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ABSTRACT

For many years diazocarbonyl compounds have been studied due to their versatility and usability in 
many chemical transformations. In this review, we summarize the traditional methods to prepare these 
compounds as well as the new methods and recent improvements in experimental procedures. Moreover, 
emergence of continuous flow techniques has allowed safer and environmentally friendly procedures for 
the handling of diazomethane and diazo compounds and will also be a topic in this review.
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INTRODUCTION

Since the first time that diazocarbonyl compounds 
were reported by Curtius (Curtius 1883), the 

development of diazocarbonyl chemistry had an 

enormous advance. Thus, several publications 

with respect to the preparation, properties, and 

applications in organic chemistry have been 

published (Doyle et al. 1998, Ford et al. 2015, 

Maas 2009, Ye and McKervey 1994).

Diazocarbonyl compounds, containing two 

functional groups, “diazo and keto”, are very 

versatile intermediates and can perform a number 

of chemical transformations. For example, 

these compounds can undergo C-H and C-X 

insertion reactions, the Wolf rearrangement, 

cyclopropanations and dipolar cycloaddition 

(Figure 1) (Burtoloso et al. 2015). In addition, 

the use of diazocarbonyl compounds has showed 

significant developments in chemical biology such 
as the alkylation of DNA, RNA and proteins (Mix 

et al. 2016, Ford et al. 2015).

Common approaches to synthesizing 

diazocarbonyl compounds are: (a) acylation 

of diazoalkanes; (b) diazo transfer reaction; 

(c) diazotization of primary amines; (d) 

dehydrogenation of hydrozones; tosylhydrazones 

and oximes; (e) alkaline cleavage of N-alkyl-N-

nitroso compounds; (f) triazene fragmentation 

(less common); (g) substitution and cross-coupling 

at diazomethyl carbon and; (h) substituent 

modification in diazocarbonyl compounds (Figure 
2).

Therefore, our purpose in this review is 

to gather the classical methods of preparing 



An Acad Bras Cienc (2018) 90 (1 Suppl. 1)

860 ANTONIO C.B. BURTOLOSO, PATRÍCIA B. MOMO and GRAZIELE L. NOVAIS

diazocarbonyl compounds and to describe the main 

recent improvements and developments in the 

synthesis of these compounds.

CLASSICAL METHODOLOGIES FOR THE 

SYNTHESIS OF DIAZOCARBONYL COMPOUNDS

ACYLATION OF DIAZOALKANES

The first general protocol to prepare terminal 

α-diazocarbonyl compounds was described by 

Arndt-Eistert in 1927 (Arndt et al. 1927, 1928, 

Arndt and Amend 1928). This method consisted 

in the addition of an acyl chloride to an ethereal 

diazomethane solution (2 equiv. or more) at or 
below 0 °C (Figure 3). In the Arndt-Eistert reactions, 

the use of excess of diazomethane is necessary 

to prevent the formation of chloroketones as a 

byproduct. This side reaction can be avoided using 

triethylamine or similar bases in the diazomethane 

solution when non-enolizable acyl chlorides 

are employed (enolizable precursors give lower 

yields of the diazoketone because of competing 

Figure 1 - Some reactions employing diazocarbonyl 
compounds.

Figure 2 - Common methods to prepare diazocarbonyl 
compounds.

Figure 3 - Synthesis of terminal α-diazocarbonyl compounds by acylation of diazomethane 
and some representative examples.
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ketene formation). For this condition (base and 

non-enolizable acyl chlorides), only one equiv. of 
diazomethane is necessary. 

Another procedure involves the use of mixed 

anhydrides as acylating agents of diazomethane 

(Bradley and Robinson 1928) (Figure 3). In 

this case, a convenient procedure prepares the 

anhydride by treating a carboxylic acid with 

dicyclohexylcarbodiimide and then reacting 

with diazomethane (Hodson et al. 1970). Mixed 

anhydrides can also be formed in situ by reaction 

between a carboxylic acid and chloroformates, 

leading to diazoketones after reaction with 

diazomethane (Ye and McKervey 1992). These 

methods, employing anhydrides, are the best choice 

to prepare several diazoketones when activation 

as acid chloride is not appropriate. Acylation of 

diazomethane using both acyl chlorides or mixed 

anhydrides remains as the most important approach 

to prepare acyclic terminal α-diazoketones. 
Although quite a lot of diazoketones can be 

made by the acylation method, working with pure 

diazomethane is hazardous, since it is extremely 

toxic, highly irritating as well as an explosive gas 

(NIOSH 1995). In addition, diazomethane and its 

precursors have been cited as carcinogens. However, 

these risks can be minimized using the proper 

apparatus and a dilute solution of diazomethane in 

ethyl ether at low temperatures. Diazomethane kits 

with clear-seal joints are commercially available 

and permits the preparation of diazomethane 

solutions in different scales (1 mmol to 0.3 mol 
quantities) (Sigma-Aldrich AL-180, Hudlicky 
1980, 1982). The classical method of generating 

diazomethane is by base-catalyzed decomposition 

of an N-nitroso derivative from ureas, carbamates, 

sulfonamides and ketones (Figure 4). N-methyl-

N-nitroso-p-toluenosulfonamide (Diazald) is 

the most common precursor for diazomethane 

generation (de Boer and Backer 1963). However, 

the use of trimethylsilyldiazomethane has been a 

safer alternative for ethereal diazomethane solution 

(Shioiri et al. 1990).

Figure 4 - Commercially available diazomethane precursors and other 
related compounds.
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Acylation of diazoethane or other higher 

dizaoalkanes with acyl chlorides and mixed 

carboxylic anhydrides have been used to obtain 

numerous intermediates in synthesis (Wilds and 

Meader 1948, Kennedy and McKervey 1991, 

Taber and Hoerrner 1992) (Figure 5). However, 

these reactions usually are less efficient than using 
diazomethane. Diazoethane can be prepared from 

commercially available precursors as 1-ethyl-3-

nitro-1-nitrosoguanidine, 2-ethylamino-methyl-

N-nitroso-4-pentanone and N-ethyl-N-nitrosourea 

(Figure 3) (Doyle et al. 1998).

Diazomethane acylation has some limitations. 

This method is not suitable to α,β-unsaturated 

substrates because dipolar cycloaddtion between 

diazomethane and the conjugated double bond 

often occurs. In these reactions, pyrazolines are 

obtained as the main product and unsaturated 

diazoketone are formed in poor yield (Grundmann 

1936, Wotiz and Buco 1955). The formation of 

pyrazolines can be avoided by employing β-bromo 
acid chlorides that, after elimination, provides the 

desired unsaturated diazoketones (Rosenquist and 
Chapman 1976) (Figure 6).

In view of the limited scope of unsaturated 

diazoketones that can be obtained by acylation 

of diazomethane, Burtoloso’s group have 

developed an alternative method to prepare these 

Figure 5 - Synthesis of unsaturated diazoketones by diazomethane acylation.

Figure 6 - Some synthetics intermediates obtained by acylation of 
higher diazoalkanes.



