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TRAF molecules in cell signaling and in human
diseases
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Abstract

The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally

identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily.

The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These

include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor

family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs

also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways

typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs),

or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient

mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate

and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism.

Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers

and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents

an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules

in signaling and in human diseases.
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Background
The tumor necrosis factor receptor (TNF-R)-associated

factor (TRAF) family of intracellular proteins were origin-

ally identified as signaling adaptors that bind directly to

the cytoplasmic regions of receptors of the TNF-R super-

family [1-3]. There are six known members of the TRAF

family (TRAF1 to 6) in mammals. Although a novel pro-

tein was named TRAF7 [4], this claim is controversial as

the protein does not have the TRAF homology domain

that defines the TRAF family (Figure 1). The distinctive

feature of all TRAF proteins is a C-terminal TRAF do-

main, which is composed of an N-terminal coiled-coil

region (TRAF-N) and a C-terminal β-sandwich (TRAF-C)

[2,3,5]. The TRAF domain mediates protein-protein in-

teractions, including TRAF oligomerization as well as

interactions with upstream regulators and downstream

effectors [2,3,5]. For example, the eight-stranded

β-sandwich structure of the TRAF-C domain mediates the

interaction with receptors, and the minor structural differ-

ences in this domain among TRAFs (as revealed by X-ray

crystallography) define the specificity of each TRAF bind-

ing to various receptors [6,7]. Therefore, one important

role of TRAFs is to serve as adaptor proteins in the assem-

bly of receptor-associated signaling complexes, linking

upstream receptors to downstream effector enzymes.

Most TRAFs, with the exception of TRAF1, contain an

N-terminal RING finger domain, followed by a variable

number of zinc fingers [2,3,8]. The RING finger is found

in many E3 ubiquitin ligases and comprises the core of the

ubiquitin ligase catalytic domain. Indeed, increasing evi-

dence indicates that in addition to their role as adaptor

proteins, TRAFs (including TRAF2, 3, 5 and 6) also act as

E3 ubiquitin ligases [3,8,9]. Thus, TRAFs function as both

adaptor proteins and E3 ubiquitin ligases to regulate

signaling.

The past decade has witnessed rapid expansion of recep-

tor families identified to employ TRAF proteins for signal-

ing. In addition to the TNF-R superfamily, TRAFs are now

recognized as signal transducers of a wide variety of other
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receptor families, including innate immune receptors,

adaptive immune receptors, cytokine receptors, and

C-type lectin receptors [9-14]. For example, three major

families of pattern recognition receptors (PRRs) of the

innate immune system recruit TRAFs via additional

adaptor proteins: Toll-like receptors (TLRs) via MyD88 or

TRIF, nucleotide binding-oligomerization domain (NOD)-

like receptors (NLRs) via RIP2, and retinoic acid-inducible

gene I (RIG-I)-like receptors (RLRs) via MAVS [10,15,16].

TRAF-dependent signaling pathways typically lead to

the activation of nuclear factor-κBs (NF-κB1 and

NF-κB2), mitogen-activated protein kinases (MAPKs),

or interferon-regulatory factors (IRFs). Acting alone or

in combination, TRAFs are highly versatile regulators

that control diverse cellular processes, including sur-

vival, proliferation, differentiation, activation, cytokine

production, and autophagy [3,9,16,17].

Despite the similarities in the signaling pathways acti-

vated by different TRAF proteins, each TRAF appears to

play obligatory and non-redundant physiological roles.

Germ-line and conditional knockout mice have been in-

strumental in revealing the overlapping yet distinct roles

of different TRAFs in whole animals. Compelling evi-

dence from these studies demonstrates that TRAFs cri-

tically regulate a plethora of physiological processes,

including innate and adaptive immunity, embryonic de-

velopment, tissue homeostasis, stress response, and bone

metabolism [3,18,19]. The pivotal roles of TRAFs in host

immunity are further highlighted by the discoveries that

pathogens adopt deliberate strategies to subvert TRAF

functions [20,21]. An emerging paradigm of TRAF func-

tions is that alterations in TRAFs may contribute to the

pathogenesis of important human diseases, including

cancers, autoimmune diseases and immunodeficiencies

[18,22,23]. This has sparked new appreciation and

interest in TRAF research during the past few years.

Here I attempt to provide an overview of the current

knowledge of TRAFs, with an emphasis on recent ad-

vances in understanding TRAFs in receptor signaling

and in human diseases as well as recent insights into the

regulatory mechanisms of TRAF ubiquitination.

TRAFs in signaling by the TNF-R superfamily

Receptors of the TNF-R superfamily have wide tissue

distribution and regulate diverse biological functions, in-

cluding immune responses, inflammation, lymphoid

organ and brain development, osteoclastogenesis, and

tissue homeostasis [3,24-26]. Structurally, these recep-

tors are characterized by the presence of conserved

cysteine-rich domains (CRDs) in their extracellular re-

gion that are responsible for the binding of their ligands

of the TNF superfamily. Based on the intracellular struc-

tures, the TNF-R superfamily is categorized into two

main groups. The first group of receptors, termed death

receptors, contain a death domain in the intracellular re-

gion. The second group, also the majority of the TNF-R

superfamily, do not have a death domain but contain

TRAF-interacting motifs (TIMs) in their intracellular re-

gion [3,24,26]. TRAF2, 3 and 5 usually have overlapping

binding motifs, whereas TRAF6 has a distinct interacting

motif on these receptors [3,27].

Receptors of this family do not have kinase activity

and depend on the binding of adaptor proteins to as-

semble signaling complexes to activate downstream

pathways [3,24,26]. Signaling by death receptors mainly

relies on adaptor proteins containing a death domain,

such as TRADD or FADD, thereby culminating in

caspase activation and cell apoptosis. In contrast, signal-

ing by the TIM-containing receptors is mediated primar-

ily, albeit not exclusively, via TRAFs [3,24,26]. These

include TRAFs that can interact with the receptors ei-

ther directly through TIMs or indirectly through other

TRAFs or adaptor proteins (Table 1). Binding of TRAFs

to TNF-Rs typically induces signaling cascades leading

to the activation of NF-κB and MAPKs, including ERK,

p38 and JNK, and ultimately regulates cell survival or

functionality depending on the cell type and the context

[3,24,26]. Notably, TRAF2 and TRAF5 can also modu-

late signaling by death receptors through association

with TRADD, FADD or RIP1 (Table 1). Most TRAF-

dependent receptors of this family trigger the canonical

NF-κB pathway (RelA/p50, NF-κB1). In contrast, the al-

ternative NF-κB pathway (RelB/p52, NF-κB2) is activated

by a subset of TNF-Rs, including CD40, BAFF-R, the

lymphotoxin-β receptor (LTβR), 4-1BB, and Fn14 [28-32].

Interestingly, however, unlike CD40 or BAFF-R, TWEAK-

induced Fn14 signaling promotes NF-κB2 activation

through a distinct mechanism that induces lysosomal deg-

radation of cIAP1-TRAF2 in a cIAP1-dependent manner

Zn Fingers Coiled-coil (TRAF-N) domain TRAF-C domainZn RING

TRAF2

TRAF1

TRAF3

TRAF4

TRAF5

TRAF6

Nuclear localization signals

TRAF7

WD40 repeats

Figure 1 Domain structure of the seven TRAF proteins. Symbols

for different domains are shown, including zinc RING (Zn RING), zinc

fingers (Zn Fingers), coiled-coil (TRAF-N) domain, TRAF-C domain,

nuclear localization signals, and WD40 repeats.
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[33]. The distinct TWEAK/Fn14 paradigm is covered in

detail in a recent review by Silke and Brink [32].

Using CD40 and BAFF-R as examples, here I briefly

summarize recent advances in understanding how TRAFs

regulate the two NF-κB pathways and activation of

MAPKs (Figure 2). In the absence of stimulation, TRAF3

constitutively binds to NIK (the upstream kinase of the

NF-κB2 pathway) and TRAF2 (which associates with

cIAP1/2). In this complex, cIAP1/2 induces K48-linked

polyubiquitination of NIK, and thus targets NIK for

proteasomal degradation and inhibits NF-κB2 activation

[37,68-71]. Following BAFF or CD154 stimulation,

trimerized BAFF-R or CD40 recruits TRAF3, TRAF2,

cIAP1/2 and MALT1 to membrane signaling rafts, relea-

sing NIK from the TRAF3/TRAF2/cIAP1/2 complex

[37,72-74]. NIK protein is accumulated in the cytoplasm,

induces the activation of IKKα and NF-κB2, and eventu-

ally up-regulates the expression of anti-apoptotic proteins

of the Bcl-2 family (such as Bcl-2, Bcl-xL, and Mcl-1) to

induce cell survival [28]. In the receptor signaling com-

plex, TRAF2 induces K63-linked polyubiquitination of

cIAP1/2, which is subsequently activated to catalyze K48-

linked polyubiquitination and degradation of TRAF3 and

TRAF2 [37,72,74,75]. Following CD40 activation, many

other signaling proteins (including TRAF5, TRAF6,

TRAF1, Ubc13, MEKK1, TAK1 and NEMO) are also

recruited to the cytoplasmic domain of the receptor, and

the K63-specific ubiquitin ligase activity of TRAF2 and

TRAF6 is rapidly stimulated [27,72,75]. These proteins

form several separate multiprotein signaling complexes,

which result in the phosphorylation and activation of

MEKK1 and TAK1. Activated MEKK1 and TAK1 and

their associated protein complexes are subsequently

released from the receptor into the cytoplasm to activate

MAPKs and NF-κB1, which eventually mediate the

effector functions of CD40 [35,72]. Interestingly, the re-

leasing step of MEKK1 and TAK1 is inhibited by TRAF3

via a yet unknown mechanism, but promoted by cIAP1/2-

catalyzed K48-linked polyubiquitination and proteasomal

degradation of TRAF3 [72,74,75]. In response to BAFF

stimulation, a signaling pathway of c-Raf-MEK-ERK-

dependent phosphorylation and down-regulation of the

pro-apoptotic protein Bim also contributes to B cell sur-

vival [76]. In light of the evidence that TRAF1 mediates

4-1BB-induced ERK-dependent phosphorylation and

down-regulation of Bim to promote T cell survival [77-79],

it would be interesting to investigate the role of TRAF1 in

BAFF-induced Bim down-regulation in B cells. Collec-

tively, the above evidence indicates that TRAFs are critical

regulators of signaling by the TNF-R superfamily.

