
 Open access Journal Article DOI:10.1504/IJSNET.2017.083525

Traffic- and energy-load-based sink mobility algorithms for wireless sensor networks
— Source link

Metin Koç, Ibrahim Korpeoglu

Institutions: Bilkent University

Published on: 01 Jan 2015 - International Journal of Sensor Networks (Inderscience Publishers (IEL))

Topics: Sink (computing), Wireless sensor network, Node (networking), Network packet and Overhead (computing)

Related papers:

 Controlled sink mobility for prolonging wireless sensor networks lifetime

 Mobility Strategy of Mobile Sink Node to Prolong the Lifetime of Wireless Sensor Networks

 Sink Mobility based energy efficient algorithm to improve the network lifetime

 A myopic mobile sink migration strategy for maximizing lifetime of wireless sensor networks

 Network lifetime maximization in wireless sensor networks with a path-constrained mobile sink

Share this paper:

View more about this paper here: https://typeset.io/papers/traffic-and-energy-load-based-sink-mobility-algorithms-for-
rkcw28p5ve

https://typeset.io/
https://www.doi.org/10.1504/IJSNET.2017.083525
https://typeset.io/papers/traffic-and-energy-load-based-sink-mobility-algorithms-for-rkcw28p5ve
https://typeset.io/authors/metin-koc-1g8vjlowwx
https://typeset.io/authors/ibrahim-korpeoglu-56z9lsy88e
https://typeset.io/institutions/bilkent-university-2j3xkcxw
https://typeset.io/journals/international-journal-of-sensor-networks-2qqh9vb0
https://typeset.io/topics/sink-computing-25auj4qu
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/topics/node-networking-2dv26b4f
https://typeset.io/topics/network-packet-2x03c3ea
https://typeset.io/topics/overhead-computing-1ddqien5
https://typeset.io/papers/controlled-sink-mobility-for-prolonging-wireless-sensor-5cu18t7c1k
https://typeset.io/papers/mobility-strategy-of-mobile-sink-node-to-prolong-the-23iybzmk5n
https://typeset.io/papers/sink-mobility-based-energy-efficient-algorithm-to-improve-4lf845vx6z
https://typeset.io/papers/a-myopic-mobile-sink-migration-strategy-for-maximizing-42xgt9s94q
https://typeset.io/papers/network-lifetime-maximization-in-wireless-sensor-networks-4w711iwvmb
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/traffic-and-energy-load-based-sink-mobility-algorithms-for-rkcw28p5ve
https://twitter.com/intent/tweet?text=Traffic-%20and%20energy-load-based%20sink%20mobility%20algorithms%20for%20wireless%20sensor%20networks&url=https://typeset.io/papers/traffic-and-energy-load-based-sink-mobility-algorithms-for-rkcw28p5ve
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/traffic-and-energy-load-based-sink-mobility-algorithms-for-rkcw28p5ve
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/traffic-and-energy-load-based-sink-mobility-algorithms-for-rkcw28p5ve
https://typeset.io/papers/traffic-and-energy-load-based-sink-mobility-algorithms-for-rkcw28p5ve

Int. J. Sensor Networks, Vol. x, No. x, 2015 1

Traffic- and Energy-Load–Based Sink Mobility
Algorithms for Wireless Sensor Networks

Metin Koç

Department of Computer Engineering,
Bilkent University, 06800, Ankara, Turkey
Email: mkoc@cs.bilkent.edu.tr
*Corresponding author

Ibrahim Korpeoglu

Department of Computer Engineering,
Bilkent University, 06800, Ankara, Turkey
Email: korpe@cs.bilkent.edu.tr

Abstract: Moving the sink node is an effective solution for improving the lifetime
of wireless sensor networks (WSN). Different methods in the literature schedule sink
movements and determine sink stay points. This paper provides another insight to the
sink mobility problem in WSNs by incorporating node-load parameters into a matrix and
using this matrix to determine which sink site to visit in each round. We first present a
packet- (traffic) load–based sink movement algorithm that relies on the packet distribution
of nodes in each sink site for a given topology construction algorithm. We extend this
algorithm by considering the distances the packets are transmitted, and in this manner
obtain an energy-load–based algorithm. We also provide an integer programming (IP)
model to compute optimal results. Our extensive simulations show that our energy- and
packet-based algorithms significantly improve network lifetime compared to keeping the
sink static or moving it randomly. Our energy-based algorithm can increase network
lifetime by a factor of 2 compared to random movement and by a factor of 5 compared
to keeping the sink static. It remains only around 5% behind the optimal solution.

Keywords: Sink Mobility; Network Lifetime Improvement; Wireless Sensor Networks;
Energy efficiency

Reference to this paper should be made as follows: Koç, M. and Korpeoglu, I. (2015)
‘Traffic- and Energy-Load–Based Sink Mobility Algorithms for Wireless Sensor Networks’,
Int. J. Sensor Networks, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Metin Koç received B.S. degree from Yeditepe University, Istanbul,
Turkey, M.S. degree from Bilkent University, Ankara, Turkey, all in computer engineering,
in 2004, and 2008, respectively. He is currently a Ph.D. candidate in the Computer
Engineering Department of Bilkent University. His current research interests include
wireless ad hoc and sensor networks, distributed systems, and computer networks.

Ibrahim Korpeoglu received his Ph.D. and M.S. degrees from University of Maryland
at College Park, both in Computer Science. He is currently an associate professor in
the Computer Engineering Department of Bilkent University, Ankara, Turkey. Prior to
joining Bilkent University, he worked in Ericsson, IBM T.J. Watson Research Center, Bell
Labs, and Telcordia Technologies, in USA. He has served on the program committees of
several conferences and published numerous papers in the area of computer networking.
His research interests include computer networks, wireless ad hoc and sensor networks,
wireless mesh networks, distributed systems, and P2P networks.

1 Introduction

A wireless sensor network (WSN) is composed of
numerous tiny sensor nodes and a more powerful special
node called a sink node (Akyildiz et al., 2002; Perkins,
2000). Data communication is usually many-to-one, such
that all data packets generated by sensor nodes are
destined for the single sink node. Because of limited

energy resources, the most important issue in WSNs is
energy efficiency to prolong the network lifetime; and
this is also the main concern in developing algorithms
and protocols for a network. Different energy–efficient
approaches in various network layers are proposed in
the literature for improving network lifetime, such as
power control mechanisms (Cardei et al., 2005; Zongkai

Copyright c© 2015 Inderscience Enterprises Ltd.

2 M. Koç and I. Korpeoglu

et al., 2004) (physical layer), energy–efficient MAC layer
protocols (Nguyen et al., 2013; Gilani et al., 2013) (data
link layer), and routing protocols (Ahmed and Fisal,
2014; Jiang et al., 2014) (network layer).