An Acad Bras Cienc (2018) 90 (1 Suppl. 1)

 ORGANIC SYNTHESIS 863

compounds based on two Horner-Wadsworth-

Emmons (HWE) reagents (Pinho and Burtoloso 

2011, Rosset and Burtoloso 2013). One of them, 

diethyl 3-diazo-2-oxopropylphosphonate, was 

selective for unsaturated diazoketones with E 

geometries while the other, diphenyl (3-diazo-2-

oxopropyl)phosphonate (Ando-type phosphonate), 

was selective for Z geometries. These HWE 

reagents were prepared from the corresponding 

phosphorylacetic acids by reaction with oxalyl 

chloride and diazomethane in 50 and 70% yield, 

respectively (Pinho and Burtoloso 2011, Rosset 

and Burtoloso 2013) (Figure 7).

Both olefination reagents are stable and can be 
storaged for months as they begin to decompose 

only at temperatures above 120 °C (E HWE 

reagent) and 150 °C (Z HWE reagent) (Rosset and 

Burtoloso 2013). The HWE reactions with diethyl 

(3-diazo-2-oxopropyl)phosphonate and aldehydes 

furnished good results using NaH or NaOH as 

base. Complete E selectivity was observed for all 

unsaturated diazoketone synthesized. Moreover, 

no epimerization at the γ-position was detected 
in the reactions using chiral amino-aldehydes 

(Burtoloso et al. 2015, Pinho and Burtoloso 2011). 

The high selectivity was also obtained in reactions 

with diphenyl (3-diazo-2-oxopropyl)phosphonate 

employing tert-butoxide as the base. However, 

the HWE reactions using amino aldehydes gave 

different stereoselectivities depending on the used 
nitrogen protecting group (Boc, CBz or Ts groups) 

as well as the size of the substituent at the α-carbon 
to the carbonyl group (Rosset and Burtoloso 2013). 

Several α,β-unsaturated α-diazoketones with Z 

and E geometries were additionally prepared by 

Burtoloso’s methodology (Bernardim et al. 2012, 

2013, Bernardim and Burtoloso 2014, Rosset et al. 

2014, Dias et al. 2017) (Figure 8).

Traditional ways of carboxylic acid activation 

(as an acyl chloride or mixed anhydride) can 

sometimes be difficult when hindered carboxylic 
acids needs to be converted to α-diazoketones. 
Nicolaou and co-workers solved this problem 

employing acyl mesylates as intermediates for 

the synthesis of highly hindered α-diazoketones 
(Nicolaou et al. 1999) (Figure 9).

Another different activation method 

was described by Cuevas-Yañez in which an 

acylphosphonium salt (generated from the addition 

of NBS to a mixture of triphenylphosphine and 

carboxylic acids, reacted with diazomethane to 

yield diazoketones in good yields (Figure 10). In 

Figure 7 - Burtoloso’s synthesis of Z and E α,β-unsaturated diazoketones.
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Figure 8 - Examples of Z and E α,β-unsaturated diazoketones prepared by Burtoloso’s 
methodology.

addition, this method tolerated the use of various 

functional groups and the reactions were performed 

in mild conditions (Cuevas-Yañez et al. 2003).

As mentioned before, in the majority of 

the cases, it is necessary to employ an excess of 

diazomethane for the conversion of acyl chlorides 

to diazoketones to trap the hydrogen chloride 

byproduct. On this matter, Pace and co-workers 

have showed the synthesis of diazoketones using 

a stoichiometric amount of diazomethane in the 

presence of calcium oxide as a hydrogen halide 

scavenger, without competing ketene or haloketone 

formation (Pace et al. 2010) (Figure 11). 

In the case of the preparation of α-amino acid-

derived diazoketones, protection of the amino 

group before diazomethane acylation is necessary. 

Liguori and co-workers demonstrated the use of 

[(fluorenylmethyl)oxy]carbonyl chloride (Fmoc-
Cl) as an effective reagent for the one-pot protection 
and activation of amino acids and subsequent 
conversion to α-amino diazoketones (Siciliano et 
al. 2012) (Figure 12).
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Although many new ways of activating 

a carboxylic acid, aiming the synthesis 

of diazoketones were described the major 

improvements in the acylation methodology refers 

to the safe preparation of diazomethane. Morandi 

and Carreira developed an in situ generation of 

diazomethane using a water-soluble derivative of 

Diazald in a biphasic system (Morandi and Carreira 

2012). In this work, the diazomethane was generated 

in the aqueous layer (in a 6 molar potassium 
hydroxide (KOH) solution) and transferred to an 

organic layer where an iron porphyrin complex 

catalyzed the cyclopropanation of styrene, enynes 

and dienes (Morandi and Carreira 2012) (Figure 

13).

In addition, several researchers have explored 

the generation of diazomethane (and its use) in 

microreactors and in a continuous process. This 

minimize the hazard in handling diazomethane, as 

well as increase the safety in its use on an industrial 

scale (Müller and Wirth 2015, Gutmann et al. 

2015). A simple flow process for diazomethane 

generation was developed by Struempel and 

Maggini (Struempel et al. 2008, Rossi et al. 

2012). The system included a feed containing 

N-methyl-N-nitrosourea (MNU) or Diazald as 

a diazomethane precursor and another feed with 

potassium hydroxide solution. Both were combined 

in a microreactor to generate diazomethane and 

were mixed with substrate to yield the subsequent 
product (Figure 14). Despite this approach to be 

Figure 10 - Synthesis of diazoketones from acyloxyphosphonium salts and diazomethane.

Figure 9 - Synthesis of highly hindered diazoketone by Nicolaou and co-
workers.
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effective for alkylation of carboxylic acids, an 
excess of the acid is essential to neutralize the base. 
In addition, it is not suited to reactions in which the 
starting material is water sensitive. A solution to 
this problem was proposed by Kim and co-workers 
who developed a microreactor with two parallel 
channels separated by a highly hydrophobic 
poly(dimethylsiloxane) (PDMS) membrane that 
allowed the separation of diazomethane from the 
aqueous solution of Diazald (Maurya et al. 2011) 
(Figure 14). However, this approach presented 
some limitations such as the small scale and the 
impossibility of using some non-polar organic 
solvents, as this could cause a swelling of the 
membrane.

The two limitations presented by PDMS 
membrane cited above have been overcome by 
Kappe and co-workers using the tube-in-tube (TiT) 
reactor AF-2400 which was initially developed 

in the Steven Ley laboratory (Mastronardi et al. 
2013, Polyzos et al. 2011). The Teflon AF-2400 is 
a semipermeable membrane that allows only the 
passage of gases. Thus, diazomethane could be 
generated in the inner tube-in-tube reactor from 
an aqueous solution of Diazald and potassium 
hydroxide, while the substrate solution could be 
carried and reacted in the outer chamber. With 
this approach, it was possible to safely conduct 
the Arndt−Eistert reaction for the synthesis of 
diazoketones in a continuous process. Moreover, 
the setup was extended to achieve the direct 
transformation of protected α-amino acids into the 
corresponding α-chloroketones or β-amino acids in 
a continuous multistep reaction (Pinho et al. 2014a, 
b) (Figure 15). 

