 1 Unique trade identifier
order number String 1501029450129 Unique identifier for order submission
order type Character K Either K or V for buy or sell
stock String daimler Unique stock identifier
order limit Float 73.33 Order limit (0 for market orders)
order qty Integer 10 Order quantity
re qty Integer 5 Remaining order quantity
trade qty Integer 5 Traded quantity
trade price Float 72.78 Price per stock in the trade
timestamp String 02Jan2013:06:36:26.00 Timestamp of the trade

Table 13: Data structure market outcomes
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D.3. Market Outcomes
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Fig. 7. Comparative statics market outcomes VW AG
Each panel illustrates the replicated trade prices or trading volumes for VW AG in 2013 (253 trading days),
while holding either the block size (BS) or the BCT fixed. Prices are computed as daily averages and volumes
as daily totals. The line color indicates the respective blockchain configuration (BS, BCT).
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Fig. 8. Comparative statics market outcomes SAP SE
Each panel illustrates the replicated trade prices or trading volumes for SAP SE in 2013 (253 trading days),
while holding either the block size (BS) or the BCT fixed. Prices are computed as daily averages and volumes
as daily totals. The line color indicates the respective blockchain configuration (BS, BCT).
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Fig. 9. Comparative statics market outcomes Deutsche Börse AG
Each panel illustrates the replicated trade prices or trading volumes for Deutsche Börse AG in 2013 (253
trading days), while holding either the block size (BS) or the BCT fixed. Prices are computed as daily
averages and volumes as daily totals. The line color indicates the respective blockchain configuration (BS,
BCT).
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Appendix E. Overview of market quality measures

MQM Source Citations Interpretation Frequency Advantages Disadvantages

Trade count (TC)

TCi,d,s = ni,d,s
Barclay et al.

(2003)
347

TC measures the execution frequency.
The higher TC, the higher is the
market activity level.

Per day
TC is easy to calculate and to
interpret.

TC does neither contain price
nor quantity information.

Turnover (TO)

TOi,d,s =
∑TCi,d,s

j=1
Pricei,d,s,j ·QuantityTi,d,s,j

Barclay et al.
(2003)

347
TO measures the trading volume in
euro. The higher TO, the higher is the
market activity level.

Per day

TO is easy to calculate and to
interpret and contains
information on price and
quantity.

The TO interpretation may be
distorted by large orders.

Average trade size (ATS)

ATSi,b,s =
∑TCi,b,s

j=1
QuantityT

i,b,s,j

TCi,b,s

Hendershott
et al. (2011)

1,182
ATS measures the amount of shares per
trade. The higher ATS, the higher is
the market activity level.

Per block
ATS is easy to calculate and to
interpret.

ATS does not provide
information on the trade
frequency.

Daily illiquidity ratio (DILLIQ)

DILLIQi,d,s =
|Returni,d,s|

TOi,d,s

Amihud (2002),
Næs et al.
(2011)

7,102
DILLIQ measures the response of price
to order flow. The higher DILLIQ, the
less liquid is the stock.

Per day
DILLIQ is a robust and simple
measure. It does only require
daily data.

DILLIQ does not capture
microstructure aspects.

Remaining quantity proportion (RQP)

RQPi,b,s =
∑TCi,b,s

j=1
QuantityR

i,b,s,j
∑TCi,b,s

j=1
QuantityS

i,b,s,j

Cao et al.
(2009),

Brogaard et al.
(2014)

916

RQP measures the percentage of
remaining order quantity within a
block. The higher RQP, the lower is
the percentage execution.

Per block
RQP is easy to calculate and to
interpret on a percentage scale.

The RQP interpretation may
be biased by large orders.

Block impact (BI)

BIi,b,s = BDi,b,s · ln

(

Pricei,b,s
Pricei,b−1,s

)

Hendershott
et al. (2011)

1,182

BI indicates the information content of
a trade. The higher BI, the higher is
the information content of a trade,
i.e. the price movement.

Per block
BI offers a simple
approximation of the
information impact.

A heuristic is needed for
determining the BD. More
robust measures focus on the
trade innovation.

