Supplementary Material

Traditional herbal compounds as candidates to inhibit the SARS-CoV-2 main protease: an *in silico* study

Osmair Vital de Oliveira^{1*}, Maria Cristina Andreazza Costa², Ricardo Marques da Costa³, Rafael Giordano Viegas¹, Andrew S. Paluch⁴, Márcia Miguel Castro Ferreira²

¹Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Catanduva, CEP: 15.808-305, Catanduva, SP, Brazil ²Instituto de Química, Universidade Estadual de Campinas, CEP: 13.083-970, Campinas,SP, Brazil ³Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas, Campus Muzambinho, CEP: 37.890-000, Muzambinho, MG, Brazil ⁴Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, USA

*Corresponding authors: Osmair V. Oliveira (osmair-ifsp.edu.br) Telephone number: +55 (17) 3524-9729

	a	. -		H-		Surf	D .	LE ⁱ			Eb ¹
	MW ^b	cLogP	cLogS	Acc	H-	Area ^g	Drugl	(kcal/	LLE		(kcal/
<u> </u>	(u.a.)		u		Don	(A ²)		mol)	J		mol)
1	526.5	-0.6	-3.7	10	1	320.7	-1.1	0.1	4.0	-5.3	-10.2
2	552.5	1.6	-6.3	10	3	388.4	1.0	0.1	0.3	24.8	-10.2
3	484.6	2.6	-4.2	7	2	334.3	-1.6	0.1	1.1	18.0	-10.1
4	577.7	6.5	-10.0	8	1	421.1	0.6	0.1	-4.3	90.0	-10.0
5	809.0	2.0	-6.3	15	5	561.9	3.3	0.1	2.1	20.1	-10.0
6	896.1	0.0	-5.9	16	8	617.0	-3.6	0.1	3.5	0.1	-10.0
7	953.7	-1.6	-4.5	27	12	604.0	-0.3	0.1	5.0	-23.6	-9.9
8	582.7	3.3	-7.1	8	4	441.2	-1.4	0.1	-1.0	45.6	-9.8
9	584.7	1.2	-3.9	10	4	419.9	8.0	0.1	3.1	8.9	-9.8
10	594.7	2.3	-7.7	8	3	461.7	-1.4	0.1	0.0	31.8	-9.8
27	384.4	6.5	-8.2	2	0	284.0	-0.8	0.2	-2.3	33.8	-9.5
28	462.6	5.2	-5.6	4	0	332.6	-4.9	0.0	0.0	0.0	-9.5
29	570.7	-1.7	-5.6	8	6	400.0	0.0	0.1	5.3	-14.4	-9.5
30	588.6	0.7	-4.0	13	3	395.4	-2.0	0.1	3.8	4.6	-9.5
64	470.6	2.5	-4.5	6	2	334.4	1.7	0.1	1.1	17.3	-9.2
65	500.4	-0.4	-10.6	8	2	322.1	-1.1	0.1	2.6	-4.3	-9.2
66	5/0./	-1./	-5.6	ð	6	400.0	0.0	0.1	5.3	-14.4	-9.2
6/	608.7	2.5	-8.0	ð	2	4//.6	-1.4	0.2	2.5	16.6	-9.2