The tube-in-tube reactor with semipermeable 
Teflon AF-2400 was also used in a simple and 
robust semi batch apparatus for the in situ 

Figure 13 - In situ diazomethane formation and cypropanation in a biphasic 
system proposed by Morandi and Carreira.

Figure 11 - Improved Arndt-Eistert synthesis of 
α-diazoketones by Pace and co-workers.

Figure 12 - The “one-step” route to the synthesis of α-amino 
diazoketones published by Siciliano and co-workers.
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generation of anhydrous solutions of diazomethane. 

The diazomethane generated was selectively 

separated from the Teflon tubing into a substrate-
filled flask (tube-in-flask reactor). Therefore, the 
reactor could be employed in several reactions 

with diazomethane as methylation of carboxylic 

acids, palladium-catalyzed cyclopropanation, H-X 

insertion and 1,3-dipolar cycloaddition (Dallinger 

et al. 2016) (Figure 16). 

Ley and co-workers have investigated the 

production of diazoketones under continuous 

flow using the safer, but more expensive, 

(trimethylsilyl)-diazomethane instead of Diazald 

as the precursor of diazomethane. In the next step, 

the diazoketones were employed in cycloaddition 

reactions for the formation of quinoxalines (Martin 
et al. 2011). Trimethylsilyl diazomethane was also 

used for homologation reactions with a mixed 

anhydride derived from N-Boc-(S)-phenylalanine 

to synthesize a pharmaceutically relevant 

intermediate in a continuous flow microreactor 

(Pollet et al. 2009).  

The generation of diazomethane in a continuous 

process constitutes a safety improvement in the 

synthesis of diazoketones on a laboratory scale. 

The use of a continuous flow setup can avoid 

the distillation and handling of large amounts 

of diazomethane and, consequently, can reduce 
the risks of long time exposed and of accidental 

explosion.

DIAZO TRANSFER REACTION

The concept of diazo group transfer was first 

investigated by Dimroth in 1910 (Dimroth 1910). 

However, the general method for the preparation 

of diazo compounds employing diazo transfer 

reactions was established only some years later, 

after extensive studies by Regitz and collaborators 

(Regitz 1964, 1967, 1972, Regitz and Heck 1964, 

Regitz and Maas 1986). This technique allowed 
the synthesis of cyclic α-diazocarbonyl compounds 

Figure 14 - In situ generation of diazomethane and dual-channel 
microreactor with membrane for diazomethane extraction.
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as well as many acyclic systems that cannot be 

accessed by the acylation of diazomethane.

In general, the diazo transfer method involves 

transferring the diazo group from a donor, such 

as a sulfonyl azide, to an acceptor which must be 

a carbonyl compound with relative acidity in the 

α-position. There are two types of acceptors: one 
that the position of the α-carbonyl methylene group 

is already reactive towards diazo transfer reactions 

and another that requires prior activation with base 
to ensure the transfer of the diazo group. Thus, 

2-diazo-1,3-dicarbonyl compounds can be formed 

from malonic esters, β-ketoesters, β-ketoamides, 

and β-diketones by the diazo transfer procedure 
using tosyl azide (Santiago 2015) in the presence 

of triethylamine as the base (Figure 17). The 

advantage in using this method instead of the 

acylation of diazoalkanes is the mild reaction 

conditions and the fact that it does not require the 
use of diazomethane. Effects of the base and solvent 
on diazo transfer reactions were also studied by 

some groups (Doyle et al. 1998). Recently, Sá and 

co-workers demonstrated the use of molecular 

sieves (Dutra et al. 2014) and catalytic t-BuNH
2
 

(Costin et al. 2017) for the efficient and mild diazo 
transfer reactions.

However, the direct diazo transfer reaction 

generally fails when the methylene group is activated 

only by a single carbonyl rather than two flanking 
carbonyl functions. To solve this problem, Regitz 

and co-workers developed the “deformylating 

diazo-group-transfer” strategy (Regitz 1967, Regitz 

and Rüter 1968, Regitz and Menz 1968). First, the 

substrate is activated by a Claisen condensation 

of the ketone with ethyl formate in the presence 

of sodium to provide 1,3-dicarbonyl compounds. 

Thereafter, the additional activating formyl group 

Figure 15 - Generation of diazomethane in a tube-in-tube (TiT) reactor.

Figure 16 - In situ generation of anhydrous solutions of 
diazomethane in a semibatch apparatus.
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is removed in the course of the diazo transfer 

reaction (a deformylation) via a fragmentation 

reaction from a triazolinic intermediate. Several 

types of acyclic and cyclic α-diazoketones, as 
well as α,β-unsaturated diazoketones, could be 
synthesized by this approach (Regitz et al. 1967, 

1970, 1971) (Figure 18). Gupta and co-workers 

proposed a simple modification in this method 

to improve the preparation of α,β-unsaturated 

diazoketones. Diethyloxalate was used as the 

activation group instead of the ethyl formate in the 

Claisen condensation which, after the diazo transfer 

reaction, afforded unsaturated diazoketones with 
improved yields (Harmon et al. 1974). 

In 1985, Doyle introduced substrate activation 

employing a trifluoroacetyl group to achieve diazo 
transfer to a base sensitive N-acyloxazolidinone 

derivative (Doyle et al. 1985). A few years later, 

Danheiser and co-workers used a similar strategy 

in which the trifluoroacetyl group was used as an 
activator to solve some of the limitations of the 

Regitz and Guta procedure, mainly to synthesize 

α,β-unsaturated diazoketones (Danheiser et al. 
1990, 1996). The harsh conditions typically 

required for the Claisen condensation and the low 
regioselectivity in the formation of the enolates 

prior to the condensation step could be avoided 

with Danheiser’s method. Thus, the modification 
in the Regitz deformylating procedure consisted 

of the generation of methyl ketone enolates from 

kinetic conditions (LiHMDS, −78 °C, 30 min) 
and the use of the very reactive acetylation agent, 

trifluoroethyl trifluoroacetate (Figure 19).

Figure 17 - Preparation of diazocarbonyl compounds by 
simple diazo transfer reaction.

Figure 18 - Regitz and Gupta deformylating diazo transfer procedure for the 
preparation of diazoketones.
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Another modification of the Regitz’s 

procedure that was useful in the synthesis of 

diazoesters and ketones involved an initial 

activation by benzoylation. Taber and co-workers 

established a method that allowed the construction 

of unsymmetrical α-diazoketone employing 
benzoylacetone as the starting material. In this 

technique, benzoylacetone could be alkylated 
in different positions (α- or α- and γ- position) 
to provide unsymmetrical ketones followed by 

debenzoylation and diazo transfer in the presence 

of p-nitrobenzenesulfonyl azide (p-NBSA) and 

1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) (Taber 
et al. 1995). Ten years later, Taber and co-workers 

modified their benzoylation/debenzoylation diazo 
transfer process by a titanium chloride-mediated 

benzoylation for activation of the ester, followed by 

diazo group transfer under mild conditions (Taber 

et al. 2005) (Figure 20).

