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Abstract 

 
This thesis presents a system to recognise and classify road and traffic signs for the 

purpose of developing an inventory of them which could assist the highway engineers’ 

tasks of updating and maintaining them. It uses images taken by a camera from a moving 

vehicle. The system is based on three major stages: colour segmentation, recognition, and 

classification.  

 Four colour segmentation algorithms are developed and tested. They are a shadow 

and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm 

and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of 

images and the shadow-highlight invariant algorithm is eventually chosen as the best 

performer. This is because it is immune to shadows and highlights. It is also robust as it 

was tested in different lighting conditions, weather conditions, and times of the day. 

Approximately 97% successful segmentation rate was achieved using this algorithm. 

 Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on 

four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy 

rules were developed to determine the shape of the sign. Among these shape measures 

octangonality has been introduced in this research. The final decision of the recogniser is 

based on the combination of both the colour and shape of the sign. The recogniser was 

tested in a variety of testing conditions giving an overall performance of approximately 

88%. 

Classification was undertaken using a Support Vector Machine (SVM) classifier. The 

classification is carried out in two stages: rim’s shape classification followed by the 

classification of interior of the sign. The classifier was trained and tested using binary 

images in addition to five different types of moments which are Geometric moments, 

Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary 

Haar features. The performance of the SVM was tested using different features, kernels, 

SVM types, SVM parameters, and moment’s orders. The average classification rate 

achieved is about 97%. Binary images show the best testing results followed by Legendre 

moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows 

very good performance, but ν-SVM gives better results in some case. 
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1. Introduction 

1.1 Background 

Road and traffic signs considered in this thesis are those that use a visual/symbolic 

language about the road(s) ahead that can be interpreted by drivers.  The terms are used 

interchangeably in this thesis, and elsewhere might also appear in combination, as “road 

traffic signs”.  They provide the driver with pieces of information that make driving safe 

and convenient. A type of sign that is NOT considered in this thesis is the direction sign, 

in which the upcoming directions for getting to named towns or on numbered routes are 

shown not symbolically but essentially by text.  

Road and traffic signs must be properly installed in the necessary locations and an 

inventory of them is ideally needed to help ensure adequate updating and maintenance. 

Meetings with the highway authorities in both Scotland and Sweden revealed the absence 

of but a need for an inventory of traffic signs.  An automatic means of detecting and 

recognising traffic signs can make a significant contribution to this goal by providing a 

fast method of detecting, classifying and logging signs. This method helps to develop the 

inventory accurately and consistently. Once this is done, the detection of disfigured or 

obscured signs becomes easier for human operator.  

Road and traffic sign recognition is the field of study that can be used to aid the 

development of an inventory system (for which real-time recognition is not required) or 

aid the development of an in-car advisory system (when real-time recognition is 

necessary). Both road sign inventory and road sign recognition are concerned with traffic 

signs, face similar challenges and use automatic detection and recognition.  

A road and traffic sign recognition system could in principle be developed as part of 

an Intelligent Transport Systems (ITS) that continuously monitors the driver, the vehicle, 

and the road in order, for example, to inform the driver in time about upcoming decision 

points regarding navigation and potentially risky traffic situations. Figure 1.1 depicts 

these relationships among the three fields.  

ITS focuses on integrating information technology into transport infrastructure and 

vehicles. These systems can include road sensors, in-vehicle navigation services, 
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electronic message signs, and traffic management and monitoring. The aim of intelligent 

transport systems is to increase transportation efficiency, road safety and to reduce the 

environmental impact with the use of advanced communication technologies [1, 2] .  

This thesis aims to develop a system to recognise and classify road and traffic signs 

for the purpose of developing an inventory which could assist the highway authorities to 

update and maintain the traffic signs. It is based on taking images by a camera from a 

moving vehicle and invoking colour segmentation, shape recognition, and classification 

to detect the signs in these images.  

 

 
 

Figure  1.1: The relationship among Road Sign Inventory, Road Sign Recognition 

and ITS. 

 

ITS 

Navigation 
 Systems 

Electronic Payment 
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1.2 Complexity of the Recognition Task 

A normal road in the middle of most cities in the world like the one shown for 

Stockholm in Figure 1.2, presents a complex scene. It may include people, vehicles with 

different colours, a number of shops and their signs, and a number of traffic signs to 

control the traffic on this road. Fundamentally, if a person is asked to point out the traffic 

sign in the image, they can do this easily. 

 

 

Figure  1.2: A traffic scene in the middle of Stockholm. 

 

However, from the point of view of computer vision, this image contains some 

difficulties which are addressed here: 

• The existence of a number of similar objects (either in colour or in shape) in 

the scene. 

• The presence of obstacles in the scene which can partially or totally occlude 

the sign. 

• The amount of information in the scene is vast and time is needed to analyse 

the scene and extract the desired information.  
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1.3 Aims and Objectives of the Research 

The overall aim is to develop a system that can be used for traffic sign inventory.  

This system can assist local or national authorities in the task of maintaining and updating 

their road and traffic signs by automatically detecting and classifying one or more traffic 

signs from a complex scene (like the one shown in Figure 1.2) when captured by a 

camera from a vehicle. 

The main strategy is to find the right combination of colours in the scene so that one 

colour is located inside the convex hull of another colour and combine this with the right 

shape. If a candidate is found, the system tries to classify the object according to the rim-

pictogram combination and give the result of this classification.  

 The objectives are thus: 

1. To understand the properties of road and traffic signs and their implications for 

image processing for the recognition task. 

2. To understand colour, colour spaces and colour space conversion.  

3. To develop robust colour segmentation algorithms that can be used in a wide 

range of environmental conditions. 

4. To develop a recogniser that is invariant to in-plane transformations such as 

translation, rotation, and scaling based on invariant shape measures. 

5. To identify the most appropriate approach for feature extraction from road signs. 

6. To develop an appropriate road sign classification algorithm. 

7. To evaluate the performance of the aforementioned methods for robustness under 

different conditions of weather, lighting geometry, and sign.   

1.4 Outline of the Thesis 

This thesis is divided into seven chapters and a number of appendices. In addition 

to the current chapter, there are six other chapters that cover different theoretical and 

practical topics. Each chapter is self-contained, but there are some dependencies among 

the different chapters. These chapters are as follows: 

Chapter 1: 

 This chapter describes the aims and objectives of this thesis and outlines its 

relationship to the field of intelligent transport systems  
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Chapter 2: 

 This chapter demonstrates the traffic and road signs, their properties, categories 

and proper colours and shapes. It concentrates on the Swedish traffic and road signs and 

the differences between the Swedish standard and that of the other countries.    

Chapter 3: 

 This chapter explains why the automation of the categorisation task in road sign 

recognition is important for highway authorities and why it is difficult to accomplish for 

academics. It presents the challenges which need to be dealt with when images are taken 

in outdoor environments, and concludes with a statement of the requirement for a 

scientifically satisfactory solution 

   Chapter 4: 

 In this chapter a review of the literature and previous work is presented. It covers 

papers, technical reports and internet resources which were collected for review. The 

review includes the study and analysis of colour segmentation algorithms, shape 

identification and recognition, road sign classification, and pictogram classification. It 

also reviews the different techniques undertaken to achieve road sign recognition as a 

computer vision task.  

The chapter explores colour and its properties and stability when dealing with 

different light conditions and geometry. It concentrates on hue as the main source of 

information for colour segmentation. 

 Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Descriptors, 

Binary Haar invariants are discussed in this chapter. This is followed by a description of 

the Support Vector Machines (SVM) classifier which is invoked in the last stage.    

Chapter 5: 

 This chapter covers the methodology invoked to build the traffic sign recognition 

system. Image collection and the image database are presented at the beginning, followed 

by the colour segmentation algorithms which were developed in this research. The 

chapter covers details of the recognition algorithm which was designed to identify traffic 

signs in the scene. Finally, the chapter describes the classification method used for traffic 

sign recognition  
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Chapter 6: 

  This chapter presents details of the experimental work carried out to evaluate the 

various algorithms developed in the previous chapter. Colour segmentation algorithms 

were tested in different weather conditions, light conditions, and sign conditions. The 

same set of experiments was applied to the fuzzy shape recogniser. In the last part of this 

chapter another set of experiments was applied on the SVM classifier. The test includes 

training with different features, SVM types, kernels, and different moment orders. 

Finally, search for optimum values is presented.  

Chapter 7: 

  This chapter summarises the main contributions and conclusions gained from this 

research. It presents the future plans which can be implemented to improve the work and 

issues for further investigation. 

Appendix A: 

 In this appendix, details of the Swedish road and traffic signs together with their 

meanings and their groups are presented.  

Appendix B: 

 This appendix brings together in one place techniques of describing colour as a 

source of information. This covers the famous colour spaces, their representation, 

advantages and disadvantages, and how to convert from one colour space to another.   

Appendix C: 

 In this appendix, the explicit forms of Zernike moments are given.  

Appendix D: 

 This appendix depicts the results of the experiments applied on the SVM and used 

for the evaluation of this classifier and its performance.  

Appendix E: 

 The Access database of the traffic sign images is presented in this appendix. It 

shows the table of images, the table of signs, the phrases tables and the relationship 

among them. 

Appendix F: 

 This appendix presents the list of publications achieved during this research. 
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2. Traffic Signs 
 

 

Road and traffic signs, traffic lights and other traffic devices are used to regulate, 

warn, guide or inform road users. They help achieve an acceptable level of road traffic 

quality and increase safety with orderly and predictable movement of all traffic, both 

vehicular and pedestrians [3, 4]. 
 Road and traffic signs are designed to be easily recognised by drivers mainly 

because their shapes and colours are readily distinguishable from their surroundings [5]. 

The Swedish Road Administration is in charge of defining the appearance of all 

signs and road markings in Sweden. Traffic signs in Sweden are fully regulated by this 

administration. They are placed two meters from the road and the base-sign is at a height 

of 1.6 meters for roads used by vehicles with motors.  According to the Road 

Administration, the maximum number of signs on a single pole is three with the most 

important sign at the bottom. In accordance with European signs, all signs are designed to 

have a reflective layer added on selective parts of the sign. 

Most Swedish road signs use pictograms to indicate the message of the sign. 

However, there are some exceptions in which text replaces pictograms. The STOP sign is 

one example of this kind of sign. All signs use Swedish text except the STOP sign where 

the English “STOP” word replaces the Swedish “STOPP” word.   

The usual background colour on warning and prohibition signs on most European 

signs is white, whereas this colour is yellow in Sweden. The reason is to enhance the 

visibility of the signs during winter time. White signs would be very hard to see in 

snowfall conditions. A thicker rim is used for warning and prohibition signs in Sweden 

compared with their European counterparts. 

2.1 Properties of Road and Traffic Signs  

Road and traffic signs are characterised by a number of features which make them 

recognisable with respect to the environment: 
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 Road signs are designed, manufactured and installed according to strict 

regulations [6]. 

 They are designed in fixed 2-D shapes such as triangles, circles, octagons, or 

rectangles [7, 8]. 

 The colours of the signs are chosen to contrast with the surroundings, which 

make them easily recognisable by drivers [9]. 

 The colours are regulated by the sign category [10]. 

 The information on the sign has one colour and the rest of the sign has another 

colour. 

 The tint of the paint which covers the sign should correspond to a specific 

wavelength in the visible spectrum [6, 11]. 

 The signs are located in well-defined locations with respect to the road, so that 

the driver can, more or less, anticipate the location of these signs [10]. 

 They may contain a pictogram, a string of characters or both [11].  

 In every country the road signs are characterised by using fixed text fonts, and 

character heights. 

 They can appear in different conditions, including partly occluded, distorted, 

damaged and clustered in a group of more than one sign [7, 11].  

2.2 Swedish Road and Traffic Signs  

Signs in Sweden may be either ideogram-based which contain simple ideographs to 

express the sign meaning, or text-based where the contents of the sign may either be text 

or arrows or other symbols [12]. Swedish traffic signs can be categorized into four 

groups: 

1. Warning signs: A traffic warning sign, Figure 2.1, is a type of traffic sign which 

indicates a hazard ahead on the road. It is characterised by an equilateral triangle 

with a thick red rim and a yellow interior. A pictogram is used to specify different 

warnings. The red-yellow combination is easily seen in snowy weather 

conditions. Other signs such as the YIELD sign and the distance to level crossing 

signs and track level crossing also belong to this class. 
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Figure  2.1: Warning signs. 

 
2. Prohibitory signs: They are used to prohibit certain types of manoeuvres or some 

types of traffic.  The no entry, no parking, and speed limit signs belong to this 

category, Figure 2.2. Normally, they are designed in a circular shape with a thick 

red rim and a yellow interior. There are few exceptions; the STOP sign is an 

octagon with a red background and white rim, the NO PARKING and NO 

STANDING signs have a blue background instead of yellow. The end of 

restriction signs are marked with black bars. 

 
Figure  2.2: Prohibitory signs. 
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3. Mandatory signs: They are characterised by a complete blue circle and a white 

arrow or pictogram, Figure 2.3. They control the actions of drivers and road users. 

Signs ending obligation have a diagonal red slash. 

 
Figure  2.3: Mandatory signs 

 
4. Indicatory and Supplementary signs: These types of signs are characterised by 

using rectangles with different background colours such as yellow, green, or blue. 

Figure 2.4 illustrates some example signs belonging to this category. The 

pictograms are either white or black. This category includes the diamond shaped 

rectangle and the signs which give information about road priority. 