68 100	610./	2.0	-/.0	8 C	3	485.9	-1.4	0.1	1.2	20.6	-9.2
100	354.4	3.2	-4.4	6	0	244.1	-1.1	0.2	0.8	15.3	-9.0
101	3/0.4	0.5	-3.6	/	2	264.5	-1.0	0.2	2./	3.1	-9.0
102	416.6	5.0	-5.8	3	1	303.0	0.2	0.2	-1.3	29.8	-9.0
103	416.6	5.0	-5.8	3	1	303.0	-1.2	0.0	0.0	0.0	-9.0
104	462.6	5.2	-5.0	4	0	332.6	-4.9	0.0	0.0	0.0	-9.0
170	348.4	1.2	-2./	6	1	239.9	5.3	0.2	3.4	4.9	-0.0
170	350.4	0.6	-1.4	5	0	222.7	0.2	0.2	3.5	2.8	-0.0
170	301.5	-1.0	-2.8	6	2	270.1	3.9	0.2	4.6	-5.4	-0.0
1/9	381.5	-1.0	-2.8	6	2	2/0.1	3.9	0.2	4.6	-5.4	-8.8
100	390.5	-0.2	-3.0	0 2	1	291.0	-0.5	0.2	4.0	-1.1 14 0	-0.0 0 F
401	290.4	5.4 1.0	-4.5	5	0	215.9	-/.2	0.2	0.4	14.5	-0.5
402	344.4 252.4	1.0	-3.4 2.2	о г	0	254.9	0.1	0.2	3.0	4./	-0.5
403	353.4 254.4	-0.4	-3.2	5 6	2	200.2 054 5	2.5	0.2	3.9 20	-2.3	-0.5 0 E
404 405	334.4 265 5	0.9	-4.5 2.6	5	ے 1	204.0 057.1	-0.5 7 C	0.2	2.0 E.6	4./ วว	-0.5
405	303.3 265 5	-0.0	-5.0	5	1	257.1	2.0	0.5	5.0 E.G	-2.5 2.2	-0.5
400	305.5 205.2	-0.0	-3.0	5	1	237.1 100 C	2.0	0.5	5.0 1.0	-2.5 20	-0.5 0.7
767	205.2 315 2	0.4	-2.0	0 6	נ ר	7277 C	0.3 _0.2	0.1	<u>з</u> U Т.Э	2.0 / 0	-0.∠ _Ջ フ
762	330 C 212'2	.10	-3.0	U D	נ ר	224.0 750 7	-∪.∠ _วว	0.2	ס.כ ⊿ר	+.∪ _1/⊑	-ບ.∠ _ຊາ
700 760	0.0CC	-1.9 1 1	-4.0 5 7	ے د	2 0	203.2 721 7	-2.2 7 E	0.1	4.Z 0 E	-14.0 10 0	-0.∠ ຊາ
709	334.4 225 4	1.1	-5.7 כי	5	0	231.7	-2.5 רכי	0.1	0.0	12.0 2.2	-0.2
770 771	333.4 340.4	-U.S 1 A	-3.2 2 7	4 ⊑	ے 1	244.4 262 7	∠.⊃ 1 ⊑	U.1 0 1	∠.0 1 つ	-2.3 80	-0.∠ ຊາ
//I 107	540.4	1.0	-3./	Э	T	202./	-1.0	0.1	1.3	0.0	-0.2
ر ۲0۱	<u>776</u> 7	20	6.2	С	Ω	ס כחכ	27	0.2	Ω 1	1/0	۵ D
د 107	2/0.3	5.0	-0.5	ى	U	203.0	-3./	0.5	0.1	14.0	-0.0
107	200.2	っ っ	2 5	7	С	204.2	0.4	01	1 1	15 0	8.0
4 107	500.2	-2.2	-2,5	/	د	204.3	-0.4	0.1	4.4	-13.2	-0.0
101	302 1	ר ר	20	Λ	1	711 O	っ っ	0.2	1 /	10.9	_ <u>8</u> 0
ט 107	302.4 300 2	2.4 1 7	0.C- 0 N	4 5	1 1	211.U 710 1	2.2 7 /	0.2	⊥.4 ∩ ⊏	10.0	-0.0 Q A
101	202.2	1./	-4.0	J	T	∠⊥J.1	-2.4	0.1	0.5	14.3	-0.0