TRAFs in TLR signaling

Toll-like receptors (TLRs), the best-studied family of

PRRs, recognize conserved structures termed pathogen-

associated molecular patterns (PAMPs) of diverse inva-

ding microbes, including Gram-positive and -negative

bacteria, DNA and RNA viruses, fungi, protozoa, and

parasites. They also detect endogenous molecules

released from damaged or inflamed self-tissues, referred

to as damage-associated molecular patterns (DAMPs)

[80-82]. Upon sensing these molecules, TLR signaling

induces the production of pro-inflammatory cytokines

(such as TNFα, IL-1, IL-6, and IL-12), type I interferons

(IFNα and IFNβ), chemokines, antimicrobial enzymes,

and other inflammatory mediators. These provoke acute

inflammatory responses as well as phagocytosis and

autophagy, which represent the first line of innate

immunity against pathogens [17,83,84]. TLR signaling

also serves to prime the subsequent adaptive immune

responses by up-regulating adhesion molecules and co-

Table 1 TRAFs directly and indirectly employed by the

TNF-R superfamily

Receptors TRAFs References

Receptors containing TRAF-interacting motifs

TNF-R2 TRAF2 [26,34]

TRAF1, 3 via TRAF2 [26]

CD40 TRAF2, 3, 5, 6 [27,28,35]

TRAF1 via TRAF2 [28]

BAFF-R TRAF3, 6 [36-38]

TRAF2 via TRAF3 [28]

BCMA TRAF1, 2, 3, 5, 6 [39,40]

TACI TRAF2, 3, 5, 6 [2,28,41]

LTβR TRAF2, 3, 5 [29,42-47]

CD27 TRAF2, 3, 5 [1,48,49]

CD30 TRAF1, 2, 3, 5 [1,2]

4-1BB TRAF1, 2, 3 [1,2]

OX40 TRAF1, 2, 3, 5, 6 [1,2,50-52]

GITR TRAF1, 2, 3, 4, 5 [1,2,53,54]

RANK TRAF1, 2, 3, 5, 6 [1,2,55,56]

HVEM TRAF1, 2, 3, 5 [1,2,57]

Troy TRAF2, 5, 6 [58]

XEDAR TRAF3, 6 [59]

Fn14 TRAF2, 6 [33,60]

Death receptors

TNF-R1 TRAF2 via TRADD [61-63]

TRAF5 via RIP1 [64]

p75NTR TRAF1, 2, 3, 4, 5, 6 [2,65,66]

EDAR TRAF1, 3, 6 [63]

FAS TRAF2 via FADD [63]

DR3 TRAF2 via TRADD [63]

DR6 TRAF2 via TRADD [63]

TRAIL-R1 TRAF2 via RIP1 [67]
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stimulatory molecules (such as CD40, CD80, and CD86)

on antigen presenting cells [85,86].

TLRs (TLR1, 2, 4–6, 10) that sense lipids or proteins

are located on the cell membrane, while those (TLR3, 7,

8, 9) that recognize nucleic acids are resided in intracel-

lular endosomes [8,87]. Each TLR consists of an

ectodomain containing leucine-rich repeats (LRR) that

mediate sensing of PAMPs or DAMPs, and a cytoplas-

mic Toll/IL-1 receptor (TIR) domain that mediates

downstream signal transduction. Ligand-induced TLR

dimerization or oligomerization recruits TIR domain-

containing adaptor proteins through TIR-TIR interac-

tions, including MyD88, TRIF, Mal and TRAM

[83,88,89]. MyD88 is employed by all TLRs except

TLR3. TRIF is only used by TLR3 and endocytosed

TLR4. Mal (also known as TIRAP) facilitates the recruit-

ment of MyD88 to TLR4, while TRAM acts as a bridg-

ing adaptor between TRIF and endocytosed TLR4.

Collectively, two general pathways are used by TLRs:

MyD88-dependent (all TLRs except TLR3) and TRIF-

dependent (TLR3 and TLR4) pathways. Both pathways

initiate complex signaling cascades of phosphorylation

and ubiquitination events, which culminate in the activa-

tion of transcription factors, including NF-κB, IRFs, and

AP-1 family members, leading to innate immune res-

ponses [83,88,89].

TRAF6 mediates both MyD88-dependent and TRIF-

dependent activation of NF-κB and AP-1 (Figure 3). In

MyD88-dependent TLR signaling, TRAF6 is recruited to

MyD88-activated IRAK1/2, and oligomerization of TRAF6

stimulates its E3 ubiquitin ligase activity. In coordination

with the E2 complex Uev1A:Ubc13, TRAF6 catalyzes the

attachment of K63-linked polyubiquitin chains onto its

substrates, including itself and NEMO [8,89,90], and syn-

thesis of free, unanchored K63-polyubiquitin chains [91].

Ubiquitinated TRAF6 serves as a signaling scaffold to

recruit TAK1 via TAB2/3. TRAF6-generated free K63-

polyubiquitin chains also bind to TAB2/3 to activate

TAK1, and bind to NEMO to activate IKKα/β in the

receptor complex. This ultimately results in MyD88-

dependent activation of NF-κB [8,82,90,91]. The TAK1

signaling complex, including TRAF6-TAB2/3-TAB1-

TAK1, is subsequently dissociated from the receptor and

released into the cytosol, where TAK1 activates MAPK

cascades, leading to activation of AP-1. Similar to CD40

signaling, the release of the TAK1 signaling complex from

TLR4 is inhibited by TRAF3, which is recruited to TLR4

by MyD88 and IRAK1. However, TRAF6 catalyzes K63-

linked polyubiquitination of cIAP1/2, which is also

recruited by MyD88 and IRAK1. Activated cIAP1/2 pro-

motes K48-linked polyubiquitination and degradation of

TRAF3, allowing activation of MAPKs [92]. In TRIF-

dependent TLR signaling, TRIF directly recruits TRAF6

and RIP1, which work cooperatively to activate TAK1,

eventually leading to activation of NF-κB and AP-1

[8,82,90]. Interestingly, in response to engagement of

TLR1, 2 or 4, TRAF6 is also translocated to mitochon-

dria, where it ubiquitinates evolutionarily conserved sig-

naling intermediate in Toll pathways (ECSIT), resulting

in increased reactive oxygen species (ROS) generation

and bacteria killing [93]. Notably, TRAF6 is also neces-

sary for IRF7 activation and type I IFN production in-

duced by TLR7 and TLR9 in plasmacytoid dendritic

cells (pDCs) [94].

TRAF3 is required for both MyD88-dependent and

TRIF-dependent activation of IRF3 and IRF7, and thus

production of type I IFNs [95,96], a class of cytokines

with potent antiviral and antibacterial activities. In

MyD88-dependent signaling downstream of TLR7 and

TLR9, TRAF3 is recruited to MyD88 and IRAK1.

Activated TRAF3 catalyzes its K63-linked auto-

ubiquitination, and assembles a signaling complex with

MyD88, IRAK4, IRAK1, IKKα and IRF7. Within this

complex, IRF7 is phosphorylated and activated by

IRAK1 and IKKα to induce the production of type I

IFNs [8,82,86]. In TRIF-dependent signaling down-

stream of TLR3 and TLR4, TRAF3 interacts with

oligomerized TRIF, and activated TRAF3 recruits TBK1

and IKKε through NAP1 and TANK. In this signaling

complex, TRAF3, in cooperation with Ubc13 and/or

Ubc5, catalyzes K63-polyubiquitination of TRAF3 itself,

TBK1 and IKKε, which facilitates the phosphorylation

of IRF3 and IRF7. The phosphorylated IRF3 and IRF7,

in turn, form homodimers or heterodimers, translocate

into the nucleus and induce the expression of type I

IFNs as well as IFN-inducible gene [8,82,86] (Figure 3).

Interestingly, TRAF1 was also identified as a TRIF-

interacting protein in yeast two-hybrid screens.

Overexpression of TRAF1 inhibits TRIF- and TLR3-

mediated activation of NF-κB and expression of IFN-β,

suggesting that TRAF1 inhibits TRIF-dependent signal-

ing [83,97,98]. Similarly, TRAF4 physically interacts with

and functionally counteracts TRAF6 and TRIF in TLR

signaling [99]. Taken together, recent advances indicate

that TRAF6, TRAF3, TRAF1 and TRAF4 play critical

and largely distinct roles in signaling by TLRs.

TRAFs in NLR signaling

NOD-like receptors (NLRs) are a family of cytosolic sen-

sors of PAMPs and DAMPs, and are functionally analo-

gous to TLRs [100-102]. Each NLR appears to be activated

by multiple agonists. However, in many cases, evidence of

direct interaction between NLRs and PAMPs/DAMPs is

lacking [103,104]. Effector functions of NLRs include se-

cretion of pro-inflammatory cytokines, chemokines, anti-

microbial peptides and type I IFNs, generation of ROS, au-

tophagy, antigen processing, and expression of MHC class

II on antigen presenting cells. These responses induce
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innate immune clearance of the pathogen, and also

tailor the adaptive immune system to fight the infec-

tion [100-102]. NLRs are characterized by a central

NOD domain that mediates nucleotide-binding and

oligomerization, and the C-terminal LRRs that possibly

mediate ligand detection. In addition, they contain N-

terminal effector domains, such as caspase recruitment

domains (CARD), pyrin domains (PYD), baculovirus

inhibitor of apoptosis repeat (BIR) domains, or an

acidic transactivation domain, which recruit down-

stream signal transduction molecules after ligand

sensing [100,101,104]. One well-studied pathway of

several NLRs, including NLRP3, NLRP1, NLRP6, and

NLRC4, is the assembly of multi-protein complexes

called ‘inflammasomes’, which contain caspase-1 and

apoptosis-associated speck-like protein containing a

CARD (ASC). Inflammasomes induce proteolytic pro-

cessing of pro-IL-1β and pro-IL-18 into secretable IL-

1β and IL-18, as well as caspase 1-dependent apoptosis

termed ‘pyroptosis’ [15,100,101]. The role of TRAF2 in

inflammasome signaling has recently been explored,

but the published data are contradictory. Labbe et al.

reported that depletion of TRAF2 by siRNA inhibits

inflammasome signaling in HEK293T cells [105]. How-

ever, Vince et al. found that inflammasome activation

is normal in TRAF2−/− bone marrow-derived macro-

phages (BMDMs) [71]. Potential involvement of other

TRAFs in inflammasome signaling remains to be

elucidated.

TRAF2, TRAF5, and TRAF6 are required for NF-κB

and MAPK activation induced by NOD1 and NOD2

(Figure 4), the founding members of the NLR family

[15,102,106]. Upon detection of meso-diaminopimelic acid

(DAP) by NOD1 or muramyl dipeptide (MDP) by NOD2

at the vicinity of plasma membranes, oligomerization of

NOD1 or NOD2 recruits the dual specificity kinase RIP2

(also called RICK) via a homotypic CARD-CARD interac-

tions [101-103]. Activated RIP2 induces the formation of

the signaling complex containing TRAF2, TRAF5, TRAF6,

TRAF4, CARD9, cIAP1/2, and Ubc13/Uev1A. In this

complex, cIAP1/2, in coordination with Ubc13/Uev1A,

catalyze K63-linked polyubiquitination of RIP2, which fur-

ther recruits TAB2/3-TAB1-TAK1 and NEMO-IKKα/β,

leading to NF-κB activation [15,100,107-109]. Interest-

ingly, a recent study by Damgaard et al. demonstrated that

XIAP is also recruited to the NOD2 signaling complex, in

which XIAP primarily conjugates ubiquitin chains on

RIP2 that are linked through lysine residues other

than K63 and K48 [110]. Thus, XIAP, together with

cIAP1/2, constitutes the major ubiquitin ligase activity

that ubiquitinates RIP2 in NOD2 signaling, and

cIAP1/2 appear to be rate limiting only when XIAP is

not present [110]. It has been shown that TRAF2 and

TRAF5 are required for NOD-induced NF-κB activa-

tion, while TRAF6, CARD9, and ITCH are important

for p38 and JNK activation in NOD signaling

[15,111,112]. However, the exact mechanism of how

these occur is still unknown. Interestingly, TRAF4 is

identified as a key negative regulator of NOD2 signal-

ing. TRAF4 binds directly to NOD2 in an agonist-

dependent manner, and inhibits NOD2-induced NF-

κB activation and bacterial killing [109]. This inhibi-

tory effect of TRAF4 requires its phosphorylation at

Ser426 by IKKα, which is also recruited to the NOD2

signaling complex [113].

