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1 Introduction

It is well understood that in standard complete-markets endowment economies, agents do not

engage in trade. Lucas (1978) is the canonical development of this fact. Judd et al. (2003)

shows that similar results hold even when agents are heterogeneous in their endowments

and preferences. In particular, Judd et al. (2003) shows that if the spanning set of assets is

infinitely-lived, agents will (potentially) engage in trade at time zero, but never again. When

the spanning set includes a mix of finite-maturity assets, agents may engage in trade at each

time period, but only in such a way that allows them to maintain constant portfolios through

time. The results of Judd et al. (2003) depend crucially on the Markovian properties of their

endowment economy, which leads to time-homogeneous consumption policy rules.

Numerous empirical studies have shown trading volume to be important for understand-

ing market structure, return volatility, and the conditional distribution of asset prices. Kar-

poff (1987), Gallant et al. (1992) and Tauchen et al. (1996) are only a few examples from a

very large literature. Few theoretical models exist which explain volume in equilibrium, and

those that do typically resort to a partial equilibrium approach or incorporate some form of

market incompleteness or asymmetric information. This paper falls in the category of the

macroeconomic asset pricing literature, which seeks to explain features of financial markets

within a macroeconomic framework. In particular, it shows how heterogeneity of beliefs

leads to nontrivial asset exchange among agents in general equilibrium and with complete

markets. The same is not generally true of other forms of agent heterogeneity.

The results of this paper show that diversity of beliefs creates a motive for agents to

bet against each other on paths of the economy that they view as relatively more likely.

As conceptualized by Simsek (2011), this speculative phenomenon is reflected in increased

variability of agents’ net worths. The desire to increase consumption on certain paths and

decrease it on others introduces a history dependence and lack of time homogeneity in

consumption plans which induces nontrivial trade at dates beyond the initial period, even

when the economy is Markovian. The upshot is that asset exchange is fundamentally related

to agents’ diverse views. Consistent with empirical studies, the results herein also show that

volume is positively related to the degree of belief dispersion in addition to the proportion
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of agents that hold divergent beliefs. All of this is achieved without short-sales constraints

and in time periods where no unanticipated information events are realized.

Agents’ desire to speculate also has implications for asset prices. In particular, introduc-

ing agents with divergent views causes prices to rise in states that those divergent agents

view as relatively more likely. This reflects the speculative phenomenon suggested by Har-

rison and Kreps (1978): agents are willing to purchase assets at a higher price than they

intrinsically value them due to the presence of another agent class with a differing valua-

tion. Importantly, the relationship of heterogeneous beliefs to both asset exchange and price

movements, leads trade volume within the model to be positively related to absolute price

changes, a feature which has been well documented in the empirical literature.

The importance of heterogeneous beliefs in generating trading volume is illustrated in

an empirical example which is congruent with historical data. Using quarterly post-war

consumption data to estimate parameters of the endowment process and beliefs, this paper

shows that sizeable trading volume can exist in general equilibrium with complete markets,

while simultaneously matching broad features of the macroeconomy. Even a mild disturbance

in beliefs can generate substantial volume and price movements.

The model in this paper does not allow for learning, although such a feature would be a

desirable extension for future work. While the fundamental trade result does not depend on a

finite-horizon economy, it is well understood that under the paradigm considered herein, only

one agent type (the one whose beliefs are most correct) will eventually survive in the market.

This paper does not concern itself with questions of survival. The truth is that questions of

survival often take a very long time to resolve, and in the finite-period application of this

model, survival has a negligible impact over the course of 20 to 30 years.

This paper also develops a computational algorithm for solving a finite-period version

of the model. The complete-markets structure allows for optimal consumption choices and

prices at each date and state to be independent of all but the first state. The result is that

the competitive equilibrium can be solved with a procedure which iterates on the initial con-

sumption choices, solving a large number of independent problems at each future state. The

independence of the problems at each subsequent state suggests that a parallel computing

methodology can be used to solve for the competitive equilibrium quickly and efficiently. In
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particular, this is an example of an economic problem that is well suited for GPU computing,

as discussed in Aldrich et al. (2011).

2 Model

We consider a basic endowment economy with I types of agents and S aggregate states of

nature each period. Time is discrete and indexed by t ∈ N0 = {0, 1, 2, . . .}. The aggregate

state at time t is st ∈ S = {1, . . . , S} and we let st = (s0, s1, . . . , st) denote the history of

aggregate states. Agents’ types are indexed by i ∈ I = {1, 2, . . . , I} and µi(st) denotes the

proportion of the population consisting of type i agents in state st. The total population

has unit mass, which dictates
∑I

i=1 µ
i(st) = 1, for all st ∈ St.

There is a single consumption good and a tree paying a dividend of d(st) units of the

consumption good in each state st ∈ St, which cannot be transferred between time periods.

By default, each agent is entitled to d(st) units of consumption in state st, resulting in an

endowment of µi(st)d(st) for cohort i and an aggregate endowment of
∑I

i=1 µ
i(st)d(st) =

d(st). Agents have preferences for consumption encapsulated in period utility ui(c), which is

type specific and which satisfies the usual conditions of strict monotonicity, strict concavity,

twice continuous differentiability and limc→0 u
′
h(c) =∞.