Table S1. The 165 selected compounds for QSPR analysis

6 107											
7 154	318.3	-0.4	-3.3	6	2	227.5	0.3	0.0	0.0	0.0	-8.0
104 3	267.2	-2.4	-4.2	5	0	189.9	-1.1	0.3	6.4	-8.7	-7.7
154 4	268.2	-0.8	-4.2	5	1	188.7	-1.1	0.0	0.0	0.0	-7.7
154 5	275.3	3.5	-6.3	4	0	190.9	-0.9	0.3	1.5	10.8	-7.7
154 6	280.3	1.6	-4.4	3	1	216.7	-1.6	0.3	2.3	6.3	-7.7
154 7	281.2	-3.4	-4.2	6	0	195.4	-0.8	0.3	8.4	-10.4	-7.7
154 8	290.3	-0.8	-3.0	5	3	207.6	-0.4	0.2	4.1	-3.7	-7.7
190 7	255.2	0.7	-2.6	4	1	187.4	-0.6	0.3	3.2	2.4	-7.5
190 8	271.2	0.6	-2.6	5	2	193.8	-0.2	0.4	5.5	1.4	-7.5
190 9	272.3	2.1	-2.2	4	4	200.1	-1.7	0.3	1.8	7.8	-7.5
191 0	280.3	1.6	-4.4	3	1	216.7	-1.6	0.3	2.3	6.3	-7.5
191 1	283.3	1.0	-3.2	5	1	208.1	0.4	0.1	1.2	6.9	-7.5
191 2	288.3	1.3	-2.2	6	4	197.7	0.4	0.2	2.3	5.5	-7.5
243 2	242.3	1.9	-2.1	3	0	176.8	-0.1	0.2	0.4	11.0	-7.2
243 3	246.2	1.4	-2.5	5	4	176.2	-1.1	0.3	1.9	5.5	-7.2
243 4	246.3	1.8	_2 7	3	0	180.1	1.8	0.3	1.8	6.6	-7.2
243 5	240.0	1.0	2.7	1	0	174.8	2.6	0.3	2.4	5.8	7.2
243	240.2	1.7	-3.7	4	1	1/4.0	2.0	0.5	2.4	0.0	-7.2
6 243	248.4	3.6	-4.3	1	1	190.9	-2.7	0.5	2.3	8.0	-/.2
7 273	268.2	-1.4	-4.0	5	1	190.2	-1.1	0.3	6.4	-4.1	-7.2
0 273	242.3	2.2	-2.4	3	2	179.7	-0.5	0.2	0.1	12.5	-7.0
1 273	244.3	3.1	-3.0	3	0	191.4	-1.0	0.2	-1.0	18.9	-7.0
2 273	246.3	2.0	-2.7	3	0	180.4	-0.8	0.3	1.6	7.3	-7.0
3 273	248.4	3.6	-4.3	1	1	190.9	-2.7	0.5	2.3	8.0	-7.0
4 273	248.4	3.6	-4.3	1	1	190.9	-2.7	0.5	2.3	8.0	-7.0
273 5 202	248.4	3.6	-4.3	1	1	190.9	-2.7	0.5	2.3	8.0	-7.0
302 9	218.3	-1.4	-1.9	3	1	167.0	-5.1	0.3	5.0	-4.5	-6.7
303 0	218.3	-1.4	-1.9	3	1	167.0	-5.1	0.3	4.7	-4.8	-6.7
303 1	220.2	2.8	-3.4	3	0	161.2	0.4	0.3	1.2	8.5	-6.7