 

 
Figure  2.4: Indicatory and Supplementary signs 
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 The full set of Swedish road and traffic signs, their meanings, and other information 

is depicted in appendix A.  

As noted in the aforementioned discussion, the colour of the road sign together its 

shape determine its category. The colours used on road signs have specific wavelengths 

in the visible spectrum. They are selected to be distinguishable from the natural and man-

made surroundings so that they can be easily recognisable by road users.  

The National Road Administration in Sweden defines the standard colours used for 

road signs in CMYK colour space [13] , as described in Table 2.1. The meaning of each 

colour is given in Table 2.2. Moreover, Table 2.3 depicts the shapes used in Swedish road 

signs.  

2.3 Summary 

 This chapter presents a description of road and traffic signs in general and the 

Swedish road and traffic signs in particular. It shows how they help drivers anticipate the 

road ahead in addition to any associated problems and hazardous situations. The chapter 

illustrates the general properties of road and traffic signs by describing the characteristics, 

colours and shapes of different categories of Swedish road signs 

 In the next chapter the problem of traffic sign recognition is addressed in detail 

and analysed from different perspectives. 
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Table  2.1: Swedish standard colours. 
 

 
 

Table  2.2: The meaning of colours used for traffic signs. 

 

 
 

Colour Pantone C M Y K 

Light Blue 294 82 56 0 18 

Dark Blue 282 34 27 0 64 

Green 335 70 0 65 30 

Red 185 0 91 76 0 

Yellow 116 0 15 94 0 

Light Grey 444 9 0 6 47 

Orange 152 0 51 100 0 

Brown 469 0 27 32 61 

Colour Meaning 

Red Exclusively for STOP and YIELD signs, DO NOT ENTER signs, and it is 

used in the warning signs and forbidden signs. 

Black Used as information colour in some of the warning signs, prohibitory signs 

and information signs. 

White Used as background for route markers, guide signs, and certain regulatory 

signs, and as message colour on signs with brown, green, blue, black, and red 

backgrounds. 

Orange Used as background colour for construction and maintenance signs. 

Yellow Used as background colour for Warning signs and Prohibitory signs, and 

some of the supplementary signs. 

Green Used as background colour for express roads. 

Blue Used as background colour for regulatory, information signs, and 

supplementary signs. 
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Table  2.3:  Shapes of traffic signs and their meanings. 

Shape Example Meaning 

 
 

Equilateral Triangle, Point Down -- 
Exclusively for YIELD signs  

 

 
 

Equilateral Triangle, Point Up – 
Exclusively for WARNING signs 

 

  

Octagon -- Exclusively for STOP 
signs  

 

  

Red Circle -- Exclusively for 
Forbidden signs  
 

  

Blue Circle -- Exclusively for 
Regulatory signs  
 

  

Diamond -- Used for PRIORITY 
ROAD 

 
 

Square --Used as additional sign or 
symbolic information sign 
 

 
 

Rectangle, Longer Dimension Vertical 
-- Used for EXPRESS ROADS 

 
 

Rectangle, Longer Dimension 
Horizontal -- Used for Information 
Express roads  

 

 

Cross buck -- Used for railroad 
crossing signs  
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3. Problem Formulation 
 

 

Considering the object recognition and interpretation abilities of humans, it is a hard 

task to try to develop a computer based system which should be able to support people in 

every day life. There are a lot of conditions which are changing continuously such as 

luminance and visibility, which are handled by the human recognition system with ease 

but present serious problems for computer based recognition.  

Looking at the problem of road and traffic sign recognition shows that the goal is 

well defined and it seems to be a simple problem. Road signs are located in standard 

positions and they have standard shapes, standard colours, and their pictograms are 

known.  

To see the problem in its full scale, however, a number of parameters that affect the 

performance of the detection system need to be studied carefully. Road sign images are 

acquired using a digital camera for the purpose of the current analysis. However, still 

images captured from a moving camera may suffer from motion blur. Moreover, these 

images can contain road signs which are partially or totally occluded by other objects 

such as vehicles or pedestrians. Other problems, such as the presence of objects similar to 

road signs, such as buildings or billboards, can affect the system and make sign detection 

difficult. The system should be able to deal with traffic and road signs in a wide range of 

weather and illumination variant environments such as different seasons, different 

weather condition e.g. sunny, foggy, rainy and snowy conditions. Different potential 

difficulties are depicted in one section of this chapter.  

Using the system in different countries can make the problem even worse. Different 

countries use different colours and different pictograms. The system should also be 

adaptive, which means it should allow continuous learning otherwise the training should 

be repeated for every country. 

To deal with all these constraints, road sign recognition should be provided with a 

large number of sign examples to allow the system to respond correctly when a traffic 

sign is encountered. 
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3.1 What is Road Sign Recognition? 

Road Sign Recognition is a field which is concerned with the detection and 

recognition of road and traffic signs in traffic scenes acquired by a camera. It is a 

technique which uses computer vision and artificial intelligence to extract the road signs 

from outdoor images taken in uncontrolled lighting conditions where these signs may be 

occluded by other objects, and may suffer from different problems such as colour fading, 

disorientation, and variations in shape and size.  

 The first paper on the subject was published in Japan in 1984 [14]. The aim was to 

try various computer vision methods for the detection of road signs in outdoor scenes. 

Since that time many research groups and companies have shown interest, conducted 

research in the field, and generating an enormous amount of work.  Different techniques 

have been used to cover different application areas (see next Section), and vast 

improvements have been achieved during the last decade.  

The identification of the road signs is achieved through two main stages:  

 

 Detection 

 Recognition.  

 

In the detection phase, the image is pre-processed, enhanced, and segmented 

according to the sign properties such as colour or shape or both. The output is a 

segmented image containing potential regions which could be recognised as possible road 

signs. The efficiency and speed of the detection are important factors because they reduce 

the search space and indicate only potential regions.  

In the recognition stage, each of the candidates is tested against a certain set of 

features (a pattern) to decide whether it is in the group of road signs or not, and then 

according to these features they are classified into different groups. These features are 

chosen so as to emphasize the differences among the classes. The shape of the sign plays 

a central role in this stage and the signs are classified into different classes such as 

triangles, circles, octagons. Pictogram analysis allows a further stage of classification. By 

analysing pictogram shapes together with the text available in the interior of the sign, it is 

easy to decide the individual class of the sign under consideration. A prototype of road 
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sign detection and recognition system is shown in Figure 3.1. The system can be 

implemented by either colour information, shape information, or both. Combining colour 

and shape may give better results if the two features are available, but many studies have 

shown that detection and recognition can be achieved even if one component, colour or 

shape, is missing. For the purpose of clarity, a full separation between recognition and 

classification is made in chapter 5 and 6. 

 

Figure  3.1: A block diagram of the road sign recognition and classification. 

 

3.2 Road Sign Recognition Applications 

Techniques for road sign detection and recognition have been developed in a range 

of application areas.  These include: 

• Driver Support System (DSS) can detect and recognise road signs in real time. This 

helps to improve traffic flow and safety [15, 16], and avoid hazardous driving 

conditions, such as collisions. Traffic sign detection and classification is one of the 

subjects which are not studied deeply. Research groups have focused on other 

aspects of sign detection, more related to the development of an automatic pilot, 

such as the detection of the road borders and/or the recognition of obstacles in the 
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vehicle’s path e.g. other vehicles or pedestrians. Other systems are able to give 

warnings to drivers when they exceed the speed limit. Future Intelligent Vehicles 

would take some decisions about their speed, trajectory, etc. depending on the signs 

detected. Although, in the future, it can be part of a fully automated vehicle, now it 

can be a support to automatically limit the speed of the vehicle, send a warning 

signal indicating excess speed, warn or limit illegal manoeuvres or indicate earlier 

the presence of a sign to the driver. The general idea is to support the driver in some 

tasks, allowing him or her to concentrate on driving. 

• Highway maintenance: This is used to check the presence and condition of the 

signs. Instead of an operator watching a video tape, which is a tedious work because 

the signs appear from time to time and the operator should pay a great attention to 

find the damaged ones, the road-sign detection and recognition system can do this 

job automatically for the signs with good conditions and alerts the operator when 

the sign is located but not classified. 

• Sign inventory: The many millions of roadway signs necessary to keep roadways 

safe and traffic flowing present a particular logistical challenge for those 

responsible for the installation and maintenance of those signs.  Road signs must be 

properly installed in the necessary locations and an inventory of those signs must be 

maintained for future reference.  

• Mobile Robots: Landmarks similar to road and traffic signs can be used to 

automatically mobilise robots depending on the detection and recognition of these 

landmarks by the robot [16].  

3.3 Potential Difficulties 

In addition to the complex environment of the roads and the scenes around them 

illustrated in section 1.2, road signs can be found in different conditions such as aged, 

damaged, disoriented etc and hence the detection and recognition of these signs may face 

one or more of the following difficulties: 

 The colour of the sign fades with time as a result of long exposure to sun light, and 

the reaction of the paint with the air, Figure 3.2 [3, 17]. 
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Figure  3.2: Faded signs. 

 

 Visibility is affected by the weather conditions such as the fog, rain, clouds and 

snow, as shown in Figure 3.3 [3]. 

 

   

 

Figure  3.3: Bad weather conditions (Rain and Snow). 

 

 Visibility can be affected by local light variations such as the direction of the light, 

the strength of the light depending on the time of the day and the season, and the 

shadows generated by other objects, Figure 3.3 [11, 18, 19].  

 Colour information is very sensitive to the variations of the light conditions such as 

shadows, clouds, and the sun, [3, 17, 20]. It can be affected by illuminant colour 

(daylight), illumination geometry, and viewing geometry, as shown in Figure 3.4 

[21]. 
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Figure  3.4: Bad lighting geometry. 

 

 The presence of obstacles in the scene, such trees, buildings, vehicles and 

pedestrians or even signs which occlude other signs, as shown in Figure 3.5  [18, 

20].  

   

Figure  3.5: The presence of obstacles in the scene. 

 
 The presence of objects similar in colour and/or shape to the road signs in the scene 

under consideration, such as buildings, or vehicles [17, 18]. They could be similar 

to the road sign in colour, shape or even both. Figure 3.6 shows two different cases; 

the first case shows a fence with a similar colour to the road sign. In the second case 

the post box has similar shape and colour to the signs and it is located very close to 

the road sign. 
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Figure  3.6: Similar objects in the scene or similar background colour. 

 

 Signs may be found disoriented, damaged (Figure 3.7), or occluded by any kind of 

obstacles, even by some other signs, Figure 3.5. The signs in Figure 3.7 show two 

different damaged signs. The one on the left has damage to the red rim, while the 

one on the right is very old, rusted, damaged and the colour has faded due to aging. 

 

   

Figure  3.7: Damaged signs. 

 

 The size of the sign depends on the distance between the camera and the sign itself. 

Road signs may appear rotated due to the imaging orientation [22]. Figure 3.8 

shows two images of the same sign take successively from two different positions 

on the motorway.  
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Figure  3.8: Size of signs depends on the distance between the camera and the sign. 

 

 The acquired image often suffers from motion blur and car vibration [23]. This 

motion blur cannot be predicted above a certain level, because the car movements 

are not known to the recognition process. It is possible to make an assertion about 

the movements of objects in the future if the motion is continuous and unchanged. 

Figure 3.9 shows two images which suffer from a motion blur. The one on the left 

is clearly motion blurred. In the one on the right the sign is clear but the background 

suffers from a severe motion blur.  

 

   

Figure  3.9: Motion blur problem. 

 

 Sign boards often reflect the light from the sky or from an approaching car during 

the weak daylight hours or generate highlight, Figure 3.10. In the image on the left, 

the headlights of the vehicle can be clearly seen on the sign board, while the image 
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on the right shows a sign reflecting the light from the sky to the camera. This very 

often happens when collecting images at dawn or dusk.  

 

   

Figure  3.10: Reflection from sign board. 

 

 Different countries use different colours; and different pictograms. Figure 3.11 

shows two images for the YIELD sign. The image on the left is taken in the 

Netherlands, and the image on the right is taken in Sweden. It is known that the 

interior of the warning sign is yellow in Sweden, but even the two sign rims are 

different in colour.  In Figure 3.12, the same sign (Pedestrian crossing) is taken in 

four different European countries; Austria, the Netherlands, Poland, and Sweden.  

Comparing the four images shows that the pictograms differ from one country to 

another.  

   

   

Figure  3.11: Colours in different countries: left, Netherlands; right, Sweden. 
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                         Austria                                                            Netherlands 

   

                              Poland                                                            Sweden 

Figure  3.12:  Different pictograms are used in different countries. 

 

 People put stickers or write on the sign boards or damage the pictograms by 

changing the pictogram shapes. Figure 3.13 is an example taken in Barcelona, 

Spain. The number of stickers people have put on the sign is exceptional.  

 

 The absence of a standard database for evaluation of the existent classification 

methods [12].  
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Figure  3.13:  Stickers which damaged the pictogram of a sign. 

 

It can be concluded from the above mentioned potential difficulties that it is 

extremely important for the algorithms to be developed for the detection and recognition 

of road and traffic signs to have high robustness of colour segmentation, high 

insensitivity to noise and brightness variations, and should be invariant to geometrical 

effects such as translation, in-plane and out-plane rotations and scaling changes in the 

image [24, 25]. 