Sink mobility is another approach for improving
network lifetime. When there is no data aggregation
applied in the network, sensor nodes transmit their
messages and relay the data packets of other nodes. This
situation causes the nodes in the vicinity of the sink
to deplete their energy faster than other nodes in the
network, which is called the hot-spot problem (Nayak
and Stojmenovic, 2010). Making the sink mobile can
help solving this problem via distributing the hot-spot
load among all sensor nodes, in this way improving the
network lifetime.

So far sink mobility problem is generally handled
as an optimization problem and mathematical
programming based solutions are given to solve it.
Although it is important to see upper bounds on the
network lifetime, most of these solutions do not scale
and also can not be run directly on the sensor nodes
due to their high computation and space requirements.
Therefore, it is important to give algorithms that can
be run on the sensor devices directly, instead of doing
calculations on powerful centralized machines and then
configuring the network.

In this paper, we propose time and space efficient
algorithms that incorporate different parameters into
account while determining the next position the sink
has to move. More specifically, our proposed algorithms
consider parameters like distance among nodes or packet
loads of nodes, and collects these parameters into a
matrix structure to schedule sink movements in each
round.

Without loss of generality, we use tree-based
deterministic routing such that each node sends its own
packet and relays its children’s packets to the same
parent for a given sink site. Necessary parameters are
learned by the sink node with a training phase so that
the same routing tree is constructed in each visit of the
sink node to the same location. This method enables us
to construct a packet traffic load matrix structure T of
sink locations (rows) and nodes (columns) such that each
entry (tij) in the matrix lists how many packets node j

would send and relay for a given sink location i. This
brings us to our first approach, the packet-load–based
movement algorithm (PLMA). This algorithm basically
uses and updates the packet traffic load matrix to choose
the next sink site.

In our second approach, i.e., our energy-load–based
movement algorithm (ELMA), we use computed energy
expenditure values in the matrix instead of only packet
load values. This model is more accurate than the
PLMA, since it differentiates between sending the same
number of packets to a farther or nearer parent.
Otherwise it uses the same approach as the PLMA
in choosing the next sink site. We also give the IP
formulation and solution of the problem to use as

a benchmark for comparing the performance of our
algorithms.

We performed extensive simulation experiments to
compare our algorithms with random sink movement,
with a min-max approach (the sink collects minimum
remaining energy values from each site and moves to the
one with the maximum energy) and with an optimally
placed static sink case. The results show that the ELMA
algorithm performs up to 80% better than the random
movement and 100% better than min-max approaches.
It also provides more than a five times longer lifetime
compared to the static sink case. The ELMA is just
below five percent of the optimal value, however it has
better latency values compared to the optimal and lower
running time values. Lastly, we adapt the solution to
the multiple-sinks case, where we have multiple mobile
sinks that can move to utilize energy in a better manner.
In this case, the our matrix rows become possible
combinations of sink sites. Our simulation results for this
case show that the ELMA algorithm performs better
than the random movement method up to a factor of
2.1. This ratio increases to 2.6 when the nodes are not
uniformly deployed.

The rest of the paper is organized as follows: We
discuss the related work in Section 2. In Section 3,
we present the network model and our algorithms.
In Section 4, we give and discuss our performance
evaluation results. Finally, we conclude the paper in
Section 5.

2 Related Work

The most important characteristics of WSNs is the
limited energy resources of sensor nodes. A typical
sensor node has generally an irreplaceable limited-
capacity battery. Consuming the least amount of energy
is the most critical criterion while designing any sensor-
network protocol so that the energy of nodes and
network is utilized as efficiently as possible.

Several approaches are proposed in the literature to
minimize the network’s total energy consumption and
thus improve network lifetime: adjusting the transmit
power depending on the distance to the receiver when
sending messages (Cardei and Du, 2005), developing
energy-efficient MAC or routing protocols (Han et al.,
2013; Khan and Bilal, 2013; Aissani et al., 2014; Kannan
and Paramasivan, 2014; Su et al., 2013; Hao et al.,
2014), minimizing the number of messages traveling in
the network, and putting some sensor nodes into sleep
mode and using only a necessary set for sensing and
communication Wang and Xiao (2006).

Moving the sink node in the deployment region
is another approach to prolonging network lifetime
because this eliminates the hot-spot problem around the
sink (Vincze et al., 2007; Akkaya et al., 2005).

Gandham et al. (2003) examines the sink mobility
problem with multiple base stations. The main
motivation behind this choice is to have more options for

Traffic- and Energy-Load–Based Sink Mobility Algorithms for Wireless Sensor Networks 3

routing, thus reducing the hop count to prolong network
lifetime. The study presents two different integer linear
programming (ILP) formulations to relocate the sinks
(maximum three), one which has the objective function
to minimize the maximum energy spent by a sensor
node, and the other which has the objective function
to minimize the total energy consumption in a round,
subject to some constraints. The authors also examine
the impact of the number of available base stations over
the network lifetime and find that increasing the number
of base stations beyond a certain threshold value does
not improve lifetime duration (since at that time there
is a sufficient number of base stations in the network
such that each sensor node can transmit messages via
single-hop communication).

Mobility and routing are considered together in Luo
and Hubaux (2005). It is assumed that sensors are
densely deployed (with a Poisson distribution) within a
circle. The authors define the network lifetime as the
time span until the first loss of coverage. They define the
problem with a linear programming (LP) formulation
(minimizing the load on each sensor nodeN) and solve it,
first finding the optimal mobility strategy by fixing the
routing strategy as shortest path, then using the output
strategy to find a final routing strategy with better
performance than shortest path. The authors prove that
the optimal mobility strategy is the trajectory around
the periphery of the network. They find a ’better’ routing
strategy by concentrating on an inner circle in the
network area and develop a heuristic using this structure.
However, because they do not compare their results to
any other mobility approach we cannot comment on the
performance of their proposed scheme. The work’s main
drawback is the assumption that the network region is
circular; there is no explanation of how the solution may
be transferred to other region types.

A work more similar to ours is presented
in Papadimitriou and Georgiadis (2006). In this paper,
N sensor nodes and a sink node s are randomly deployed
to an area of interest. There is a constant information
generation rate at every sensor node and a set of
locations where the base station can move and stay.
The authors present two complementary algorithms for
solving the sink mobility and routing problem. One is a
scheduling algorithm that determines the duration for
each candidate sink site where the base station can stay,
and the other is a routing algorithm that determines the
most energy-efficient path for each packet from a sensor
node to the sink. An LP formulation is given which
maximizes the sum of sink sojourn times at all possible
locations (subject to some constraints) and compares
mobile and static sink approaches with different routing
schemes. The simulations use two scenarios, including
just four (centers of four sub-squares) and five different
(corners and center) sink sites, respectively. The authors
perform and compare the experiments via adding a
routing parameter, which prevents us from observing
the performance of their proposed mobility model.