303											
2 303	222.4	3.8	-3.4	1	1	184.4	-6.2	0.2	-1.6	20.2	-6.7
3	228.2	2.9	-3.4	3	0	171.8	-16.2	0.2	-0.6	15.9	-6.7
303 4	242.3	2.2	-2.4	3	2	179.7	-0.5	0.2	0.1	12.5	-6.7
2 2	189.2	0.4	-1.5	3	2	128.1	2.8	0.4	3.8	0.9	-6.5
319	204.4	4.0	-3.6	0	0	160.1	-4.4	0.2	-1.7	19.1	-6.5
319 4	214.3	3.6	-3.7	1	0	173.9	-3.3	0.2	-1.3	18.3	-6.5
319 5	218.3	-1.4	-1.9	3	1	167.0	-5.1	0.3	5.0	-4.5	-6.5
319 6	218.3	-1.4	-1.9	3	1	167.0	-5.1	0.3	5.1	-4.3	-6.5
319 7	218.3	3.9	-4.0	1	0	176.9	-3.1	0.2	-1.6	19.9	-6.5
343 2	202.2	0.4	-1.7	4	1	143.6	4.0	0.3	3.0	1.3	-6.2
343 3	204.4	4.6	-3.7	0	0	174.9	-21.3	0.2	-2.7	26.0	-6.2
343 4	204.4	3.8	-3.7	0	0	160.6	-2.1	0.2	-1.5	18.3	-6.2
343 5	204.4	4.9	-3.5	0	0	175.4	-2.4	0.4	-0.8	13.2	-6.2
343 6	204.4	4.0	-3.6	0	0	160.1	-4.4	0.2	-1.7	19.1	-6.2
343 7	205.3	-1.5	-0.9	3	1	168.9	2.7	0.3	5.1	-4.4	-6.2
356 5	186.2	1.9	-3.5	3	0	138.3	-3.6	0.5	3.3	3.8	-6.0
356 6	186.2	2.2	-3.3	2	0	144.5	-1.5	0.4	1.8	5.7	-6.0
356 7	187.2	0.0	-2.7	3	0	139.8	-1.5	0.5	5.0	-0.1	-6.0
356 8	187.3	1.8	-2.5	2	2	143.9	0.5	0.4	2.2	4.5	-6.0
356 9	198.3	3.9	-2.7	0	0	171.6	0.2	0.5	1.5	7.9	-6.0
371 0	166.3	2.3	-2.5	1	0	134.2	-5.0	0.3	-0.1	9.0	-5.7
371	168.1	-1.2	-3.0	7	4	108.5	2.9	0.7	7.1	-1.8	-5.7
371 2	170.3	1.7	-2.1	2	1	131.1	-1.0	0.3	0.6	6.4	-5.7
371	174.2	2.8	-4.4	1	1	161.7	-8.7	0.2	-0.6	11.9	-5.7
371	187.3	-0.6	-2.0	2	2	161.8	0.2	0.4	4.6	-1.7	-5.7
371 5	187.3	-0.6	-2.0	2	2	161.8	0.2	0.4	4.6	-1.7	-5.7
371 6	192.2	0.9	-1.5	4	2	137.2	-7.1	0.2	1.4	4.0	-5.7
378 3 378	152.2 158 1	2.1 -2 1	-2.4 -1 1	1 7	0 4	116.5 108 7	-3.4 3.0	0.2	-0.1 8.8	8.5 -2 5	-5.5 -5 5
5,0	100.1	<u> </u>	T • T	'	•	100./	5.0	0.0	0.0	2.0	0.0

4											
378 5	158.2	1.4	-2.7	2	0	121.8	-3.3	0.6	3.6	2.5	-5.5
378 6	162.1	1.2	-2.1	3	1	120.4	-3.2	0.3	1.1	4.4	-5.5
378 7	166.2	1.5	-1.9	2	0	128.0	-0.1	0.3	0.8	5.8	-5.5
391 3 201	149.2	1.3	-1.6	2	1	115.9	1.3	0.3	1.0	4.6	-5.2
4	152.2	1.8	-2.0	1	1	118.8	-1.6	0.6	3.2	2.9	-5.2
5 5 201	152.2	1.9	-2.3	1	1	115.6	-3.9	0.5	2.0	3.9	-5.2
6 301	156.2	-2.8	-0.9	3	2	116.0	-1.3	0.4	6.1	-6.6	-5.2
7 7 403	156.2	-2.8	-0.9	3	2	116.0	-1.3	0.4	6.1	-6.6	-5.2
0 403	133.1	0.6	-1.7	2	1	113.8	-5.2	0.7	4.4	0.9	-5.0
403 1 403	136.2	2.8	-2.7	0	0	110.5	-6.0	0.6	1.7	4.5	-5.0
2 403	147.2	2.5	-2.4	1	0	123.1	-1.8	0.5	1.7	4.8	-5.0
-05 3 403	150.2	2.8	-2.5	1	1	128.9	-2.3	0.2	-1.3	14.8	-5.0
4 4 403	150.2	3.2	-2.6	1	0	138.2	-1.2	0.5	0.9	6.3	-5.0
-05 5 416	150.2	2.8	-2.5	1	1	128.9	-2.3	0.6	2.1	4.6	-5.0
-10 5 416	126.1	0.6	-0.7	3	3	92.3	-2.3	0.9	5.4	0.7	-4.8
410 6 416	126.1	-0.6	-1.4	4	2	95.4	2.3	0.9	6.5	-0.7	-4.8
410 7 416	130.1	-0.8	-1.8	4	2	89.5	-4.5	0.8	6.3	-1.0	-4.8
410 8 416	133.1	0.6	-1.7	2	1	113.8	-5.2	0.7	4.4	0.9	-4.8
9 430	134.1	0.7	-2.0	2	0	101.3	-1.6	0.7	4.4	1.0	-4.8
4 4 430	120.2	2.0	-2.1	1	1	104.2	-4.8	0.6	2.2	3.1	-4.5
-50 -5 	122.1	-1.9	-0.8	3	0	97.3	-1.2	0.9	8.0	-2.1	-4.5
430 430	122.2	1.5	-1.6	1	1	107.1	-4.1	0.8	3.7	1.9	-4.5
430 7 430	136.2	2.9	-2.4	0	0	126.8	-1.9	0.7	2.2	4.1	-4.5
8 430	140.2	0.4	-1.8	2	0	113.3	-4.8	0.7	4.7	0.5	-4.5
9 439	140.2	0.4	-1.8	2	0	113.3	-4.8	0.7	4.7	0.5	-4.5
8 439	104.2	2.4	-2.4	0	0	97.8	-4.9	0.9	2.8	2.7	-4.2
9 440	108.1	0.1	-1.0	2	0	88.5	-3.0	0.9	5.2	0.1	-4.2
0	110.1	1.0	-1.0	2	2	86.0	-2.3	1.0	5.1	0.9	-4.2