TRAF3 mediates type I IFN production induced by

NOD1 [114], and presumably also that induced by

NOD2 (Figure 4). NOD1 and NOD2 induce type I IFN

production through distinct mechanisms. Upon sensing

DAP, oligomerization of NOD1 recruits TRAF3 via

RIP2. TRAF3 in turn activates TBK1 and IKKε, leading

to subsequent activation of IRF7 and type I IFN produc-

tion in epithelial cells [100,102,114]. In contrast, NOD2

induces type I IFN production only in response to viral

ssRNA, but not in response to MDP, via a RIP2-

independent pathway [102,115]. Following the detection

of viral ssRNA, NOD2 engages a signaling complex

containing MAVS on mitochondria, which induces IRF3

activation and type I IFN production [115]. TRAF3 has

been shown to directly interact with MAVS to mediate

RLR-induced type I IFN production [116]. It is thus

speculated that TRAF3 may similarly activate TBK1 and

IKKε in NOD2-MAVS signaling, but this awaits experi-

mental investigation.

Interestingly, TRAF3 and TRAF6 are involved in the

cross-talk between several NLRs and TLRs or RLRs.

TRAF3 regulates NLRP12-mediated suppression of TLR-

driven NF-κB activation, as NLRP12 interacts with both

NIK and TRAF3 [117]. TRAF6 interacts with NLRX1,

which negatively regulates NF-κB activation induced by

RIG-I or TLR4 [118,119]. Similarly, NLRC3 also inhibits

TLR-induced NF-κB activation by interacting with

TRAF6 and reducing K63-linked polyubiquitination of

TRAF6 [120].

(See figure on previous page.)

Figure 2 TRAFs in BAFF-R and CD40 signaling pathways in B lymphocytes. (A) In the absence of stimulation, TRAF3 and TRAF2 promote B

cell apoptosis. TRAF3 and TRAF2 constitutively form a complex with cIAP1/2 and NIK, target NIK for K48-linked polyubiquitination and

degradation, thereby inhibiting NF-κB2 activation in B cells. (B) BAFF-R and CD40 signaling pathways. Upon ligand engagement, BAFF-R or CD40

recruits TRAF3-TRAF2-cIAP1/2 to membrane rafts, thus allowing NIK accumulation and NF-κB2 activation, leading to B cell survival. In addition,

TRAF1, 2, 5 and 6 mediate CD40-induced activation of NF-κB1 and MAPKs.
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TRAFs in RLR signaling

RIG-I like receptors (RLRs), including RIG-I, MDA5,

and LGP2, are a family of cytosolic RNA helicases that

detect viral RNA PAMPs accumulated during viral infec-

tion or replication. RLRs are indispensable for antiviral

responses in most cell types except pDCs [116,121,122].

RIG-I/MDA5 signaling rapidly elicits the production of

type I and type III IFNs and proinflammatory cytokines.

RIG-I and MDA5 exhibit different ligand specificity and

respond to different viruses, whereas LGP2 facilitates or

antagonizes recognition of viral RNA by MDA5 and

RIG-I [116,121,122]. RLRs are structurally characterized

by a central DExD/H box RNA helicase domain involved

in RNA binding and ATPase function, and a carboxyl-

terminal domain (CTD) that contains a positively

charged RNA binding pocket. RIG-I and MDA5, but not

LGP2, also possess two N-terminal CARDs that are

required to trigger downstream signaling [116,123,124].

Upon detection of RNA PAMPs, RIG-I/MDA-5 under-

goes conformational change that leads to dimerization

and association with the mitochondrial antiviral sig-

naling adaptor (MAVS, also called IPS-1, VISA, or

Cardif ) through homotypic CARD-CARD interactions

[116,121,122]. MAVS consists of an N-terminal CARD

domain, a central proline-rich region (PRR), several

TRAF-interacting motifs, and a C-terminal transmem-

brane domain, which anchors the protein on the outer

membranes of mitochondria. Dimerization of MAVS

directly recruits TRAF2 [125], TRAF3 [126], TRAF5,

TRAF6 [127], CARD9 and TRADD, which serve as a plat-

form to assemble signaling complexes at mitochondrial

outer membranes [123,124,128,129]. These signaling

Proinflammatory cytokines
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Figure 4 TRAFs in signaling by NOD1 and NOD2. Upon DAP engagement, NOD1 recruits TRAF2, TRAF5, TRAF6 and TRAF3 via RIP2. TRAF2, 5

and 6 mediate NOD1-induced activation of NF-κB1 and MAPKs, while TRAF3 mediates NOD1-induced activation of IRF7. In response to MDP

binding, NOD2 also recruits TRAF2, 5 and 6 via RIP2, and thus induces activation of NF-κB1 and MAPKs. When engaged by viral ssRNA, NOD2

binds to MAVS on mitochondria and induces IRF3 activation and Type I IFN production, which is likely mediated by TRAF3.

(See figure on previous page.)

Figure 3 TRAFs in signaling by TLRs. (A) TLR3, 7 and 9 signaling pathways. Upon ligand binding in endosomes, TLR3 recruits TRAF3 and TRAF6

via TRIF, while TLR7 and TLR9 recruit TRAF3 and TRAF6 via MyD88-IRAK1. (B) TLR4 signaling pathways. Upon LPS engagement on the plasma

membrane, TLR4 recruits TRAF6 and TRAF3 via MyD88-IRAK1. Internalized TLR4 recruits TRAF3 and TRAF6 to endosomes via TRIF. TRAF6 mediates

MyD88- and TRIF-induced activation of NF-κB1 and MAPKs, while TRAF3 mediates MyD88- or TRIF-induced activation of IRF-3/7 in signaling by

TLRs. In contrast, TRAF1 inhibits TRIF signaling.
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complexes contain players that are further recruited

by TRAFs or TRADD, including cIAP1/2, TANK-NAP1-

SINTBAD, TBK1-IKKε, NEMO, IKKα/IKKβ, TAB2/3-

TAB1-TAK1, MEKK1, Bcl10, and RIP1-FADD-Casp8-

Casp10. RIG-I/MDA5 signaling cascades culminate in the

phosphorylation and activation of IRF3, IRF7, NF-κB and

AP-1, which work cooperatively to induce the expression

of IFNs and proinflammatory cytokines (Figure 5)

[123,124,128,129].

TRAF3 is essential for RLR-induced IRF3 but not NF-

κB activation, and TRAF3 deficiency results in impaired

type I IFN induction in response to RNA virus infection

[126]. MAVS has a TRAF3-interacting motif in the

C-terminus that is verified by crystallography [130,131],

and Tyr9 phosphorylation on MAVS also facilitates the re-

cruitment of TRAF3 [132]. Additionally, TRAF3-MAVS

interaction requires the assistance of another TRAF3-

interacting protein, UXT-V1 [133]. Following its recruit-

ment to MAVS and in conjunction with Ubc5, TRAF3

undergoes K63-linked auto-ubiquitination, which en-

hances its ability to bind to NEMO and TANK-NAP1-

SINTBAD, thus allowing the recruitment and activation

of TBK1 and IKKε [116,128,134-137]. Interestingly, a re-

cent study shows that linear ubiquitination of NEMO

switches it from a positive to a negative regulator of RIG-I

signaling, as linear ubiquitinated NEMO associates with

TRAF3 but disrupts the MAVS-TRAF3 complex [138].

The NEMO-like adaptor proteins TANK, NAP1, and

SINTBAD are constitutively bound to both TBK1 and

IKKε [135]. Autoubiquitinated TRAF3 activates TBK1 and

IKKε to induce the phosphorylation, dimerization and

nuclear translocation of IRF3, which triggers the produc-

tion of type I IFNs [16,128,129].

Depletion of either TRAF2 or TRAF5 leads to reduced

IRF3 and NF-κB activation upon RIG-I stimulation, and

TRAF2 and TAK1 are important for p38 activation

[125,128,139,140]. Biochemical studies revealed TRAF2

and TRAF5 interaction motifs in the C-terminal region
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Figure 5 TRAFs in signaling by RIG-I. Upon ligand binding, RIG-I recruits TRAF3, TRAF6, TRAF2 and TRAF5 to mitochondria via MAVS. TRAF3

mediates RIG-I-induced IRF3 but not NF-κB1 activation. TRAF6 mediates RIG-I-induced IRF7 activation and also contributes to activation of NF-κB1,

JNK, and p38. TRAF2 is important for p38 activation, and both TRAF2 and TRAF5 also contribute to activation of IRF3 and NF-κB1 in

RIG-I signaling.
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of MAVS. Upon RIG-I signaling, interaction of TRAF5

with MAVS induces K63-linked TRAF5 auto-

ubiquitination and subsequent NEMO-dependent acti-

vation of IRF3 and NF-κB [139]. Similarly, activation of

p38 by RIG-I proceeds via a TRAF2-TAK1-dependent

pathway. The p38 activation in turn stimulates the pro-

duction of IFNs and IL-12 [125]. Nonetheless, details of

TRAF2- or TRAF5- signaling pathways downstream of

MAVS remain to be elucidated.

TRAF6 is required for RLR-induced IRF7 activation and

also contributes to activation of NF-κB, JNK, and p38 by

directly interacting with MAVS, which has two TRAF6-

interacting motifs [127,141]. Activation of IRF7 after viral

infection resembles IRF3 activation, and involves the dir-

ect phosphorylation of IRF7 by TBK1 and IKKε. However,

activation of IRF7 but not IRF3 is impaired in TRAF6−/−

fibroblasts, and TRAF6 mediates IRF7 ubiquitination

[141,142]. Thus, MAVS-induced IRF7 activation is trans-

duced through a unique TRAF6-dependent pathway. Un-

coupling IRF3 from the IRF7 activation pathway might be

a way of avoiding their simultaneous inhibition by virus-

encoded inhibitory proteins [128]. TRAF6 and MEKK1

are also important for RLR-induced activation of NF-κB

and MAPKs [127,141]. Interestingly, RIG-I-MAVS-TRAF6

signaling leads to IKKβ-mediated phosphorylation of p65

at ser536, which is under the control of the NADPH oxi-

dase NOX2 [143].

Notably, cIAP1 and cIAP2 are also recruited to MAVS,

and mediate K48- and K63- linked polyubiquitination of

TRAF3 and TRAF6 in response to viral infections [144].

However, the kinetics of these two types of ubiquitination

on TRAF3 and TRAF6 is still unclear. Interestingly,

viruses also induce IRF3-dependent apoptosis in infected

cells, which require the presence of RIG-I, MAVS, TRAF3,

TRAF2, TRAF6 and TBK1, as demonstrated by studies

using genetically defective mouse and human cell lines

[140]. Apoptosis is triggered by direct interaction of IRF3,

through a newly identified BH3 domain, with the pro-

apoptotic protein Bax. Co-translocation of IRF3 and Bax

to mitochondria results in the induction of mitochondria-

dependent apoptosis, and transcriptionally inactive IRF3

mutants could efficiently mediate apoptosis [140].

Although why TRAF3, TRAF2 and TRAF6 are all re-

quired for IRF3-induced apoptosis awaits further clarifi-

cation, it appears that these TRAF molecules cooperate

in this process.

TRAFs in cytokine receptor signaling

It was initially recognized that TRAF6 is utilized for sig-

naling by the IL-1R family (IL-1R, IL-18R and IL-33R),

which also contain TIR domains found in TLRs

[23,145,146]. However, recent evidence indicates that

TRAFs also directly regulate signaling by a variety of

other cytokine receptors, including receptors for the

proinflammatory IL-17 family, anti-viral IFNs, anti-

inflammatory TGFβ, and the T cell cytokine IL-2.