In Luo and Hubaux (2006), the authors give a
routing algorithm, mobiroute, to route data towards a
mobile sink for improving network lifetime. Mobiroute
extends Woo et al. (2003)’s MintRoute by adding
functions to perform the operations; notifying a node
for link breakage, informing the whole network about
topological changes, minimizing the packet loss during
mobility. They propose a two phase adaptive algorithm
to control sink mobility. In initialization (phase 1),
mobile sink builds a power consumption profile for each
anchor point and drops some of them if their weights
are low. In operation (phase 2), the mobile sink stays
at chosen points and updates profiles. Simulation results
show that making the sink mobile improves network
lifetime without sacrificing reliability in packet delivery.

The work of Basagni et al. (2008) is a detailed
study about controlled sink mobility. The authors
present a centralized mixed integer linear programming
(MILP) model that determines sojourn times and the
order of visits to sink sites. Moreover, they develop
a distributed and localized heuristic called greedy
maximum residual energy (GMRE), as a solution to the
same problem. The network model is similar to the one
given in Papadimitriou and Georgiadis (2006), but unlike
that model, the deployment area is divided into grids
and the corners of these grids are determined as sink
sites. The authors introduce two parameters to make the
model more realistic. The dmax parameter represents an
upper bound for the distance the sink can travel between
the current and the next site. The other is tmin, where
it defines mandatory time the sink is required to stay at
any site. The authors evaluate the performance of MILP,
GMRE, random movement (RM), and static sink (STS)
approaches. The first two give better results than the
others, with MILP performing 30% to 50% better than
GMRE (for increasing tmin values).

Optimal sensor deployment, scheduling, routing and
sink mobility are all considered together for maximizing
lifetime in Keskin et al. (2014). The authors give a mixed
integer linear programming model, which addresses
the aforementioned parameters together to maximize
network lifetime. However, the authors present two
heuristics since current state-of-the-art MILP solvers
fail to solve problems with realistic size due to time
limitations. The period iteration heuristic (PIH) limits
the number of total periods and increments it one
by one up until no further improvement is achieved.
The sequential assignment heuristic (SAH) solves three
different subproblems for determining the values of
sensor locations, activity schedules, and routing decision
variables. Both heuristics give relatively longer lifetime
compared to MILP solver especially for larger number of
sensor locations.

Although centralized algorithms are proposed in
previous works, Yun et al. (2013) present a distributed
algorithm for delay-tolerant wireless sensor networks.
The authors aim to maximize the number of tours
(T), where each tour takes D (maximum delay
tolerance) time units. They propose delay tolerant mobile

4 M. Koç and I. Korpeoglu

sink model (DT-MSM) and decompose it into three
subproblems. These algorithms are then combined to
main algorithm and its convergence analysis is done.
Experimental results are presented to verify the validity
of the algorithm.

Previous works that use (M)ILP force the authors
to limit the number of sink sites and the number of
nodes in their simulations. For example, Gandham et al.
(2003) uses maximum 30 nodes while Papadimitriou and
Georgiadis (2006) uses 100 nodes. Since IP or MILP is
NP complete (Wolsey, 1998), increasing the number of
nodes will cause a dramatic increase in deciding sink
movements. WSNs, however, are likely to contain tens
of thousands of nodes (especially as the cost of sensor
nodes becomes cheaper), and since sensor nodes do not
have large buffer capacities, most nodes will not be
able to tolerate long latencies which will cause a large
packet loss rate. In such cases, heuristic algorithms are
more efficient and also more effective than the optimal
solution. Therefore in this paper, we provide heuristic
algorithms which can be used at network operation time
while maintaining a current situation matrix and giving
decisions based on that instead of performing long and
static pre-calculations.

3 Proposed Solution

3.1 System Model

We consider a wireless sensor network that has N static
sensor nodes and a mobile base station (sink). Sensor
nodes are deployed to the region of interest in a random
manner. There is a training phase, as in Basagni et al.
(2011), such that mobile sink visits all sink sites once
before network starts its operation. After the mobile
sink moves to a location, it stays there for a while and
constructs a routing tree by initiating the flooding of
a control packet which includes its id and hop count
(both are zero for the sink) in the network. Each node
receives the packet sets its parent (if multiple such
packets are received, node with smaller hop count -
smaller id in case of a tie - is selected as a parent) and re-
broadcasts the packet after incrementing the hop count
and adding its ID to the packet. In this way a routing
tree is formed. Each node saves this parent id for that
specific sink location to transmit its packets every time
sink visits that location. Nodes also notify their parents
about their decisions, such that parents can calculate
how many packets it will relay when sink at location i.
Each node sends this packet count information to the
sink during the training phase. Sink uses these values
to construct matrix T (either directly for packet load
matrix, or applying it in the energy model to calculate
energy expenditure for energy load matrix). When sink
moves to a new location it does not initialize routing tree
reconstruction process, instead sends the sink location
id to the nodes. Since nodes know which parent to select

for each sink location, they send the packets destined to
this node while sink at that location.

After tree formation, nodes start to sense the
environment. Each sensor node generates packets with
a rate Q. We assume that each sensor node has enough
buffer size to avoid losing packets during the travel of the
sink from the current site to the next one (or this time
is negligible as in (Basagni et al., 2008; Papadimitriou
and Georgiadis, 2006; Yun et al., 2013)). In this work,
we define network lifetime as the period of time until
the first node dies, which is a common definition in the
literature.

3.2 Proposed Algorithms

As mentioned above, when a sink moves to a point
it constructs a tree-based routing structure (routing
topology) rooted at the sink node for each sink site
during training phase as explained in the previous
section. In this phase, a packet traffic load matrix T can
be constructed such that tij is the number of packets
that node j (oj) would send when the sink is at migration
point i (pi).

T =

o1 o2 . . . on

p1 t11 t12 . . . t1n
p2 t21 t22 . . . t2n
...

...
...

. . .
...

pm tm1 tm2 . . . tmn

The packet load matrix is constructed before the
network begins operation. But before the matrix
is constructed we need to know the possible sink
migration positions, which can be determined by
various algorithms (Koc and Korpeoglu, 2014). For
example, the region can be considered a grid and
each grid cell can be a migration point. Alternatively,
neighborhood information can be used in determining
possible migration points (moving the sink to dense
neighborhoods, for example). Once the migration points
are determined, there will be one row in the matrix for
each possible migration point. For each migration point,
we compute the possible routing tree rooted at that point
and compute what the packet load of each node will be
in the tree.