Table 14: Overview of market quality measures
All measures are calculated for each stock i, each blockchain configuration s, and each block b or day d, respectively. The number of citations is
reported as of October 31, 2018.
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Appendix F. Robustness

Dependent Variable: ATS (daily avg) ATS (daily sum) RQP (daily avg) ABI ·104 (daily avg)

Independent Variable (Full Specification, per day) (Full Specification, per day) (Full Specification, per day) (Full Specification, per day)

Intercept 8,741.04 *** 318,017.44 *** 0.5245 * -417.5691
(31.32) (14.07) (2.26) (-1.04)
279.11 22,600.83 0.2321 400.9959

Blockchain Parameters
BS 28.49 *** 1,509.55 *** -0.0865 *** 35.6595 ***

(57.39) (37.55) (-209.54 ) (50.00)
0.50 40.20 0.0004 0.7132

BCT 0.08 *** 24.13 *** -0.0001 ** -0.2204 ***
(8.37) (31.50) (-6.81) (-16.22)
0.01 0.77 0.0000 0.0520

BS*BCT -0.06 *** -2.22 *** 0.0001 *** -0.0309 ***
(-55.41) (-23.66) (149.74) (-18.58)

0.00 0.09 0.0000 0.0017

Activity Controls
VG 218.77 *** 14,790.58 *** 0.0035 -57.0188 ***

(22.43) (18.73) (0.43) (-4.07)
9.75 789.68 0.0081 14.0108

VG*BS -2.64 *** -289.55 *** 0.0140 *** -7.9369 ***
(-20.76) (-28.11) (132.73) (-43.42)

0.13 10.30 0.0001 0.1828

VG*BCT -0.00 -23.87 *** -0.0004 *** 0.1081 ***
(-0.84) (-63.95) (-116.00) (5.50)

0.00 0.37 0.0000 0.0066

OQ 0.02 *** 2.03 *** 0.0000 *** 0.0011 ***
(177.88) (180.66) (120.62) (6.68)

0.00 0.01 0.0000 0.0000

OQ*BS -0.00 *** 0.04 *** -0.0000 *** 0.0000 ***
(-87.29) (104.79) (-55.06) (6.68)

0.00 0.00 0.0000 0.0000

OQ*BCT 0.00 *** -0.01 *** -0.0000 *** -0.0000 ***
(65.14) (-95.13) (-27.94) (-12.35)

0.00 0.00 0.0000 0.0000

Quality Controls
LnReturn 10.31 -41.31 -0.0034 -87.5039 ***

(2.08) (-0.10) (-0.83) (-12.30)
4.95 400.83364 0.0041 7.1118

SDPrice -1.58 *** -79.90 *** -0.0003 64.8309 ***
(-7.16) (-4.46) (-1.61) (204.04)

0.22 991.60 0.0002 0.3177

LnSize -373.47 *** -14,062.03 *** 0.0079 19.8261
(-30.50) (-14.18) (0.77) (1.13)

0.22 991.60 0.0102 17.5935

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes
Intraday Fixed Effects No No No No
Stock Fixed Effects Yes Yes Yes Yes

Number of observations 302,493 302,493 302,493 302,493
Average 268.69 13,183.86 0.4627 64.29
F-statistics 15,526.20 *** 11,262.20 *** 5,721.88 *** 1,241.77 ***
R2

adj 0.6884 0.6157 0.4487 0.1500

Table 15: Robustness - Number of Blocks
This table presents full specification regressions (model 6) with block-level measures aggregated to stock-
day-configurations (equal-weighted averages and totals, i.e. sums). Particularly, the daily sum of the ATS
is equal to the daily number of traded shares. We report β coefficients, t-statistics (in parentheses), and
standard errors for each variable. ***, **, and * indicate significance at the 0.1%, 1% and 5% level.
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Quality Dimension Activity Liquidity Information

Dependent Variable: TC TO ATS DILLIQ RQP ABI

Independent Variables (1) (2) (3) (4) (5) (6)

Intercept -108.44 -2,144,752.55 156.71 161.0954 0.7995 269.4001
(-0.00) (-0.00) (0.00) (0.00) (0.00) (0.00)

345,790.91
4,997,767,543.00

492244.35 8,388,148.8890 245.4898 497,006.6214

Blockchain Parameters
BS -0.38 ** 54,851.64 *** 20.75 *** 7.6942 ** -0.0864 *** 41.1652 ***

(-3.27) (32.42) (12.77) (2.71) (-104.38) (27.94)
0.12 1,692.00 1.62 2.8390 0.0008 1.4734

BCT -0.02 *** 256.96 *** 0.05 -0.3760 *** -0.0000 ** -0.2945 ***
(-8.75) (7.94) (1.45) (-6.92) (-2.61) (-9.09)