440	112.1	0.4	-1.4	2	0	0.2.0	E 1	0.0	4.5	0 5	4 0
440				-	0	92.0	-5.1	0.0	4.2	0.5	-4.2
2	114.1	-5.1	-0.2	4	0	90.6	-0.5	0.0	0.0	0.0	-4.2
440 3 442	114.1	0.6	-1.6	2	0	93.8	-10.4	0.8	4.2	0.8	-4.2
443 7 443	94.1	1.3	-1.3	1	1	79.6	-2.3	1.2	4.7	1.1	-4.0
8 443	96.1	0.2	-1.4	2	0	77.0	-9.2	0.8	4.0	0.2	-4.0
9	112.2	-3.9	-0.5	3	2	96.8	-0.5	0.7	8.0	-5.4	-4.0
0 444	116.1	-4.8	-0.5	4	0	91.6	-2.7	0.4	7.4	-10.9	-4.0
1	117.1	-2.2	-0.8	3	1	96.0	-1.9	0.9	7.4	-2.5	-4.0
2 445	119.1	-3.4	-0.3	4	2	90.1	-2.3	0.9	8.6	-3.9	-4.0
5 445	408.8	13.2	-8.3	0	0	409.5	-20.4	0.2	-8.3	57.1	-3.9
6	96.1	0.8	-1.6	2	0	82.5	-3.4	1.0	4.4	0.8	-3.8
443 7 445	99.1	-1.1	-0.9	2	0	88.0	-3.5	0.6	4.3	-1.8	-3.8
445 8 445	105.1	-3.8	0.1	4	2	79.1	-1.8	1.0	9.0	-3.7	-3.8
9 44G	142.2	3.0	-2.6	1	0	141.6	-22.3	0.6	1.5	4.9	-3.8
446 0	156.3	3.5	-2.9	1	0	155.4	-22.3	0.6	1.6	5.5	-3.8
447 0 447	75.0	-3.3	0.0	3	1	58.9	-1.0	0.0	0.0	0.0	-3.5
447 1 447	86.2	0.5	-1.1	1	1	76.5	-5.8	1.2	4.6	0.4	-3.5
2	88.0	-5.7	0.1	4	0	64.1	-7.2	0.8	9.3	-7.0	-3.5
447 3 447	89.1	-2.8	-0.3	3	1	74.0	-2.9	1.5	9.4	-1.8	-3.5
4	101.1	-1.0	-1.3	2	0	92.3	-6.9	1.0	6.1	-1.0	-3.5
5	102.2	1.9	-1.6	1	1	100.9	-19.4	1.0	3.2	1.9	-3.5
449 3 449	146.3	2.8	-2.7	0	0	125.5	-5.8	0.0	0.0	0.0	-3.2
449 4 1/19	68.1	0.8	-1.3	1	0	63.0	-2.1	1.4	4.3	0.6	-3.1
44 <i>5</i> 5 449	99.2	2.3	-1.6	1	0	97.1	-7.2	1.2	3.0	1.9	-3.1
6 449	86.1	1.2	-1.5	1	0	86.6	-9.9	1.2	3.9	1.0	-3.0
7 7 1/0	114.2	2.2	-2.0	0	0	107.6	-3.9	1.0	2.8	2.2	-3.0
8 4 <u>4</u> 9	120.2	2.2	-2.3	0	0	99.0	-4.5	0.0	0.0	0.0	-2.8
9 450	59.0 62.0	-2.4 -0.9	-0.5 -1.1	2 4	0 0	51.0 43.5	-6.2 -9.9	0.7 1.5	4.3 5.3	-3.6 -0.6	-2.7 -2.7