After these computations we know for each point
i and node j what the packet load of the node (i.e.,
tij value of the matrix) will be at that point. In this
way we can construct the load matrix and the sink can
schedule its movement before network operation begins.
Pre-scheduling the movement is useful in reducing the
time needed to travel to the next sink position, hence
reducing the buffer requirement at the sensor nodes and
reducing the delay that packets will experience.

We also modify the algorithm to consider not only
the packet load on a node but also the energy cost of
transmitting those packets to the next node (parent).
Hence, our second algorithm is based on nodes’ energy
expenditures for a given sink position.

Traffic- and Energy-Load–Based Sink Mobility Algorithms for Wireless Sensor Networks 5

Next we provide the details of our algorithm.

3.2.1 Packet-Load–Based Movement Algorithm
(PLMA)

Our first algorithm aims to minimize the maximum
number of packets sent by a node in each round. A round
is the time duration the sink stays constant at a position
(migration point). The pseudo-code of our algorithm is
given in Algorithm 1.

Algorithm 1 Packet-Load–Based Movement Algorithm
(PLMA)

1: procedure PLMA(c, tx) ⊲ c: node coordinates, tx:
transmission range

2: p← getMigrationPoints(c, tx)
3: for i← 1, size(p) do
4: tt← constructTopology(c, tx, pi)
5: for j ← 1, n do ⊲ for each node
6: tij ← ki ⊲ ki: # of packets to send for oj
7: end for

8: end for

9: for i← 1, size(p) do
10: mp(i)← max(ti)⊲ max element for each row
11: end for

12: r ← min(mp) ⊲ index of minimum of maximums
13: cpl← tr ⊲ initialize current packet list
14: while e > 0 do ⊲ all nodes are alive
15: for each round do

16: for i← 1, size(p) do
17: ui ← ti + cpl ⊲ current packet matrix
18: end for

19: for i← 1, size(p) do
20: mp(i)← max(ui) ⊲ max for each row
21: end for

22: r ← min(mp) ⊲ index of min of max
23: cpl← ur ⊲ initialize current packet list
24: end for

25: end while

26: end procedure

In the algorithm, after we determine the possible
migration points, the sink constructs a routing tree for
each sink candidate position and calculates the number
of packets that each node will send to its parent in
each round. In this way, the packet load matrix T

is obtained. After that, the algorithm determines the
maximum values in each row, selects the row (i.e., the
next migration point) with the minimum value, and
takes this row as the current packet list. We call this the
min-max search. After the sink migrates to that point,
it would operate there until a certain amount of change
in the energy of its first-hop neighbors is detected. Then
the sink updates matrix T by adding the current packet
list value to each row of T (matrix U). Then it again
runs the min-max search over U to determine the new
packet list value. This iteration continues until a node
depletes its energy.

The algorithm has O(np) preprocessing time
complexity to insert the data into the matrix. In each
round, we need O(p) operations to determine the sink’s
next migration point.

Each node keeps parent ids for each sink location.
Since node ids can be represented in log(N) bits and
there are p locations in the area, space complexity
(overhead) becomes p log(N) bits. For 500 nodes and
30 sink sites, it requires around 34 bytes to keep this
array. It is quite acceptable, since most of the nodes
have more than 32 KB program and data memories
(Sensor Network Museum, http://www.snm.ethz.ch).
Sink maintains a matrix of pN which requires
pN log(N). For 500 nodes and 30 sink sites, it
requires around 16 KB memory to store this matrix.
Sink nodes have more resources than nodes, for
instance, a sink instance (gateway model) has more
than 1 GB RAM capacity (Advanticsys SG 1000,
http://www.advanticsys.com/).

3.2.2 Energy-Load–Based Movement Algorithm
(ELMA)

Our second algorithm is a slight modification of
the first one in that it uses the computed energy
load/expenditure of each node instead of the packet
load. The second algorithm constructs again a matrix
T , but this time, for each candidate sink point i (i.e.,
for each row) it computes how much energy the nodes
would consume to transmit their packets to the next
node (parent) in the routing tree for that sink position i.
Then matrix U is updated to reflect the nodes’ remaining
energy values after each round. Hence, our second
algorithm is energy based, where energy consumption
is considered to be related both to transmitted packet
count and to where the packets are transmitted.

ELMA (see Algorithm 2) becomes the dual of our
first algorithm such that we should use max instead of
min (and vice versa) and subtraction instead of addition.
Using the energy-based approach is more meaningful if
it is possible for a sensor node not to send the expected
number of packets in each round (e.g., if an event occurs
some nodes might send more packets, or some packets
might be lost due to anomalies in the network). This
model is more accurate than the packet-based approach
because it takes distance into consideration (via the
energy model) when sending a packet. When a node
sends, say two packets, to different parents for different
sink sites, the energy-based model has different values
for each sink site, while the packet-based scheme has the
same value (namely two).

Like our first algorithm, our second algorithm
requiresO(np) preprocessing time to initialize the matrix
with the energy loads of nodes at possible migration
points. It needs O(p) time in each round to determine
the next migration point for the sink. Sensor nodes’
overhead is same as in PLMA case. However, sink has
to consume more space to keep the energy matrix. It
requires pN log(E) bits, where E is the initial energy

6 M. Koç and I. Korpeoglu

Algorithm 2 Energy-Load–Based Movement
Algorithm (ELMA)

1: procedure ELMA(c, tx) ⊲ c: node coordinates, tx:
transmission range

2: p← getMigrationPoints(c, tx)
3: for i← 1, size(p) do
4: tt← constructTopology(c, tx, pi)
5: for j ← 1, n do ⊲ for each node
6: tij ← txi + rci ⊲ tx and rx cost for oj
7: end for

8: end for

9: for i← 1, size(p) do
10: mp(i)← max(ti)⊲ max element for each row
11: end for

12: r ← min(mp) ⊲ index of minimum of maximums
13: sc ← pr ⊲ set sink’s next coordinate
14: while e > 0 do ⊲ all nodes are alive
15: for each round do

16: u← e− t ⊲ update current energy matrix
17: for i← 1, size(p) do
18: mp(i)← min(ui) ⊲ min for each row
19: end for

20: r ← max(mp) ⊲ index of max of mins
21: sc ← pr ⊲ set sink’s next coordinate
22: end for

23: end while

24: end procedure

value in microjoule. For 500 nodes, 30 sink sites, and
10K microjoule it requires around 25 KB to store energy
matrix.

3.2.3 Mathematical Model

We can consider this problem as a variant of the 0− 1
knapsack problem. In this case, we want to visit each
sink site (add item), each of which has a different value
(energy consumption) in each dimension (node), as much
as possible without exceeding the initial available energy
value (knapsack capacity). Each sink site corresponds to
a knapsack item, and each node represents a dimension
of that item. In this way, the problem becomes an
instance of the unbounded multi-dimensional knapsack
problem (Kellerer et al., 2004). In this version, each
dimension (node) has the same limit (energy), and all
profit values are the same (staying the equal number of
rounds xi at different sink sites contributes equally to
the network lifetime).