3.4 Summary 

In this chapter, the problem of road sign recognition was investigated. The 

problems that are faced when dealing with traffic signs were illustrated and potential 

difficulties were listed and described with the aid of images collected from real scenes.  

Road sign recognition as a concept was also presented in this chapter including its 

definition, its importance and applications. It is shown that sign recognition can be 

achieved by two basic stages; detection and recognition. In the detection stage, the sign is 

detected according to the sign’s colour information, and then according to the sign’s 

shape; features can be extracted and introduced to a certain classifier to decide the type of 

the sign according to the pictogram.   

In the next chapter, the theoretical background including a literature review will be 

presented which covers the different techniques needed to solve the problem of traffic 

sign recognition. 



 25

4.  Technical Overview  
 

This chapter covers both the literature review and the technical survey of the 

techniques used in this research which includes colours, feature extraction and 

classification.  

 The chapter is divided into four sections. In the first section, a literature review is 

carried out to cover the last ten years of research in the field of traffic sign recognition. A 

wide range of techniques are studied and evaluated and conclusions are drawn about the 

state of the art of the road sign recognition systems.  

The second section introduces colour as an important piece of information for a 

traffic sign recognition system, and describes why hue plays a central role in colour 

segmentation algorithms.  

The third section covers feature extraction techniques, describing the different 

‘moments’ that are used intensively in this field of research, namely, Zernike, Legendre, 

Orthogonal Fourier-Mellin moments, and the Binary Haar features.  

The fourth section presents Support Vector Machine (SVM) as a classification 

stage. It is a linear classifier which belongs to a set of classifiers called ‘supervised 

learning classifiers’ and can be used for both classification and regression.  

4.1 Literature Review 

Since the appearance of the first paper in Japan in 1984, road sign recognition has 

become one of the important research fields. From that time until the present day many 

research groups have been active in the field and have tried to solve this problem using 

different approaches. Although initially the main steps towards a solution seem very well 

defined and straightforward, the details of the approaches used show that there are several 

alternatives and many ideas as to how better solutions, better robustness, or a better 

classification rate can be achieved. So far, no one solution method has dominated, and it 

will clearly take some time before systems are seen in the market.  

The identification of road signs can be carried out by two main stages: detection, 

and recognition. In ‘detection’ research groups are categorised into three groups. The first 
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group of researchers believes that traffic sign colours are important information by which 

traffic signs can be detected and classified. The second group believes that detection of 

traffic signs can be achieved by traffic sign shape only, and the third believes that colour 

together with shape make the backbone for any road sign detection. Thus, there are three 

major approaches to detecting traffic signs: detection using colour information, detection 

using shape information, and detection using both colour and shape information.  All of 

the reviewed papers used images form real traffic scenes which are similar to the images 

collected during this research.   

4.1.1 Colour-Based Detection of Traffic Signs  

Techniques invoked to carry out traffic sign detection varies from one author to 

another. There is a wide range of techniques used to solve this issue.   

o Ghica et al. [26] used thresholding to segment pixels in a digital image into object 

pixels and background pixels. The technique is based on calculating the distance in 

RGB space between the pixel colour and a reference colour. The unknown pixel is 

considered as an object pixel if it is close enough to the reference colour.  

o Estevez and Kehtarnavas [27] suggested an algorithm capable of recognising the 

Stop, Yield, and Do-Not-Enter traffic warning signs. It consists of six modules: 

colour segmentation, edge localisation, RGB differencing, edge detection, histogram 

extraction, and classification. Colour segmentation is only used to localise red edge 

areas; the segmentation is performed sparsely; and interpixel segmentation distance is 

determined.  

o Yuille et al. [28] designed a sign finder system to help visually impaired people. The 

author assumed that signs consist of two colours (one for the sign, and another for the 

text), and sign boundaries are stereotyped (rectangle, hexagonal). Based on a set of 

tests to determine seeds, a region growing algorithm is used to detect hypothesis 

regions.  

o Yabuki et al. [29] proposed a method to detect the road sign by using the colour 

distribution of the sign in XYZ colour space. They constructed a colour similarity 

map from the colour distribution, which is then incorporated into the image function 

of an active net model. It is possible to extract the road sign when it is wrapped up in 

an active net.  
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o Fang et al. [3] calculated the hue value of the HSI colour space for every pixel, and 

the similarity between this hue and the stored hue values of particular colours in road 

signs is calculated. The maximum degree of similarity is then considered. This result 

is fed into a perceptual analyser to specify the colour of the sign.  

o Shadeed et al. [30] proposed an algorithm to detect road signs using the HSV and 

YUV colour spaces. The system is implemented in two stages. In the first stage, the 

RGB image is converted into YUV colour space, and a histogram of the Y channel is 

equalized, and then a new RGB is constructed. Colour segmentation is achieved in 

the second stage by converting the RGB image generated by the first stage into HSV 

and YUV colour spaces, and then applying a suitable value of threshold to H and UV 

values. Then the two results are combined by an AND operation. 

o Bénallal and Meunier [31] developed a computer vision system which is embedded 

in  a car and capable of identifying road signs. Many experiments were carried out 

with several road signs to study the stability of colours under different illumination 

conditions. Segmentation is achieved by the RGB colour space. It is shown that 

differences between red and green and blue components respectively are high and 

could be used with an appropriate threshold for segmentation. 

 

4.1.2 Shape-Based Detection of Traffic Signs  

  Techniques using shapes could be a good alternative when colours are missing or 

when it is hard to detect colours. Shape-based techniques should be able to avoid 

difficulties related to invoking colours for sign detection and robust to handle in-plane 

transformations such as translation, scaling and rotation.  Much effort has been exerted to 

develop these techniques and the results are very promising.  

In the following reviewed papers the authors used shapes as the major source of 

information to detect traffic signs:  

o Piccioli et a1. [32] and Parodi and Piccioli [7] detected road signs by using a priori 

information of the supposed position of the sign in an image. A Canny edge detector 

was applied to the search region, and geometrical analysis was carried out on clusters 

of edge-points to extract the desired shape. The inner region of each candidate was 

tested against the database of signs by template matching. The correlation of the edge 
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pixels with an appropriate set of circular masks was used to detect circles. Triangles 

were detected by grouping edges in vertical, horizontal, and oblique segments.  

o Priese et al. [33] suggested a real-time traffic sign recognition system in which traffic 

signs are identified by the interpretation of their ideograms realised by different 

modules in the recogniser. There are modules for the position and direction of arrows, 

a module for the numerals, and another for prohibition signs, speed limits, and arrows 

on mandatory signs. 

o Aoyagi and Asakura [34, 35] proposed a method to detect the traffic signs using 

brightness only. The object is extracted from the background using the Laplacian 

filter after using a smoothing filter to remove the noise. To obtain the binary image, a 

certain threshold is applied and detection is carried out by genetic algorithms with 

search ability for the circular pattern which is given as gene information. 

o Adorni et al. [36] used Cellular Neural Networks to identify road traffic signs. A 

gradient operator is used to extract the border pixels from the image, followed by the 

application of a low value threshold to remove small gradient intensity pixels, and 

then using a 5x5 CNN single–iteration filter to perform the pre-selection of pixel with 

respect to the neighbouring pixels.  

o Gavril [37] described a method to classify road signs based on template matching 

using distance transforms. The method could detect circular and triangular signs. 

Edge orientations are used as features which the algorithm depends upon. Different 

templates with radii between 7-18 pixels are used for circles and triangles. Each 

template is partitioned into 8-typed templates based on edge orientation. The method 

is used to detect road signs both on-line and off-line with a detection rate of about 

90%.  

o Schiekel [38] addressed the problem of recognising road signs in poor light 

conditions such as twilight, where colour information is not sufficient. The original 

image is processed by two Sobel filters, the gradient magnitude and orientation are 

calculated, and edge pixels are identified by thresholding the magnitude image. Edge 

pixels are segmented in two steps organised hierarchically, in which low-level 

features of pixels such as gradient orientations are linked to high-level features such 



 29

as triangles and ellipses. The recognition rate is 95% for triangular and elliptical 

signs, and 93% for rectangular signs.   

o Huang and Hsu [39-41] developed a road sign detection and recognition system 

based on the Matching Pursuit (MP) method. In the detection phase a region of 

interest is selected according to a priori information. A search to extract triangular or 

circular shapes is achieved in the region of interest (ROI) area by using template 

matching. The detection rate of triangular signs is 93% and 95% for circular signs.  

o Paclík and Novovičová [23] developed a classification module based on Hierarchical 

Spatial Feature Matching (HSFM) method. In the detection stage, a list of regions 

where the signs are likely to exist was generated. This list is passed to the 

classification module, by which each region is either labelled with the sign type found 

in this region, or marked as a rejected region.  

o Perez and Javidi [42] carried out  a road sign detection system which is scale and 

illumination invariant. The stop sign was chosen to be the reference target. It was 

tested in different light conditions and different backgrounds. Two methods are 

tested: the composite filter, and the filter bank.  

o Perez and Javidi [24] proposed a road sign recognition system by using a composite 

filter bank. The system is developed to allow in-plane and out-plane rotations of the 

road sign. It detected road signs even when they were slightly tilted, and out of plane 

rotations due to different angles of the acquisition system. 

o Sandoval et al. [43] developed a method to detect traffic signs by using angle-

dependent edge detection. The method is based on the generation of position-

dependent convolution mask, which uses the angular position of the pixels under 

consideration. The method is applied as a filter and used to detect circular edges.  

o Puntavungkour et al. [44] developed an automatic recognition system for road 

signs. A region of interest containing the road sign is specified by using affine 

geometric correction. Sign identification based on the grey-scale image processing is 

applied.  Normalised Euclidean distances between the target image and the template 

images are calculated, and the template with the least value is chosen to represent the 

sign. 
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o Hirose et al. [45], Liu et. al. [46] and  Liu et. al. [47] proposed a method for the 

recognition of traffic signs from motion pictures. The technique is based on applying 

an edge filter which is a normal Laplacian filter used to extract the sign edges, 

followed by another filter called the Simple Vector Filter (SVF) to extract the specific 

colour from the image. Genetic algorithms with search ability are applied to search 

for the circular traffic signs 

o Loy and Barnes [48] developed a fast shape-based method for road sign detection. 

The method uses an extension of fast symmetry transform to detect regular polygons. 

It is tested on a range of sign images and it performs over 95%. The method is 

invariant to in-plane rotation and can be used for real time applications. 

 

4.1.3 Colour-Shape-Based Detection of Road Signs  

By invoking a combination of colour and shape, it is possible to take advantage of 

both techniques to detect traffic and road signs. Each approach has its own positive 

properties and difficulties. However, an adaptive hybrid approach can invoke one 

technique under certain circumstances and invoke the other under different 

circumstances. Even when this adaptive approach is not in use, combining colour and 

shape in any sign detection method has the advantage of using the information available 

from both sides of the problem. As both colour and shape represent information which 

should not be neglected, it is also possible to avoid many problems and disadvantages.  

Colour-shape-based systems were used in the following papers:  

 

o Hibi  [49] used hue and saturation in an improved HSL colour space to recognise 

road signs in night images. Dynamic thresholds are used for both hue and saturation 

histograms. The final binary image is generated by combining hue and saturation 

images by logical addition. Pixels of the binary image are allocated into seven 

boundaries depending on the target pixel and its neighbours. These boundary patterns 

are used to specify the outline shapes of the road sign.  

o Piccioli et al. [50] showed two different algorithms for the detection of road signs. In 

the first one, grey-levels are used to detect road signs according to simple geometrical 

criteria. In the second one, hue and saturation in a HSV colour space are used. The 
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image is divided into 1616×  pixel regions, and each region is classified as 1 or 0 

depending on whether the number of labelled pixels exceeds a certain threshold. A 

search is carried out only for regions labelled with ‘1’. Shape detection is based on 

the geometrical analysis of edge contours.  

o Azami et al. [51]  used the HSV colour space to detect the route guidance sign 

(RGS). Automatic threshold is chosen for hue, saturation, and value. A connected 

component analysis is applied to choose the RGS candidate according to size and 

shape.  

o Jiang and Choi [9] used Fuzzy rules to transform the colour image into a grey-scale 

function, and a binary image is obtained to find any landmark in the enhanced colour 

image, in which enhancement is achieved by hue invariance. They used Nrgb colour 

space, thresholds, and fuzzy rules to detect the red and blue colours. Warning signs, 

which are considered here, are identified by extracting the three corners of triangles. 