The aggregate state follows an S-state Markov process: the probability of history st is

π(st) = π(st|st−1) · · · π(s1|s0)π(s0), where s0 ∈ S is known and hence π(s0) = 1. Aside from

preference and endowment heterogeneity, encapsulated in ui(c) and µi(st)d(st), respectively,

we allow agent types to have heterogeneous discount factors, βi, and heterogeneous beliefs

about transition probabilities, πi(st) = πi(st|st−1) · · · πi(s1|s0). Discount factor heterogeneity

is frequently considered a form of preference heterogeneity; for the purposes of this paper, it

will be important to distinguish between heterogeneity of period utility functions (referred

to as preference heterogeneity) and that of discount factors.

Markets are complete and agent types can deviate from their endowments by purchasing

state-contingent consumption, ci(st). As discussed below, the results of the paper are un-

changed for general asset markets, allowing agents access to assets with varying maturities

and payoff structures, so long as markets are complete. The results, however, are easiest
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to understand within the framework of state-contingent consumption purchases. We denote

the time zero price of consumption in state st as q0(st). The resulting optimization problem

for an individual agent of type i is

Ui(c
i) = max

ci

{
u(ci(s0)) +

∞∑
t=1

βti
∑
st

ui(c
i(st))πi(st)

}
(1a)

subject to

ci(s0) +
∞∑
t=1

∑
st

q0(st)ci(st) ≤ d(s0) +
T∑
t=1

∑
st

q0(st)d(st), (1b)

where ci = (c(s0), c(s
1), . . .) and where q0(s0) = 1.

A competitive equilibrium for this economy is a collection of consumption plans {c̄i}Ii=1

and prices {{q̄0(st)}st∈St}∞t=0 such that

1. System (1) is solved.

2. The aggregate resource constraint

I∑
i=1

µi(st)c̄i(st) =
I∑
i=1

µi(st)d(st) (2)

holds for all st ∈ St and t ≥ 0.

2.1 Asset Markets

Consider S long-lived securities, indexed by j ∈ S, with asset j paying the aggregate dividend

d(st−1, j) if st = j and zero otherwise, for all t > 0. As an alternative to state-contingent

consumption purchases, agents can achieve their optimal consumption plans if given access

to these S securities. At each period, the budget constraint for agent i is

ci(st) +
S∑
j=1

q0(st, j)θij(s
t) ≤ d(st)θist(s

t−1) +
S∑
j=1

q0(st, j)θij(s
t−1). (3)

where q(st−1, j) denotes q(st) for the history st = (s0, . . . , st−1, s), s ∈ S, and where θis0(s
−1)

represents the endowment of agent i (in shares) at t = 0. Equation (3) states that agents

enter period t with shares
{
θij(s

t−1)
}J
j=1

, only one of which receives the aggregate dividend,
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θist(s
t−1). After receiving the aggregate dividend and liquidating all shares for their mar-

ket prices, q0(st, j), agent i has total resources that are equivalent to the left-hand side of

Equation (3). She then allocates her resources according to the right-hand side of (3). The

volume of trade for each asset and each agent in each period amounts to

TV i
j (st) =

∣∣θij(st)− θij(st−1)∣∣∑I
i=1 µ

i(st)θij(s
t−1)

, (4)

where the denominator in (4) is always unity. The total volume of trade for each asset in

each period is then

TVj(s
t) =

I∑
i=1

µi(st)TV i
j (st). (5)

3 Trade in General Equilibrium

The fundamental result of this paper is that belief heterogeneity can generate nontrivial

exchange among agent types, even when the entire structure of the economy is Markovian.

The same is not true of other forms of heterogeneity (discount factor, preference and endow-

ment) considered in the paper. This result becomes apparent as we inspect the first-order

conditions of an agent’s optimization problem.

3.1 First-Order Conditions

The first-order conditions of System (1) are

u′i(c
i(s0)) = λi (6a)

βtiu
′
i(c

i(st))πi(st) = λiq0(st), ∀st ∈ St (6b)

d(s0) +
T∑
t=1

∑
st

q0(st)d(st)− ci(s0)−
T∑
t=1

∑
st

q0(st)ci(st) = 0 (6c)

for i = 1, . . . , I, where λi is agent i’s Lagrange multiplier for constraint (1b). The intertem-

poral Euler equation is obtained by dividing (6b) by (6a) ,

βti
u′i(c

i(st))

u′i(c
i(s0))

πi(st) = q0(st), (7)
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for all st ∈ St and i = 1, . . . , I. Selecting agent 1 as a “reference” agent, Equation (7) yields

βti
βt1

u′i(c
i(st))/u′i(c

i(s0))

u′1(c
1(st))/u′1(c

1(s0))

πi(st)

π1(st)
= 1. (8)

Reformulating (8), we arrive at

ci(st) = u′−1i

(
βt1
βti

π1(st)

πi(st)

u′1(c
1(st))

u′1(c
1(s0))

u′i(c
i(s0))

)
. (9)

Substituting Equation (9) into the aggregate resource constraint (2),

I∑
i=1

µi(st)u′−1i

(
βt1
βti

π1(st)

πi(st)

u′1(c
1(st))

u′1(c
1(s0))

u′i(c
i(s0))