We can formulate the problem also as an IP
formulation:

max
m
∑

i=1

xi (1)

s.t.

m
∑

i=1

tijxi ≤ e, j = 1, . . . , n

xi ≥ 0, xi integer, for all i = 1, . . . ,m

It is shown that solving the unbounded
multi-dimensional knapsack problem is NP-
complete (Magazine and Chern, 1984). Finding a fully
polynomial-time approximation scheme (FPTAS) for
the problem exhibits the same hardness. We solved the
above-formulated problem using the MATLAB CPLEX
solver for obtaining optimal values for small networks
to see how close our heuristics algorithms are to the
optimum.

3.3 Multiple Sinks Case

We can also adapt our algorithm to sensor networks
with multiple sinks. Instead of representing a single sink
site, one row of the load matrix can be a combination
of sink placements. For each combination of possible
sink placement, sinks move to these points and routing
trees are established using the approach mentioned in
Section 3.1, with the only difference that each sink
initiates a parallel broadcast process independent from
other sinks. Each sensor node chooses the nearest sink
and the shortest path to that sink after receiving the
broadcast packets. At the end of this process, we have
s different mutually exclusive (each node is connected
to only one sink) and collectively exhaustive (no sensor
node is disconnected) rooted trees.

If we have p migration points (sites) and s sinks in
the environment, then the rows in matrix T become the
enumeration of all possible

(

p

s

)

sink placements:

T =

o1 o2 . . . on

{p1, . . . ps−1, ps} t11 t12 . . . t1n
{p1, . . . ps−1, ps+1} t21 t22 . . . t2n
...

...
...

. . .
...

{pm−s+1, . . . pm−1, pm} tm1 tm2 . . . tmn

The number of rows in matrix T is no longer m, but
the number of possible combinations of

(

p

s

)

= p!
s!(p−s)! .

The values in the matrix can represent the packet load or
energy load on the nodes for a given position of sinks. We
can apply our previous algorithms (PLMA and ELMA)
to the new matrix for solutions to the multi-sink case.

The number of rows in the load matrix for the
multiple-sinks case can be approximated by Stirling’s
formula:

√
2πp(p

e
)p. Therefore, our multi-sink algorithms

have O(npp) pre-processing time complexity to initialize
the matrix. In each round (before each move), we need
O(pp) operations to determine the next sink positions.

Obviously, using these algorithms for large values of p
and n is not feasible; however, they can be used for cases
where the

(

p

s

)

value is below than a few thousands (i.e.,
30 sink sites, three sinks; 17 sink sites, 12 sinks, etc.),
which is called a binomial threshold (bt). Bt is a design
parameter and should be determined by considering
the matrix dimension that sensor nodes can store with
current technology. For a higher number of sink sites, we
can choose a subset of migration points (ct, which is the
maximum integer where

(

ct

s

)

≤ bt) by using, for example,

Traffic- and Energy-Load–Based Sink Mobility Algorithms for Wireless Sensor Networks 7

the k-means algorithm. Then we can apply our PLMA or
ELMA algorithm to this reduced matrix. We call these
multi-sink algorithms that work with fewer combinations
MS-PLMA and MS-ELMA, and show their pseudo-codes
below.

Algorithm 3 Multiple Sinks Packet-Load–Based
Movement Algorithm (MS-PLMA)

1: procedure MS-PLMA(c, tx)⊲ c: node coordinates,
tx: transmission range

2: p← getMigrationPoints(c, tx)
3: if

(

p

s

)

> bt then ⊲ bt: binomial threshold

4: p′ = kmeans(p, ct) ⊲ ct max int,
(

ct

s

)

≤ bt

5: end if

6: PLMA(c, tx,
(

p′

s

)

)
7: end procedure

Algorithm 4 Multiple Sinks Energy-Load–Based
Movement Algorithm (MS-ELMA)

1: procedure MS-ELMA(c, tx)⊲ c: node coordinates,
tx: transmission range

2: p← getMigrationPoints(c, tx)
3: if

(

p

s

)

> bt then ⊲ bt: binomial threshold

4: p′ = kmeans(p, ct) ⊲ ct max int,
(

ct

s

)

≤ bt

5: end if

6: ELMA(c, tx,
(

p′

s

)

)
7: end procedure

4 Performance Evaluation

We implemented and simulated our algorithms in
MATLAB to evaluate and compare them with some
other approaches. In this section we discuss the results
of these simulation experiments. We compared our
proposed algorithms (ELMA, PLMA, and their multiple
sinks variants) against the optimal case (OPT) and other
approaches (MM, RAND, and STS). Below we briefly
describe all simulated and compared methods.

• OPT: Sink moves to the migration points and stays
there according to the results given by the optimal
model.

• ELMA: Sink visits sites as specified by our
Algorithm 2.

• PLMA: Sink moves according to the results given
by our Algorithm 1.

• MM: Minimum energy values of sink’s first-hop
neighbors are collected from each site and sink
moves to the one with maximum energy among
them.

• RAND: Sink selects a sink site randomly and
moves to it.

• STS: Sink does not move but stays static in the
center of the area.

We used the following two metrics in comparing these
methods:

• Network lifetime: time until the first sensor node
depletes its energy. This is a commonly used
network lifetime definition.

• Latency : average hop count that a packet travels
until it reaches the mobile sink node. We model
latency as the number of hops traveled.

4.1 Simulation Parameters

The sensor networks generated in our simulations have N
static sensor nodes and one mobile base station (mobile
sink). The sensor nodes are deployed randomly to a
region of interest (if not stated otherwise). Square-
shaped regions are used in the simulations, which are
generally of size either 300x300 m2 or 400x400 m2. After
the mobile sink moves to its initial location, it broadcasts
its location and nodes select the previously saved
parent id (learnt from the training phase) to send their
messages (topology is constructed). After the topology
construction, nodes start sensing the environment. There
is a constant packet generation rate Q (1 packet/s) for
each sensor node i ∈ N . Binomial threshold is set to 4100
for multiple sinks experiments.

The energy model and the radio characteristics used
in the simulations originate from Heinzelman et al.
(2000). Transmission energy cost depends on packet size
(number of bits in a packet) and the square of the
distance between the transmitting and receiving nodes.
The received energy cost is related only to the packet
size. We assume data packets are 50 bytes long and
control packets (tree establishment packets) are 20 bytes
long. We assume the radio dissipates Eelec = 50 nJ/bit to
run the transceiver circuitry and ǫamp = 100 pJ/bit/m2

for the transmit amplifier to achieve an acceptable
Eb

En

(Heinzelman et al., 2000). Each sensor node has
an energy of 10 J initially. Energy information can be
represented with fourteen bits and can be carried to the
sink as piggybacked information to the data packets. The
parameters of our simulations and their typical values
are summarized in Table 1.