0.00 32.00 0.04 0.0540 0.0000 0.0324

BS·BCT 0.01 *** -103.44 *** -0.05 *** 0.0012 0.0001 *** -0.0326 ***
(27.42) (-26.04) (-22.28) (0.18) (123.52) (-16.14)

0.00 4.00 0.00 0.0070 0.0000 0.0020

Activity Controls
VG 17.37 *** 249,452.82 *** -41.05 -10.6210 -0.0083 -20.4891

(0.00) (0.00) (-0.00) (-0.00) (-0.00) (-0.00)
10,755.36 155,448,802.00 15310.60 260,902.0290 7.6356 15,458.7192

VG·BS -0.57 *** -6,048.45 *** -1.63 ** -2.7331 *** 0.0149 *** -9.4650 ***
(-18.98) (-14.04) (-3.20) (-3.78) (57.50) (-20.52)

0.03 431.00 0.51 0.7230 0.0003 0.4612

VG·BCT -0.04 *** -373.38 *** 0.01 0.1330 *** -0.0005 *** 0.1109 ***
(-37.96) (-23.40) (0.89) (4.97) (-56.09) (7.40)

0.00 16.00 0.02 0.0270 0.0000 0.0150

OQ 0.00 *** 0.72 *** 0.05 *** -0.0000 0.0000 *** -0.0015 ***
(56.95) (45.00) (313.36) (-0.69) (159.06) (-11.11)

0.00 0.00 0.00 0.0000 0.0000 0.0001

OQ·BS 0.00 *** 0.189 *** -0.00 *** 0.0000 -0.0000 *** 0.0001 ***
(30.92) (32.98) (-34.52) (0.32) (-29.54) (6.89)

0.00 0.00 0.00 0.0000 0.0000 0.0000

OQ·BCT -0.00 *** 0.004 *** 0.00 *** -0.0000 -0.0000 *** -0.0000 *
(-16.87) (6.39) (5.80) (-0.56) (-9.62) (-2.07)

0.00 0.00 0.00 0.0000 0.0000 0.0000

Quality Controls
LnReturn 1.85 30754.77 * -0.19 -453.3191 *** -0.0064 * 0.0074 ***

(1.96) (2.25) (-0.03) (-19.80) (-2.27) (14.56)
0.94 13640.00 5.58 22.8930 0.0028 0.0005

SDPrice 1.10 *** 5,017.49 *** -0.12 11.5977 *** -0.0015 *** 0.0042 ***
(19.77) (6.24) (-0.32) (8.60) (-7.54) (120.22)

0.06 804.00 0.39 1.3490 0.0002 0.0000

LnSize 4.75 80,953.96 -0.37 -5.5876 -0.0012 -0.0010
(0.00) (0,00) (-0.00) (-0.00) (-0.00) (-0.00)

15,028.94 217,215,455.00 21,394.17 364,569.8930 10.6696 2.1601

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Intraday Fixed Effects No No Yes No Yes Yes
Stock Fixed Effects Yes Yes Yes Yes Yes Yes

Number of observations 59,910 59,910 688,931 59,910 688,931 688,931
Average 30.37 328,524.40 295.17 21.59 0.5603 62.12
F-statistics 1,816.99 *** 1,711.48 *** 5,367.28 *** 21.51 *** 1,750.44 *** 475.22 ***
R2

adj 0.5491 0.5343 0.2968 0.0136 0.1209 0.0360

Table 16: Robustness - Alternative trading hours
This table presents full specification regressions (model 6) with a modified data panel for each MQM.
Consistent with Xetra’s trading hours, we only consider orders submitted between 9 a.m. and 5.30 p.m.
to replicate market outcomes for 2017. We report β coefficients, t-statistics (in parentheses), and standard
errors for each variable, while ***, **, and * indicate significance at the 0.1%, 1% and 5% level, respectively.
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Dependent Variable: TC TO ATS BI BI

Independent Variables (Full Specification (Full Specification (Full Specification (Full Specification (Full Specification
with RQP) with RQP) with RQP) BD = +1) BD = -1)

Intercept 275.90 *** -2,370,305.00 *** 511.23 2,130.87 *** -110.83
(7.80) (-5.48) (0.00) (8.92) (-0.00)
35.39 432,425.73 202,521.75 238.98 140,702.75