IL-17 receptors

The IL-17 family are important in host defense against

bacterial, fungal and helminthic parasite infections

[147-149]. The founding member of this family, IL-17,

is the defining cytokine of a new T helper cell popula-

tion termed “Th17”, which contributes significantly to

the pathogenesis of multiple autoimmune and inflam-

matory diseases [150,151]. Signature target genes of IL-

17 include chemokines, proinflammatory cytokines, in-

flammatory mediators, anti-microbial peptide, and

matrix metalloproteases (MMPs) [147-149]. IL-17 (A/F)

signals through a heteromeric receptor complex formed

by IL-17RA and IL-17RC. IL-17Rs have two extracellular

fibronectin III-like domains and a cytoplasmic SEF/IL-

17R (SEFIR) domain [149,150]. Ligand-induced asso-

ciation of IL-17RA and IL-17RC recruits a novel

adaptor protein Act1 through SEFIR domain-mediated

homotypic interaction. Act1 is a U-box E3 ubiquitin

ligase that contains both a SEFIR domain and TIMs,

and further recruits TRAF6, TRAF2 and TRAF5

[12,152,153]. In cooperation with Ubc13/Uev1A, Act1

catalyzes K63-linked polyubiquitination of TRAF6, which

in turn mediates the ubiquitination of IL-17RA and in-

duces the activation of NF-κB through TAK1 and IKKs.

Activated NF-κB further induces the expression of IkBζ,

C/EBPδ and C/EBPβ, transcription factors that work in

concert with NF-κB to induce the expression of signature

target genes of IL-17 [12,147,154-158]. On the other hand,

TRAF6 also induces GSK3β activation likely through

PI-3K, and ERK1/2 activation likely through Raf1

[12,151,159]. Activated GSK3β and ERK induce dual phos-

phorylation of C/EBPβ and thereby inhibit its activity

[12,151,160]. Thus, TRAF6 is essential for IL-17 signaling

(Figure 6).

Interestingly, TRAF2 and TRAF5 transduce the IL-17

signals to stabilize mRNA transcripts of chemokines (such

as CXCL1) and cytokines (such as IL-6) by recruiting the

splicing factor SF2 (also known as alternative splicing fac-

tor, ASF) into the IL-17R-Act1 signaling complex

[151,153,161]. The IL-17R-Act1-TRAF2-TRAF5 complex

also induces the activation of MAPKs, which further en-

hance mRNA stability. Notably, formation of this complex

requires IKKε, an inducible IKK that mediates Act1 phos-

phorylation at Ser311, adjacent to a putative TRAF-

binding motif. Substitution of Ser311 of Act1 with alanine

impairs the IL-17-induced Act1-TRAF2-TRAF5 inter-

action and inflammatory gene expression [161,162]. In

contrast, TRAF3 and TRAF4 are negative regulators of

IL-17R signaling [12,163,164]. Upon IL-17 stimulation,

IL-17RA and IL-17RC directly recruit TRAF3 via a distal

C-terminal TRAF3-binding site. The binding of TRAF3 to
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IL-17Rs interferes with the formation of the activation sig-

naling complex of IL-17R-Act1-TRAF6, resulting in sup-

pression of downstream signaling, including NF-κB and

MAPK activation, and production of inflammatory cyto-

kines and chemokines [12,163]. TRAF4 exerts its negative

regulation on IL-17 signaling by competing with TRAF6

for the interaction with Act1, as TRAF4 and TRAF6 use

the same TIMs on Act1. Indeed, primary epithelial cells

derived from TRAF4−/− mice display markedly enhanced

IL-17 signaling [164]. Thus, both TRAF3 and TRAF4 re-

strict IL-17 signaling at receptor proximal steps (Figure 6).

IFN receptors

Interferons induce the synthesis of a variety of antiviral

proteins that mediate swift innate immune responses to

control virus replication and spread, and also shape the

adaptive immune response by acting directly on T and B

cells [116]. TRAF2 and TRAF6 are recognized as direct

signal transducers of IFN receptors. Upon IFN engage-

ment, TRAF2 directly binds to the membrane proximal

half of the signal-transducing subunit of the IFN recep-

tor, IFNAR1, and is required for IFN-induced NF-κB2

activation and anti-viral responses [13,165]. Similarly,

direct interaction of TRAF6 with the intracellular do-

main of IFNλR1 regulates NF-κB activation and IFNλR1

stability in response to type III IFNs (IFNλ1, IFNλ2, and

IFNλ3) [166]. Whether other TRAFs contribute to the

regulation of IFN signaling remains to be determined.

TGFβ receptors

The anti-inflammatory cytokine TGFβ binds to type II

and type I serine/threonine kinase receptors (TβRII and

TβRI). TRAF6 interacts with a consensus TIM present

in TβRI [14,167,168]. The TβRI-TRAF6 interaction in-

duces auto-ubiquitination of TRAF6. TβRI kinase acti-

vity is required for activation of the canonical Smad

pathway, whereas TRAF6 regulates the activation of

TAK1 in a receptor kinase-independent manner. Acti-

vated TRAF6 mediates K63-linked polyubiquitylation of

TAK1 at Lys34 and Lys158, and results in subsequent
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Figure 6 TRAFs in signaling by IL-17R. Upon ligand binding, heteromeric IL-17RA and IL-17RC recruit TRAF6, TRAF2 and TRAF5 via Act1. TRAF6
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activation of p38 and JNK, leading to cell apoptosis

[14,167,168]. Thus, TRAF6 is specifically required for

the Smad-independent activation of JNK and p38 in re-

sponse to TGFβ. However, in cancer cells, TRAF6-

mediated K63-linked polyubiquitination of TβRI also

promotes cleavage of TβRI by TNFα converting enzyme

(TACE) in a PKCζ-dependent manner. The liberated

intracellular domain of TβRI associates with the tran-

scriptional regulator p300 to activate genes involved in

tumor invasiveness, such as Snail and MMP2 [169]. In

this case, TRAF6 is critical for TGFβ-induced invasion

of cancer cells. Additionally, TRAF6 mediates the sup-

pressive effect of IL-1β or LPS on TGFβ-induced signal-

ing through interaction with the type III TGF-β

receptor (TβRIII), an accessory receptor that presents

the TGFβ ligand to TβRII. Co-treatment with TGFβ and

IL-1β or LPS promotes the interaction between phos-

phorylated TβRIII and ubiquitinated TRAF6, and

thereby sequesters TβRIII from the TβRII/TβRI com-

plex, resulting in inhibition of Smad2/3 activation [170].

Taken together, TRAF6 plays multiple roles in signaling

by TGFβ receptors. Interestingly, TGFβ also induces the

posttranslational loss of TRAF1, whereas IL-7 restores

TRAF1 levels in T cells [171]. No evidence is available

about the participation of other TRAFs in TGFβ

signaling.

IL-2 receptor

The binding of TRAF6 to the TIM of the IL-2R β-chain

negatively regulates IL-2-induced Jak1 activation in CD4

T cells, which is likely involved in the proper regulation

of T cell activation and development [172].

TRAFs in other signaling pathways

T cell receptor

TRAF1, TRAF3, and TRAF6 are able to regulate signal-

ing by the T cell receptor (TCR). TRAF1 inhibits CD3-

induced NF-κB2 activation and proliferation in T cells

[31,173]. TRAF3 is recruited to the signaling rafts, and

mediates the synergistic activation of ERK, LAT, PLCγ1

and ZAP70 as well as cytokine production and prolifera-

tion in T cells following co-stimulation with TCR and

CD28 [11]. TRAF6 is also recruited to the TCR signaling

rafts containing CARMA1-MALT1-Bcl10-PKCθ-IKK-

Caspase 8 via interaction with the paracaspase MALT1,

and contributes to the induction of NF-κB activation

and IL-2 production in T cells [174,175]. Interestingly, a

recent study by Xie et al has shown a distinct mechan-

ism of TRAF6 in TCR signaling, in which TRAF6 is

recruited to the TCR/CD28 signaling complex by LAT

and promotes the ubiquitination and phosphorylation of

LAT as well as the activation of NF-AT in T cells [176].

C-type lectin receptors

Using macrophages derived from TRAF6−/− mice, it

has been shown that TRAF6 is required for NF-κB and

JNK activation, and expression of proinflammatory cy-

tokines in response to engagement of C-type lectin re-

ceptors during fungal infection [177]. This will elicit

further studies of other TRAFs in signaling by C-type

lectin receptors.

DNA damage response

TRAF6 is essential for DNA damage-induced NF-κB acti-

vation. In this process, TRAF6 is activated by the kinase

ataxia telangiectasia mutated (ATM), which is a DNA

strand break sensor. Following DNA damage, ATM trans-

locates in a calcium-dependent manner to cytosol and

membrane fractions, and interacts with TRAF6 via a TIM,

resulting in K63-linked polyubiquitination of TRAF6 and

recruitment of cIAP1 [178]. The ATM-TRAF6-cIAP1

module stimulates TAB2-dependent TAK1 phosphory-

lation, and cIAP1 catalyzes monoubiquitination of NEMO

at Lys285. NEMO monoubiquitination is a prerequisite

for genotoxic NF-κB activation and DNA damage res-

ponse [178]. Potential involvement of other TRAFs in this

response awaits further investigation.

Substrates, E3 ligases and deubiquitinases of TRAFs

Ubiquitination has emerged as a key regulatory mech-

anism of TRAFs in signaling. As mentioned above in

receptor signaling sections, E3 ligase activity has been dem-

onstrated for TRAF2, TRAF3, TRAF5 and TRAF6, which

catalyze non-degradative K63-linked polyubiquitination of

their substrates. This is mediated in cooperation with

the E2 ubiquitin-conjugating enzymes Ubc13-Uev1A or

UbcH5c. It is believed that K63-linked polyubiquitin chains

serve as docking sites for formation of signaling complexes,

facilitate the recruitment and activation of effector kinases,

and thus enable the propagation of signals [9,89,179]. The

substrates of TRAFs include TRAF themselves, receptors,

kinases, adaptor proteins, transcription factors, E3 ubiquitin

ligases, and other functional proteins involved in autophagy

or ROS production (Table 2). However, in many cases, sub-

strates of TRAFs (especially those of TRAF2, TRAF3 and

TRAF5) have not been unequivocally demonstrated by

in vitro ubiquitination assays using purified proteins. Inte-

restingly, a recent study has shown that TRAF2 becomes a

highly active K63-specific ubiquitin ligase when bound to

sphingosine-1-phosphate (S1P), which appears to be a co-

factor for TRAF2 E3 ligase activity [180]. This suggests that

addition of S1P may improve the efficiency of in vitro

ubiquitination assays for TRAF2. Future studies need to de-

termine whether similar cofactors exist for TRAF3 and

TRAF5. Interestingly, however, the crystal structure of the

RING domain of TRAF2 [181] and the phenotype of the

∆RING TRAF2 mutant [61,182] suggest that TRAF2 may
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not function as an E3 ligase at all. The controversy about

whether TRAF2 is actually a RING E3 ligase is described in

detail in an excellent review by Silke [183].

While serving as E3 ligases themselves, TRAFs are also

substrates of other E3 ligases that catalyze K63-linked or

K48-linked polyubiquitination (Table 3). K63-linked

polyubiquitination of TRAFs usually leads to protein-

protein interactions and promotes signal transduction.