All our simulations are done in the MATLAB
environment. Our IP model is solved with CPLEX
Optimizer supplied through IBM Academic Initiative
program (IBM CPLEX Optimizer, http://www-
01.ibm.com/software/integration/optimization/cplex-
optimizer/). The CPLEX for the MATLAB feature of
this software provides an API, which helps solve the
problem in the same MATLAB simulation environment.

4.2 Simulation Results

Network lifetime values of the various schemes for
numbers of nodes between 400 and 800 are given in

8 M. Koç and I. Korpeoglu

Parameter Value

Area 300x300 m2

Number of Sensor Nodes 400,500,600,700,800
Node Deployment random and uniform
Transmission Range 25 m

Data Routing Tree based
(Koc and Korpeoglu, 2014)

Sink Site Determination Neighborhood SSDA
(Koc and Korpeoglu, 2014)

Nodes’ Initial Energy 10 J
Radio Characteristics First-order radio model

(Heinzelman et al., 2000)

Table 1 Simulation Parameters

400 500 600 700 800
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of Nodes

N
e
tw

o
rk

 L
if
e
ti
m

e
 (

s
e
c
)

OPT

ELMA

PLMA

MM

RAND

STS

Figure 1: Network lifetime for various numbers of nodes.

Figure 1. Transmission range is fixed to 25 m. As the
figure shows, the optimal lifetime is just three to five
percent more than the lifetime achieved with our energy-
based algorithm (ELMA). Our ELMA improves the
random movement scheme by 65 to 81%, and performs
up to 5.2 times better than the static sink case, and
it performs around 20% better than our packet-based
approach (PLMA).

We also tested the algorithms’ performance for the
skewed deployment of nodes to a region (nodes not
uniformly distributed). Figure 2 shows the experiment
results for various number of nodes, which although to
the previous results, exhibit two differences: 1) Random
movement performs worse in skew deployment compared
to uniform deployment, because the random points may
have been poorly selected (may reside in a sparse area,
for example). Our ELMA performs at most 80% better
in uniform deployment; however, it performs more than
100% better in skew deployment. 2) The performance is
not directly proportional to the number of nodes when
the nodes are deployed in a skewed manner. In general,
the lifetime is shorter with skew deployment compared
to uniform deployment.

400 500 600 700 800
0

1000

2000

3000

4000

5000

6000

Number of Nodes

N
e

tw
o

r
k
 L

if
e

ti
m

e
 (

s
e

c
)

OPT ELMA PLMA MM RAND STS

Figure 2: Network lifetime for various numbers of nodes
under skew deployment.

25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

t
x
 (m)

N
e
tw

o
rk

 L
if
e
ti
m

e
 (

s
e
c
)

OPT

ELMA

PLMA

MM

RAND

STS

Figure 3: Network Lifetime values for various
transmission ranges.

In Figure 3, we investigate network lifetime versus
transmission range. The transmission range varies
between 25 m and 40 m and the number of nodes is fixed
to 400. We see results similar to previous figure, however,
the performance difference between the static and mobile
sink cases is not as great as when the number of nodes is
varied. When transmission range increases, packets reach
the sink node with fewer hops, which reduces the load
on the one-hop neighbors, making sink movement less
effective.

Latency (average hop count) values of the schemes
for different transmission range values are presented in
Figure 4. Latency values of the ELMA and PLMA and
the OPT case (in terms of lifetime) are very close to
each other, while the random scheme has slightly better
latency values (around five percent lower). The static
sink has the best latency values (around 33% lower),
because the sink is always placed in the center of the
area, which minimizes the average hop count.

Traffic- and Energy-Load–Based Sink Mobility Algorithms for Wireless Sensor Networks 9

25 30 35 40 45
0

2

4

6

8

10

12

t
x
 (m)

L
a
te

n
c
y
 (

a
v
g
 h

o
p
 c

o
u
n
t)

OPT

ELMA

PLMA

MM

RAND

STS

Figure 4: Latency values for various transmission
ranges.

Number of Nodes
400 500 600 700 800

OPT 33 383 536 619 5575
ELMA 14 20 26 34 41

Table 2 Average running time values (in seconds) of two
approaches

Average running time values for the OPT and ELMA
are given in Table 2. The IP (OPT) running time
increases dramatically when the number of nodes, hence
the number of constraints, increases; for example, it
takes around 136 times longer to execute when the
number of nodes is 800. Solving the IP takes sometimes
more than 7 hours. There are also many runs in which
CPLEX does not terminate normally, but exits with an
out of memory error. One could solve the IP problem
on a more powerful machine and then upload the result
to a sink before the network starts operating, but the
result would take a very long time to determine, and
this method would give less than a five percent lifetime
improvement compared to the ELMA.

The optimal algorithm uses the energy table,
calculated prior to network operation, which in theory
means that every node’s number of packets to transmit is
known and does not change during operation. However,
this is not always the case; sometimes nodes send extra
packets (retransmissions) when there are collisions in the
environment. The optimal algorithm cannot adapt to
such a case because it is not dynamic, using only prior
information. The ELMA uses nodes’ residual energies
(which are piggybacked in the data packets), so if
there is a deviation regarding about energy expenditure
expectations (from packet retransmissions, for instance),
then the algorithm should adapt it in the next round.
The ELMA, then, runs faster, can adapt to cases when
unexpected packet transmissions occur, and sacrifices
less than five percent of the network lifetime in doing so.

400 500 600 700 800 900 1000 1100 1200 1300
0

1000

2000

3000

4000

5000

6000

7000

Number of Nodes

N
e
tw

o
rk

 L
if
e
ti
m

e
 (

s
e
c
)

ELMA

PLMA

MM

RAND

STS

Figure 5: Network lifetime values for numbers of nodes.

Network lifetime values for higher numbers of nodes
(without optimal values) are given in Figure 5. Sink
mobility efficiency increases directly proportional to the
number of nodes. The energy-based approach has 3.2
times more network lifetime when the nodes number 400;
however, this ratio increases to six when there are 1300
nodes in the area.