Blockchain Parameters
BS -3.01 *** 37,149.93 *** -104.75 *** 22.98 *** 44.44 ***

(-47.12) (47.61) (-379.66) (45.20) (64.28)
0.06 780.36 0.28 0.51 0.69

BCT -0.02 *** 277.21 *** -0.19 *** -0.19 -0.23 ***
(-15.85) (18.61) (-30.29) (-15.83) (-15.48)

0.00 14.90 0.01 0.01 0.01

BS·BCT 0.02 *** -70.23 *** 0.34 *** -0.02 *** -0.03 ***
(104.47) (-38.87) (898.16) (-26.98) (-32.53)

0.00 1.81 0.00 0.00 0.00

Activity Controls
VG 37.09 *** 291,311.63 *** 4.00 34.70 *** -22.32

(29.98) (19.28) (0.00) (4.07) (-0.01)
1.24 15,113.17 6,299.17 8.53 4,376.37

VG·BS -0.38 *** -1,729.68 *** 3.44 *** -5.03 *** -10.44 ***
(-23.27) (-8.64) (39.69) (-31.16) (-49.01)

0.02 200.30 0.09 0.16 0.21

VG·BCT -0.05 *** -382.91 *** -0.17 *** 0.06 ** 0.10 ***
(-89.99) (-51.93) (-59.65) (11.46) (13.26)

0.00 7.37 0.00 0.01 0.01

OQ 0.00 *** 12.99 *** 0.40 *** 0.00 *** -0.00 *
(336.13) (316.24) (4758.98) (0.70) (-1.97)

0.00 0.04 0.00 0.00 -

OQ·BS 0.00 *** 0.03 *** -0.00 *** 0.00 *** 0.00 ***
(10.77) (8.88) (-438.92) (5.51) (5.04)

0.00 0.00 - - -

OQ·BCT -0.00 *** -0.00 *** -0.00 *** -0.00 *** -0.00 ***
(-52.24) (-8.59) (-1963.0) (-9.55) (-7.34)

0.00 0.00 - - -

RQP -0.00 *** -12.86 *** -0.40 ***
(-307.49) (-288.60) (-4395.3)

0.00 0.04 0.00

RQP·BS -0.00 *** -0.15 *** 0.00 ***
(-19.37) (-22.22) (165.77)

0.03 0.01 -

RQP·BCT 0.00 *** 0.01 *** 0.00 ***
(25.67) (13.61) (1300.41)

0.00 0.00 -

Quality Controls
LnReturn -1.75 ** 2,945.91 0.70 0.02 *** -0.00 ***

(-2.78) (0.38) (0.51) (72.30) (-13.08)
0.63 7,665.10 1.39 0.00 0.00

SDPrice 1.21 *** 10,070.88 *** 0.45 *** 0.00 *** 0.00 ***
(43.09) (29.41) (7.76) (320.30) (298.55)

0.03 342.39 0.06 0.00 0.00

LnSize -12.22 *** 88,178.38 *** -10.24 -0.01 *** 0.00
(-7.87) (4.65) (-0.00) (-8.65) (0.00)

1.55 18,972.46 8,802.10 0.00 0.61

Fixed Effects
Year Fixed Effects Yes Yes Yes Yes Yes
Intraday Fixed Effects No No Yes Yes Yes
Stock Fixed Effects Yes Yes Yes Yes Yes

Number of observations 302,493 302,493 4,546,605 2,211,991 2,307,771
Average 39.95 403,507.10 279.40 0.0049 0.0048
F-statistics 12,838.50 *** 12,589.50 *** 436,505.00 *** 2,021.68 *** 1,808.96 ***
R2

adj 0.6615 0.6571 0.8638 0.0537 0.0471

Table 17: Robustness – Additional controls and block direction
This table shows the regression results with RQP as additional control (columns 1 to 3) and for subsets
with a positive (column 4) and a negative block direction (column 5). Blocks with a block direction of 0 are
excluded. We report β coefficients, t-statistics (in parentheses) and standard errors for each variable, while
***, **, and * indicate significance at the 0.1%, 1% and 5% level, respectively.
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Fig. 10. Impact of Block Creation Time Variations – Compared means ∆ BCT
This figure provides boxplots that illustrate the market quality changes (∆ MQM) that come with increasing
the BCT from 10 to 60 and 60 to 300 minutes respectively. All plots are based on daily averages, while the
underlying data was winsorized at the 1% level to improve the visual representation.
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