A fuzzy method is developed to detect these corners by defining two member 

functions to specify the possibility of pixels inside two masks to create a corner. The 

other two corners are detected in the same way. The masks are rectified to eliminate 

the problem caused by damaged signs.   

o Vitabile and Sorbello [6] proposed a road sign recognition system which consists of 

two modules: a sign detection module and a sign classification module. Detection is 

based on sign colour and shape. RGB images are converted into HSV colour space 

which is divided into a number of subspaces (regions). The S and V components are 

used to find the region in which the hue is located. The binary image generated by the 

former step is sent to the shape extractor to extract the road sign depending on the 

shape knowledge of the road sign. The image is compared with an internal database 

containing different sign shape templates and the template with maximum correlation 

is selected. 

o Miura et al. [17] used area filters to binarise white regions in speed signs. Since 

binarization is sensitive to threshold, they binarised multiple times using different 

thresholds. By analysing the actual distribution of data in the YUV colour space, they 

could determine the right threshold. Shape information is used for the screening of 
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candidates. A search area is set around each candidate detected by the previous step 

and edges are extracted and tested for the presence of a specific shape.  

o Paclik et al. [12] segmented colour images by using HSV colour space and selecting 

a certain threshold. The thresholds are setup by using real scene images which are 

collected under different illumination conditions. Shape analysis is carried out by 

calculating several moment invariant features such as unscaled spatial moments, 

unscaled central moments, normalised unscaled central moments, and compactness 

which are used to construct the feature vector used in the shape analysis.   

o Vitabile et al. [20] proposed a dynamic, optimised HSV sub-space, according to the 

s  and v  values of the processed images. Colour segmentation is achieved by 

applying standard HSV colour filtering, generating sub-images to calculate seed 

pixels, and aggregating pixels depending on the seed saturation values by applying a 

region growing algorithm. Shape detection took place by using similarity coefficients 

between the segmented region and sample images for road signs. A segmentation rate 

of 94.6% for red circular signs, 86.3% for red triangular signs, and 95.7% for blue 

circular signs is achieved. 

o Lauzière et al. [52] detected traffic sign colours using colour formation equations 

(CFE). The road signs’ material spectral reflectance was measured with a 

spectrophotometer. The camera spectral response with monochromator and statistical 

daylight model was used. Regions of interest are extracted from the image on the 

bases of colour space labelling and connectivity of the pixels of similar colours. 

Features such as aspect ratio and road sign colours are extracted from the image and 

used to compute normalised templates. The template matching technique relies on an 

encoding of different road sign colours.  

o Vitabile et al. [11, 19] designed an automatic road sign recognition system using 

multi-layer perceptron mapping on a SIMD architecture. Colour segmentation is 

achieved by using a priori knowledge about colour signs in the HSV system. Standard 

colour filters are applied and sub-images are generated using the seeded region 

growing techniques. Pixel aggregation with dynamic threshold is then applied 

depending on the seed saturation values. Candidate sign regions are selected 
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according to a priori knowledge about the shape of the sign by exploiting a similarity 

function.  

o de la Escalera et al. [16] and de la Escalera et al. [53] built a colour classifier based 

on two look-up tables derived from hue and saturation of an HSI colour space. The 

two images are multiplied and normalised to 256 grey levels to create one binary 

image representing the classified road sign. In [16] Genetic Algorithms were used for 

shape analysis. In [53] two algorithms are used for shape detection: Genetic 

Algorithms (GA) and Simulated Annealing (SA) for shape analysis. Sign detection is 

achieved by normalised correlation and classification is achieved by neural networks. 

A detection rate of 90.4% is achieved by GA compared to 82.9% for SA.  

o Fang et al. [4] developed a road sign detection and tracking system in which colour 

images from a video camera are converted into the HSI system. Colour features are 

extracted from the hue by using a two-layer neural network. Gradient values in 

specific colour regions are acquired by an edge detection method to construct an edge 

image which is fed to another two-layer neural network to extract shape features. 

Colour and shape features are combined by using a fuzzy approach to form an 

integration map.  

o Ohara et al. [54] used a small and simple neural network (NN) to detect the colour 

and the shape of road signs. The original colour image is first treated by a Laplacian 

of Gaussian filter (LOG). A colour NN classifier is then used to segment the image 

according to the colour under recognition in RGB colour space. A shape NN is used 

after that to check whether each image contains an object with the shape of a road 

sign. When a shape is found, template matching is applied for final recognition.  

o Shirvaikar [55] carried out an automatic system for road sign detection and 

interpretation. The system used RGB colour space and spectral feature analysis of the 

images under consideration to create binary images of candidates’ pixel locations. 

Candidate regions are tested by a spatial feature analyser. Features employed to select 

the probable signs include area in pixels, aspect ratio, and fill factor. A relational 

feature analyser is used to refine the results. The system is used to detect stop, yield, 

and speed limit signs in real-time.   
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o Nakamura et al. [56] developed a recognition system of speed limit signs. First, the 

red area in the input image is detected by colour chart processing in the RGB colour 

space. Then the position and the size of the circular rings are detected by a multi-

layered neural network. A neural network classifier is used for character recognition 

of speed limits. A recognition rate of 98.3% is achieved. 

4.1.4 Recognition and Classification 

 Generally, word recognition is used to point out that a sign is identified while word 

classification is invoked to indicate that the sign is assigned in a certain category based 

on certain features. Sometimes recognition implies classification; therefore, these two 

terminologies are used interchangeably in this chapter. In the rest of the thesis, a 

complete separation between recognition and classification is made.  

 There are several techniques used for the recognition and classification of road and 

traffic signs. These techniques are summarised follows: 

 

Neural Networks 

 Neural networks are widely used to classify traffic signs. There are many reasons 

for this, but primarily because of the high accuracy achieved by this classifier. Research 

in neural networks was at its peak in the 1990s as knowledge of using neural networks 

was very fashionable at that time. Since a number of the reviewed papers belong to that 

period, it is not a surprise to see a number of them using neural networks. In addition, the 

majority of researchers wanted to avoid using traditional classifiers and wanted to try 

new techniques. A review of the papers using neural networks as a classifier is given 

here: 

o Kellmeyer and Zwahlen [57] used back propagation neural network to recognise 

warning signs. The input to the network which was a 10x10 boundary square 

representing the yellow region inside the warning sign, is fed to a 100 neuron input 

layer. The output-layer contains two outputs either “sign” or “non-sign”. A hidden 

layer of 30 nodes was used.  The system could detect 55% of warning signs in 55 

images. For large signs, 86% of the signs could be detected. 
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o Ghica et al. [26] carried out recognition by a neural network which consisted of three 

sub-networks, a classification sub-network, winner-takes-all sub-network (Hopfield 

network), and a validation sub-network.  

o Aoyagi and Asakura [34] used neural networks with an input pattern of 18x18 pixels 

fed to a three-layer network consisting of 324 neurons in the input layer, fifteen 

neurons in the hidden layer, and three neurons in the output layer. The system could 

detect and classify 23 out of 24 speed signs, and 23 out of 24 other signs. 

o In Vitabile and Sorbello’s [6] system, classification is carried out by normalising the 

sign image to 36x36 pixels, and using two different multi-layer neural networks 

designed with a similar topology of 432-144-10 to extract the pictograms of the road 

sign under consideration. The first one is used to extract the circular red signs, and the 

second to extract the red triangular warning signs. Depending on the shape of the sign 

which is extracted in the former stage, one of these two classifiers is invoked.  

o Vitabile et al. [20] used a neural network to classify the candidate sign regions 

according to the information inside it. Classification is carried out by a feed forward 

neural network classifier, where a 36x36 pixels candidate is fed to the neural network 

input. A classification rate of 84% for red circular signs, 88% for red triangular signs, 

and 100% for blue circular signs are achieved respectively. 

o Vitabile et al. [11, 19] used a multi-layer perceptron neural network to classify the 

road signs. The system consists of three unrelated MLP neural network classifiers. 

The adopted topology is 432-144-O, where O=11 for warning sign, O=8 for 

prohibitory signs, and O=5 for mandatory direction signs. The system was tested on 

620 outdoor images in 24 pictogram classes.   

o de la Escalera et al. [16, 53] used neural networks for the classification of the traffic 

signs following the Adaptive Resonance Theory ART1.  

o Fang et al. [3] carried out classification using the conceptual component module in 

which an ART2 network with a configurable long term memory was used to extract 

certain patterns from the categorical features fed from the perceptual module. These 

patterns are fed to another two-layer neural network to extract the road signs.   
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o Nakamura et al. [56] used neural networks to detect the position and size of speed 

limit signs. A neural network classifier is used for character recognition of speed 

limits. A detection rate of 100% and a recognition rate of 98.3% were achieved. 

 

 

Template Matching 

The second alternative classification technique is Template Matching. It is used either 

in its direct form or in a derived form i.e. by either matching a histogram or by matching 

a pattern generated from the unknown image with the standard patterns. The papers using 

this technique are reviewed here: 

o Piccioli et al. [32] classified the recognised road sign according to its similarity to 

one of the road signs in a database. The inner region of each candidate is tested 

against the database of signs by template matching. To improve recognition scheme, 

Piccioli et al. [32] used Kalman-filter-based temporal integration to the extracted 

information from a sequence of images. A high rate of correct classification (about 

98%) was achieved. 

o Huang and Hsu [39-41] implemented a recognition process by using a robust and 

flexible Matching Pursuit MP filter, which was used to decompose the training 

pattern into a 2-D wavelet expansion. Here the information is represented locally; 

unlike template matching which encodes the information globally. The filter is used 

to extract the feature, which differentiates each class of road signs. The MP filter is 

trained off-line, and a conventional template matching is used to compare the input 

signals with the actual template to find the best match. A recognition rate of 94% for 

triangular signs and 91% for circular signs is achieved.  

o Piccioli et al. [50] achieved road sign recognition by classifying road signs according 

to their shapes, normalising the sign to a size of 50x50 pixels by linear interpolation, 

and applying cross-correlation between the road sign and the template of the database 

related to the proper shape. The best N templates which fall within a fixed length of 

the maximum value are chosen. To increase the robustness, a temporal integration is 

applied to the selected sign from the database which best fits the unknown sign.  
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o Azami et al. [51] used a threshold to separate character regions from Route Guidance 

Signs (RGS). Since the characters are of the same size and placed horizontally, the 

search is done horizontally. Arrow candidates have larger areas compared with 

characters. They are recognised by their topology features using thinning and 

template matching. Seven kinds of arrows are recognised. The RGS and its contents 

are identified by comparing this structure with an RGS database.  The method is 

applied to driving assistance systems. 

o Miura et al. [17] identified road signs by using normalised correlation-based pattern 

matching between a test image and a template image. According to the proposed 

method, two thresholds are used for the correlation value. The candidate is considered 

if the correlation value of that candidate is above the first threshold, and the ratio of 

correlation values for the best and the second best candidates are above the second 

threshold. The method achieved a detection and recognition rate of 100% for the 

Guidance Sign Recognition, and 97.2% and 46.5% respectively for Speed signs. 

o Lauzière et al. [52] achieved the recognition in three steps. In the first one, the road 

signs are divided according to their principal colour. They are then subdivided within 

the same colour class, according to their shapes and contents, into several classes. 

Finally, the individual road sign is found at the third level. Template matching is used 

in the recognition of the unknown sign with respect to the templates stored in the 

template database. Approximately 90% of the road signs are correctly recognised. 

o Ohara et al. [54] used template matching for sign recognition. A sub-area of size 

NxN is selected, and small defects and noises are filled in or deleted. The pixel values 

are normalised by the maximum and minimum values of the input sub-area. The size 

is also normalised depending on the template to be matched, and the closeness with 

the template is calculated. A recognition rate of over 95% is achieved.  

o Hibi  [49] transformed target images and reference models to k-l coordinates using 

the complex-log mapping method which is scale and rotation invariant.  Complex-log 

mapped images are then transformed into frequency domain by 2-D FFT. The target 

image is matched with reference images, and the reference with minimum judgement 

value is chosen. A recognition rate of 100% is achieved for Stop signs, 94% for No 
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Parking sign, and 95% for No Entry sign.  The method is tested in daylight and night 

conditions. 

Other Classifiers 

The remainder of the reviewed papers use different classifiers, among them weighted 

distance metrics, nearest neighbour classifier, and kernel based classifiers.  The following 

papers were reviewed: 

o Estevez and Kehtarnavaz [27] performed the recognition by using an angular 

histographic attribute extracted by a semi-rectangular histographic mask. 50% of all 

stop signs were correctly identified, 41% of all stop signs were incorrectly identified. 

37% of all yield signs were correctly identified, and 94% of all do-not-enter signs 

were correctly identified. 

o Paclík and Novovičová [23]  used two different features for classification. The first 

feature, which is extracted from the grey image histogram, includes the mean, energy, 

and entropy of the region containing the sign. The second feature set includes the 

unscaled central moments, normalised unscaled central moments, and Hu moments 

which are used for shape description. Five separate classifiers working in different 

feature spaces are used. It is tested in a wide range of lighting conditions which vary 

from full sunshine to cloudy twilight. 

o Paclik et al. [12] used the Laplace kernel classifier to classify road signs. The signs 

are divided into nine groups depending on their shapes and colours. This kernel is 

based on Laplace probability density, and the smoothing parameters of Laplace kernel 

were optimised by the pseudo-likelihood cross-validation method. The Expectation-

Maximisation algorithm is used to maximise the pseudo-likelihood function. The 

algorithm is tested on more than 4900 noisy images.  

o Dahyot et al. [58] carried out a pattern recognition system based on an appearance-

based representation of colour images. The approach relied on the M-estimators 

involving a non-quadratic and non-convex energy function. The approach is tested on 

triangular road signs along with their rotation in the image plane.  The training set 

consists of 1548 (76x76) images representing 43 different road signs. The Euclidian 

distance between the estimation and all the training images in the eigenspace is 

calculated, and the closest model is selected.  
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o Paclik et al. [59] designed a classifier by using a trainable similarity measure base on 

normalised cross correlation. Images of traffic signs are normalised to 32x32 pixels 

and row binary pixel representation is used and PCA algorithm is invoked to reduce 

the dimension of the input feature. Two types of classifiers are used: Fisher linear 

discriminant (FLD) and Soft Independent Modelling of Class Analogy (SIMCA) 

classifier.  

o In 2005, Lafuente-Arroyo et al. [60] used Support Vector Machines (SVM) to 

classify traffic sign shapes based on the distance of the edge of the sign from the 

border of the normalised image. The method achieved 82% success rate for 

standalone signs and 54% for occluded signs. 