0											
450											
1	58.1	0.4	-0.9	1	0	55.8	-2.6	2.3	6.4	0.2	-2.6
450											
2	43.0	-0.7	-0.5	2	1	41.6	-4.2	0.0	0.0	0.0	-2.5
450											
3	46.1	0.1	-0.5	1	1	45.9	-2.3	2.8	6.1	0.0	-2.3
450											
4	253.8	-2.8	-0.5	0	0	66.1	-1.4	4.2	8.9	-0.7	-1.5
450											
5	27.0	-0.3	-0.2	1	0	29.2	-1.8	3.3	5.0	-0.1	-1.3
450											
6	48.1	0.4	-1.4	0	0	41.6	-2.3	4.2	5.6	0.1	-1.2

^aNumber of ligand; ^bmolecular weight; ^cpartition coefficient; ^daqueous solubility; ^enumber of H-bond acceptors; ^fnumber of H-bond donors; ^gsurface area; ^bdruglikeness; ⁱligand efficiency; ^jlipophilic ligand efficiency; ^klipophilicity corrected LE; ^bbinding energy.

Parameters	Equations
Coefficient of multiple determination of	$\sum (y_i - \hat{y}_{ci})^2$
calibration (<i>R</i> ²)	$1 - \frac{i}{\sum_{i} (y_i - \overline{y})^2}$
Standard deviation of calibration model (SEC)	$\sqrt{\frac{\sum_{i} (y_i - \hat{y}_{ci})^2}{n - p - 1}}$
Coefficient of multiple determination of cross	$\sum (y_i - \hat{y}_{vi})^2$
validation (Q^2)	$1 - \frac{i}{\sum_{i} (y_i - \overline{y})^2}$
Standard error of cross validation (<i>SEV</i>)	$\sqrt{\frac{\sum_{i} (y_i - \hat{y}_{vi})^2}{n}}$
Standard error of prediction (SEP)	$\sqrt{\frac{\sum_{i} (y_{i} - \hat{y}_{ei})^{2}}{n_{ev}}}$
Coefficient of multiple determination of	$\sum (\boldsymbol{y}_i - \boldsymbol{\hat{y}}_{ei})^2$
prediction (R^2_{pred})	$1 - \frac{i}{\sum_{i} (y_i - \overline{y})^2}$

Table S2. Statistical parameters and respective equations employed in PLS regression for the assessment of the quality of the model.

y_i: observed values of y; \overline{y} : average observed values of y for the training set; \hat{y}_{ci} : estimated values of y in the regression model; \hat{y}_{vi} : estimated values of y in the cross-validation; \hat{y}_{ei} : estimated values of y in the external validation; *n*: number of compounds in the training set; n_{ev} : number of compounds in the test set; *p*: number of latent variables in the model.