Network lifetime values for different numbers of sinks
are given in Figure 6. The number of sink sites is fixed
to 15. Since all possible sink placements are in the order
of thousands, we cannot run the optimal algorithm due
to its long running times. For the static case, we run
the k-means clustering algorithm and static places for
sinks are determined using the output. Placing multiple
sinks optimally in the area is another research issue and
beyond the scope of our work. Results show that our
MS-ELMA performs better than random movement by a
factor of up to 2.15, and better than the static sinks by a
factor of up to four. We have slightly worse improvement
ratio against the static sink approach because there are
multiple sinks and thus the traffic load of the sensor
nodes is more balanced than in the single-sink case. This
degrades the effect of mobility because its main aim is
to decrease unbalanced load distribution among sensor
nodes.

Latency values for different numbers of sinks are given
in Figure 7. The MS-ELMA and MS-PLMA have almost
the same latency (they differ by at most three percent).
These algorithms have lower values compared to the min-
max (15% on the average) and random movement (six
percent on the average) algorithms. Static sinks have the
lowest latency values, as in the single-sink case, however
static sink performs 17% on average, while the single sink
performs about 28% better. Because, sinks are not placed
optimally in the static case, it has a poorer latency
performance.

Network lifetime values for different numbers of sink
sites are presented in Figure 8. The number of sinks is
fixed to three in the experiment. Networks have better
lifetime values when the number of sink sites increases

10 M. Koç and I. Korpeoglu

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Sinks

N
e
tw

o
rk

 L
if
e
ti
m

e
 (

s
e
c
)

MS−ELMA

MS−PLMA

MM

RAND

STS

Figure 6: Network lifetime values for various numbers
of sinks.

2 3 4 5 6
0

1

2

3

4

5

6

7

Number of Sinks

L
a
te

n
c
y
 (

a
v
g
.
h
o
p
 c

o
u
n
t)

MS−ELMA

MS−PLMA

MM

RAND

STS

Figure 7: Latency values for various numbers of sinks.

5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

16000

Number of Sink Sites

N
e
tw

o
rk

 L
if
e
ti
m

e
 (

s
e
c
)

MS−ELMA

MS−PLMA

MM

RAND

STS

Figure 8: Network lifetime values for various numbers
of sink sites.

2 3 4 5 6
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of Sinks

N
e
tw

o
rk

 L
if
e
ti
m

e
 (

s
e
c
)

MS−ELMA

MS−PLMA

MM

RAND

STS

Figure 9: Network lifetime values for various numbers
of sinks under skew deployment.

because there are more options to consider when moving
the sinks. The relative performance of the MS-ELMA to
the random movement algorithm is also affected by the
number of sink sites. The MS-ELMA performs better
than the random movement by a factor of 1.5 when there
are 15 sites (which also means 455 different combinations
in which to place three sinks), and by a factor of 2.15
when there are 30 sites (4060 different combinations).

Network lifetime values for different numbers of
sinks under skew deployment are given in Figure 9.
The MS-ELMA gives relatively better performance
against the random movement compared to the uniform
distribution. It performs better than random movement
by a factor of 2.6, and by 2.15 when nodes are randomly
and uniformly deployed.

Distance-traveled values for different numbers of
sinks under random deployment are given in Figure 10.
Sinks traveled a minimum amount of distance using the
min-max algorithm (24% less compared to others on the

Traffic- and Energy-Load–Based Sink Mobility Algorithms for Wireless Sensor Networks 11

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Sinks

T
ra

ve
lle

d
D

is
ta

nc
e

(m
)

MS−ELMA

MS−PLMA

MM

RAND

Figure 10: Distance traveled for various numbers of
sinks.

average). The MS-ELMA and MS-PLMA have similar
values and result in less distance traveled (seven percent)
compared to the random movement algorithm.

5 Conclusion

In this paper we propose mobile-sink algorithms, which
consider nodes’ packets or energy loads in deciding on the
next place to move the sink. The objective is to distribute
the load on sensor nodes in a balanced manner so that
network lifetime is improved as much as possible. Given
a routing tree rooted at the sink node, the number of
packets each node has to send can be calculated and a
load matrix can be obtained, which shows how much load
a node has for each possible sink position. We propose
a packet-load–based algorithm (considering the packets
a node has to relay in a round) and an energy-load–
based algorithm (considering the energy consumed by
a node in a round). The algorithms greedily select the
sink site that minimizes the maximum load on a sensor
node. The problem can be formulated as an IP and the
optimal movement strategy can be obtained by solving
the IP model, but this would take too much time for large
networks. Our algorithms, on the other hand, can be
used for very large networks and can quickly to provide
a close-to-optimal solution.

Our simulation results show that our energy-load–
based algorithm provides up to five times better network
lifetime than a static sink and 2 times better network
lifetime than random movement. It is only five percent
below the optimal solution. Our method has almost the
same average latency as the optimal one, but runs much
faster. Our energy-load–based scheme can also adapt to
changes in the expected number of packet transmissions
in a node, which can happen due to packet collisions or
packet corruptions.

We also extend our algorithms to use in multiple
sinks case (MS-ELMA and MS-PLMA) by limiting the

possible number of combinations. These algorithms also
perform better than random movement (by a factor
of 2.15 and 2.60 for random and uniform, and skewed
deployment, respectively) and static sink cases (by
a factor up to four). They also have lower latency
(six percent on the average) and sinks using these
algorithms travel less (seven percent) compared to
random movement.

Acknowledgement

This work is supported in part by The Scientific and
Technological Research Council of Turkey (TUBITAK)
with project 113E274.

References

Akyildiz, I.F. , Su, W., Sankarasubramaniam, Y. and
Cayirci, E. (2002) ’Wireless Sensor Networks: A
Survey’, Computer Networks (Elsevier), Vol. 38, No.
4, pp.393–422

Perkins, C. 2000 ’Ad Hoc Networks’, Addison-Wesley

Cardei, M., Jie, W., Mingming, L. and Pervaiz,
M.O. (2005) ’Energy Efficient Routing with Power
Management to Increase Network Lifetime in Sensor
Networks’, IEEE Intl. Conf. on Wireless and
Mobile Computing, Networking and Communications
(WiMob).

Zongkai, Y., Dasheng, Z., Wenqing, C. and Jianhua,
H. (2004) ’Maximum network lifetime in wireless
sensor networks with adjustable sensing ranges’,
Computational Science and Its Applications - ICCSA.

Nguyen, D., Le-Quang-Vinh, T., Berder, O. and
Sentieys, O. (2013) ’A Low-Latency and Energy-
Efficient MAC Protocol for Cooperative Wireless
Sensor Networks’, Global Communications Conference
(Globecom).

Gilani, M.H.S. , Sarrafi, I. and Abbaspour, M. (2013) ’An
adaptive CSMA/TDMA hybrid MAC for energy and
throughput improvement of wireless sensor networks’,
Ad Hoc Networks, Vol. 11, No. 4, pp.1297–1304.