For example, Act1-mediated K63-linked ubiquitination

of TRAF6 recruits TAB2/3-TAK1 and NEMO to acti-

vate NF-κB in IL-17R signaling [201], while cIAP1/2-

catalyzed K63-linked ubiquitination of TRAF3 recruits

TBK1 and IKKε to induce type I IFN production in

RIG-I signaling [144]. In an exceptional case, Pellino3-

induced ubiquitination of TRAF6 at Lys124 suppresses

the ability of TRAF6 to interact with and ubiquitinate

IRF7, and thus inhibits type I IFN production in TLR3 sig-

naling [202]. In contrast, K48-linked polyubiquitination of

Table 2 Substrates of the E3 ligase activity of TRAFs

Substrates (Lys residues of ubiquitination) E3 ligases Receptor signaling References

TRAFs

TRAF2 TRAF2 TNF-R1/2 [184]

TRAF3 TRAF3 TLR3, TLR4 [92,185]

TRAF5 TRAF5 RIG-I [139]

TRAF6 TRAF6 TLRs, IL-1R [17,23,82,89,179,186]

Receptors

IL-17R TRAF6 IL-17 [156]

p75 (Lys274, 280 and 283) TRAF6 NGF [65]

TβRI TRAF6 TGFβ [169]

Kinases

TAK1 (Lys158) TRAF6, TRAF2 TNF-R1/2 and IL-1R [187]

RIP1 (Lys377) TRAF2 TNF-R1 and IL-1R [179,180]

TBK1 TRAF3 TLR3, TLR4 [17,23,81]

IKKε TRAF3 TLR3, TLR4 [17,23,81]

IRAK1 (Lys134 and 180) TRAF6 TLR7, TLR9, IL-1R [179,188,189]

Akt (Lys8 and 14) TRAF6 IL-1R, IGF-1R [190]

Fyn (K63) TRAF6 TLR4 [191]

Adaptor proteins

NEMO (Lys285, 321, 325, 326 and 399) TRAF6 TLRs, IL-1R, NOD2 [17,23,82,111,192]

TRIF TRAF2, TRAF6 TLR3, TLR4 [98]

NESCA TRAF6 TrkA and p75 [193]

LAT (Lys88) TRAF6 TCR [176]

Other E3 ligases

cIAP1/2 TRAF2 CD40 [37]

TRAF6 TLR4-, IL-1R-induced autophagy [92]

Smurf2 TRAF2 TNF-R2 [194]

Transcription factors

IRF7 (Lys444, 446, and 452) TRAF6 TLR7, TLR8, TLR9, LMP1, RIG-I [94,142,195]

IRF5 (Lys410 and 411) TRAF6 NOD2, TLR7, TLR9 [196,197]

Regulators of mRNA stability

Tristetraprolin TRAF2 TNF-R1 [198]

Autophagy proteins

Beclin 1 (Lys117) TRAF6 TLR4-, IL-1R-induced autophagy [199]

NDP52 TRAF6 TLR3-induced autophagy [200]

Regulators of ROS production

ECSIT TRAF6 TLR1, 2, 4-induced ROS production [93]
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TRAFs results in degradation of TRAF proteins by the

26S proteasome. K48-linked E3 ligases of TRAFs include

cIAP1/2, Triad3A, AWP1, SOCS2, Siva-1, Numbl and

CHIP. For example, upon viral infection, Triad3A is up-

regulated, and induces K48-linked ubiquitination and deg-

radation of TRAF3, thereby forming a negative feedback

loop to halt RIG-I signaling and type I IFN production

[203]. Thus, K48-linked ubiquitination and subsequent

degradation of TRAFs serve as a negative regulatory

mechanism of TRAF-dependent signaling.

A second negative regulatory mechanism of TRAFs is

provided by deubiquitinases that cleave K63-linked

polyubiquitin chains from TRAFs, which is just beginning

to be understood. The known deubiquitinating enzymes

(DUBs) of TRAFs include: (1) ubiquitin-specific proteases,

such as CYLD, USP2a, USP4, USP20 and USP25; (2) ova-

rian tumor (OTU) domain-containing DUBs, such as

DUBA (also known as OTUD5), OTUB1, OTUB2, and

A20; (3) a novel DUB named monocyte chemotactic

protein-induced protein 1 (MCPIP1) (Table 4). CYLD, a

tumor suppressor and a target gene of NF-κB, negatively

regulates NF-κB and JNK activation by removing K63-

linked polyubiquitin chains from TRAF2 and TRAF6 as

well as several other signaling proteins [214,215]. Expres-

sion of DUBA is up-regulated in TLR and IL-1R stimu-

lated cells. DUBA specifically targets and de-conjugates

the K63-linked polyubiquitin chains from TRAF3,

resulting in TBK1-IKKε dissociation from TRAF3 and in-

hibition of type I IFN production induced by TLRs and

RLRs [128,185,216]. However, DUBA does not affect

NF-κB2 activation, which is entirely dependent on K48-

linked degradative ubiquitination of TRAF3 [128,185,216].

Interestingly, A20, an unusual enzyme that contains both

ubiquitinating and deubiquitinating activities, negatively

regulates inflammation by inhibiting NF-κB activation in

TNF-R and TLR signaling. A20 is a target gene of NF-κB,

and able to remove K63-linked polyubiquitin chains from

TRAF6 to turn off NF-κB activation. A20 also inhibits the

E3 ligase activities of TRAF6, TRAF2, and cIAP1 by pro-

moting K48-linked polyubiquitination and degradation of

the E2 enzymes Ubc13 and UbcH5c [8,128,217]. Further-

more, A20 is capable of targeting an associated signaling

molecule such as TRAF2 to the lysosomes for degrad-

ation, a process that does not require A20 ubiquitin modi-

fying activity [218]. Notably, A20−/− and MCPIP1−/− mice

spontaneously develop severe inflammatory syndrome

[219,220], while CYLD−/− and Usp25−/− mice are more

susceptible to inflammation [204,221]. Thus, negative

regulation of TRAF signaling is necessary to prevent

harmful immune responses and inflammatory diseases.

In addition to ubiquitination, other post-translational

modifications, including phosphorylation and glutathi-

onylation, are also reported to regulate TRAFs in signa-

ling. Phosphorylation of TRAF1 (at Ser 139 in mouse and

Ser 146 in human by PKN1) inhibits TNF-R2-dependent

tonic NF-κB and JNK signaling in HeLa cells [233], and

also has a negative impact on the recruitment of TBK1 to

the 4-1BB signaling complex and the subsequent NF-κB

activation in T cells [234]. Phosphorylation of TRAF2

(at Ser11 and Ser55 by PKCζ or IKKε, and at Thr117

by PKCδ and PKCε), which promotes K63-linked

ubiquitination of TRAF2 and NF-κB activation, has been

demonstrated in TNFα signaling or in transformed cells

[235-238]. Following NOD2 activation, phosphorylation

Table 3 E3 ligases that catalyze the ubiquitination of TRAFs

E3 ligases Target TRAFs (Lys of ubiquitination) Receptor signaling References

K-63 linked polyubiquitination

Act1 TRAF6 (Lys124) IL-17R [201]

TRAF5 IL-17R [204]

cIAP1/2 TRAF3 and TRAF6 RIG-I [144]

Pellino3 TRAF6 (Lys124) TLR3 [202]

K-48 linked polyubiquitination

cIAP1/2 TRAF2 TNF-R2 [205,206]

TRAF2 M-CSFR [207]

TRAF2 and TRAF3 (Lys107 and Lys156) CD40 and TLR4 [72,92]

TRAF3 and TRAF6 RIG-I [144]

Triad3A TRAF3 RIG-I [203]

AWP1 TRAF2 TNF-R1/2 [208]

SOCS2 TRAF6 AhR [209]

Siva-1 TRAF2 TCR [210]

Numbl TRAF6 and TRAF5 IL-1R [211,212]

CHIP TRAF2 Cancer cell invasion [213]
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of TRAF4 (at Ser 426 by IKKα) negatively regulates

NOD2 signaling in macrophages, including NF-κB activa-

tion, cytokine production and antibacterial activity [113].

Tyrosine phosphorylation of TRAF6 by Fyn and c-Src has

been shown following LPS stimulation [191]. Inte-

restingly, a recent study reported that TRAF6 is

S-glutathionylated under normal conditions. Upon IL-1

stimulation, TRAF6 undergoes deglutathionylation ca-

talyzed by glutaredoxin-1 (GRX-1), a process that is

essential for TRAF6 auto-ubiquitination and subsequent

NF-κB activation [239]. These findings suggest that diffe-

rent post-translational modifications of TRAF proteins

coordinate to regulate the activity of TRAFs in signaling

in a dynamic manner.

Viral proteins that target or hijack TRAFs

TRAFs are critical players in host immunity, as demon-

strated by their shared usage by both innate immune re-

ceptors (such as TLRs, NLRs, RLRs, and cytokine

receptors) and adaptive immune receptors (such as

CD40, BAFF-R, OX40, 4-1BB, and TCR). Interestingly,

viruses and bacteria have developed a variety of stra-

tegies to target or hijack TRAFs to evade host immune

responses and to promote their own propagation or per-

sistence (Table 5). (1) Several viral and bacterial proteins

can function as DUBs to deubiquitinate TRAFs and thus

inhibit type I IFN production in RIG-I or TLR signaling.

Examples include Lb(pro) of foot-and-mouth disease

virus, X protein (HBx) of hepatitis B virus, and YopJ of

the Gram- bacterium Yersinia pestis [21,90,240,241]. (2)

Some viral proteins can specifically interact with TRAFs

and disrupt the formation of TRAF signaling complexes.

For example, Gn protein of NY-1 hantavirus and M pro-

tein of severe acute respiratory syndrome (SARS)

coronavirus disrupt or prevent the formation of TRAF3-

TBK1-IKKε complex to inhibit type I IFN production

[242,243]. Similarly, A52R and K7 proteins of vaccinia

virus disrupt signaling complexes containing TRAF6 and

IRAK2 to block NF-κB activation and antiviral defense

[20,244]. (3) Some viral proteins usurp TRAFs for viral

signaling to promote their own propagation or persist-

ence. The best example of this group is latent membrane

protein 1 (LMP1) of Epstein-Barr virus, which seques-

ters most cellular TRAF3, and hijacks TRAF1, 2, 3, 5

and 6 to mimic constitutively activated CD40 signaling

[245-249]. (4) The v-FLIP member MC159 of the human

molluscum contagiosum virus mediates the recruitment

of both TRAF2 and TRAF3 into the Fas death inducing

signaling complex to modulate Fas signaling, and power-

fully inhibits both caspase-dependent and caspase-

independent cell death induced by Fas [250]. (5) Some

viruses up-regulate the expression of specific miRNAs to

target TRAFs. For example, the Tat protein of HIV-1

and VSV infection up-regulate miR-32 and miR-146a,

which directly target the protein expression of TRAF3

and TRAF6, respectively [251-253]. Together, the above

evidence further highlights the crucial importance of

TRAFs in host immunity against pathogens.

In vivo functions of TRAFs in mice

The in vivo functions of TRAFs in whole animals have

been explored by gene targeting in mice. Mice genetically

Table 4 Deubiquitinating enzymes that target TRAFs

DUBs TRAFs Receptor signaling References

Ubiquitin-specific proteases

CYLD TRAF2, TRAF6 CD40, XEDAR, EDAR, RANK [222,223]

TRAF2, TRAF6 IL-1β, TNFα [224]

USP2a TRAF2 TNFR1 [225]

TRAF6 IL-1β, RIG-I [226]

USP4 TRAF2, TRAF6 TNFα [227]

TRAF6 TLR4, IL-1R [228]

USP20 TRAF6 IL-1β [229]

USP25 TRAF5, TRAF6 IL-17R [204]

Ovarian tumor (OTU) family of DUBs

DUBA (OTUD5) TRAF3 IL-1β, TLR9 [216]

TRAF3 TLR3, TLR4, TLR7, RIG-I, MDA-5 [185]

OTUB1 TRAF3, TRAF6 RIG-I [230]

OTUB2 TRAF3, TRAF6 RIG-I [230]

A20 TRAF6 TLR4, TLR2 [231,232]

Novel cellular DUBs

MCPIP1 TRAF2, TRAF3, TRAF6 IL-1, TLR4 [219]
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deficient in individual TRAFs have been generated.