)
=

I∑
i=1

µi(st)d(st). (10)

For each st ∈ St and t ≥ 0, given discount rates, {βi}Ii=1, beliefs, {πi(st)}Ii=1, period utilities,

{ui(c)}Ii=1, population proportions, {µi(st)}Ii=1, and initial consumption choices, {ci(s0)}Ii=1,

Equation (10) represents a single nonlinear equation with a single unknown, c1(st), and is the

foundation for understanding trading results for the model under consideration. If ci(s0) =

c̄i(s0) for i = 1, . . . , I, the optimal initial consumption values in competitive equilibrium, the

values of c1(st) and {ci(st)}Ii=2 which solve Equations (10) and (9), respectively, will also be

the optimal competitive equilibrium values, c̄1(st) and {c̄i(st)}Ii=2, for all st ∈ St and t ≥ 0.

In the general formulation, these optimal choices are history dependent.

3.2 Special Cases

For the remainder of this section, let us assume that dividends depend only on the concurrent

realization of the aggregate state: d(st) = d(st), for all st ∈ St and t ≥ 0. Given the law of

motion of st, this results in d(st) being Markovian. We will further assume that population

proportions are not history dependent: µi(st) = µi(st), for all i = {1, . . . , I}, st ∈ St and

t ≥ 0. For the results reported in Section 5, we will assume that the population proportions

are fixed (µi(st) = µi, for all i = {1, . . . , I}, st ∈ St and t ≥ 0), but the following results only

require that they are independent of the aggregate state history. Under these restrictions,

Equation (10) becomes

I∑
i=1

µi(st)u
′−1
i

(
βt1
βti

π1(st)

πi(st)

u′1(c
1(st))

u′1(c
1(s0))

u′i(c
i(s0))

)
=

I∑
i=1

µi(st)d(st). (11)
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3.2.1 Homogeneous Beliefs and Time Discount Factors

If we further specialize the model so that agent types have homogeneous beliefs and time

discount factors, πi(st) = π(st) and βi = β, for all i = {1, . . . , I}, st ∈ St and t ≥ 0,

Equation (14) becomes

I∑
i=1

µi(st)u
′−1
i

(
u′1(c

1(st))

u′1(c
1(s0))

u′i(c
i(s0))

)
=

I∑
i=1

µi(st)d(st). (12)

For a given set of initial consumption choices {ci(s0)}Ii=1, the value of c1(st) satisfying Equa-

tion (12) and the associated values of {ci(st)} obtained from (9) will only depend on st and

not on st−1. This is true even if agent types have heterogeneous period utility functions or

endowments, so long as those variables do not depend on state histories themselves.

The implication of Equation (12) is that the associated competitive equilibrium consump-

tion choices will be Markovian and time homogeneous; if st = s ∈ S, then c̄i(st) = c̄i(s),

independent of time and for all i = 1, . . . , I. This is the key result of Judd et al. (2003),

and, as noted in their paper, hinges on the Markovian structure of the economy (notably,

dividends). For general complete asset markets, where agents achieve their desired state-

contingent consumption levels through a mix of asset purchases, this carries important trade

implications, as argued by Judd et al. (2003). For example, in the case where agents have

access to S infinitely-lived assets, agent types will trade once at t = 0 and never again.

Allowing for finite-lived assets generates trade at periods t > 0, but only so that agents can

hold constant portfolios.

3.2.2 Heterogeneous Time Discount Factors

Maintaining homogeneity of beliefs, but allowing agents to have varying time discount factors

yields

I∑
i=1

µi(st)u
′−1
i

((
β1
βi

)t
u′1(c

1(st))

u′1(c
1(s0))

u′i(c
i(s0))

)
=

I∑
i=1

µi(st)d(st). (13)

This version of the model has properties similar to that of the previous subsection, except

that the optimal consumption choices now depend on the date t, through the ratio of time

discount factors,
(
β1
βi

)t
. In this sense, the consumption policy rules will depend on the
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history of states in a deterministic way: they will not depend on a particular history st

itself, but on the number of periods which have passed. It is easily shown that in such an

economy, the most patient individual (with the highest time discount factor) will trade so

that he consumes the full dividend in the distant future while all other agent types consume

nothing. In effect, the most patient agent survives. The speed with which this happens is

increasing in the dispersion of time discount factors, but even for very large discrepancies,

the trading volume between periods is quite small and follows deterministic patterns that

lead to survival of the most patient agent type.

3.2.3 Heterogeneous Beliefs

Returning to the case of heterogeneous beliefs, it is apparent from Equation (14) that optimal

consumption choices {ci(st)}ii=1 will not be time homogeneous, even when dividends and

population proportions are not history dependent. The reason is that, even when st is

Markovian, the agent specific transition probabilities introduce a history dependence that

cannot be eliminated; since each agent type maintains distinct beliefs through time, the path

of the economy is no longer trivial in their relative probability assessments.

The important result, then, is that asset trading will not be trivial in equilibrium, even

in the presence of complete markets. In the case of S infinitely-lived financial assets, the

no-trade equilibrium will not be a general result. Similarly, with assets of varying finite

maturities, agent types will not necessarily hold constant portfolios. This particular result

is developed in Section 5.