Compound	Eb (kcal/mol)		Error %	Compound	Eb (kca	l/mol)	Error %
	Obs.	Pred.			Obs.	Pred.	
1	- 10.2	-8.91	12.69	3432	-6.2	-6.59	-6.21
2	-10.2	-10.14	0.55	3434	-6.2	-6.51	-5.02
3	-10.1	-8.76	13.32	*3435	-6.2	-6.32	-1.87
4	-10.0	-11.11	-11.09	3436	-6.2	-6.29	-1.46
6	-10.0	-12.01	-20.08	*3437	-6.2	6.35	-2.39
8	-9.8	-10.34	-5.54	3565	-6.0	-5.95	0.78
9	-9.8	-10.40	-6.11	3566	-6.0	-6.22	-3.59
10	-9.8	-10.62	-8.36	3567	-6.0	-5.98	0.29
27	-9.5	-8.92	6.10	*3568	-6.0	-6.21	-3.50
28	-9.5	-8.72	8.22	*3569	-6.0	-6.18	-3.06
29	-9.5	-9.85	-3.70	3710	-5.7	-5.70	-0.07
30	-9.5	-9.52	-0.18	3711	-5.7	-6.21	-9.00
64	-9.2	-9.02	1.92	3712	-5.7	-6.02	-5.69
65	-9.2	-10.38	-12.81	3713	-5.7	-5.98	-4.86
66	-9.2	-9.85	-7.08	*3714	-5.7	-6.17	-8.26
*67	-9.2	-10.70	-16.36	*3715	-5.7	-6.17	-8.26
*68	-9.2	-10.59	-15.10	3716	-5.7	-5.55	2.64
100	-9.0	-7.89	12.36	3783	-5.5	-5.73	-4.18
101	-9.0	-7.96	11.61	3784	-5.5	-5.57	-1.25
102	-9.0	-8.73	2.95	3785	-5.5	-5.50	-0.08
103	-9.0	-8.79	2.28	*3786	-5.5	-5.78	-5.13
*104	-9.0	-8.72	3.12	*3787	-5.5	-6.05	-9.95
*176	-8.8	-8.03	8.80	3913	-5.2	-5.97	-14.79
178	-8.8	-8.22	6.56	3914	-5.2	-5.38	-3.46
179	-8.8	-8.22	6.56	3915	-5.2	-5.35	-2.94
180	-8.8	-8.13	7.64	3916	-5.2	-5.47	-5.18
*402	-8.5	-	9.49	3917	-5.2	-5.47	-5.18
		7.69					
403	-8.5	-7.96	6.33	*4030	-5.0	-4.85	2.93
404	-8.5	-8.00	5.89	4031	-5.0	-4.99	0.27
405	-8.5	-8.04	5.43	4032	-5.0	-5.55	-11.03
406	-8.5	-8.04	5.43	*4033	-5.0	-5.96	-19.29
*766	-8.2	-	11.75	4034	-5.0	-5.75	-15.08
		7.24					0 = 5
767	-8.2	-7.41	9.58	4035	-5.0	-5.46	-9.26
*768	-8.2	- 7.60	7.36	*4165	-4.8	-4.56	5.00
769	-8.2	-8.03	2.11	4166	-4.8	-5.19	-8.15

Table S3. The observed and predicted values by PLS model for training and test (*) sets