Among these knockout mice, only TRAF1−/−, TRAF5−/−,

and 67% of TRAF4−/− mice could survive to adulthood. In

contrast, mice deficient in TRAF2, 3, or 6 exhibit peri-

natal death with multiple organ abnormalities, indicat-

ing that TRAF2, 3, and 6 are indispensable in early

development. Although viable, mice deficient in TRAF1,

4 or 5 exhibit distinct phenotypes (Table 6). For

example, skin of TRAF1−/− mice is hypersensitive to

TNF-induced necrosis [173], and these mice are resis-

tant to allergic lung inflammation in an experimental

model of asthma [257]. TRAF4−/− mice suffer respira-

tory disorder and wheezing caused by tracheal ring

disruption, and exhibit numerous developmental abnor-

malities, including defects in the development of the

axial skeleton and in the closure of the neural tube as

well as myelin perturbation [258-260]. For mice with

early lethality, the causes of death appear to be different.

TRAF2−/− mice succumb to severe colitis that result

from apoptosis of colonic epithelial cells and accumula-

tion of IL-10-secreting neutrophils, which can be ame-

liorated by deletion of TNFR1 or combined treatment

with neutralizing antibodies against TNFα and IL-10

[261,262]. The early lethality of TRAF3−/− mice is rescued

by compound loss of the NF-κB2 gene, suggesting that

constitutive NF-κB2 activation leads to the lethal pheno-

type of TRAF3−/− mice [263]. In contrast, TRAF6−/− mice

die of severe osteopetrosis, splenomegaly, and thymic

atrophy [264,265]. Taken together, these findings demon-

strate that although TRAFs have overlapping functions,

each TRAF molecule also plays unique and distinct roles

that could not be compensated or substituted by other

TRAFs in whole animals.

During the past few years, different laboratories have

employed the conditional gene targeting strategy to cir-

cumvent the early lethality of TRAF−/− mice. These new

mouse models allow more detailed analyses and direct

comparison of specific functions of TRAFs in different

cell types of whole animals (Table 6).

B lymphocytes

TRAF2, 3, 5 and 6 are important in the survival, devel-

opment, and activation of B cells. In the absence of ei-

ther TRAF2 or TRAF3, B cells exhibit remarkably

prolonged survival independent of BAFF, which result

from the constitutive NF-κB2 activation [36,270,271].

Table 5 Pathogenic proteins that target TRAFs

Viral or bacterial proteins TRAFs Mechanisms Ref.

Function as DUBs of TRAFs

Lb(pro) of foot-and-mouth disease virus TRAF3, TRAF6 Deubiquitinates TRAF3 and 6 to inhibit RIG-I signaling [21]

X protein (HBx) of hepatitis B virus TRAF3 Deubiquitinates TRAF3 to inhibit RIG-I signaling [240]

YopJ of the Gram- bacterium Yersinia pestis TRAF3, TRAF6 Deubiquitinates TRAF3 and 6 to inhibit TLR signaling [241]

Disrupt the formation of TRAF signaling complex

Gn protein of NY-1 hantavirus TRAF3 Disrupts the interaction of TRAF3 and TBK1-IKKε [242]

M protein of severe acute respiratory syndrome (SARS) coronavirus TRAF3 Prevents the formation of TRAF3-TBK1-IKKε complex [243]

A52R of vaccinia virus TRAF6 Disrupts the signaling complex of TRAF6 and IRAK2 [244]

K7 of vaccinia virus TRAF6 Disrupts the signaling complex of TRAF6 and IRAK2 [20]

Usurp TRAFs for viral signaling

LMP1 of Epstein-Barr virus TRAF1, 2,
3, 5, 6

Sequesters cellular TRAF3, and usurps TRAF1, 2, 3, 5 [245-249]

and 6 to mimic constitutively activated CD40 signaling

BRRF1 lytic gene product (Na) of Epstein-Barr virus TRAF2 Utilizes TRAF2 for JNK activation and lytic gene [254]

expression

v-FLIP of Kaposi’s sarcoma herpesvirus (human herpesvirus 8) TRAF2, TRAF3 Recruits TRAF2 and 3 to activate NF-κB and JNK, and [255]

to induce cell survival in primary effusion lymphomas

U(L)37 tegument protein of the herpes simplex virus (HSV) TRAF6 Activates TRAF6 and NF-κB to induce IL-8 expression [256]

Modify TRAF signaling complex

MC159 of human molluscum contagiosum virus TRAF2, TRAF3 Recruits TRAF2 and 3 to Fas signaling complex [250]

and inhibits Fas-induced apoptosis

Induce miRNAs to target TRAFs

Tat protein of HIV-1 TRAF3 Up-regulates miR-32 that directly targets TRAF3 [251]

VSV TRAF6 Up-regulates miR-146a that targets TRAF6 and IRAK1 [252]
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Table 6 In vivo functions of TRAFs in mice

Genotype Type of knockout Phenotype References

TRAF1

TRAF1−/− Germline Viable and normal lymphocyte development [173]

Skin hypersensitive to TNF-induced necrosis [173]

Hyperproliferation in response to T cell receptor signaling [173]

Enhanced Th2 responses [266]

Lack of 4-1BB-mediated survival responses in CD8 and memory T cells [78,79,171]

Required for 4-1BB-induced NF-κB1 activation in T cells [31]

Constitutive NF-κB2 activation in CD8 T cells [31]

TRAF2

TRAF2−/− Germline Progressively runted and die within 3 weeks after birth [267]

Atrophy of the thymus and spleen; depletion of B cell precursors [267]

Elevated serum TNF levels; cells sensitive to TNF-induced apoptosis [267]

Severe reduction in TNF-mediated JNK activation [267]

Severe colitis; drastic changes in the colonic microbiota [261]

Increased number of Th17 cells in the colonic lamina propria [261]

Apoptosis of colonic epithelial cells due to TNFR1 signaling [261]

IL-10-secreting neutrophils accumulated in peripheral blood and bone marrow [262]

TRAF2flox/flox, CD19-Cre B cell-specific Prolonged B cell survival independent of BAFF [36]

Splenomegaly and lymphadenopathy [36]

Constitutive NF-κB2 activation in B cells [36]

Slower and decreased CD40-induced phosphorylation of JNK, p38 and ERK [74]

Reduced germinal center formation following SRBC immunization [74]

TRAF2flox/flox, Lck-Cre T cell-specific Normal T cell survival; constitutive NF-κB2 activation in T cells [36]

TRAF2flox/flox, Albumin-Cre Hepatocyte-specific Severely impaired hyperglycemic response to glucagon [268]

TRAF3

TRAF3−/− Germline Progressively runted; die by 10 days after birth [269]

Impaired T cell responses [269]

TRAF3flox/flox, CD19-Cre B cell-specific Prolonged B cell survival independent of BAFF [36,270]

Splenomegaly and lymphadenopathy [36,270]

Autoimmune manifestations and hyperimmunoglobulinemia [270]

Increased T-independent antibody responses [270]

Development of B1 lymphomas and splenic marginal zone lymphomas [271]

Enhanced signaling by TLR3, TLR4, TLR7, and TLR9 in B cells [272]

Accelerated CD40-induced phosphorylation of JNK, p38 and ERK [74]

TRAF3flox/flox, Lck-Cre T cell-specific Normal T cell survival; constitutive NF-kB2 activation in T cells [36]

TRAF3flox/flox, CD4-Cre T cell-specific Normal T cell survival; constitutive NF-kB2 activation in T cells [11]

Normal CD4 and CD8 T cell development; increased number of Treg cells [11]

Defective T-dependent antibody responses [11]

Impaired T cell-mediated immunity to bacterial infection [11]

Defective T cell responses to co-stimulation by T cell receptor and CD28 [11]

TRAF4

TRAF4−/− Germline Embryonic lethal but with great individual variation [258,259]

Respiratory disorder and wheezing caused by tracheal ring disruption [258,259]

Surviving mutant mice manifest numerous developmental abnormalities [258,259]
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This is further corroborated by the evidence that dele-

tion of cIAP1 and cIAP2 (constitutive interacting part-

ners of TRAF2) also renders BAFF-independent survival

of B cells in mice due to constitutive NF-κB2 activation

[74]. Strikingly, the development of mature B cells, in-

cluding the follicular and marginal zone subpopulations

of the spleen, are unimpaired in BAFF-R−/− mice that

also lack B cell expression of either TRAF2, TRAF3, or

cIAP1/cIAP2 [74]. Thus, the survival and maturation

pathways normally activated by physiologic triggering of

BAFF-R by BAFF are constitutively activated when the

expression of TRAF2, TRAF3, or cIAP1/cIAP2 is absent

from B cells [74]. Vastly prolonged survival of B cells

eventually leads to autoimmune manifestations and B

lymphoma development in B cell-specific TRAF3−/−

mice [270,271]. Interestingly, TRAF3−/− B cells also dis-

play enhanced activation in response to signaling by

TLR3, TLR4, TLR7, or TLR9 [272]. Gardam et al. fur-

ther directly compared CD40 signaling in B cell-specific

TRAF3−/−, TRAF2−/−, and cIAP1−/−cIAP2−/− mice [74].

Interestingly, loss of TRAF2, TRAF3, or cIAP1/cIAP2 in

B cells has very different impacts on CD40 signaling.

Table 6 In vivo functions of TRAFs in mice (Continued)

Altered locomotion coordination typical of ataxia [258,259]

High incidence of spina bifida [258,259]

Degeneration of a high number of Purkinje cells [260]

Increased rates of pulmonary inflammation [260]

Reduced migration of DCs; normal development of T and B lymphocytes [273]

Inhibits IL-17 signaling and Th17-mediated autoimmune encephalomyelitis [164]

TRAF5

TRAF5−/− Germline Viable and normal development [274]

Mild defect in T-dependent antibody responses [274]

Defective in Th1/Th2 differentiation [275]

TRAF6

TRAF6−/− Germline Perinatal and postnatal lethality [264,265]

Severe osteopetrosis; defective in osteoclast formation [264,265]

Defective IL-1, CD40 and LPS signaling in lymphocytes [264,265]

Defective in lymph node organogenesis [265]

Reduced number of immature B cells in the bone marrow [265]

Severe defect in the Treg development in thymus [276]

Defective development, maturation and activation of DCs [277]

Impaired cytokine production in mast cells following FcεRI aggregation [278]

Hypohidrotic ectodermal dysplasia [279]

TRAF6flox/flox, CD19-Cre B cell-specific Reduced number of mature B cells in the bone marrow and spleen [280]

Impaired T-dependent and T-independent antibody responses [280]

Lack of CD5+ B-1 cells [280]

TRAF6flox/flox, CD4-Cre T cell-specific Multiorgan inflammatory disease; hyperactivation of the PI3K-Akt pathway [281]

Resistant to suppression by CD4+CD25+ regulatory T cells [281]

Resistant to anergizing signals [282]

A profound defect in generating CD8 memory T cells; [283]

Defective AMPK activation and mitochondrial fatty acid oxidation [283]

Specific increase in Th17 differentiation [284]

More sensitive to TGFβ-induced Smad2/3 activation and proliferation arrest [284]

A severe defect in the Treg development [276]

TRAF6flox/flox, MCK-Cre Skeletal muscle-specific Improved muscle preservation in response to starvation or cancer cachexia [60,285,286]

Improved regeneration of myofibers upon injury [60,285,286]

Augmented the M2 macrophage phenotype in injured muscle tissues [60,285,286]

Upregulated Notch signaling and reduced inflammatory cytokine production [287,288]

Xie Journal of Molecular Signaling 2013, 8:7 Page 18 of 31

http://www.jmolecularsignaling.com/content/8/1/7



TRAF3−/− B cells exhibit accelerated phosphorylation of

JNK, ERK, and p38 in response to CD40 signaling. In

contrast, TRAF2−/− B cells display slower and decreased

CD40 signaling, while cIAP1−/−cIAP2−/− B cells show

impaired CD40 signaling [74]. Consistent with this, B

cell-specific TRAF2−/− and cIAP1−/−cIAP2−/− but not

TRAF3−/− mice exhibit dramatically reduced germinal

center formation following immunization with sheep red

blood cells [74]. Notably, TRAF5−/− B cells show defects

in proliferation and up-regulation of surface molecules

in response to CD40 stimulation, and reduced produc-

tion of IgM and IgG1 in response to stimulation with

CD40 plus IL-4 [274]. Unexpectedly, TRAF6 ablation re-

sults in defects in generation of CD5+ B1 cells, reduced

number of mature B cells in the bone marrow and

spleen, and impaired T-dependent and T-independent

antibody responses [280].