3.3 An Equivalent Problem

It is possible to recast the general problem with history dependence as one of history-

dependent time discount factors:

I∑
i=1

µi(st)u
′−1
i

(
β̃t1(s

t)

β̃ti(s
t)

u′1(c
1(st))

u′1(c
1(s0))

u′i(c
i(s0))

)
=

I∑
i=1

µi(st)d(st), (14)

where β̃ti(s
t) = βti

πi(st)
π̃(st)

. In this case, we are viewing the heterogeneous beliefs model as

one with distorted homogeneous beliefs, π̃(st), and state- and history-dependent time dis-

count factors. The non-deterministic history-dependent time discount factors, β̃ti(s
t), are
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able to generate the same trading patterns that we observe in an alternate economy with

heterogeneous beliefs, πi(st), and heterogeneous, but fixed, time discount factors, βi.

4 Solution Method

For the remainder of the paper, we will focus on a finite-horizon version of the model in

Section 2. This has no implication for the theoretical arguments developed in Section 3, but

facilitates computation of the competitive equilibrium when optimal consumption choices

are not homogeneous. Consider the following algorithm.

1: Fix some τ > 0, which will determine convergence and set ε = 1.

2: Guess initial values for ci(s0), i = 2, . . . , N .

3: for st ∈ St \ s0 do

4: Solve

I∑
i=1

µi(st)u′−1i

(
βt1
βti

π1(st)

πi(st)

u′1(c
1(st))

u′1(c
1(s0))

u′i(c
i(s0))

)
=

I∑
i=1

µi(st)d(st). (15)

for c1(st) and compute

q0(st) = βt1
u′1(c

1(st))

u′1(c
1(s0))

π1(st) (16)

and

ci(st) = u′−1i

(
βt1
βti

π1(st)

πi(st)

u′1(c
1(st))

u′1(c
1(s0))

u′i(c
i(s0))

)
, (17)

for i = 2, . . . , I.

5: end for

6: Compute

εi = d(s0) +
T∑
t=1

∑
st

q0(st)d(st)− ci(s0)−
T∑
t=1

∑
st

q0(st)ci(st), (18)

for i = 2, . . . , N and set

ε =
N∑
i=2

|εi|. (19)
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7: if ε > τ then

8: Use Broyden’s method to choose new values of ci(s0) and return to Step 4.

9: else

10: Stop.

11: end if

4.1 GPU Computing

The algorithm above is well suited for parallel computing. For a T + 1 period economy,

there are a total of ST+1−1
S−1 states: St at each time period t = 0, 1, . . . , T . Figure 1 depicts

an example with S = 2 and T = 3. Given a candidate {ci(s0)}
I
i=2, Equations (15) – (17)

determine a solution for q0(st) and {ci(st)}Ii=1 at each of the ST+1−1
S−1 − 1 states after t = 0,

independent of the prices and consumption choices at other dates and states in the economy.

This independence between states allows the computation to be divided into distinct pieces,

each of which can be performed by a separate processing unit. In theory, with enough

processors, it would be possible to assign the nonlinear equation problem (Equation (15)) of

each state to one processor. In practice, with large S or large T , a subset of state-tree nodes

would be assigned to each processor for computation.

The inherent parallelism in the above algorithm is ideal for graphics processing unit

(GPU) computing. As documented by Aldrich et al. (2011), modern graphics cards typically

contain hundreds, sometimes thousands, of individual processing cores. These cores are

optimized for performing simple sets of instructions in parallel, and are not ideally suited for

algorithms which require heavy memory use or many branches. For the algorithm considered

above, the actual computational problem that needs to be solved at each state is relatively

simple: it amounts to solving a single equation for a single variable, using Newton’s method

with a known and analytically simple derivative. With hundreds or thousands of individual

cores to solve these nonlinear equations, GPU computing can deliver enormous speed gains

over traditional CPU computing for values of S and T that result in a large state space S.
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Figure 1: A state-tree diagram for the case of S = 2 (l and h) and T = 3.

5 Empirical Application

The objective of this section will be to parameterize the model so that it simultaneously cap-

tures broad features of quarterly aggregate consumption growth as well as quarterly equity

market volume and price changes. This section provides a brief overview of the aggregate

data that is relevant to the model, discusses estimation of the endowment process param-

eters, reports implications of the model and concludes with a discussion of the economic

motives underlying the results.

12



5.1 Data

To both estimate the model and to provide a reference for model output, we consider data

from three different sources:

1. Real, per capita, quarterly aggregate consumption (Nondurables and Services) from

1947.1 to 2010.4 (NIPA Table 7.1).

2. Monthly volume and shares outstanding for all assets traded on the NYSE from March

1947 to December 2010 (CRSP Monthly Stock Files).

3. Monthly S&P 500 Index from March 1947 to December 2010 (CRSP Monthly S&P

500 Index File).

The data period was chosen to begin in 1947, because this is the oldest quarterly consumption

data available from the BEA. Individual volumes and shares outstanding were summed across

all assets and over relevant months to obtain a measure of aggregate quarterly turnover,

where

Turnover =
Volume

Shares Outstanding
. (20)

Technically speaking, volume refers to the number of shares traded within a given period,

not the proportion of shares traded (turnover). Since the number of shares in the model is

normalized to unity, these quantities are identical and the terms will be used interchangeably

for the remainder of the paper.