An effective method for diazocarbonyl transfer 
was described by Badet and co-workers in which 

succinimidyl diazoacetate was employed in direct 

diazoacetylation of amines, phenols, thiophenol, 

and peptides under mild conditions (Ouihia et al. 

1993). Three years later, Doyle and co-workers 

developed an improved method for synthesis 

of succinimidyl diazoacetate which furnished 

diazoacetamides in good yields (Doyle and Kalinin 

1996) (Figure 21).

Recently, Wang, Hu and collaborators 

have published a highly efficient synthesis of 

α-diazoketones by a tandem reaction with a novel 
primary amine-catalyzed Regitz diazo-transfer of 

1,3-diketones and a novel primary amine-mediated 

C-C bond cleavage of 2-diazo-1,3-diketones. 

Several α-diazoketones could be prepared in good 
yields by stirring 1,3-diketones together with tosyl 

azide and methylamine in ethanol (Zhang et al. 

2017) (Figure 22).

Although diazo transfer is a safe alternative 

procedure for synthesizing diazocarbonyl 

compounds, the thermal stability of the transfer 

agent and the difficult of removing the sulfonamide 
by-product are some limitations of the Regitz’s 

method. In view of this, the search for better 

alternatives to tosyl azide and to other diazo 

transfer reagents were necessary. Although this 

search continues, various sulfonyl azide derivatives 

Figure 19 - Trifluoracetylation/detrifluoroacetylation diazo transfer method.
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could already be described as substitutes for p-tosyl 

azide in the diazo transfer reactions (Figure 23).

In addition to the list of diazo transfer reagents, 

a stable and accessible imidazolesulfonyl azide 

hydrochloride has been reported by Goddard-

Borger and Stick. It could easily be prepared in 

a one-pot reaction on a large scale from sodium 

azide, sulfuryl chloride, and imidazole (Goddard-

Borger and Stick 2007). Klapötke and co-workers 

improved the stability of this reagent with respect 

to shock sensitivity by replacing the counterion in 

imidazolesulfonyl azide with tetrafluoroborate or 
hydrogen sulfate (Fischer et al. 2012) (Figure 24). 

Although imidazolesulfonyl azide hydrochloride 

is reported as a stable compound, there is still 

concerns about its preparation. By-products that can 

be formed in the preparation of this transfer agent 

can react with reaction intermediates and provide 

highly explosive species such as hydrazoic acid 

and sulfuryl diazide (Ye et al. 2013). One solution 

to this was proposed by Wang and co-workers who 

developed a two-step alternative procedure using 

sulfuryl diimidazole as a starting material under 

non-acidic conditions. In addition, the free base 

imidazolesulfonyl azide could be prepared in situ 

and could be used directly as a transfer agent (Ye et 

al. 2013) (Figure 24).

Other diazo transfer reagents have been 

recently described in the literature. For example, 

Katritzky and co-workers developed a stable 

and crystalline benzotriazole-1-sulfonyl azide. 

However, its preparation involved the use of 

sulfuryl dichloride and sodium azide which may 

form explosive by-products (Katritzky et al. 2010, 

Katritzky and El Khatib 2012). On the other hand, 

Chiara and Suárez reported the synthesis of a shelf-

stable nonafluorobutanesulfonyl azide that does not 
require the dangerous mixture of sulfuryl dichloride 
and sodium azide (Chiara and Suárez 2011). In 

addition, Kitamura and co-workers developed 

2-azido-1,3-dimethylimidazolinium salts as a novel 

class of diazo transfer reagents which exhibited 

negative impact in sensitivity tests as well as high 

decomposition temperatures (200 °C). Therefore, 

the imidazolinium salts were more stable than other 

reported transfer reagent and the by-product of the 

reaction was a highly water-soluble imidazolinones 

(Kitamura et al. 2011, 2014).

Figure 20 - Benzoylation/debenzoylation diazo transfer procedure described by 
Taber and co-workers.
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The improvements in the diazo transfer 

approach were not only in the search for new 

reagents, but also in the exploration of new 

developments and adaptations of the Regiz’s 

methodology. In this regard, Ramachary and 

collaborators have studied diazo transfer reactions in 

ionic liquids, such as 1-butyl-3-methylimidazolium 
(bmim) salts. Thus, various 2-diazo-1,3-dicarbonyl 

compounds could be synthetized from acyclic and 

cyclic 1,3-diketone and β-ketoester derivatives, 

employing p-tosyl or mesyl azide and catalytic 

amounts of 4-dimethylaminopyridine (DMAP) 

(Ramachary et al. 2008). Another new method 

was reported by Kumar and co-workers who first 
synthetized an ionic liquid-supported sulfonyl 
azide as diazo transfer reagent. They applied this 

new reagent on diazo transfer as well as on the 

detrifluoroacetylative diazotransfer reactions under 
solvent free conditions. This method offered a 

better way to purify the products and, consequently, 
numerous diazocompounds could be isolated in 

excellent yields and in high purity (Muthyala et al. 

2012) (Figure 25).

Collins and co-workers developed a green and 

environmentally friendly method for diazo transfer 

reactions with a variety of β-ketoesters precursors 
using a safer polymer-supported benzenesulfonyl 

azide and a catalytic amount of base in water. With 

this methodology, the α-diazo-β-ketoesters could 
be obtained after a simplified work up (filtration of 

Figure 21 - Diazocarbonyl transfer method.

Figure 23 - Sulfonyl azide derivatives that have 
been used as an alternative to tosyl azide.

Figure 22 - A tandem reaction synthesis of α-diazoketone.
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Figure 24 - Imidazolesulfonyl azides salts and two-step synthesis of free 
base imidazolesulfonyl azide.

Figure 25 - Application of ionic liquid-supported sulfonyl azide in diazotransfer reaction.

a resin bound sulfonamide by-product) (Tarrant et 
al. 2016) (Figure 26).

Another improvement in the separation of 
the sulfonamide by-product was the development 
of a magnetic benzenesulfonyl azide as a transfer 
agent in diazo transfer reactions by Hanson and 
collaborators (Faisal et al. 2017). The magnetic 
sulfonamide by-product was separated by simple 
magnetic decantation and the reaction mixture 
was treated sequentially with Rh

2
(OAc)

4
 by using 

a one pot procedure affording a 1:1 mixture of 

dihydrofuran and α-haloenones in 90% overall 
yield (Figure 27).

Finally, Collins, Maguire and co-workers have 
explored the diazo transfer reactions in a continuous 
process. In their work, tosyl azide was generated in 

situ and used sequentially in diazo transfer reactions 
with various type of acceptors such as β-ketoesters, 
β-ketoamides, malonate esters and β-ketosulfones. 
The development of an effective in-line quench of 
sulfonyl azides employing a sacrificial acceptor 
molecule ensured complete removal of the 
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unreacted tosyl azide. Thus, the application of the 

continuous process allowed to work with a large 

scale diazo transfer reaction in which more than 21 

g of a α-diazocarbonyl could be obtained in high 
purity (>98%) without column chromatography. 