4.1.5 OCR and Pictograms Recognition 

 A number of authors do not pay special attention to pictograms because they 

consider pictograms as part of the sign interior. However, the following reviewed papers 

show special attention to pictogram recognition and text recognition for traffic signs:  

o Jiang et. al. [61] developed  a method to recognise traffic signs by using binary 

morphological operations and rank statistics. They were interested in recognising 

warning signs (triangular shape), and indicatory signs (circular shape). They 

concentrated on extracting the inner signs, assuming that the outer contours of the 

signs are extracted by some pre-processing.   

o Jiang et al. [62] performed a study to analyse the morphological skeletons of the 

inner shapes of traffic signs and developed a method based on a morphological 

skeleton to detect the inner shapes of traffic signs. The relative functions and distance 

functions of the morphological skeletons were used to recognise the inner shapes and 

then the traffic signs. Ten warning signs are detected by this method.   

o To extract the symbols and characters, Miura et al. [17] applied intensity 

transformation to avoid  lighting variations. These characters and symbols were 

segmented by projecting character regions on the vertical axis, and calculating the 

histogram for prominent peaks, which are indications of the existence of characters. 

Horizontal projection was applied to specify the character position. The identification 

of each character is achieved by normalised correlation-based matching.  
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o Nakamura et al. [56] developed a recognition system of speed limit signs. The 

system recognises characters by multi-layer perceptron neural network. Back 

propagation is used as the training method. First it recognises the first digit to the 

right. If this digit is not zero the sign is rejected as a speed limit sign. Then it 

recognises the digit to the left. The speed limit is obtained by multiplying the digit to 

the left by 10.  

 

4.1.6 Analysis of the Literature Review  

I. Colour-Based Approaches 

Colour is an important source of information in traffic signs recognition. The first 

part of colour detection is colour space conversion in which colour gathered by a camera 

in RGB form can be converted into another colour space so that the colour information 

can be separated from the intensity information. Some researchers prefer to use RGB 

colour space or a modified version of this colour space while others prefer to undertake 

colour space conversion to get better results. The major colour-based techniques are 

summarised below: 

1. Colour Thresholding Segmentation: This is one of the earliest techniques used 

for segmentation of colour images. The method uses a threshold value to classify 

image pixels to traffic sign pixels or background. A reference colour is used to 

judge whether a pixel is considered as a traffic sign pixel or not [26, 63]. 

2. Dynamic Pixel Aggregation: Segmentation in this method is performed by 

introducing a dynamic threshold in the pixel aggregation process on HSV colour 

space. The main advantage of dynamic threshold is to reduce hue instability in 

real scenes depending on external brightness variation[20].  

3. HSI/HSV Transformation: These two colour spaces separate colour information 

(Hue and Saturation) out of the overall intensity value which makes them more 

immune to light changes. The transformation from RGB colour space to HSI 

colour space makes the separation between chromatic information and intensity 

information useful for colour segmentation as the HSI colour space is very similar 

to human perception of colours. 
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4. Region Growing: This approach uses a seed in a region as a starting point and 

expands as groups of pixels with a certain colour similarity. The approach can be 

implemented in the HSI colour space. As it requires a seed to start and ends when 

certain criteria are met, it may run into a problem when ending conditions are not 

satisfied [28]. 

5. Colour Indexing: Colour histograms are used to compare colours in two images. 

The method is fast and straightforward. The colour histogram is used to index the 

images stored in a database. Computations will increase greatly in complex traffic 

scenes [29]. 

 

From the literature review it is clear that road signs use colour to represent the key 

information provided to drivers. Colours are an important source of information in the 

detection and recognition of traffic signs. As colours are distinguishing features of traffic 

signs, they can simplify this process. In addition, colour processing can significantly 

reduce the amount of false edge points produced by low-level image processing 

operations. An important part of the colour-based detection system is ‘colour space 

conversion’, which converts RGB images into other forms which simplify the detection 

process. This means separating the colour information from the brightness information by 

converting the RGB colour space into another colour space. This gives good detection 

abilities depending on the colour cue. There are many colour spaces available in the 

literature, namely the HSI, HSB, HSV, HLS, L*a*b*, YIQ, and YUV colour systems 

[64]. The hue-saturation systems are the most used in road sign detection, but the other 

colour systems are also used for this task.  

Colour detection and segmentation is the next stage of colour based analysis. In this 

stage special algorithms are developed to separate objects with certain colours from the 

scene under observation. Many segmentation algorithms have been developed during the 

last decade. A wide range of colour spaces have also been used. All colour spaces are 

invoked by different authors. The methods used for colour segmentation vary depending 

on whether neural networks, fuzzy sets or statistical methods are used. It is clear that 

there is no one standard colour segmentation method and a large variety of methods are 

presented [3, 4, 16, 27, 53, 65, 66].   
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The accuracy achieved by invoking these methods varies between 37% up to 100%. 

Many of these algorithms are developed for real time applications. One or two systems 

have been tested for rain conditions. 

 Four major issues are missing in these algorithms and they are necessary to be 

investigated in future work.  

• The absence of algorithms dealing with poor light conditions. As is the case for 

Sweden and other Scandinavian countries where winter is long and daylight hours 

are few.  

• The absence of algorithms dealing with severe rain showers and snow fall.  

• There are no algorithms that handle road signs located under trees in which 

different parts of the sign are exposed to different levels of illumination,   

• There are no colour segmentation algorithms which are immune to ‘highlights’. In 

‘highlights’ signs function as a mirror to reflect some of the source light to the 

camera. 

 

II. Shape-Based Approaches 

In shape-based sign detection grey scale images are used to avoid different 

problems faced when dealing with colours. The outer edges of the signs are used in many 

studies in this field. Among the techniques used to extract road signs are the following: 

1. Hierarchal Spatial Feature Matching: The search for geometrical shapes is 

carried out based on spatial features of signs within the traffic scene. Once these 

shapes are found a list is created and passed to a classification module. 

2. Hough Transform: The classical Hough transform has been used to detect regular 

features such as lines and circles. It is used because of its ability to isolate features 

of a particular shape within an image. The method is computationally complex and 

memory hungry which does not make it a good choice for real-time applications. 

However, these constraints are not crucial issues for road sign inventory. 

3. Similarity Detection: This approach is performed by finding a similarity factor 

between a segmented region and a set of binary images which represent each road 

sign shape. The method assumes that both sampled and segmented image have the 

same dimensions. 
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4. Distance Transform Matching: In this approach a template hierarchy is used to 

capture the variety of object shapes. Efficient hierarchy can be generated offline for 

given shape distributions using stochastic optimisation techniques. In the online 

mode, a simultaneous coarse-to-fine approach is involved over the shape hierarchy 

and over the transformation. The approach is capable of checking objects of 

arbitrary shapes which is an advantage over other techniques when dealing with 

non-rigid objects.  

 

It has been proved that it is enough to use road sign shapes to detect them. One of 

the points to support this theory is the lack of a standard colour system among the 

different countries even within the European Union. Systems relying on colour need to be 

tuned when moving from one country to another. The other point in this argument is the 

fact that colours vary as daylight and reflectance properties vary. In situations in which it 

is difficult to extract colour information such as twilight time and night time shape 

detection will be a good alternative. However, using shapes to detect road and traffic 

signs may suffer from some difficulties. Among these difficulties are the following: 

• Objects similar to traffic signs, such as windows, mail boxes and cars, may exist in 

the scene.  

• Road signs may appear damaged and/or occluded by other objects, and they may 

appear disoriented vertically or horizontally.  

• As the distance between the camera and the sign varies, the size of the sign also 

varies. When the sign is very small, it may be unrecognisable.  

• When the viewing angle is not head-on, the aspect ratio may also change. The 

camera in this case takes a perspective projected image of the sign. 

• Working with shapes necessitates robust edge detection and a matching algorithm. 

This is difficult when the road sign appears relatively small in the image. 

 

III. Colour-Shape-Based Approaches 

It is clear that combining colour information with that of shapes gives a good source 

of information for traffic sign detection. Shape information is valuable as much as that of 

colour. This kind of combination reduces the number of false alarms since every object, 
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not just road and traffic signs, can posses these specifications. As mentioned above, 

adaptive traffic sign detectors can be built by using this colour-shape combination. When 

colours are available they can be used to detect the signs. Otherwise a shape-based 

algorithm can be invoked. This kind of traffic sign detector may need some kind of rule 

to control which method is used depending on the availability of colour information or 

shape information. In addition to that, combining colour and shape in one algorithm can 

also reduce false alarms by avoiding some of the problems which can arise due to the 

nature of either of these approaches.   

 

IV. Recognition and Classification 

From the review a number of parameters should be taken into consideration when a 

classifier is designed: 

1. The recogniser should present a good discriminative power and low 

computational cost.  

2. It should be robust to the geometrical status of sign, such as the vertical or 

horizontal orientation, the size, and the position of the sign in the image.  

3. It should be robust to noise.  

4. The recognition should be carried out quickly if it is designed for real time 

applications.  

5. The classifier must be able to learn a large number of classes and as much priori 

knowledge as possible about road signs should be employed into the classifier 

design.  

 

Neural Networks are a suitable alternative for the recognition and classification of 

road signs. There are two distinct advantages of using neural networks. First, the input 

image does not have to be transformed into another representation space. Second, the 

result depends only on the correlation between the network weights and the network. 

However, neural networks have their own problems. The training overhead still exists, 

and the multi-layer neural networks cannot be adapted for on-line application due to their 

architecture. Since this architecture is fixed, there is no provision for an increase in the 

number of classes without a severe redesign penalty, and they cannot recognise the new 



 45

patterns without retraining with the entire network. In this respect, they do not offer 

significant advantages over template matching. 

Other types of neural networks, such as reconfigurable neural networks, ART1, 

ART2, Hopfield, Cellular neural networks, try to offer more flexibility and adaptation of 

neural networks [6, 11, 19, 22, 67]. Kohonen maps were trained for signs partially 

occluded by other objects and signs which were rotated by small angles in the outdoor 

images. They can have capabilities to adapt to new signs without need of new training.  

Template matching is a second alternative in the recognition stage. It is used to 

classify the inner regions of traffic signs, and in some cases, combined with wavelets to 

extract the local features of the sign. Complex-log transform and 2D-FFT are also 

combined with template matching to achieve better classification results [32, 49, 50, 68].  

Genetic Algorithm can be used to search for traffic sign in a scene image. The 

image is matched by giving the gene information. The gene of individuals can be 

represented by expression using a set of equation to determine its characteristic. 

Nearest Neighbour Classification is a straightforward and classic type of 

classification. An image in the test set is recognised by assigning to it the label of most of 

the closest points in the learning set. All images are then normalised to certain value. The 

image in the learning set that best correlates with the test image is then the result. 

Support Vector Machines classifier is a potential classifier which shows good 

abilities to classify patterns for different applications. This classifier which has only been 

introduced in recent years to the field of traffic sign recognition is chosen as a classifier 

in this thesis. Details of the classifier are presented in section 4.4.  

Other classifiers such as classical classifier, weighted distance classifier, Angular 

histographic, matching pursuit classifier, Laplace kernel classifier, and Euclidian distance 

have also been used for road sign classification [12, 69]. 

 

V. OCR and Pictogram Recognition  

The amount of research achieved clearly shows that  optical character recognition 

(OCR) is not a basic problem any more. The availability of commercial packages and the 

robustness of these packages indicate that research in OCR for sign recognition has 

reached stability. The reason is that OCR techniques available nowadays have passed the 
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requirement for road sign recognition. As mentioned earlier, the text on the road signs has 

standard fonts and standard sizes, which makes the recognition of this text a simple task.  

Extracting pictograms is more difficult than extracting text. A good quality close-up 

image is needed to extract the pictogram from a sign under consideration,. When the road 

sign is small in the test image, the details of the pictogram will not be clear. This leads to 

an unrecognisable pictogram. Since most of the pictograms contain complex shapes, and 

a variety of symbols, the task of the recognition will be extremely tedious when only a 

few pixels are available to represent the pictogram. 

 However, traffic sign detection can benefit from pictogram extraction, because the 

position and shape of the sign are already specified in an earlier stage. In addition, the 

whole classification operation can be carried out off-line, which provides good quality, 

because very sophisticated algorithms can be used.  

 

VI. Discussions 

Various commonly used techniques on road sign recognition have been presented. 

Some of these techniques can be combined with others to realise a hybrid recognition 

system.  

Comparing to colour-based recognition, shape-based recognition faces more 

limitations. However, the shortcomings of colour-based recognition such as weather 

conditions and faded colour on road sign can be compensated through the use of shape-

based recognition giving more superior performance. For colour-based recognition, most 

approaches can operate considerably fast except colour indexing. Even though colour 

indexing can segment an image when the road sign is slightly tilted or partially occluded, 

its computation time increases greatly in a complicated traffic scenes. Hence, colour 

indexing is not ideal for real-time implementation. Camera captures images in RGB 

colour format of which is not suitable for image segmentation as the colour information 

varies greatly under different weather condition. Often it is transformed into other colour 

space to like HSV, XYA space for processing. However, these transformations may 

become expensive in hardware realisation. Whilst, the Colour - Thresholding is easy, it 

may not be robust when the weather is poor or when the paint on road sign is faded.  
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The slow computation time of Hough Transform is a disadvantage, as it makes the 

method improper for real-time implementation. Template matching is popular but 

additional techniques need to be used with it to compensate for the imperfect sign shape 

problem. Similarity detection is like the Colour Thresholding in colour-based, simple and 

straightforward. However, this method may not give reasonable hit rate. 