Figure 2 displays time series plots of quarterly aggregate consumption growth, quarterly

NYSE turnover and quarterly absolute price changes for the S&P 500 (quarterly changes were

obtained by differencing index levels at three month intervals). It is readily apparent from

the figure that turnover and price changes have been trending upward since the early 1980s,

with episodes of large price changes occurring in the late 1990s and early 2000s, and a burst

of turnover surrounding the recent financial crisis. Figure 3 highlights a well-documented

feature of price-volume data: that absolute changes in price are positively correlated with

turnover. This empirical relationship has been observed at daily, weekly, monthly, quarterly

and annual frequencies, as documented by Karpoff (1987). Figure 3 distinguishes data
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Figure 2: Time series plot of real, per capita, aggregate consumption growth, aggregate NYSE turnover

and S&P 500 absolute price changes. All series are quarterly, 1947.2 to 2010.4.

pre- and post-2000, the former represented with empty circles and the latter with circles

superimposed with crosses. Interestingly, while a strong positive relationship exists before

2000, an even stronger relationship is apparent in the data after 2000.

Finally, Figure 4 depicts a kernel density estimate of the NYSE turnover series. The mean

and median of quarterly NYSE turnover are 0.1542 and 0.08605, respectively. Further, more

than 75% of the density lies below the value 0.2 and more than 90% lies below 0.4. These

values provide a reference target for a model of quarterly market volume.

5.2 Estimation

We now consider a specialization of the model in Section 2 with S = 2 and I = 2. We will

assume that proportions of agent types are fixed through time, µi(st) = µi, for i = 1, 2, and
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Figure 3: Scatter plot of absolute price changes for the S&P 500 and aggregate NYSE volume. Both series

are quarterly, ranging from 1947.2 to 2010.4. Empty circles represent data values before 2000

and the circles superimposed with crosses represent post-2000 data.

that agents have constant relative risk aversion utility,

ui(c) =
c1−γ

i

1− γi
. (21)

Agents receive aggregate consumption, C(st), as their endowment in state st, where the

two aggregate states of nature each period, st, represent high consumption growth and

low consumption growth (st ∈ {l, h},∀t). Following Hamilton (1989), we specify a hidden

Markov model for the logarithm of aggregate consumption growth,

∆ct = α(st) + εt, (22)

where ∆ct = log(Ct)− log(Ct−1), α(h) > α(l), and where st obeys a Markov transition law,

π(st|st−1), as described in Section 2. Table 1 reports maximum likelihood estimates and

standard errors for the hidden Markov parameters. The parameter estimates suggest that

high and low growth states have roughly the same magnitude within the series, but that
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Figure 4: Density estimate of quarterly aggregate NYSE volume from 1947.2 to 2010.4. The density was

computed with a Gaussian kernel and a bandwidth of 0.03244.

high growth is much more persistent than low growth, which has a roughly equal probability

of transitioning to a subsequent high or low growth state.

Similar to Cecchetti et al. (2000) and Cogley and Sargent (2009), we will eliminate the

disturbance in Equation 22 and force aggregate consumption growth in the model to be equal

to the estimated means. That is,

C(st+1) = g(st+1)C(st), (23)

where g(st) = exp(α(st)). This specification causes the aggregate endowment sequence to

be history dependent. In the notation of the previous sections, C(st) = d(st) is dependent

on the full history st and not just the concurrent state of nature st. The general implication

of this state dependence is that both preference (utility) heterogeneity and endowment het-

erogeneity can result in consumption rules that are not time homogeneous, and which lead

agents to hold non-constant portfolios (i.e. to trade at t > 0). However, several caveats are
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α(h) α(l) π(h|h) π(l|l)

Estimate -0.005011 0.006222 0.9411 0.5304

Standard Error 0.001146 0.001052 0.01879 0.1213

Table 1: Maximum likelihood estimates for the parameters of the aggregate consumption growth process.

Standard errors are obtained from a numerical evaluation of the Hessian.

important to note. First, when agents have power utility and identical coefficients of relative

risk aversion (as well as identical discount factors and beliefs), their optimal consumption

choices are constant fractions of the aggregate endowment (as shown in Equations (26) and

(27)), leading to no asset exchange after t = 0. Second, with power utility and heterogeneous

coefficients of relative risk aversion, agents engage in trade at t > 0, but the total volume of

trade is extremely small (results are not reported here for space considerations). Hence, it is

not problematic to investigate the trade implications of heterogeneous discount factors and

beliefs in this setting with state dependent dividends.