T lymphocytes

TRAFs (except TRAF4) play critical roles in regulating T

cell immunity. TRAF1−/− T cells exhibit hyperproliferation

and increased production of Th2 cytokines (IL-4, IL-5

and IL-13) in response to TCR signaling, but defective 4-

1BB-mediated survival responses in effector and mem-

ory CD8 T cells [77-79,171,266]. Hyperproliferation of

TRAF1−/− T cells is due to constitutive activation of the

NF-κB2 pathway [31]. Paradoxically, TRAF2−/− or

TRAF3−/− T cells display neither prolonged survival (as

that observed in B cells) nor hyperproliferation (as that

observed in TRAF1−/− T cells), despite their constitutive

processing and activation of NF-κB2 [11,36]. However,

the TRAF2-NIK-NFκB2 pathway does drive the de-

velopment of fatal autoimmune inflammatory disorder

in TRAF2−/−TNFα−/− mice [289]. Surprisingly, T cell-

specific TRAF3−/− mice have increased frequency of

regulatory T (Treg) cells, and exhibit defective T-

dependent IgG1 responses and T cell-mediated immun-

ity to infection with Listeria monocytogenes, which is

due to impaired TCR/CD28 signaling [11]. Similarly,

CD27-mediated co-stimulatory signaling was reduced in

TRAF5−/− T cells [274]. In contrast, TRAF6−/− mice

show a severe defect in Treg development in thymus

[276]. T cell-specific deletion of TRAF6 results in the

development of multiorgan inflammatory disease [281].

TRAF6−/− T cells exhibit hyperactivation of the PI3K-

Akt pathway, resistance to suppression by Treg cells,

and also resistance to anergizing signals [281,282].

TRAF6−/− CD4 T cells display increased Th17 differen-

tiation, due to enhanced sensitivity to TGFβ-induced

Smad2/3 activation and IL-2 down-regulation [284].

Interestingly, activated TRAF6−/− CD8 T cells exhibit de-

fective AMP-activated kinase activation and mitochondrial

fatty acid oxidation (FAO) in response to growth factor

withdrawal, resulting in a profound defect in memory

CD8 T cell development after infection [283].

DCs and mast cells

TRAF1, 2, 3, 4 and 6 regulate the functions of dendritic

cells (DCs). Arron et al. demonstrated the cooperation

of TRAF1 and TRAF2 in DCs [290]. TRAF1-/- DCs ma-

tured in CD154 display impaired NF-κB activation and

survival but increased TRAF2 degradation in response

to CD154 re-stimulation [290]. TRAF3−/− DCs produce

increased amounts of IL-12 but reduced amounts of IL-

10 and little type I IFN in response to TLR7 and TLR9

signaling [18,95,96]. TRAF3−/− DCs also display consti-

tutive NF-κB2 activation but not prolonged survival [18].

TRAF4−/− DCs exhibit reduced migration both in

transwell experiments and in vivo [273]. Interestingly,

TRAF6 is required for DC maturation and activation. In

response to either microbial components or CD40L,

TRAF6−/− DCs fail to up-regulate surface expression of

MHC class II and CD86, or produce inflammatory cyto-

kines [277]. Similarly, TRAF6−/− mast cells exhibit im-

paired production of IL-6, CCL-9, IL-13, and TNF

following FcεRI aggregation by IgE [278].

Hepatocytes and skeletal muscles

Hepatocyte-specific TRAF2−/− mice exhibit significantly

decreased blood glucose levels under high-fat diet condi-

tions. Although these mice show normal insulin signaling

and the hypoglycemic response to insulin, they have se-

verely impaired glucagon signaling and the hyperglycemic

response to glucagon. In addition, TRAF2 overexpression

significantly increases the ability of glucagon or a cAMP

analog to stimulate CREB phosphorylation, gluconeogenic

gene expression, and hepatic glucose production in

primary hepatocytes. Thus, hepatic cell TRAF2 au-

tonomously promotes hepatic gluconeogenesis, and con-

tributes to hyperglycemia in obesity [268]. Interestingly,

skeletal muscle-specific depletion of TRAF6 in mice im-

proves satellite cell activation and skeletal muscle regener-

ation through up-regulation of Notch signaling and

reducing the inflammatory repertoire [287]. TRAF6 defi-

ciency inhibits the induction of atrophy program in

response to starvation, denervation, or cancer cachexia by

suppressing the expression of key regulators of atrophy,

including MAFBx, MuRF1, p62, LC3B, Beclin1, Atg12,

and Fn14 [60,285,286]. Ablation of TRAF6 also improves

the phosphorylation of Akt and FoxO3a and inhibits the

activation of 5′ AMP-activated protein kinase in skeletal

muscle in response to starvation. Moreover, K63-linked

autoubiquitination of TRAF6 regulates ER stress and

unfolding protein response pathways in starvation-

induced muscle atrophy [288]. It remains to be elucidated

whether other TRAFs regulate hepatocyte and skeletal

muscle functions.
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Atherosclerosis

Experiments of mouse models of atherosclerosis have pro-

vided evidence that TRAF1, 5 and 6 regulate the patho-

genesis of this disease. Missiou et al. reported that TRAF1

deficiency attenuates atherosclerosis in low-density lipo-

protein receptor (LDLR)−/− mice by impairing monocyte

recruitment to the vessel wall [291]. Deletion of TRAF1

inhibits adhesion of inflammatory cells to the endothe-

lium, reduces the expression of CD29 in macrophages,

and decreases the expression of the adhesion molecules

ICAM-1 and VCAM-1 in endothelial cells [291]. In con-

trast, TRAF5 deficiency accelerates atherogenesis in

LDLR−/− mice. Deletion of TRAF5 in endothelial cells

or in leukocytes enhances adhesion of inflammatory

cells to the endothelium, thus facilitating inflammatory

cell recruitment to the atherosclerotic plaques. In

addition, TRAF5 deficiency increases the expression of

adhesion molecules and chemokines, and potentiates

macrophage lipid uptake and foam cell formation [292].

Interestingly, endothelial and myeloid cell TRAF6 pro-

teins have opposite roles in atherosclerosis in ApoE−/−

mice. Endothelial TRAF6 deficiency inhibits atheroscler-

osis by reducing proinflammatory gene expression and

monocyte adhesion to endothelial cells. In contrast, mye-

loid cell-specific TRAF6 deletion exacerbates atheroscle-

rosis. TRAF6−/− macrophages exhibit impaired expression

of the atheroprotective cytokine IL-10, elevated ER stress,

increased sensitivity to oxidized LDL-induced apoptosis,

and reduced capacity to clear apoptotic cells [293]. Similar

mouse models of TRAF2, 3 and 4 need to be generated

and characterized in future studies.

TRAFs in human diseases

Findings obtained from TRAF-deficient mouse models

have laid the basis to understand the roles of TRAFs in

the pathogenesis of human diseases. Given their impor-

tance in regulating the development, survival and activa-

tion of various cell types, it would be expected that

aberrant functions of TRAFs may contribute to different

diseases. However, the roles of TRAFs in human diseases

are just beginning to be revealed. Available evidence impli-

cates TRAFs in the pathogenesis of cancers, autoimmune

diseases, immunodeficiencies, and neurodegenerative di-

seases (Table 7).

B cell malignancies

Growing literature documents the prominent relevance

of TRAF3, TRAF2 and TRAF1 in B cell malignancies.

As predicted from their critical roles in inhibiting B cell

survival, biallelic deletions or inactivating mutations

of TRAF3 and TRAF2 frequently occur in primary hu-

man samples of B cell neoplasms. Deletions and muta-

tions of TRAF3 have been reported in multiple

myeloma [294-296], Waldenström’s macroglobulinemia

[300], Hodgkin lymphomas (HLs) [301], and a variety of

non-Hodgkin lymphomas (NHLs), including splenic

marginal zone lymphoma, B cell chronic lymphocytic

leukemia (B-CLL), and mantle cell lymphoma [298,299].

Similarly, inactivating mutations of TRAF2 have been

identified in multiple myeloma [294-296] and diffuse

large B-cell lymphoma (DLBCL) [302]. Single nucleo-

tide polymorphisms (SNPs) of TRAF3 are also associ-

ated with altered risk of multiple myeloma [297]. In

contrast, TRAF1 expression is ubiquitously elevated in

both HLs [314] and NHLs, especially in CLL and medi-

astinal large B-cell lymphoma [315-317]. In addition,

TRAF1 SNPs are associated with NHLs [303]. Thus,

TRAF3 and TRAF2 are tumor suppressive, whereas

TRAF1 appears to be oncogenic in B cells.

Carcinomas

Overexpression and gene amplification of TRAF4 and

TRAF6 have been reported in human carcinomas.

TRAF4 is overexpressed in breast and lung carcinomas

[304,318,319]. TRAF4 protein overexpression is limited

to cancer cells and the subcellular localization is consist-

ently cytoplasmic in a large majority of cases. Increased

TRAF4 gene copy number is one major mechanism res-

ponsible for TRAF4 protein overexpression in human

cancers. Indeed, TRAF4 is located at chromosome

17q11.2 in a region of amplification devoid of other

known oncogenes [304,318,319]. Intriguingly, TRAF4 is

a target gene of the p53 family of transcription factors,

including p63, p73 and p53, in squamous cell carcinoma

of the head and neck (SCCHN). TRAF4 locates in the

nucleus in normal oral epithelium and highly/moderately

differentiated cells, but is localized in the cytoplasm in

poorly differentiated SCCHN. Overexpression of TRAF4

in SCCHN induces apoptosis and suppresses colony for-

mation [320-322]. Thus, TRAF4 overexpression has diffe-

rent outcomes in different carcinomas. Notably, TRAF6

gene is located in another frequently amplified region at

chromosome 11p13. TRAF6 exhibits overexpression and

gene amplification in lung cancer and osteosarcoma cells

[305,306,323]. Downregulation of TRAF6 in human lung

cancer and osteosarcoma cells suppresses NF-κB activa-

tion, cell survival and proliferation, and tumor formation

and invasion. These observations suggest that TRAF6

overexpression may promote the tumorigenesis and inva-

sion of lung cancer and osteosarcoma cells [305,306,323].

Autoimmune diseases

Single nucleotide polymorphisms (SNPs) in TRAFs have

been linked to autoimmune diseases such as systemic

lupus erythematosus (SLE) and rheumatoid arthritis (RA).