Neural Networks classification is popular amongst pattern recognition 

applications; road sign recognition makes no exception. Neural network approach has the 

most number of references, and yet there are several more that have not been included. 

The recognition rate varies quite significantly (550% 100%), this could be due to how 

well the networks are trained, and what network architecture are employed. The networks 

that achieved the highest hit rate used feedforward MLP Neural Networks. Neural 

networks are more adaptable to changes, and more flexible. 

Growing number of experimental results prove their robustness, which makes 

them stand out from the rest of the techniques. Some of the techniques are robust but 

computationally costly, while others are simple but unable to handle changes in road sign 

patterns. None of the existing approaches can be totally immune to the problems faced by 

road signs recognition system. 

4.2 Colour  

Colour provides powerful information for object recognition. Segmentation based 

on colour provides good discrimination between material boundaries. As mentioned 

earlier, road signs use colours to represent the key information provided to road users. As 

colours are distinguishing features of traffic signs, they can simplify the recognition. In 

addition, colour processing can significantly reduce the amount of false edge points 

produced by low-level image processing operations [70]. 

Colour space is often used in computer vision. It is defined as a mathematical 

representation of a set of colours. Although the number of existing colour spaces is large, 

many of them are related to some major groups of colour spaces. The main models of 

colour spaces are given below:  

• The RGB colour model is used for computer graphics and CMYK for 

printing. 
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• HSI, HSV and HLS are designed to emulate the way human perceive colour. 

• YIO, YUV and YCbCr are designed for video systems. 

• XYZ for standard primary colours. 

As the information regarding colour spaces are scattered, a full description of colour 

spaces is presented in appendix B.  

Figure 4.1 depicts a model for a normal scene when an image is taken. Light from 

the source strikes a surface is reflected and enters the camera where it is sampled by the 

red, green, and blue sensitive receptors.    

In this Figure, the vectors vsn ,,  are unit vectors which represent the direction of 

the normal vector to the surface of the sign, the direction of the source of illumination, 

and the direction of the viewer, respectively. 

The response of the RGB sensors at position sP  measuring the light reflected from 

a Lambertian surface is given by [71]: 

∫=
λ

λλλλ dcefmC obCbs ),(.)()(),()( PsnP },,{ BGRCfor =  (4.1) 

 

 
 

Figure  4.1: Traffic scene model. 
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Where )( sC P is the response of the sensor which is located at position sP to the 

RGB colours, bm  denotes the geometric dependencies on the body reflection component, 

s  is a unit vector pointing in the direction of the light source, n  a unit vector 

corresponding to surface normal, )(λe is the spectrum of the incident illumination, 

),( λobc P is the spectral reflectance of the body located at position oP , and )(λCf  is the 

spectral sensitivity of the camera in the RGB colour. The integration is done over all 

wavelengths to which the sensor responds. 

One of the key points of equation (4.1) is that the responses of the camera sensors 

are related to the spectral characteristics of the incident light and the surface which 

reflects that light.  

4.2.1 Variation of Colour in Outdoor Images 

As shown in Figure 4.1, light rays come from the source of light and are reflected 

on the sign board’s surface to the imaging device. The apparent colour of any object in 

outdoor images varies according to changes in the daylight colour (illuminant colour), 

illumination geometry, viewing geometry and imaging parameters.   

The irradiance of any object in a colour image depends on three parameters: 

1. The colour, intensity and position of the light source. 

One of the difficult problems in using colours in outdoor images is the chromatic 

variation of daylight. As a result of this chromatic variation, the apparent colour of 

the object varies as daylight changes. Daylight colour changes according to the angle 

of the sun, cloud cover, and local weather conditions along the characteristic curve in 

the CIE model, as shown in Figure 4.2. It is given by the following equation: 

275.00.387.2 2 −−= xxy 38.025.0 ≤≤ xfor  (4.2) 

                       

 Where x and y are the coordinates of the CIE colour model. According to this 

equation, the variation of daylight colour can be expressed by a single parameter 

“colour temperature” which is independent of the intensity.  
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Figure  4.2: The CIE diagram. 

2.  The reflectance properties of the object. 

A Lambertian surface is that surface which reflects light with equal intensity in all 

directions. When a Lambertian colour model is assumed, the surface reflectance of an 

object )(λs  is strictly a function of the wavelength λ  of the incident light. It is given 

by following equation: 

)()()( λλλ bces =  (4.3) 

 

Where )(λe  is the intensity of the light at wavelength λ , and )(λbc is the object’s 

albedo function giving the percent of the light reflected at each wavelength. Although 

this model does not take the extended light sources, inter-reflectance effects, 

shadowing or peculiarities into consideration, however, it is the best available 

working model of colour reflectance. 

3. Camera properties. 

Given the radiance of an object )(λL , the observed intensities depend on the lens 

diameter d , the focal length lf  of the camera, and the image position of the object 

measured as angle a  off the optical axis. This is given by the standard irradiance 

equation: 
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)4cos()/)(4/).(()( 2
afdLE lπλλ =    (4.4) 

 

According to equation (4.4), the radiance )(λL  is multiplied by a constant function of the 

camera parameters. This means that it will not affect the observed colour of the object. 

Assuming that the chromatic aberration of the camera’s lens is negligible, only the 

density of the observed light will be affected. 

 As a result, the colour of the light reflected by an object located outdoors is a 

function of the temperature of daylight and object’s albedo, and the observed irradiance is 

the reflected light surface scaled by the irradiance equation [21, 72]. 

4.2.2 Hue Invariance 

Hue is defined by the CIE as the attribute of a visual sensation according to which 

an area appears to be similar to one of the perceived colours, red, green and blue, or a 

combination of two of them. In practical terms, hue is the name of the colour [73]. By 

mimicking humans, computer vision invokes hue in various applications such as colour 

segmentation and suppresses the effects of cloud shadows for remote sensing 

applications. RGB to HSV and HLS colour transformation find a variety of applications 

in conversion applications such as object recognition and face recognition.  

The human vision system ascribes fairly constant hues to surfaces viewed in 

different visual contexts.  It has been shown in the former section that hue is invariant to 

brightness. It is also invariant to highlights. Thus hue plays a central role in colour 

detection and segmentation for many applications because of these properties. Some 

more interesting properties of hue which make it invariant to the variations in light 

conditions are given below: 

o Hue is multiplicative/scale invariant: ),,(),,( aBaGaRhueBGRhue =  for all 

values of a such that [ ] [ ] [ ]255,0255,0255,0),,( ××∈aBaGaR  

o Hue is additive/shift invariant: ),,(),,( bBbGbRhueBGRhue +++= for all 

values of b such that [ ] [ ] [ ]255,0255,0255,0),,( ××∈+++ bBbGbR  

o Hue is invariant under saturation changes. Practically this means that it is still 

possible to recover the tint of an object when it is lit with intensity varying 
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illumination. It has been shown in the aforementioned section that hue is 

unaffected by shadows and highlights when illumination is white. 

 

However hue coordinates are unstable, and small changes in the RGB can cause 

strong variations in hue [10]. Furthermore, hue suffers from three problems: 

1. When the intensity is very low or very high, hue is meaningless. 

2. When saturation is very low, hue is meaningless. 

3. When saturation is less than a certain threshold, hue becomes unstable. 

 

Vitabile et al. [11] defined three different areas in the HSV colour space: 

o The achromatic area: characterised by  25.0≤s  or 2.0≤v  or 9.0≥v . 

o The unstable chromatic area: characterised by 5.025.0 ≤≤ s  and 9.02.0 ≤≤ v . 

o The chromatic area: characterised by 5.0≥s  and 9.02.0 ≤≤ v . 

 

In order to obtain robustness to changes in external light conditions, these areas 

should be taken into consideration in the design of any colour segmentation system based 

on HSV colour space. 

4.2.3 Colour Constancy 

Colour constancy represents the ability of a visual system to recognise an object’s 

true colour across a range of variations of factors extrinsic to the object, such as light 

conditions [74]. This definition summarises the purpose of colour constancy algorithms 

in generating illumination-independent descriptors of the scene colours measured in 

terms of the camera’s RGB coordinates. 

As mentioned earlier, the camera output is affected by the temperature of daylight 

(colour of the daylight), and the object’s albedo.  

By referring to equation (4.1) and assuming ideal sensors for the RGB light, and 

light source which illuminates the surface at a right angle, the aforementioned equation 

can be simplified to: 

},,{;),()()( BGRCforceC obs == λλ PP  (4.5) 
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From the above mentioned equation, colour constancy can be achieved by 

independent scaling of the RGB colour bands, if it is assumed that the camera sensors are 

close to ideal [71]. 

Colour constancy is an important issue as far as detection and recognition of road 

signs are concerned. This is due to the illumination’s variation, both in brightness and 

spectrum, in the outdoor scenes where the traffic signs are located.    

A study by Funt et al. [75] showed that machine colour constancy algorithms are 

not good enough for colour-based object recognition. In spite of this disappointing result, 

many new algorithms were developed after Funt’s paper, namely Finlayson [76], Tsin et 

al. [77], Rosenberg et al.[78] ,Török and Zarándy[79], Sridharan and Stone [74], Ebner 

[71, 80], Stanikunas et al.[81]. The community concerned with traffic sign recognition 

has not taken the colour constancy problem seriously, and hence these algorithms have 

not been tested and assessed yet. Thus, no one knows how applicable they are for traffic 

and road sign detection and recognition. 

4.3 Moments and Invariants 

Moments and moment functions are widely used in many applications such as 

image analysis, invariant pattern recognition, object classification and image 

reconstruction.  They are useful for feature extraction because moments represent the 

global characteristic of the shape of an object in the image and they provide information 

about the geometrical features of that object. The main advantage of moments is that they 

are computationally very simple. Therefore, they have been used in several areas of 

computer vision and robotics. In the recent past, different types of moments have been 

introduced and each of them has its advantage in specific application areas.  

4.3.1 Zernike Moments 

Zernike Moments were introduced by Teague [82] based on orthogonal functions 

called Zernike polynomials. Although the calculation of Zernike moments is very 

complex, they proved to be superior in terms of their feature representation and low noise 

sensitivity.  
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Zernike moments are classed as orthogonal moments as they possess a useful 

rotation invariance property. Rotating the image does not change the magnitude of its 

Zernike moments. However, Zernike moments are translation and scale variant and to 

obtain an invariant version of these moments, a normalisation process is needed.  

The kernel of Zernike moments is a set of orthogonal Zernike polynomials defined 

over the polar coordinate space inside a unit circle. The two-dimensional Zernike 

moments of order p  with repetition q  of an image intensity function ),( θrf  are defined 

as [83] 

∫ ∫
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where  10 ≤≤ r , p  is the order of Zernike polynomials with repetition q  and ),( θrV pq   

is defined as 

θθ jq
pqpq erRrV )(),( =  (4.7) 

 

and the real-valued radial polynomial )(rR pq  is given as follows [84] 
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In this equation, p  is a non negative value such that ∞= ,,2,1,0 Lp , q  should be 

in the range pq ≤≤0  and qp −  is even, and )()(, rRrR pqqp =− . 

In its discrete form, Zernike moments of order p  with repetition q  of a discrete binary 

image with image intensity function ),( yxf  inside a unit circle is given by [85]  
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where N  is the number of pixels along each axis of the image, and the Zernike 

polynomials are given by 
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θθ jq
pqpqpq erRrVyxV )(),(),( ==  (4.10) 

And  
22

yxr += ,     )(tan 1
xy

−=θ  
 

 

and  )(rR pq  is the radial polynomial given by equation (4.8). 

A big advantage of Zernike moments is that they have a simple property. If pqZ  

and pqZ ′  are the pth  order Zernike moments of an image ),( yxf  and ),( yxf ′  rotated 

by an angle φ  , respectively, then the moments of the two images are related by  

φjp
pqpq eZZ

−=′  (4.11) 

The magnitude of the Zernike moments is then given by 

pq
jp

pqpq ZeZZ ==′ − φ  (4.12) 

 

Hence, the magnitude of the Zernike moments could be taken as a rotation invariant 

feature of the underlying image [86]. 

Zernike moments are computationally very expensive. Equation (4.8) has many 

factorial terms which are computationally very exhaustive. In addition to this, the 

moments themselves are scale and translation variant which need a normalisation 

process. Many methods have been suggested to reduce the time of computation by 

reducing the redundant terms in the Zernike radial polynomial [87, 88]. Nevertheless, the 

computation time of Zernike moments can be reduced dramatically by using the explicit 

form of  )(rRpq  [89] which is shown in Appendix C. The terms in Appendix C are used 

in this research to implement Zernike moments.  

Moment-based features of an object are said to be translation invariant if they 

remain the same even when the object is located in different positions in the image. The 

translation invariance of Zernike moments is achieved by moving the origin of the image 

to the centroid of the object. This is done by transforming the image ),( yxf  into another 

image ),( cencen yyxxf ++  where ),( cencen yx  are the coordinates of object’s centroid.  