In the model, the majority of agents will maintain beliefs that are consistent with the

estimated probabilities in Table 1, while a minority of the population will deviate. In par-

ticular, the following section will consider cases where the minority believes π(l|l) is one,

two and three standard errors below its maximum likelihood estimate; hence, they are rel-

atively optimistic. Table 2 reports annualized moments of the simulated log consumption

growth process using these values of π(l|l) as well as unconditional quarterly probabilities of

recession and expansion. As is expected, optimism (lower values of π(l|l)) is associated with

higher mean consumption growth and lower volatility as well as lower unconditional proba-

bilities of recession and higher unconditional probabilities of expansion. As an example, an

agent whose views deviate from the baseline (MLE) case by two standard deviations, believes

that consumption will grow an average of 0.16% more annually and will have 0.1124% lower

annual volatility. In addition, such an agent believes a recession (expansion) to be 3.5%

less (more) likely each quarter. These values provide a measure of the magnitude of belief

disturbance and are important to understand when interpreting the model results.
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π(l|l)

0.5304 (MLE) 0.4091 0.2878 0.1665

Mean 0.01988 0.02082 0.02148 0.002190

SD 0.007072 0.006449 0.005948 0.005600

π(l) 0.1114 0.09064 0.07638 0.06600

π(h) 0.8886 0.9093 0.9236 0.9340

Table 2: Moments of simulated log consumption growth for various values of π(l|l) and unconditional

(quarterly) probabilities of recession and expansion. Simulations consist of 1 million observations.

5.3 Model Implications

To understand the impact of heterogeneous beliefs on asset exchange over a finite horizon,

we will consider an economy with T + 1 = 12 periods (or three years). Let us assume that

µ1 = 0.8 and µ2 = 0.2, where, as described above, type 1 agents (the majority) possess

beliefs that are parameterized by the hidden Markov maximum likelihood estimates, and

type 2 agents believe π2(l|l) < π1(l|l). In addition, assume γ1 = γ2 = 2 and β = 0.995. The

latter value corresponds to an annualized risk-free rate of 2.03%.

Table 3 reports trading volume summary statistics for each of the long-lived assets,

with the values of π(l|l) considered above. In each case, the model was solved using the

π2(l|l) = 0.4091 π2(l|l) = 0.2878 π2(l|l) = 0.1665

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Asset 1 0.01530 0.01661 0.0001741 0.0601 0.02864 0.03367 0.0002190 0.1219 0.03968 0.05186 0.0001747 0.1877

Asset 2 0.007061 0.006454 0.0001741 0.02423 0.0148 0.01569 0.0002190 0.05786 0.02335 0.02987 0.0001747 0.1082

Table 3: Trading volume for a 12-period complete-markets endowment economy, excluding trade at t = 0.

Separate statistics are reported for each case of π2(l|l).

methods of Section 4 and means and standard deviations were computed using the MLE

transition probabilities in Table 1 to compute π(st); that is, moments were computed under

the assumption that type 1 agents hold correct beliefs. Trade at t = 0 is excluded from

the summary statistics since it is highly dependent on the initial endowment and can be

18



manipulated to fabricate desirable volume statistics.

When beliefs are homogeneous, agents do not exchange assets (beyond t = 0) and trading

volume is identically zero. However, Table 3 indicates that, depending on the degree of belief

heterogeneity, trading volume can reach values as high as 20% of outstanding shares, and

can average up to 6% of the market. The reported statistics also indicate that volume varies

substantially across the 12 time periods, as encapsulated by standard deviations of 0.6 - 5.1%,

with the variability positively related to degree of heterogeneity. Even a moderate degree

of heterogeneity (π2(l|l) = 0.2878) can generate a maximum value for volume that exceeds

12%, which is roughly 80% of the average quarterly NYSE turnover reported above (15.42%).

Although these values fall a little under those found in the data, they are qualitatively sensible

and are a substantial achievement in a complete-markets general-equilibrium framework that

captures the movement of aggregate consumption.

Most compelling is that the model is not only able to generate sizeable volume, but is

able to generate the right relationship between volume and absolute price changes. Figure 5

depicts a scatter plot of expected volume against expected absolute prices changes, for the

intermediate case of π2(l|l) = 0.2878, using the baseline (MLE) probabilities for each state.

The broad relationship is a success: while a handful of theoretical models in the literature

have successfully generated trading volume, none document a positive empirical relationship.

The next section will explain why heterogeneous beliefs are instrumental for this relationship,

and hence why they are an important component of asset exchange in financial markets.

Table 4 reports similar trading volume statistics for the case of heterogeneous discount

factors: β1 = 0.995 and β2 ∈ {0.99, 0.985, 0.98}. The values of β2 roughly correspond

β2 = 0.99 β2 = 0.985 β2 = 0.98

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Asset 1 0.00070 0.00024 6.659e-06 0.00080 0.0014 0.00048 1.333e-05 0.0016 0.0021 0.00072 2.002e-05 0.0024

Asset 2 0.00070 0.00023 6.659e-06 0.00079 0.0014 0.00046 1.333e-05 0.0016 0.0021 0.00070 2.002e-05 0.0024

Table 4: Trading volume for a 12-period complete-markets endowment economy, excluding trade at t = 0.

Separate statistics are reported for each case of β2.

to annual risk-free rates of 4.1%, 6.2% and 8.4%; in other words, very optimistic views
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Figure 5: Scatter plot of absolute price changes and trading volume for 12-period endowment economy

with heterogeneous beliefs. Values are expectations computed with the reference probabilities in

Table 1.

(relative to historical data) about risk-free returns. Even with such optimistic views, Table 4

shows that discount factor heterogeneity delivers very little asset exchange, in all cases never

exceeding 0.3% of the market, with standard deviations that are uniformly less than 0.1%.