Moreover, the used of the continuous process in 

these reactions minimized the risks associated 

with handling hazardous and explosive reagents 

on large scale (Deadman et al. 2016). This group 

also studied the continuous-flow generation of 

α-diazosulfoxides using a bed of polystyrene-
supported base (PS-DBU or PS-NMe2), a safe 

diazo transfer reagent dodecylbenzenesulfonyl 

azide (DBSA) and a high control of the residence 

times (McCaw et al. 2016). With the results of 

these studies, they could synthesize several novel 

α-diazo-β-keto sulfoxides at higher yields and 
at shorter reaction times than batch conditions 

(McCaw et al. 2017) (Figure 28).

The continuous flow technique was also 
employed by Wirth and co-workers in their 

studies on diazo transfer and diazo decomposition 

reactions. In-line IR analyses in flow allowed 

quick access to quantitative information on 
diazo formation and consumption. After the 

optimizations of the reactions, they established 

a multistep process in continuous flow involving 
diazo group transfer, extraction, separation and 

subsequent diazo decomposition with several X-H 
insertion reactions (Müller et al. 2015). Later, they 

applied their methodology in the synthesis of a 

key intermediate in the pathway for milnacipran 

analogs (Müller et al. 2016) (Figure 29).

DIAZOTIZATION OF AMINES

Diazotization of amines can be performed by the 

reaction between a primary amine and a nitrosating 

agent, such as sodium nitrite (NaNO
2
), in the 

Figure 27 - Magnetic benzenesulfonyl azide as transfer agent in diazo 
transfer reactions.

Figure 26 - A green diazo transfer method using polymer-supported 
benzenesulfonyl azide and catalytic amount of base in water.
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presence of an acidic aqueous solution. (Doyle et 
al. 1998) (Figure 30).

Over the years, a methodology based on 

a primary amine and a nitrosating agent to 

perform diazo syntheses has been expanded 

to fluorinated diazoalkanes and monofluoro-

substituted diazoalkanes (Mykhailiuk 2014, 2015, 

2017). For example, a novel chemical reagent, 

heptafluoroisopropyl diazomethane (i-C
3
F

7
CHN

2
), 

which has been generated in situ, can react with 

electron-deficient alkyl groups and polyfluoro 

pyrazoles (Mykhailiuk 2017) (Figure 31). Another 

example is the generation of 2-diazo-1,1,1-

trifluoroethane (CF
3
CHN

2
) which can work as a 

carbene donor for the asymmetric synthesis of 

trifluoromethyl substituted cyclopropanes (Tinoco 
et al. 2017) (Figure 31).

Figure 28 - Large scale synthesis of α-diazocarbonyl compound and synthesis of 
α-diazo-β-keto sulfoxides under continuous flow conditions.

Figure 29 - Prepare of a key intermediate in the synthesis of milnacipran by diazo 
transfer reaction in continuous flow.
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DEHYDROGENATION OF HYDROZONES, 
TOSYLHYDRAZONES AND OXIMES

Dehydrogenation of hydrazones is one of the oldest 

methods for the synthesis of diazo compounds 

(Doyle et al. 1998). It comprises of an oxidation 

reaction of hydrazine with numerous metallic 

catalysts as oxidizing agents, consisting mainly 

of heavy metals such as mercury oxide, silver 

oxide, manganese dioxide, lead (IV), among others 

(Holton and Shecter 1995) (Figure 32).  

Alternative routes have been developed 

to reverse the use of heavy metals in the 

dehydrogenation reaction of hydrazones. A novel 

metal free pathway capable of generating various 

substituted diazomethane derivatives is based 

on chlorosulfodimethyl chloride, also known as 

Swern’s reagent, which can be produced in situ by 

the reaction between DMSO and oxalyl chloride 

in the presence of triethylamine as base (Javed and 

Brewer 2007) (Figure 33).

Another metal free alternative for the formation 

of diazo compounds is provided by the oxidation of 

N-(tert-butyldimethylsilyl)hydrazones employing 

(difluoroiodo) benzene. In this reaction, the 

diazotized product can be immediately consumed 

in the presence of a carboxylic acid during the 

oxidation step, yielding carboxylic esters (Furrow 

and Myers 2004) (Figure 34).

In addition to the dehydrogenation of 

hydrazones, there is another methodology 

developed by Aller and co-workers which is a very 

useful and efficient strategy for the synthesis of 
α-diazoketones using N-isocyanotriphenylimino 

phosphorene as a substitute for diazomethane. 

This methodology was based on the formation 

of a diazoketone through the conversion of a 

hydrazidoyl intermediate and aims to decrease 

the known limitations of the direct acylation of 

diazomethane (Aller et al. 2000) (Figure 35).

A widely used method for obtaining diazo 

compounds from hydrazones is the cleavage of 

toluenesulfonyl hydrazones, also known as the 

Bamford-Stevens reaction (Bamford and Stevens 

1952). This reaction consists in the base cleavage of 

the tosylhydrazones (which are usually synthesized 

from tosylhydrazides and aldehydes or ketones) 

to provide the corresponding diazocarbonyl 

Figure 30 - Some applications of the amine diazotization 
method to produce ethyl diazoacetate.

Figure 31 - Examples of synthesis and applicability of 
fluorinated diazoalkanes.
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compounds as depicted in Figure 36 (Doyle et al. 

1998).

Over the years, adaptations and modifications 
have been made in the Bamford-Stevens synthesis. 

One of them, performed by House, consisted in the 

preparation of α-diazoesters that were difficult to 
access by the original method (House and Blanke 

1968). The modified reaction was based on the 

conversion of glyoxylic acid to its corresponding 

tosylhydrazone, followed by reaction with thionyl 

chloride. Reaction of the acid chloride reagent 

with an alcohol gives the hydrazone ester, that is 

subsequently decomposed by two equivalents of 
triethylamine to give the diazoester (Figure 37).

Although the House’s method showed 

satisfactory results for the synthesis of 

α-diazoesters, products were not always obtained 
in the pure form (sulfonate contamination). 

Considering this fact, Corey and Myers proposed 

other modifications to provide better control in the 
formation of by products (Corey and Myers 1984). 

This modification was based on the replacement of 
one equivalent of triethylamine by one of a weaker 
base, for example, N,N-dimethylaniline (Figure 

38).

House’s method is efficient in converting 

alcohols to diazoacetates, but obtaining the products 

takes three steps, due to the preparation of the acid 

chloride reagent from glyoxylic acid. Fukuyama 

and co-workers developed a new methodology 

to convert alcohols into the corresponding 

diazoacetates in a shorter number of steps. The 

method employs readily manipulatable and 

accessible reagents. For example, bromoacetates 

of the corresponding alcohols are treated with 

N,N’-ditosylhydrazine and DBU to furnish diazo 

carbonyl derivatives in good yields (Toma et al. 

2007) (Figure 39).