SNPs of TRAF6 are associated with both SLE and RA

[22]. Similarly, SNPs at the TRAF1/C5 locus are associated

with both SLE and RA [307,308,310,311]. A single SNP
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(rs7514863), mapping upstream of the TRAF5 gene and

affecting a putative transcription factor binding site,

demonstrates a significant association with RA [309]. In

addition, decreased expression of TRAF2 has been

detected in peripheral blood mononuclear cells of SLE

patients [324]. However, further association and func-

tional studies are required to determine whether these

TRAFs play causal roles in increasing susceptibility to

SLE or RA.

Immunodeficiencies

An autosomal dominant mutation of TRAF3 has been

reported in a young adult with a history of herpes sim-

plex virus-1 (HSV-1) encephalitis in childhood [312].

The TRAF3 mutant allele is loss-of-expression, loss-

of-function, dominant-negative, and associated with im-

paired responses upon stimulation of both TNF-Rs and

TLRs. The recurrent HSV-1 infection and encephalitis

result from the impairment of TLR3-induced type I IFN

production [312].

Hypohidrotic ectodermal dysplasia

A heterozygous mutation of TRAF6 has recently been

identified in a patient with hypohidrotic ectodermal

dysplasia (HED)[325]. The mutant TRAF6 protein is

capable of forming a complex with TAK1 and TAB2,

but cannot bind to the receptor XEDAR. Furthermore,

the mutant TRAF6 protein potently inhibits the inter-

action between wild type TRAF6 and XEDAR, and sup-

presses the XEDAR-mediated NF-κB activation. Thus,

this mutant TRAF6 protein acts in a dominant-negative

manner to affect the XEDAR-mediated NF-κB activa-

tion during the development of ectoderm-derived or-

gans, leading to HED phenotype [313].

Neurodegenerative diseases

Interestingly, recent evidence implicates the E3 ligase

activity of TRAF6 in the pathogenic aggregation of mu-

tant proteins in neurodegenerative diseases such as

Parkinson’s disease and Huntington disease. It was

found that TRAF6 binds to misfolded mutant DJ-1,

aSYN and N-HTT, proteins involved in the pathogen-

esis of the Parkinson’s disease and Huntington disease.

Mutant DJ-1, aSYN and N-HTT proteins are all

substrates of TRAF6. Instead of conventional K63-

linked polyubiquitination, TRAF6 promotes atypical

ubiquitination of DJ-1, aSYN and N-HTT with K6, K27,

and K29 linkage formation, thereby stimulating aggre-

gate formation of mutant DJ-1, aSYN and N-HTT in

neurodegenerative diseases [326,327].

Table 7 Genetic variations of TRAFs in human diseases

Diseases Genetic variations of TRAFs References

B cell malignancies

Multiple myeloma Deletions or inactivating mutations of TRAF3, TRAF2 [294-296]

SNPs of TRAF3 [297]

Splenic marginal zone lymphoma Deletions or inactivating mutations of TRAF3 [298,299]

B cell chronic lymphocytic leukemia Deletions or inactivating mutations of TRAF3 [298]

Mantle cell lymphoma Deletions or inactivating mutations of TRAF3 [298]

Waldenström’s macroglobulinemia Deletions or inactivating mutations of TRAF3 [300]

Hodgkin lymphoma Deletion of TRAF3 [301]

Diffuse large B-cell lymphoma Inactivating mutations of TRAF2, TRAF5 [302]

Non-Hodgkin lymphoma SNPs of TRAF1 [303]

Carcinomas

Breast cancers Amplification of TRAF4 [304]

Lung cancers Amplification of TRAF4, TRAF6 [304,305]

Osteosarcoma Amplification of TRAF6 [306]

Autoimmune diseases

Systemic lupus erythematosus SNPs of TRAF6, TRAF1/C5 [22,307,308]

Rheumatoid arthritis SNPs of TRAF5, TRAF6, TRAF1/C5 [22,309-311]

Immunodeficiencies

HSV-1 encephalitis Inactivating mutation of TRAF3 [312]

Other

Hypohidrotic ectodermal dysplasia Inactivating mutation of TRAF6 [313]
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Chronic inflammation and infection

In light of their crucial importance in inflammatory and

immune responses, it would be predicted that TRAF mo-

lecules may also contribute to chronic inflammation and

infection. Although no genetic association of TRAFs and

chronic inflammation or infection has been identified,

recent evidence of alterations of TRAF protein levels sup-

ports this possibility. Notably, TRAF2 and TRAF3 are

often degraded in response to signaling by the TNF-R

superfamily [3,27,32,328]. In contrast, TRAF1 expression

is up-regulated by NF-κB activation in response to signa-

ling by a variety of receptors, including TNF-R superfa-

mily and cytokine receptors, etc. [329-331]. The dynamic

change of the stoichiometry of different TRAF molecules

inside the cell impacts subsequent cellular responses to

inflammatory or infectious stimuli. For example, the pre-

sence of TRAF1 stabilizes TRAF2, which plays a role in

promoting proinflammtory responses in HeLa cells

[332,333]. More direct evidence was provided by a recent

study demonstrating that TRAF1 is specifically lost from

virus-specific CD8 T cells during the chronic phase of in-

fection with HIV in humans [171]. This area warrants fur-

ther investigation.

Conclusions
Since the first TRAFs were cloned in the mid 1990s, we

have witnessed a remarkable progress in understanding

the functions of TRAFs in signaling. TRAFs are now re-

cognized as signal transducers of a wide variety of recep-

tors, including the TNF-R superfamily, TLRs, NLRs,

RLRs, IL-1R family, IL-17Rs, IFN receptors, TGFβ recep-

tors, IL-2R, TCR, and C-type lectin receptors. Although

initially defined as adaptor proteins, most TRAFs also

function as E3 ubiquitin ligases through their RING finger

domain. Furthermore, activation of TRAFs is exquisitely

regulated by post-translational modifications, especially

ubiquitination, which has become the subject of intense

investigations during the past few years. Termination of

TRAF activation could be achieved through either K48-

linked polyubiquitination followed by proteosomal deg-

radation or removal of K63-linked polyubiquitin chains

catalyzed by deubiquitinases. Acting alone or in combin-

ation, TRAF-dependent signaling pathways regulate the

activation of NF-κBs, MAPKs, or IRFs to control diverse

cellular processes. Accumulating evidence obtained from

TRAF-deficient mice demonstrates that each TRAF plays

obligatory and distinct roles critical for innate immunity,

adaptive immunity, embryonic development, and tissue

homeostasis. The pivotal roles of TRAFs in host immunity

are further highlighted by the finding that targeting

TRAFs appears to be a common mechanism employed by

pathogenic proteins of viruses and bacteria. Furthermore,

the interest in TRAFs is also driven by recent discoveries

that link TRAF genetic variations to human diseases such

as cancers, autoimmune diseases, and immunodeficien-

cies. In conclusion, TRAFs are versatile and indispensable

regulators of signal transduction and immune responses,

and aberrant functions of TRAFs contribute to the patho-

genesis of human diseases.

Perspectives

Despite the wealth of current knowledge about TRAFs,

many key questions remain, which will drive the next

stage of research in this important area. (1) What is the

stoichiometric composition of TRAFs and other signal-

ing proteins in each signaling complex? What are the

dynamic kinetics of activation and spatial regulation of

each TRAF molecule in response to each specific stimu-

lus? Cutting-edge biochemical, proteomic, and imaging

technologies will be needed to uncover these details. (2)

How is the E3 ligase activity of each TRAF regulated

precisely? What are the substrates of the E3 ligase acti-

vities of TRAF2, 3 and 5? Are there additional E3 ligases,

deubiquitinases, kinases, and phosphatases that target

different TRAFs? Are the enzymes targeting TRAFs reg-

ulated by TRAF-dependent signaling pathways? In vitro

reconstitution experiments and ligase activity assays,

high throughput screens for substrates and enzymes,

and systems biology approaches will be needed to ad-

dress these issues. (3) What are the molecular structures

of each TRAF in complex with its specific signaling part-

ner, substrate, or enzyme? This requires access to co-

crystals containing TRAFs and their interacting partners,

and the crystal structure of full-length TRAFs/substrates

remains a challenge. (4) Are there additional pathogenic

factors of invading microorganisms that target TRAFs

during infections? If so, by what precise mechanisms?

Yeast 2-hybrid screen, bioinformatic studies and prote-

omic approaches may be applied toward this end. (5)

During pathogen infections, multiple TRAF-dependent

signaling pathways are triggered either sequentially or

simultaneously, including innate immune receptors

(such as TLRs, NLRs and RLRs), adaptive immune re-

ceptors (such as TCR, CD40, OX-40 and 4-1BB), and

cytokine receptors (such as IL-1R, IL-17R, IFN-Rs, and

TβRs). How does each TRAF act in such complex and

concerted signaling pathways in different cellular context

during infection? Whether and how does each TRAF

regulate the crosstalk between different immune signal-

ing pathways? Responses of TRAF−/− mice, and espe-

cially cell type-specific TRAF−/− mice, to infections will

be instrumental in addressing these questions. Sequen-

tial or simultaneous co-engagement of different immune

receptors also needs to be investigated thoroughly in

cultured cells. (6) What are the cell type-specific factors

that dictate cell type-specific TRAF functions? For ex-

ample, TRAF2 or TRAF3 deficiency leads to prolonged

survival in B cells, but not in T cells or DCs. Genetic
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and systems biology approaches will be required for such

studies. (7) Are there additional TRAF genetic alter-

ations and SNPs associated with human diseases? Do

epigenetic modifications of TRAFs contribute to disease

conditions? How? Systematic and comprehensive ana-

lyses employing genetic, bioinformatic, and deep sequen-

cing approaches will facilitate such investigation.

Generation and examination of TRAF−/− or TRAF-

transgenic mouse models of human diseases are also re-

quired to decipher the underlying mechanisms. To-

gether, these future studies will undoubtedly yield

valuable information to advance our understanding of

TRAFs.

Given the importance of TRAFs in host immunity and

in human diseases, the above future studies will also

provide a platform for the development of therapeutic

intervention of TRAF-mediated human diseases. For

example, insights gained into the structures of each

TRAF in complex with its specific signaling partner,

substrate, or enzyme will guide the development of

structure-based therapeutics. Small agonists and antag-

onists of TRAFs may be devised to enhance beneficial

signaling pathways and to interfere with harmful ones,

respectively. In this regard, cell-permeable TRAF6

decoy peptides potently inhibit TRAF6 signaling in cul-

tured cells, and their therapeutic potential in disease

settings are currently under investigation [191,334]. A

chemical compound 5-(4-methoxyarylimino)-2-N-

(3,4-dichlorophenyl)-3-oxo-1,2,4-thiadiazolidine (P(3)-

25), which possesses anti-bacterial and anti-fungal

activities, specifically inhibits TRAF2-mediated NF-κB

activation while enhancing TRAF2-mediated AP-1 acti-

vation [335]. However, the diverse and cell type-specific

functions of TRAFs may prevent systemic administra-

tion of therapeutic agents that directly target TRAFs,

and local or cell-specific drug delivery needs to be

exercised. Alternatively, therapeutic strategies may be

designed to specifically manipulate TRAF-interacting

partners or downstream signaling pathways. For ex-

ample, pharmacological inhibitors for cIAP1/2 are cur-

rently at various stages of clinical trials for cancers

[107], and may be applied to other TRAF-mediated dis-

eases too. Further in-depth understanding of TRAF sig-

naling pathways will serve as experimental framework

to be translated into such therapeutic development.
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