770	-8.2	-7.88	3.87	4167	-4.8	-4.72	1.58
*771	-8.2	-	5.20	4168	-4.8	-4.85	-1.12
		7.77					
1073	-8.0	-7.45	6.83	4169	-4.8	-5.18	-7.89
1074	-8.0	-7.28	9.05	*4304	-4.5	-4.91	-9.06
1075	-8.0	-7.64	4.51	4305	-4.5	-4.68	-3.95
*1076	-8.0	-	4.61	4306	-4.5	-4.69	-4.25
		7.63					
1077	-8.0	-7.81	2.36	*4307	-4.5	-5.28	-17.27
1543	-7.7	-7.19	6.66	*4308	-4.5	-4.93	-9.46
*1544	-7.7	-	2.44	*4309	-4.5	-4.93	-9.46
4.5.45		7.51	4.40	4200		4	0 ==
1545	-7.7	-7.62	1.10	4398	-4.2	-4.57	-8.77
1546	-7.7	-	5.37	*4399	-4.2	-4.43	-5.38
*1547	77	7.29		4400	4.2	4.25	2 47
*1547	-/./	- 7.26	5./4	4400	-4.2	-4.35	-3.47
1548	_7 7	-7.20	6 31	4401	-4.2	-4 51	-7 31
*1907	-7.7	-7.21	9.75	4401		-5.67	-35.07
1507	-7.0	6 77	5.75	4402	-4.2	-5.07	-55.07
1908	-7.5	-	9.47	4403	-4.2	-4.02	4.26
1000	,	6.79	5.17	1100			
*1909	-7.5	_	10.73	4437	-4.0	-4.14	-3.49
		6.70					
1910	-7.5	-7.29	2.85	4438	-4.0	-3.97	0.87
1911	-7.5	-7.38	1.59	4439	-4.0	-4.87	-21.81
*1912	-7.5	-7.08	5.61	*4440	-4.0	-5.01	-25.29
*2432	-7.2	-6.69	7.03	*4441	-4.0	-4.63	-15.70
*2433	-7.2	-6.71	6.86	4442	-4.0	-4.49	-12.17
2434	-7.2	-	3.89	*4456	-3.8	-4.36	-14.80
		6.92					
2435	-7.2	-7.24	-0.53	4457	-3.8	-4.67	-2285
2436	-7.2	-6.63	7.87	4458	-3.8	-4.19	-10.28
2437	-7.2	-7.07	1.74	*4459	-3.8	-3.65	4.03
2730	-7.0	-6.75	3.64	4460	-3.8	-3.80	0.10
*2731	-7.0	-6.90	1.43	4471	-3.5	-3.74	-6.98
*2732	-7.0	-6.68	4.64	4472	-3.5	-3.82	-9.12
*2733	-7.0	-6.63	5.24	4473	-3.5	-3.49	0.27
*2734	-7.0	-6.63	5.24	*4474	-3.5	-4.02	-14.84
*2735	-7.0	-6.63	5.24	*4475	-3.5	-2.93	16.36
3029	-6.7	-5.90	11.91	*4494	-3.1	-3.73	-20.22
3030	-6.7	-5.92	11.59	4495	-3.1	-3.82	-23.24
*3031	-6.7	-	-0.34	4496	-3.0	-3.49	-16.32
		6.72				4 - 2	
3032	-6.7	-6.30	6.00	4497	-3.0	-4.53	-51.16
3034	-6.7	-6.75	-0.67	*4499	-2.7	-3.98	-47.49
3192	-6.5	-6.18	4.92	4500	-2.7	-2.84	-5.11
3193	-6.5	-6.29	3.23	4501	-2.6	-2.47	5.17
3194	-6.5	-6.55	-0.79	4503	-2.3	-1.72	25.15

*3195	-6.5	-5.90	9.20	4504	-1.5	-0.98	34.42
*3196	-6.5	-5.89	9.41	4505	-1.3	-1.02	21.28
*3197	-6.5	-6.67	-2.62	4506	-1.2	-0.32	73.14

Figure S1. Leverage *vs.* Studentized residuals plot for PLS models of 165 selected compounds for QSPR analysis.

Figure S2. RMSD of the C-alpha atoms for all systems in triplicate MD simulations. PHY-M^{pro} (A), MAM-M^{pro} (B), WPC-M^{pro} (C), CEP-M^{pro} (D), TRI-M^{pro} (E), TET-M^{pro} (F), and TUB-M^{pro} (G) complexes, and apo form (H). MD1 in black, MD2 in red, and MD3 in green color.

Figure S3. Radius of gyration (Rg) for each system in triplicate MD simulations. PHY-M^{pro} (A), MAM-M^{pro} (B), WPC-M^{pro} (C), CEP-M^{pro} (D), TRI-M^{pro} (E), TET-M^{pro} (F), and TUB-M^{pro} (G) complexes, and apo form (H). MD1 in black, MD2 in red, and MD3 in green color.

Figure S4. RMSF of each residue for all systems in triplicate MD simulations. PHY-M^{pro} (A), MAM-M^{pro} (B), WPC-M^{pro} (C), CEP-M^{pro} (D), TRI-M^{pro} (E), TET-M^{pro} (F), and TUB-M^{pro} (G) complexes, and apo form (H). MD1 in black, MD2 in red, and MD3 in green color.

Figure S5. SASA of the protein for all systems in triplicate MD simulations. PHY-M^{pro} (A), MAM-M^{pro} (B), WPC-M^{pro} (C), CEP-M^{pro} (D), TRI-M^{pro} (E), TET-M^{pro} (F), and TUB-M^{pro} (G) complexes, and apo form (H). MD1 in black, MD2 in red, and MD3 in green color.

E LEU 167

PRO 168

Figure S6. 2D interaction diagram for each system. PHY-M^{pro} (A), MAM-M^{pro} (B), WPC-M^{pro} (C), CEP-M^{pro} (D), TRI-M^{pro} (E), TET-M^{pro} (F), and TUB-M^{pro} (G) complexes.