The reaction from oximes, also known as the 

Forster reaction, was first reported in 1915 (Forster 
1915). This reaction consists in the synthesis of 

diazoketones, especially the cyclic ones, from the 

reaction of α-ketoximes with chloramines. Forster’s 
reaction has wide applicability in the preparation of 

α-diazoketones and derivatives (Figure 40). 

Figure 32 - General dehydrogenation reaction of hydrazones.

Figure 33- New route for dehydrogenation of hydrazones.

Figure 34- Alternative route for dehydrogenation of 
hydrazones.

Figure 35- Diazomethane-free conversion of acyl chlorides to 
diazoketones.
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Figure 36 - Examples of Bamford-Stevens reactions to convert 
carbonyl compounds in diazo derivatives.

Figure 37 - Reaction described by House for the synthesis of 
α-diazoesters.

Figure 38 - Example of the House method modification 
proposed by Corey and Myers.

Figure 39 - Synthesis of diazo compounds from bromoacetates.

Figure 40 - The Forster’s reaction.

TRIAZENE FRAGMENTATION

Triazenes are produced by the coupling of diazonium 

salts with primary amines. They act as precursors 

of diazo compounds since their fragmentation with 

an acid or a base generates an α-diazocarbonyl and 
an aromatic amine (Baumgart 1967, Schroen and 

Brase 2005) (Figures 41 and 42).

Although such methodology is efficient for 

the preparation of diazo compounds, it provides 

low to moderate yields, which makes the method 

limited. Considering this fact, Myers and Raines 

have developed a novel approach for preparing 

these compounds, maintaining the fragmentation 

of an acyltriazene as the key step. This method 

consisted of the reaction between a phosphine and 

an azide to form an phosphazide compound, which 

undergoes a fragmentation to afford a carboxamide 
and a α-diazoacetamide (Myers and Raines 2009) 

(Figure 43). This reaction can be extended to 

other diazo compounds, depending on the azide 

employed.

To increase the applicability of the reaction 

described by Myers and Raines and to insert it 

into the biological environment, Chou and Raines 
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recently developed a new phosphine compound. 

This phosphine can mediate the conversion of the 

azide to diazo compounds under the conditions 

of phosphate buffer at neutral pH and ambient 

temperature, like the physiological conditions 

(Chou and Raines 2013). The diazo compounds 

prepared from this reagent were obtained in good 

yields and with a better substrate scope when 

compared to the previous method (Figure 44).

CHEMICAL MODIFICATION OF 
DIAZOCARBONYL COMPOUNDS

SUBSTITUTION AND CROSS-COUPLING AT THE 
DIAZOMETHYL CARBON

Another manner to prepare diazocarbonyl 

derivatives is through the chemical modification 
of these compounds with the retention of the 

diazo function. In general, the hydrogen atom of 

the diazomethyl carbon on terminal and acyclic 

substrates can be replaced by electrophilic 

reagents. Fink and Regitz reviewed halogenation, 

metalation, nitration, and alkylation reactions in 

which novel substituted diazocarbonyl compounds 

were obtained (Fink and Regitz 1985). Some 

examples of substitution reactions on diazomethyl 

carbon are summarized in Table I.

As revised by Fink and Regitz, the electrophilic 

halogenation of the terminal diazocarbonyl to 

produce α-halodiazo compounds usually occurs 
through mercury or silver intermediates. However, 

Bonge-Hansen and co-workers reported a metal-

free procedure for preparing halodiazoacetates 

through the reaction between diazocarbonyl 

and N-halosuccinimide in the presence of DBU 

(Kaupang and Bonge-Hansen 2013, Schnaars et al. 

2013) (Figure 45). 

The substitution reaction at azomethine 

hydrogen was used by Gosselin and co-workers as 

a strategy to perform two sequential aldolisations. 
Initially, the α-hydrogen of the diazoketone was 
substituted by a silyl group to prevent aldolization at 

Figure 42 - Fragmentation of a triazene derivative under basic 
conditions.

Figure 41 - Acid catalyzed fragmentation of an aryl triazene 
derivative for the formation of ethyl diazoacetate.

Figure 43 - Conversion reaction of organoazides to diazo 
compounds mediated by phosphine.



An Acad Bras Cienc (2018) 90 (1 Suppl. 1)

880 ANTONIO C.B. BURTOLOSO, PATRÍCIA B. MOMO and GRAZIELE L. NOVAIS

the diazo-side position. Thus, the first aldolization 
occurred at the methyl-side and the second at the 

diazo-side position, after desilylation. With this 

method, 2-diazo-3-oxo-1,5-dihydroxy compounds 

could be obtained after a second aldolization 

without the need of O-protection after the first aldol 
reaction (Lancou et al. 2012) (Figure 46).

Later, the same research group reported 

the use of α-triethylsilyl-α-diazoacetone (TES-
diazoacetone) in the TBAF-induced aldol-type 

addition, employing various aldehydes, to yield a 

broad range of β-hydroxy-α-diazoacetone scaffolds 
(Abid et al. 2015). Next, α-Triisopropylsilyl-α-

diazoacetones (TIPS-diazoacetone) have been 

reported as a substitute for TES-diazoacetones. The 

use of TIPS groups made these compounds more 

stable than the TES-derivatives (Abid et al. 2017) 

(Figure 47).

As mentioned above, terminal diazocarbonyl 

compounds can undergo Aldol-type additions 

at the diazomethyl carbon. Generally, these 

reactions are carried out at low temperatures with 

strong bases, such as lithium diisopropylamide 
Figure 44 - Development of diazo compounds in water 
mediated by the developed phosphine.

TABLE I 
Substitution reaction of terminal diazocarbonyl compounds.

Reaction Substrate Conditions Product Yield (%) Ref

Metallation N
2
CHCO

2
Et

Ag
2
O,

 ≤ 0 °C
AgCN

2
CO

2
Et ----

Schӧllkopf and 
Rieber 1969

N
2
CHCO

2
Et

n-BuLi, 

-100 °C
LiCN

2
CO

2
Et ---- Schӧllkopf et al. 1974

PhCOCHN
2

HgO, 

20 °C
Hg(CN

2
COPh)

2
97 Yates et al. 1975

Halogenation Hg(CN
2
CO

2
Et)

2

SO
2
Cl

2
, 

-30 °C
ClCN

2
CO

2
Et 30 Schӧllkopf et al. 1968

Hg(CN
2
CO

2
Et)

2

Br
2
, ether-THF 

-100 °C
BrCN

2
CO

2
Et 80-90 Schӧllkopf et al. 1968

Hg(CN
2
CO

2
Et)

2
I

2
, 0 °C ICN

2
CO

2
Et 70-90

Schӧllkopf et al. 1968
Gerhart et al. 1967

Nitration HCN
2
CO

2
Et

N
2
O

5
, CCl

4
, 

-30 °C
O

2
NCN

2
CO

2
Et ---- Schӧllkopf et al. 1969

Alkylation AgCN
2
CO

2
Et

H
2
C=CHCH

2
I 

ether, 0 °C
H

2
C=CHCH

2
CN

2
CO

2
Et 66

Schӧllkopf and 
Rieber 1969
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(LDA), butyllithium, sodium hydride, potassium 

hexamethyl disilyl amide (KHMDS), or NaOH. 