Figure 6 depicts a scatter plot of expected volume against expected absolute prices changes

for the case when β2 = 0.985. Unlike the heterogeneous beliefs case, the model does not

generate a positive relationship between the two variables.

5.4 Speculation and Trading Volume

We now consider agents’ motivation to engage in trade and the relationship of trade vol-

ume and price changes to heterogeneous beliefs. We begin with some useful mathematical

simplifications.
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Figure 6: Scatter plot of absolute price changes and trading volume for 12-period endowment economy

with heterogeneous discount factors and homogeneous beliefs. Values are expectations computed

with the reference probabilities in Table 1.

When agents have constant relative risk aversion utility, Equation (9) simplifies to

ci(st) = ξi(st)c1(st)γ
1/γi (24)

where

ξi(st) =

(
βti
βt1

πi(st)

π1(st)

)1/γi
ci(s0)

c1(s0)γ
1/γi

. (25)

Furthermore, when agents have identical beliefs, discount factors and coefficients of relative

risk aversion,

ξ(st) = ci(s0)/c
1(s0),

which is history independent (it only depends on s0), and from Equations (10) and (9),

c1(st) = τ(s0)d(st) (26)
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and

ci(st) = ξi(s0)τ(s0)d(st) (27)

where

τ(s0) =

(
I∑
i=1

µiξi(s0)

)−1
. (28)

The implication is that when agents are homogeneous (aside from endowments) and have

power utility, their optimal consumption choices are a constant fraction of the aggregate

dividend.

Simsek (2011) introduces a notion of speculation that is encapsulated by the volatility of

agents’ net worth: he shows that the introduction of new assets in an incomplete market with

heterogeneous beliefs causes agents to both hedge certain sources of aggregate risk and to

speculate on others. The degree of hedging and speculation is captured by the contribution of

each to the volatility of agents’ net worths. Intuitively, when agents fully hedge themselves,

the only volatility in their net worths should be attributed to the volatility of aggregate risk.

In our complete-markets economy, when agents are homogeneous, they fully hedge them-

selves by choosing time-homogeneous consumption plans that lead to constant net worths,

as a fraction of the aggregate endowment. That is, according to Equation (27)

ωi(sT ) =
T∑
t=0

βti
ci(st)

d(st)
=

T∑
t=0

βtiξ(s0)τ(s0), (29)

is constant for all sT ∈ ST , given s0 ∈ S. However, the introduction of heterogeneous beliefs

or discount factors causes the fractions ξi(st) in Equation (25) to become history dependent.

This causes agents’ net worths, expressed as a fraction of the aggregate dividend, to be history

dependent, and to contain variability other than that of the aggregate state. Tables 5 and

6 summarize the volatilities of net worths for the various values of π2(l|l) and β2 considered

above. Interestingly, heterogeneous discount factors introduce very little variability in

net worth. Heterogeneous beliefs, on the contrary, introduce substantial variability. The

reason for this is that diverse beliefs motivate agents to speculate against each other: type

1 agents choose higher values of consumption on state paths that they view as relatively
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π2(l|l) = 0.4091 π2(l|l) = 0.2878 π2(l|l) = 0.1665

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Std. Dev. 0.4081 1.632 0.8081 3.232 1.184 4.737

Table 5: Volatility of net worths across all possible state histories in a 12-period complete-markets endow-

ment economy. Separate statistics are reported for each case of π2(l|l).

β2 = 0.99 β2 = 0.985 β2 = 0.98

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Std. Dev. 8.299e-06 9.435e-06 1.050e-05 7.111e-06 8.112e-06 7.945e-06

Table 6: Volatility of net worths across all possible state histories in a 12-period complete-markets endow-

ment economy. Separate statistics are reported for each case of β2.

more likely than their counterparts, and vice versa. This intuition is captured in Figure 7,

which plots net worths against log probability ratios of entire histories, st. The size of

the circles represents the magnitude of agents’ absolute probability assessment, independent

of the opposing agents’ beliefs. The figure clearly depicts that agents increase their net

worth on paths of the economy that correspond to high relative probability, as measured by

the counterpart’s beliefs. In addition, absolute probability assessment appears to have no

relationship with net worth.

We now begin to understand the relationship between trading volume and beliefs: hetero-

geneous beliefs create a motive for agents to speculate against each other on certain paths of

the aggregate state, which induces them to hold non-constant portfolios of long-lived assets

and to engage in trade at periods t > 0. The same is not true of other forms of heterogene-

ity. In addition, the magnitude of speculation and trading volume is closely related to the

relative probability assessment; it is clear from Equation (25) that ξi(st) is positively related

to the likelihood ratio πi(st)/π1(st) and inversely related to the coefficient of relative risk

aversion.

The notion of speculation is also captured by observing the behavior of prices when an
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Figure 7: Scatter plot of log likelihood ratios and net worths (as a fraction of the aggregate dividend) for a

12-period endowment economy with heterogeneous beliefs. Values are computed for each state.