Scale invariance is achieved by scaling the original object through setting its zero-

order geometric moment (area) to a certain value. This method is more suitable to 
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continuous space rather than digital images. In digital images, this process produces some 

errors due to re-sampling the image. An algorithm proposed by Kamila et. al. [85] 

eliminated this problem by avoiding any scaling of the original image and replacing that 

with calculating Zernike moments of the object centred at the origin of the image. 

Normalisation is then carried out by dividing the Zernike moments by the area of the 

object under consideration.  

 The modified Zernike moments which are rotation, translation and scale invariant, 

are carried out by the following steps:  

1. To carry out the translation invariance, the binary image is normalised by 

calculating object’s area and centroid ),( cencen yx  from the following equations:  

∑∑=
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yxfa ),(  (4.13) 
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2. Calculate object’s pixel coordinates of the new image shown in Figure 4.3: 

cenyyx −=′   , xxy cen −=′  (4.16) 

where ),( yx ′′  are the transformed coordinates and ),( yx  are the original 

coordinates of the object.  

3. Find the radius of the minimum circle containing the object by calculating the 

furthest object’s pixel from the centroid ),( cencen yx , denoted minr , using 

Euclidean distance.  

22
min )()( cencen yyxxr −′+−′=  (4.17) 

 

Use  minr  to map the object’s coordinates to the modified coordinates. 

4. Map the coordinates of every object’s pixel to be within a unit circle by 

calculating  

min/ rxx ′=′′ ,   min/ ryy ′=′′  (4.18) 
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5. Calculate Zernike moments using x ′′  and y ′′ values achieved from the former 

step. 

6. Calculate the modified Zernike moments pqz ′  by dividing the Zernike moments 

by the area of the object.  

azz pqpq /=′  (4.19) 

 

 
 

Figure  4.3: Main steps to perform translation and scaling invariance. 

4.3.2 Legendre Moments 

The set of Legendre moments was proposed by Teague [82] as a set of orthogonal 

moments for image analysis. Legendre moments are used in different applications such as 

pattern recognition, image indexing and face recognition.  

The kernel of Legendre moments are the product of Legendre polynomials defined 

along rectangular image coordinate axes inside a unit circle. Legendre moments of order 

)( nm +  are defined as [90] 
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where ∞= ,,3,2,1, Lnm  and [ ]1,1, −∈yx . The nth  order Legendre polynomials are 

defined as [83]: 
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where 1≤x  and )( kn − is even. 
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The above series expansion of Legendre polynomials can be obtained from the equation 
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The set of Legendre polynomials )(xPn  forms a complete orthogonal basis set on the 

interval [-1, 1], and the Legendre moments mnL  generalizes the geometric moments pqm  

in the sense that the monomial qp
yx is replaced by the orthogonal polynomial 

)()( yPxP nm  of the same order. 

 As mentioned in the previous discussion, the region of definition of Legendre 

polynomials is inside the interval [-1, 1]. An NN ×  pixel image with intensity ),( jif  

such that )1(,0 −≤≤ Nji  should be scaled to fit the region 1,1 ≤≤− yx . The discrete 

version of the Legendre moments can be given as [91] 
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where  ix  and jy denote the normalised pixel coordinates in the range [-1, 1] given by 
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To calculate the Legendre moments for digital binary images, a similar procedure to that 

used to calculate Zernike moments is invoked.  The steps in this procedure are as follows 

1. Find the centre of mass ),( cencen yx  of the object from equation (4.14) and (4.15). 

2. Find the minimum bounding circle and calculate its radius denoted minr  from  

22
min )()( cencen yjxir −+−=   

      Where )1(,0 −≤≤ Nji  and ),( ji  is the position of the current pixel. 

3. Normalise the coordinates of the image such that 1,1 ≤≤− ji yx  as follows 
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4. Calculate Legendre moments for equation (4.36). 
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 In this procedure, equation (4.38) differs from equation (4.37). The reason is that it 

is assumed in equation (4.37) that the object is located in an NxN pixels image and it fits 

the whole area of this image, while in equation (4.38) it is not necessary that the object 

fits the whole area. This means that the object will fit the unit circle only when it is inside 

the image. 

4.3.3 Orthogonal Fourier-Mellin Moments 

There is a large number of complete sets of polynomials which are rotation 

invariant and are orthogonal over the interior of a unit circle. Among them are the 

orthogonal Fourier-Mellin moments (OFMMs) which were introduced by Sheng and 

Arsenault [92] and later by Sheng and Shen [93] for character recognition. 

The kernel of the orthogonal Fourier-Mellin moments is the set of orthogonal 

Mellin polynomials over the polar coordinates inside a unit circle. The two-dimensional 

OFMMs of order  p  with repetition q  of an image intensity function ),( θrf  are defined 

as  
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where pq ≤≤0 ,  0≥p ,   1−=j . 

 The pth Mellin radial polynomials are given in the following forms: 
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It can be verified that the set )(rQp  is orthogonal over the range 10 ≤≤ r  
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where psδ  is the Kronecker delta, and pa  is a normalisation constant with 1=r  as a 

maximum radial size of the underlying object[89]. 

 The discrete version of OFMMs can be expressed in rectangular coordinates ),( yx  

as  

∑∑ ∆∆
+

=Φ −

x
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p

y

pq yxerQyxf
p θ
π
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1

 
 

(4.30) 

 

122 ≤+ yx ,     θcosrx =    ,  θsinry =   

The OFMMs are integrable when the degree p of  )(rQ p  is 0≥p . 

If the image is rotated through an angle φ  , the relationship between  the moments 

of the two images are as follows  

φjq
pqpq e

−Φ=Φ′  (4.31) 

  

Therefore, the magnitude pqΦ of the OFMMs could be taken as a rotation invariant 

feature of the underlying image. 

 To calculate the orthogonal Fourier-Mellin moments for digital binary images, a 

similar procedure to that used to calculate Legendre moments is invoked.  

4.3.4 Binary Haar Features 

In many cases during image retrieval, the exact position and orientation of objects 

in an image are only of secondary value. Thus, it is desirable to have features which are 

invariant to certain transformations, say translation and rotation. Invariant image features 

based on integration over that transformation group which were introduced by Schulz-

Mirbach [94] can be invoked for this purpose.  

Let { } MjNijiII <≤<≤= 0,0,),(  be an image, with ),( jiI representing the 

grey-value at the pixel coordinate ),( ji . Let G  be the transformation group of 

translations and rotations with elements Gg ∈  acting on the image, such that the 

transformed image is gI . An invariant feature must satisfy GgIFgIF ∈∀= ),()( .  
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Figure  4.4: Binary Haar features applied to different road signs. 

 

Such invariant features can be constructed by integrating )(gIf over the 

transformation groupG . 
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For binary road sign images, transformations will be restricted to a certain group of 

translations. As a kernel function, binary operations among neighbour pixels are 

proposed.  For example, a 2-point kernel evaluated at a point ),( yx  would be  

),(),(),( yx yxIXORyxIyxk ∆+∆+=  (4.33) 

where the pair ),( yx ∆∆ determines the local support. 

The thi  invariant feature is then given by 
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where the pair ),( i
y

i
x ∆∆ are the translation parameters for the thi  kernel. The boundary 

pixels may optionally be discarded if the corresponding translated point falls outside the 

image.  

Theoretically, the values of ),( i
y

i
x ∆∆  are ∞<∆∆≤ ),(0 i

y
i
x , but practically they should 

not exceed the size of the image. Figure 6.17 illustrates the features which are essentially 

discriminative for this classification task. The first column is the original image. The 

other columns depict the result of XORing of the original image with its translated 

version by the amount mentioned in the first row.   

4.4 Support Vector Machines  

Support Vector Machines (SVM) are pattern classification and regression 

techniques based on mathematical foundations of statistical learning theory. This theory 

was first proposed by Vapnik and his group at AT&T Bell Laboratories in 1992 [95]. The 

SVM learns a separating hyperplane to maximise the margin and to produce good 

generalisation ability.  Due to the good generalisation performance on a large number of 

real-life data and due to the fact that the approach is properly motivated, it has been used 

for a wide range of applications. 
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It has been shown to correspond to a linear method in a high-dimensional feature 

space nonlinearly related to the input space. High-dimensionality usually leads to 

expensive computation steps and therefore to an algorithm unsuitable for time critical 

applications. By using Kernels, the so-called kernel trick, SVM algorithms do not need to 

make computations in the high dimensional space. All necessary computations can be 

done in the input space, which significantly reduces the complexity. 

4.4.1 Linear Classification with Maximal Margin Classifier 

Suppose there are two given classes of objects. The goal is to find a plane that 

separates the two classes and helps to assign new objects to the right class. The simple 

case, with only two different classes is binary classification. Figure 4.5 illustrates an 

example of a pattern recognition problem with two classes. Clearly the two classes are 

linearly separable. Therefore, by finding a suitable plane, the training data can be 

successfully separated. However, the choice of the hyperplane is not trivial, as is 

demonstrated in Figure 4.5-b and 4.5-c. 

Even though the lines in both of these figures separate the two classes without a 

single training error, they may not perform equally well on unseen test data. Figure 4.5-d 

must be the most promising or even optimal choice.  

The basic idea of SVM can therefore be described as follows: Find the optimal 

hyperplane to linearly separate two classes. The optimal hyperplane is a maximum-

margin hyperplane, that is, a hyperplane which separates the two classes and is 

equidistant from both. To obtain the maximal margin, one needs to solve a quadratic 

optimisation problem.  

As can be seen in Figure 4.6, using the optimal hyperplane, the margin intersects a 

few training patterns from each class. These training patterns are called Support Vectors 

(SV). Solely they determine the position of the hyperplane. All other patterns have no 

influence on the calculation of the hyperplane.  
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Figure  4.5: (a) Pattern recognition problem with two classes. (b)(c) Separating 

hyperplane separates the two classes without training errors. (d) Optimal separating 

hyperplane. 

 

 

Figure  4.6: Optimal solution can be obtained by maximizing the margin. 
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In a binary classification problem the training data is given as a data set S of points 

d
i ℜ∈x  with the label }1,1{ +−∈iy , for all training data li ,,1L= , where l  is the 

number of training examples, and d  is the dimension of the problem. When training 

SVM, the goal is to construct a separating hyperplane as the decision plane, which 

successfully separates the positive (+1) and the negative (-1) classes with the largest 

margin.  

When the two classes are linearly separable in dℜ , the goal is to find the maximal-

margin hyperplane. The margin can be seen as twice the distance from the hyperplane to 

the nearest of the positive and negative examples (see Figure 4.7). The data points closest 

to the margins are called the Support Vectors (SV). They are the most important training 

points, since they finally determine the position of the hyperplane[96]. 

 

 

Figure  4.7: Linear classification for two-dimensional input vectors. 

 
Linear classification is normally performed by using a linear function of its input 

vectors. This function can be written as 

bxwbf
l

i

ii +=+= ∑
=1

.)( xwx  
 

(4.35) 
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where ix  is the ith  attribute value of an input vector x , iw  is the weight value for the 

attribute ix  and b  is the bias. For a binary classification, the decision rule is given by 

( )bsignf += xwx .)(  (4.36) 

The hyperplane can be defined as  

ℜ∈ℜ∈=+ bb
d ,0. wxw  (4.37) 

The input vector '
1 ),,( lxx L=x  is assigned into the positive class if 0)( ≥xf , 

otherwise it is assigned into the negative class.  

A hyperplane with a margin of width= 1 is called a canonical hyperplane. A 

separating hyperplane in canonical form must satisfy the following constraints  

( ) liby iii ,,1,1. L=≥+= xwγ  (4.38) 

If );,( ibd xw  is defined as a distance of a point x  from the hyperplane ),( bw and it is 

given by: 
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Then, the margin is given by 
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The optimal hyperplane can then be found by maximising the margin which leads to 

the following optimisation problem: 

2
)(min

2
w

=wτ  
 

(4.42) 

under the constraint  

iby ii ∀≥−+ ,01).( xw  (4.43) 
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The optimal separating hyperplane can thus be found by solving the Quadratic 

Programming problem in (4.42) and (4.43). However, it turns out that it is more suitable 

to work with the dual problem of the above optimisation problem. To derive it, the 

introduction of Lagrangian is necessary 
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where 0≥iα  are Lagrange multipliers and  { }l
ii 0== αα . L  needs to be minimised 

with respect to the primal variable w and b  and maximised with respect to the dual 

variable iα . Therefore, in order to calculate the derivatives with respect to w and b : 
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The corresponding Karush-Kuhn-Tucker (KKT) [97] complementary conditions are 

given in (4.47). The KKT is necessary to be able to compute the parameter b , which is, 

other than w , not explicitly determined by the training procedure. 

( )[ ] 01. =−+ by iii xwα  (4.47) 

Rewriting equation (4.44),  
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By substituting equations (4.45) and (4.46) in the right hand side of (4.48), the primal 

variables vanish and we obtain 
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which leads to the following quadratic programming problem 

maximise ∑ ∑∑
= ==

+−=
l

i

l

i

i

l

j

T
ijiji yyW

1 112

1
)( αααα jxx  

 
(4.50) 

 

subject to 0,0
1

≥=∑
=

i

l

i

iiy αα  
 

(4.51) 

  

The dual objective function )(αW  has a quadratic form which can be solved using 

different optimisation methods. One particular method for training SVMs is the 

Sequential Minimal Optimisation (SMO) algorithm [98], which breaks the large 

quadratic programming problems into a series of small possible QP problems. The small 

QP problems are then solved analytically.  