The generated anion species adds to ketones, 

aldehydes and imines to give α-diazo-β-hydroxy 
or β-amino carbonyl compounds (Zhang and 
Wang 2009). Wang and co-workers developed 

more straightforward reaction conditions for this 

nucleophilic addition employing catalytic amount 

of weaker bases such as DBU (Jiang and Wang 

2002, Xiao et al. 2007). Moreover, DBU has also 

been employed in one pot synthesis of the α-diazo-
β-dicarbonyl compounds as an alternative to the 
two-step sequence in which the resulting α-diazo-
β-hydroxycarbonyl adducts were oxidized with 
IBX or Dess−Martin periodinane (Erhunmwunse 
and Steel 2008, Li et al. 2008) (Figure 48). The 

base-mediate addition of diazocarbonyls to 

electron-deficient imines such as N-acyl, N-tosyl 

and N-sulfonyl imines has also been reported 

to provide the corresponding β-amino α-diazo 

carbonyl derivatives (Jiang et al. 2003, Zhao et al. 

2004, 2005, Zhao and Wang 2005) (Figure 48).

Recently, Heydari and co-workers have 

developed a green method for the synthesis of 

α-diazocarbonyl compounds using deep eutectic 
solvent (DES) as dual solvent/catalyst in the aldol-

type coupling reactions. The use of DES was 

advantageous because it is accessible, inexpensive 

and efficient, and also avoid the use of toxic 

solvents or hazardous catalysts (Miraki et al. 2017) 

(Figure 49).

The C-C coupling of terminal diazocarbonyl 

has also been described with other electrophiles, 

in addition to aldehydes and imines. Cuevas-

Yañez and co-workers described the reaction 

between α-diazocarbonyl and methylmagnesium 
bromide at -78 °C generating the corresponding 

α-diazo-bromomagnesium species, which could 
be reacted with various electrophilic reagents such 

as chloroformates, pyrocarbonates and sulfonyl 

chlorides (Cuevas-Yañez et al. 2004) (Figure 50).

Figure 45 - Halogenation of diazocetates.

Figure 46 - Substitution of α-hydrogen by silyl group as 
strategy for the bisaldolization of diazoketone.

Figure 47 - TBAF-Induced Aldol-Type Addition of TES-
Diazoacetone and Mukaiyama Aldol-Type Addition of TIPS-
diazoacetone to a range of Aldehydes.
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Figure 48 - Base-mediated Aldol-type additions with 
α-diazocarbonyl compounds. Figure 49 - Aldol-type coupling of α-diazocarbonyl 

compounds using deep eutectic solvent (DES) as dual solvent/
catalyst.

Figure 51 - The coupling reaction between acyl imidazolide 
and α-diazoketones.

Figure 50 - The C-C coupling of the terminal diazocarbonyl 
with other electrophiles.

Furthermore, imidazolides have also been 

described as electrophiles in coupling reactions 

with α-diazocarbonyl compounds. For example, 
N-protected amino acids were converted to 

α-diazoketones, which were coupled with acyl 
imidazolide in the presence of LDA to afford the 
corresponding bis(N-protected α-amino)diazo-α-
diketones (Saraireh 2012) (Figure 51).

The asymmetric versions of the coupling 

reactions with diazocarbonyls have also been 

studied (Zhang and Wang 2009). Wang and Yao 

investigated the reaction of ethyl diazoacetate 

with aldehydes under different chiral Lewis 

acid catalysts. The products were obtained with 

moderate to good enantioselectivity when Zr(IV) 

catalysts and (S)-6,6-Br
2
-BINOL ligands were 

used in the aldol reactions (Yao and Wang 2003). 

A chiral phase-transfer catalyst for the aldehyde 

coupling reaction with tert-butyl diazoacetate 

was developed by Nishida and co-workers. In 

this case, a cinchonidinium salt was used as the 

chiral catalyst, but there was no improvement in 

the enantioselectivity of the reactions (Hasegawa 

et al. 2006). The highest enantioselectivity was 
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α,β-unsaturated aldehydes (Trost et al. 2009, 2012) 
(Figure 52).

Terada and co-workers reported an asymmetric 

C-N bond formation employing chiral binaphthol 

monophosphoric acid as catalyst in the coupling 

reaction between ethyl diazoacetate and acyl 

imine (Uraguchi et al. 2005). Some years later, 

Maruoka and Hashimoto published a novel axially 

chiral dicarboxylic acid for asymmetric Mannich 

reactions of diazo compounds with arylaldehyde 

N-Boc imines (Hashimoto and Maruoka 2007) 

(Figure 53).

Another process for the formation of C–C 

bonds consists of palladium-catalyzed cross-

coupling reactions. Wang’s group showed that 

ethyl diazoacetate undergoes Pd-catalyzed cross-

coupling with aryl or vinyl iodides under relatively 

mild conditions to generate unsaturated diazoesters. 

In addition, β-keto α-diazo carbonyl compounds 
were afforded in moderate yields when the reactions 
were carried out under a CO atmosphere (Peng et 

al. 2007) (Figure 54).

Figure 52 - Asymmetric aldol reaction of diazoketoesters.

Figure 53 - Asymmetric coupling reaction of diazoketoesters 
with imines.

Figure 54 - Palladium-catalyzed cross-coupling of vinyl or 
aryl iodides/ Carbonylative coupling of aryl Iodides with ethyl 
diazoacetate.

achieved by Trost and co-workers using a dinuclear 
magnesium complex for the direct aldol addition 
of ethyl diazoacetate to aromatic, aliphatic, and 
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SUBSTITUENT MODIFICATION IN 
DIAZOCARBONYL COMPOUNDS

The diazo group is usually introduced only at the 

end of a targeted synthesis because this function 

is highly reactive under several conditions. 

However, there are limited number of examples 

that the diazocarbonyl compounds can be modified 
without affecting the diazo functionality. Bestman 
and Soliman prepared a diazoacetyl chloride as 

a diazoacetylation reagent, which reacted with 

nucleophiles in the presence of weak bases to give 

the corresponding adducts (Bestman and Soliman 

1979). Diazomalonyl chloride was prepared from 

the reaction of phosgene with diazomethane or 

reaction of diazoacetic acid with tretrametyl-α-
chloroenamine (Bestman and Soliman 1979, Devos 

et al. 1979). Another diazoacylation protocol was 

proposed by Badet and co-workers in which very 

stable succinimidyl diazoacetate was used for 

the direct diazocetylation of amines, phenols, 

thiophenol and peptides (Ouihia et al. 1993). 

Padwa and co-workers described the use of ethyl 

2-diazomaalonyl chloride in the diazoacetylation 

reaction with different nucleophiles to afford a 

variety of diazocarbonyl compounds (Marino et al. 

1994) (Figure 55).

Recently, our group showed that the α,β-
unsaturated diazoketones can be modified to 

another diazocarbonyl derivative by Michael 

addition with a broad range of amines, remaining 

intact the diazo functional group for the next 

transformation (Burtoloso et al. 2015, Dias et al. 