Circle size represents the magnitude of absolute probability assessment.

agent with divergent beliefs is introduced into an otherwise homogeneous economy. For

example, the first panel of Figure 8 depicts a scatter plot of log price ratios against log

probability ratios, state by state, under the two scenarios where the economy is entirely

populated by type 1 agents, and where the economy is populated by both types (with the

proportions indicated above). The quantities of the former scenario (type 1 homogeneity) are

the divisors. These ratios can be interpreted as the percentage changes in probabilities and

prices when a small portion (µ2 = 0.2) of type 1 agents in a homogeneous economy suddenly

transition to become type 2 agents. Similarly, the second panel of the figure depicts the

case when a large portion (µ1 = 0.8) of type 2 agents in a homogeneous economy suddenly

24



transition to become type 1 agents. It is apparent from Figure 8 that prices increase in states
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Figure 8: Scatter plot of log likelihood ratios and log price ratios. Divisors in the ratios correspond to

quantities in a homogeneous economy of the specified base type, and numerators correspond to

the equivalent quantities in the heterogeneous economy. In each case, T + 1 = 12.

to which divergent agents assign a high relative probability. This makes intuitive sense, as

those agents seek to trade additional shares of the state-contingent asset in order to increase

their consumption along those paths. The curvature apparent in the first panel of the figure

is related to the relative magnitudes of the agents and the scale of the price changes. The

same curvature exists in the second panel, but is not perceptible due to the magnitude of

price changes, which in turn is directly related to the large magnitude of divergent agents

introduced in the baseline scenario.

This latter notion of speculation is related to Harrison and Kreps (1978). In their work,
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Harrison and Kreps (1978) show that agents with heterogeneous beliefs are willing to pur-

chase assets at prices higher than their intrinsic worth, simply because they anticipate selling

them for a capital gain to other agents at a later period. They refer to this as a speculative

motive, since it is driven by the bet of selling for a capital gain, and show that equilibrium

prices are higher in all states, for all assets. Their development, however, hinges on a com-

bination of risk neutrality and no short sales constraints, which causes only one agent type

to hold the single asset at any point in time. The model of this paper shows similar results

for a more general framework with complete markets and risk-averse agents. In particular,

agents push prices above their homogeneous economy counterparts on state paths that they

view as relatively more likely. In this sense, pessimistic agents are willing to purchase assets

at higher prices along paths that optimists view as more likely, because they have a greater

chance of selling those assets to optimists (who value them more highly) along those paths.

In summary, heterogeneous beliefs induces a single motive for agents to alter their con-

sumption on paths that they view as relatively more likely. However, the consequence of this

single motive is that both asset exchange (volume) and prices increase on those paths. This

results in a positive relationship between absolute prices changes and trading volume, as

observed in empirical data. Thus, not only can belief heterogeneity account for empirically

reasonable levels of market volume within a general-equilibrium framework, it also captures

proper behavior in relation to other market variables. This makes belief heterogeneity a

very appealing candidate for explaining both asset exchange as well as other asset market

phenomena, especially within a macroeconomic framework.

6 Conclusion

This paper has shown that belief heterogeneity is inherently different from other forms

of standard endowment, preference and discount-rate heterogeneity with respect to trade

implications for a general-equilibrium complete-markets endowment economy. Judd et al.

(2003) showed that in the presence of these other forms of heterogeneity, an important no-

trade result holds: when markets are complete and agents have access to a spanning set of

infinitely-live assets, they engage in trade at t = 0 and never again; with a spanning set that
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includes finite-maturity assets, agents hold constant portfolios which allow them to maintain

a time-homogeneous consumption path.

Heterogeneous beliefs, however, introduce a history dependence that leads agents to de-

sire consumption paths that are not time homogeneous. In essence, agents bet on realizations

of state histories that they view as relatively more likely, when compared to their counter-

parties. This speculative motive is reflected in the variability of agents’ net worths, which

are constant across history realizations when agents have homogeneous views and completely

hedge themselves. The upshot is that agents’ desire to increase consumption on certain paths

while decreasing it on others (i.e. a lack of time homogeneity), fuels nontrivial trading at

dates beyond t = 0, even when markets are complete. This motive also puts pressure on

asset prices and generates a positive relationship between absolute price changes and trading

volume.

This paper also demonstrates the trade implications of heterogeneous beliefs in a finite-

period application that is congruent with aggregate historical data. In the application,

consumption growth states and transition probabilities are calibrated to match an estimated

hidden Markov model for post-war quarterly consumption growth. A small proportion of

agents maintain optimistic views (of varying degrees) regarding transitions from a low con-

sumption growth state to a high consumption growth state. Such a specification leads to

sizeable trading volume (as high as 20% of shares outstanding) which has a positive relation

to absolute price changes, as documented in the empirical literature. Other forms of hetero-

geneity, such as discount factor heterogeneity, can only generate an extremely low volume

of trade (almost negligible) for very optimistic parameterizations, and also cannot obtain

proper qualitative relationships with prices.

Finally, this paper suggests an algorithm for solving the finite-period model with het-

erogeneous beliefs and demonstrates its suitability for large-scale parallel computing. The

optimal allocations in competitive equilibrium are chosen at each state, independent of all

but the initial state of the economy. The resulting mathematical structure, then, is one that

can leverage many processing units to compute optimal consumption plans for many periods

and many states. In particular, advances in GPU computing, as suggested by Aldrich et al.

(2011), can be utilized to compute the model with more agents, states and periods than
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would be feasible in a traditional CPU framework.
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