Ahmed, A.A. and Fisal, N. (2014) ’A realtime routing
protocol with mobility support and load distribution
for mobile wireless sensor networks’, International
Journal of Sensor Networks, Vol. 15, No. 2, pp.95–111.

Jiang, Y. , Shi, W., Wang, X. and Li, H. (2014) ’A
distributed routing for wireless sensor networks with
mobile sink based on the greedy embedding’, Ad Hoc
Networks, Vol. 20, pp.150–162.

Nayak, A. and Stojmenovic I. (2010) ’Wireless Sensor
and Actuator Networks: Algorithms and Protocols
for Scalable Coordination and Data Communication’,
Wiley-Interscience, New York, NY, USA

12 M. Koç and I. Korpeoglu

Cardei, M. and Du, D. Z. (2005) ’Improving
wireless sensor network lifetime through power aware
organization’, Wireless Networks, Vol. 11, No. 3,
pp.333–340.

Wang, L. and Xiao, Y. (2006) ’A survey of energy-
efficient scheduling mechanisms in sensor networks’,
Mobile Networks and Applications, Vol. 11, No. 5,
pp.723–740.

Vincze, Z. , Vass, D., Vida, R., Vidács, A. and Telcs,
A. (2007) ’Adaptive Sink Mobility in Event-Driven
Densely Deployed Wireless Sensor Networks’, Ad Hoc
& Sensor Wireless Networks, Vol. 3, pp.255–284.

Han, X. , Shu, L., Yuanfang, C. and Zhou, H.
(2013) ’WX-MAC: An Energy Efficient MAC Protocol
for Wireless Sensor Networks’, 10th International
Conference on Mobile Ad-Hoc and Sensor Systems
(MASS).

Khan, B.M. and Bilal, R. (2013) ’Mobility Adaptive
Energy Efficient and Low Latency MAC for Wireless
Sensor Networks’, International Journal of Handheld
Computing Research, Vol. 4, No. 2, pp.40–54.

Aissani, M., Bouznad, S., Djamaa, B. and Tsabet, I.
(2014) ’Efficient Energy-Aware Mechanisms for Real-
Time Routing in Wireless Sensor Networks’, Ad-hoc,
Mobile, and Wireless Networks - 13th International
Conference, ADHOC-NOW.

Kannan, K.N. and Paramasivan, B. (2014) ’Development
of Energy-Efficient Routing Protocol in Wireless
Sensor Networks Using Optimal Gradient Routing
with On Demand Neighborhood Information’,
International Journal of Distributed Sensor Networks,
Vol. 2014.

Su, S., Yu, H. and Wu, Z. (2013) ’An efficient
multiobjective evolutionary algorithm for energyaware
QoS routing in wireless sensor network’, International
Journal of Sensor Networks, Vol. 13, No. 4, pp.208–
218.

Hao, J., Duan, G., Zhang, B. and Li, C. (2013) ’An
energy-efficient on-demand multicast routing protocol
for wireless ad hoc and sensor networks’, Global
Communications Conference (GLOBECOM).

Akkaya, K. , Younis, M. and Bangad, M. (2005) ’Sink
repositioning for enhanced performance in wireless
sensor networks’, Computer Networks, Vol. 49, No. 4,
pp.512–534.

Gandham, S. R., Dawande, M., Prakash, R. and
Venkatesan, S. (2003) ’Energy-Efficient Schemes for
Wireless Sensor Networks with Multiple Mobile
Base Stations’, IEEE Global Telecommunications
Conference, pp.377–381.

Luo, J. and Hubaux, J. P. (2005) ’Joint Mobility and
Routing for Lifetime Elongation in Wireless Sensor
Networks’, IEEE INFOCOM, pp.1735–1746.

Papadimitriou, I. and Georgiadis, L. (2006) ’Energy-
aware Routing to Maximize Lifetime in Wireless
Sensor Networks with Mobile Sink’, Journal of
Communications Software and Systems, Vol. 2, No. 2,
pp.141–151.

Luo, J. and Hubaux, J. P. (2006) ’Mobiroute: Routing
towards a mobile sink for improving lifetime in
sensor networks’, IEEE International Conference on
Distributed Computing in Sensor Systems, pp.480–
497.

Woo, A., Tong, T. and Culler, D. (2003) ’Taming the
Underlying Challenges of Reliable Multihop Routing
in Sensor Networks’, 1st International Conference on
Embedded Networked Sensor Systems, pp.14–27.

Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C.
and Wang, Z. M. (2008) ’Controlled Sink Mobility
for Prolonging Wireless Sensor Networks Lifetime’,
Wireless Networks, Vol. 14, No. 6, pp.831–858.

Keskin, M. E., Altinel, I. K., Aras, N. and Ersoy,
C. (2014) ’Wireless Sensor Network Lifetime
Maximization by Optimal Sensor Deployment,
Activity Scheduling, Data Routing and Sink Mobility’,
Ad Hoc Networks, Vol. 17, pp.18–36.

Yun, Y., Xia, Y., Behdani, B. and Smith, J. C. (2013)
’Distributed Algorithm for Lifetime Maximization
in a Delay-Tolerant Wireless Sensor Network with
a Mobile Sink’, IEEE Transactions on Mobile
Computing, Vol. 12, No. 10, pp.1920–1930.

Wolsey, L.A. 1998 ’Integer Programming’, Wiley-
Interscience

Basagni, S., Carosi, A., Petrioli, C. and Cynthia,
P. (2011) ’Coordinated and controlled mobility of
multiple sinks for maximizing the lifetime of wireless
sensor networks’, Wireless Networks, Vol. 17, No. 3,
pp.759–778.

Sensor Network Museum, http://www.snm.ethz.ch
(Accessed 25 February 2015)

Advanticsys SG 1000, http://www.advanticsys.com/
(Accessed 25 February 2015)

Koc, M. and Korpeoglu, I. (2014) ’Controlled Sink
Mobility Algorithms for Wireless Sensor Networks’,
International Journal of Distributed Sensor Networks,
Vol. 2014.

Kellerer, H., Pferschy, U. and Pisinger, D. 2004
’Knapsack Problems’, Springer

Heinzelman, W., Chandrakasan, A. and Balakrishnan,
H. (2000) ‘Energy-Efficient Communication
Protocol for Wireless Microsensor Networks’, 33rd
International Conference on System Sciences.

Traffic- and Energy-Load–Based Sink Mobility Algorithms for Wireless Sensor Networks 13

Magazine, M. J. and Chern, M. (1984) ’A Note
on Approximation Schemes for Multidimensional
Knapsack Problems’, Mathematics of Operations
Research, Vol. 9, No. 2, pp.244–247.

IBM CPLEX Optimizer, http://www-
01.ibm.com/software/integration/optimization/cplex-
optimizer/ (Accessed 25 February 2015)