2017) (Figure 56). α,β-unsaturated diazoketones 
could also be functionalized by means of a Sharpless 

Asymmetric dihydroxylation to furnish α,β-
dihydroxy diazoketones, an interesting substrate 

for the short synthesis of substituted furanones 

(Talero and Burtoloso 2017).

Vinyldiazoesters have also demonstrated to be 

versatile intermediates for functional modification 
of diazocarbonyl compounds. Wang and co-

Figure 55 - Diazoacetylation reaction with diazocarbonyl 
compounds.

Figure 56 - One pot synthesis of 2 and 3-pyrrolidines from 
α,β-unsaturated diazoketones.
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workers proposed an efficient and mild condition 
to prepare a cyclic vinyl diazo carbonyl compound 

employing the combination of trifluoroacetic 

anhydride and triethylamine for the dehydration 

of α–diazo-β-hydroxy carbonyl derivatives (Shi et 
al. 2004). Similar reaction conditions were used 

by Ferreira and co-workers in the preparation 

of vinyldiazoacetic acid esters of carbohydrate 

acetonides (Rianelli et al. 2006). These 

vinyldiazoesters were used as a scaffold for further 
functionalization of a diazocarbonyl compound. 

For example, Barluenga and co-workers reported 

the preparation of β-oxodiazo derivatives from 
a copper(II)-catalyzed reaction of alkenyldiazo 

with iodosylbenzene, involving an unprecented 

1,2-shift of the diazoacetate function (Barluenga 

et al. 2011). Other application of vinyldiazoesters 

was described by Katukojvala and co-workers 

in formylation reactions using Vilsmeier reagent 

to afford enal diazocarbonyl compounds. These 

compounds were employed in a rhodium-catalyzed 

benzannulation of pyrroles, leading to substituted 

indoles (Dawande et al. 2014). Finally, Liu and co-

workers used alkenyldiazoesters in a triflic acid-
catalyzed Povarov reaction to give diazo-containing 

cycloadducts stereoselectively, allowing the 

preparation of various six- and seven-membered 

azacycles (Jadhav et al. 2012) (Figure 57).

Another class of diazocarbonyls that have 

been used as a versatile building block are 

the silyl enol ethers of diazoacetates. Karady 

and co-workers reported the use of silyl enol 

diazoacetate in a silver-mediate coupling reaction 

with 1-(t-butyldimethylsilyl)-4-chloro-azetidin-

2-one to furnish thienamycin precursor (Karady 

et al. 1981). A similar approach was used to 

synthetize a variety of carbapenem precursors in 

which the 4-acetoxyazetin-2-one was employed 

as the alkylating agent and zinc chloride as 

coupling reagent (Reider et al. 1982, Reider and 

Grabowski 1982). Davies and co-workers have 

showed that a cyclopropanation of vinyl ether with 

rhodium(II)-stabilized vinylcarbenoids to generate 

vinylcyclopropanes followed by a Et
2
AlCl-

catalyzed 1,3-sigmatropic rearrangement resulted 

in a highly stereoselective 3 + 2 annulation (Davies 

and Hu 1992). In addition, they reported a combined 

C−H insertion/Cope rearrangement as results of the 
reaction of vinyldiazoacetates with cyclohexadiene 

and the synthetic application of this transformation 

in the formal asymmetric synthesis of (+)-sertraline 

(Davies et al. 1999). Doyle and co-workers have 

investigated a range of synthetic transformations 

using silyl enol diazoacetates. They performed a 

Lewis acid-catalyzed Mukaiyama aldol addition of 

methyl 3-(trialkylsilanyloxy)-2-diazo-3-butenoate 

Figure 57 - Preparation and reaction of vinyldiazoesters.
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with aromatic and aliphatic aldehydes as well as 

the asymmetric version using AgF/(R)-BINAP 

as catalyst or using dibutylboron triflate in a 

high diastereoselectivity reactions with α-diazo-
β-ketopentanoate (Doyle et al. 2005, Kundu and 
Doyle 2006, Zhou and Doyle 2010). Moreover, 

Doyle’s group explored the Mukaiyama−Michael 
reactions with α,β-enones (Liu et al. 2008, Truong 
et al. 2012), and Mannich reactions with nitrones 

and hydrazones (Xu et al. 2011, 2012). More 

recently, they developed an efficient approach for 
a Lewis acid mediated coupling reaction of enol-

diazo compounds and propargyl acetates to afford 
a diverse series of alkynyl-tethered diazoketones 

that undergo a metal-catalyzed carbene metathesis 

cascade reactions (Qian et al. 2013). Some 

representative reactions with of enol diazoacetates 

are shown in Figure 58.

Another example of the versatility of enol 

diazoacetates can also be seen in cycloaddition 

reactions (Cheng et al. 2017). These compounds 

can react in different cycloaddition pathways to 
construct several carbocycles and heterocycles 

(Jadhav et al. 2012, Xu et al. 2013, Cheng et al. 

2015, 2017, Deng et al. 2016). For example, Enol 

Silyl Ether (ESE) unit of enoldiazo compounds can 

undergo [2+n]-cycloadditions (n = 3, 4) to provide 
α-cyclic-α-diazo compounds with retention of the 
diazo group (ESEC pathway). In addition, Metallo-

EnolCarbenes (MEC) formed by dinitrogen 

extrusion from enoldiazo compounds can participate 

in transition metalcatalyzed [3+n]-cycloadditions 
(n = 1–5) as three-carbon synthons (MECC 

pathway). Finally, donor–acceptor CycloPropEnes 

(CPE) generated in situ from enoldiazo compounds 

can produce cyclopropane-fused ring systems by 

[2+n]-cycloadditions (n = 3, 4) (CPEC pathway) 
(Cheng et al. 2017) (Figure 59). Further studies 

covering the application of cycloaddition reactions 

with enoldiazo compounds in the syntheses of 

natural products and pharmaceutical analogues are 

the next prospects.

CONCLUSION

Diazocarbonyl compounds can undergo a wide 

range of synthetic transformations and, because 

of this, several researchers have investigated their 

preparation, reactivity and application through 

Figure 59 - Different cycloadditions pathways of enoldiazo 
compounds.

Figure 58  - Application of the silyl enol ethers of diazoacetates.
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the years. We summarize in this review the 

classical approaches to the preparation of these 

compounds as well as the main improvements and 

innovations in this chemistry. The most significant 
developments in diazomethane acylation have 

been done regarding the safer preparation of 

diazomethane using the continuous flow conditions. 
For diazo transfer reactions, efforts were done in 
the development of novel sulfonyl azide reagents 

and mild reaction conditions. Other advances 

involved the transformation of already prepared 

diazocarbonyl compounds into more complex 

ones, without loss of the diazo functionality. They 

include substitution reactions with a wide range 

of electrophiles, chemoselective oxidation of 

the β-hydroxyl group in diazo compound, cross-

coupling at the diazo function, and the use of 

vinyldiazoacetates and silyl enol diazoacetates.
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