During the maximisation process, most of the dual variables iα  become zero. The 

remaining non-zero parameters are the Support Vectors.  

The solution for w can be derived from equation (4.46) 
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Instead of minimizing (4.42) it is preferable to maximise the equivalent dual 

function mainly for two reasons: only a quadratic form has to be maximised (with respect 

to iα ) and the data vectors ix  appear in the form of dot products ji xx .  only, which 

will be important when introducing the kernel functions. 

This means that w , which describes the separating hyperplane, is determined by the 

sum of the input vector weighted with the Lagrangian multipliers iα . Since the patterns 
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closest to the hyperplane (the support vectors) only obtain non-zero values for iα , they 

solely determine w , and thus the separating hyperplane. All the remaining examples of 

the training set have no influence on equation (4.52). 

The threshold value b  can be computed using the KKT in (4.51). It can for instance 

be obtained by averaging 
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for all points with 0>iα ; in other words, all Support Vectors. 

The classification of a new pattern x  can now be obtained by solving the decision 

function )(xf  
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4.4.2 Non-Linear Classification 

In real-life problems often the classes involved are not linearly separable. Figure 4.8 

depicts such a problem where two classes overlap each other. Even if it is impossible to 

derive a separating hyperplane in the input space, it might be possible to do so in some 

high-dimensional feature space. The input data is mapped into a higher-dimensional 

feature space, where the classification can be performed by a linear SVM. Finally by 

transforming back into the input space, a non-linear decision surface is obtained, which 

successfully separates the two classes. 

The problem with high-dimensionality is that computations may become intractable. To 

avoid this, the kernel trick is invoked. To compute the separating hyperplane, a dot 

product is mainly used as a similarity measure. Instead of actually performing the 

mapping into the feature space and computing dot products there, it is possible to use 

kernel functions which combine both steps. The ingenuity of the kernel trick is that 

mapping is not actually performed. The similarity value is in fact obtained from the 

kernel function as it would be first mapped and then the dot product is performed. 
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Figure  4.8: A non-linear problem. It is impossible to linearly separate the patterns 

in the input space. 

Linear learning solves problems by linear functions. However, a simple linear 

function defined by the given attributes cannot achieve a target task in a flexible manner. 

There are two main limitations of linear learning:  

 First, the functions that are tried to learn may not have a simple representation and 

may not be easily verified in this way.  

 Second, normally the training data are noisy and so there is no guarantee that there is 

an underlying function which correctly classifies the training data. 

Therefore, complex real world problems require more expressive hypothesis spaces than 

linear functions. The following sections discuss a method which constructs a non-linear 

machine to classify the data more flexibly.  

4.4.3 Learning in Feature Space 

The complexity of the target function to be learned depends on the way it is 

represented, and the difficulty of the learning task can vary accordingly. Kernel 

representations offer a solution by constructing a mapping from the input space to a high 

dimensional feature space to increase the power of linear learning for complex 

applications. 
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Figure 4.9 shows an example of a mapping from a two-dimensional input space to a 

two-dimensional feature space. In the input space the data cannot be separated by a linear 

function. A feature mapping simplifies the classification task since the data in the feature 

space is linearly separable.  

The quantities introduced to describe the data are usually called features, while the 

original quantities are sometimes called attributes. The task of choosing the most suitable 

representation is known as feature selection. The space X  is referred to as the input 

space, while }:)({ XF ∈= xxφ  is called feature space. 

By selecting an appropriate kernel function, a non-linear mapping is performed 

between the input space and high dimensional feature space. This means each input 

vector in the input space matches a feature vector in the feature space. However, this 

mapping does not increase the number of the tuneable parameters. This technique also 

overcomes the problem of dimensionality in both computation and generalisation [96]. 

 

 
Figure  4.9: A mapping from a two-dimensional input space to a two-dimensional 

feature space. 

 

4.4.4 Implicit Mapping to Feature Space 

The implicit mapping from input space into feature space expresses the data in a 

new representation in which the nonlinear decision function in the input space is 

equivalent to a linear function in the feature space.  In such a way the linear learning 

machine can be used. The function (4.35) which was represented in linear learning 

section is modified as: 
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where FX:) →x(φ  is the mapping function from the input space to some feature space. 

Therefore, there are two steps to constructing a non-linear machine: first, a fixed non-

linear mapping transforms the data from input space into a feature space; second, in the 

feature space a linear machine is used to classify them. 

 One important feature of linear machines is that the decision function can be 

expressed as a linear combination of the training points so that the decision rule can be 

evaluated using just the inner products between the test points and the training points as 

follows: 
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 It is possible to merge the previous two steps to build a non-linear learning machine 

in which the inner product )()( xx Φ⋅Φ i  can be computed directly in the feature space 

as a function of the original input points. 

4.4.5 Kernels 

A kernel is a function K , such that for all X∈zx,  

)()(),( zxzx Φ⋅Φ=K   

where Φ  is a mapping from X  to an (inner product) feature space F [99].  

A kernel constructs an implicit mapping from the input space into a feature space 

and a linear machine is trained in the feature space. The Gram matrix or kernel matrix 

describes the training data information in the feature space. The key to this approach is to 

find a kernel function to be evaluated efficiently. The decision rule can be evaluated 

using this kernel function by at most l  times of the kernel: 
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4.4.6 Properties of Kernels 

Kernel functions are used to avoid the feature space in the computation of inner 

products. In order to ensure that the kernel function is useful for the feature space, the 

kernel function must be symmetric [99] 

),()()()()(),( xzxzzxzx KK =Φ⋅Φ=Φ⋅Φ=  (4.58) 

and satisfy the inequality which follows from the Cauchy-Schwartz inequality 

2222 )()()().(),( zxzxzx ΦΦ≤ΦΦ=K   

 

),(),()().()().(),( 2
zzxxzzxxzx KKK =ΦΦΦΦ=  (4.59) 

4.4.7 Examples of Kernels 

To date many kernels have been proposed by researchers. The most frequently used 

kernels are: 

1. Linear 

The linear kernel is the simplest linear model, 

zxzx ,),( =K  (4.60) 

2. Polynomial 

Polynomial mapping is a popular method for non-linear modelling, 

d
K zxzx ,),( =  (4.61) 

A more preferable expression is given by, 

( )drK += zxzx ,),( γ  (4.62) 

Where dr,,γ  are kernel parameters and 0>γ . 

3. Gaussian Radial Basis Function 

The radial basis function is one of the kernels which has been given significant 

attention. The form of the Gaussian Radial Basis Function (GRBF) is, 

⎟
⎠
⎞⎜

⎝
⎛ −−= 2exp),( zxzx γK  

(4.63) 

The RBF kernel has fewer numerical difficulties. Comparing the GRBF kernel with the 

polynomial kernel, the value of ),( zxK  in the GRBF kernel is in the interval of [ ]1,0 , 

while the value of ),( zxK  in the polynomial kernel is in the interval [ )∞,0 . 
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4. Exponential Radial Basis Function 

The form of the Exponential Radial Basis Function (ERBF) is, 

( )zxzx −−= γexp),(K  (4.64) 

 

It produces a piecewise linear solution which can be attractive when discontinuities 

are acceptable. 

5. Sigmoid 

The Sigmoid function is so far the most common form of activation function used 

in artificial neural networks. It is a strictly increasing function which exhibits a graceful 

balance between linear and nonlinear behaviour. A SVM model using a sigmoid kernel 

function is equivalent to a two-layer, feed forward neural network, 

),tanh(),( rK += zxzx γ  (4.65) 

4.4.8 Soft Margin Classifier 

A maximal margin classifier can only be used for data which is linearly separable in 

the feature space. To satisfy real-world problems where the data are not linearly separable 

in the feature space, a soft margin classifier which tolerates noise and outliers is extended 

from a maximal margin classifier. 

Revising the constraints equation (4.43) by adding a slack variable ξ , the new 

constraints are, 

( ) iby iii ∀≥++ 1. ξxw  (4.66) 

where 

ii ∀≥ 0ξ   

In this case some data are allowed to be misclassified; Figure 4.10 depicts an 

example of a soft margin classifier. 

The optimisation problem for soft margin classifier is, 
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(4.67) 

where C  and k  define the cost of constraint violation. For positive integers k , the above 

optimisation problem is a convex programming problem. If 1=k  or 2=k , it will be a 

quadratic programming (QP) problem. C  is the upper bound of α , it is a trade-off 

between maximum margin and classification error. A higher value of C  gives a larger 
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penalty for classification error, and this means α  is allowed to have a large value. 

Particular data maybe classified correctly by increasing the α  value. 

 

 
Figure  4.10: An example of soft margin classifier. 

 
Applying the dual formulation, the 1-norm soft margin optimisation problem is 
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4.4.9 Multi-class Classifier 

So far the classification problems which have been discussed are binary 

classification problems. Some methods have been proposed to solve multi-class 

problems. Here one of them which is most widely used will be briefly introduced. 

Among the existing multi-class approaches, “one against one” is one of the most 

suitable methods for practical problems. It constructs 2/)1( −kk  classifiers where k is the 

number of categories. Each classifier trains data from two different classes, mth  and nth  

classes solving the following binary classification problem, 
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where 0≥mn

iξ . 

A voting strategy is used in this approach: each binary classification is considered 

to be a vote where votes can be cast for all data points x . The point x  is assigned into a 

class with the maximum number of votes. If there are two classes with the same number 

of votes, a simple strategy is to select the one with the smallest index. 

4.4.10 Types of SVM 

1. C-SVM Classification 

Given training vector n
i ℜ∈x , C-SVC solves the following primal problem for 

binary classification }1,1{−∈iy  [95, 100]: 
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Its dual formulation is 
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where C  is the upper bound of iα . The decision function is 

)),(sgn(
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(4.77) 

2.  ν -SVM Classification 

The ν -SVM was introduced by Schölkopf et al. [101]. The ν -support vector 

classification introduces a new parameter ν  which controls the number of support 

vectors and margin of errors. Schölkopf proved that ν  actually sets the upper bound for 

the number of margin errors and the lower bound for the number of support vectors. 

Chang and Lin [102, 103] investigated the relation between ν -SVM and C-SVM. In 

particular, they showed that solving the two approaches amounts to solving two different 
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problems with the same optimal solution. Increasing the parameter C in C-SVM is 

equivalent to decreasing ν  in ν -SVM. 

In Schölkopf’s ν -SVM it turns out that as ν  becomes smaller, the total number of 

support vectors decreases. When ν  is decreased, fewer training errors are allowed, 

therefore the hyperplane is created in a way that it fits as many training examples as 

possible. 

By increasing ν , more training errors take place and the margin of the hyperplane 

is increased and thus more examples lie within the margin and are considered as support 

vectors. Due to this, the model of the separating hyperplane is simplified. The interval of 

[ ]1,0∈ν  is much easier than [ ]∞∈ ,0C .  

The primal problem for this approach to solve binary classification is 
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Its dual formulation is 
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4.5 Summary 

A large number of articles have been published in the field of road sign recognition 

in the last ten years and a substantial number of them have been reviewed in this 

research. Detection of signs is achieved by using colour information, shape information 

or a mixture of the two. The recognition of signs, however, is carried out mostly by 

neural network or template matching. Other techniques are also employed for 

classification.   
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This chapter focuses on the study of colour as key information in the recognition of 

traffic signs. Since hue is the core of many colour segmentation algorithms in the 

reviewed articles, it is also studied in depth. 

The shape of a traffic sign represents another key factor which plays a central role 

in traffic sign recognition. This chapter presents different methods to calculate features 

from the shape of the traffic signs. Several types of features and invariants are presented 

and discussed together with the method to make these features invariant to the in-plane 

transformations. 

The SVM is presented as a classifier to be used in traffic sign recognition in this 

research. In this context, linear and non-linear classification is presented together with a 

discussion of the way to convert a non-linear problem to a linear one.  Several types of 

SVM classifiers, such as the maximum margin classifier, the soft margin classifier, and 

multi-class classification are also discussed.   

The next chapter shows how the various techniques may be brought together in 

designing an integrated recognition system that covers the image database, the design of 

the colour segmentation algorithms, the recognition system and the classification stage.  
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5. Road Sign Recognition System 
Design 

 

This chapter examines the practical aspects and experimental setup which cover the 

algorithms developed in this research. The chapter is divided into 8 sections and a 

summary. Section 5.1 presents an overview of the Road Sign Recognition System 

(RSRS) which comprises several modules working together to achieve recognition. In 

section 5.2 the camera used for data collection is described and in section 5.3 the raw 

images database created for the purpose of developing and testing the different 

algorithms in this research are depicted. Section 5.4 presents the colour segmentation 

algorithms which are developed for traffic sign applications in outdoor images. Section 

5.6 describes the Fuzzy shape recogniser invoked to recognise the traffic signs based on 

the combination of colours and shapes. Section 5.7 illustrates the training database used 

for the training and validation of the classification using the SVM classifier. Finally, 

section 5.8 presents the classification of traffic signs based on the SVM classifier and the 

training and testing normalised image library.    

5.1 System Overview  

A system to detect and recognise road and traffic signs should be able to work in 

two modes; the training mode in which a database can be built by collecting a set of 

traffic signs for training and validation, and a prediction mode in which the system can 

recognise a traffic sign which has not been seen before. A system to recognise road and 

traffic signs is depicted in Figure 5.1. It consists of a number of modules which work 

together to perform this recognition. These modules are as follows: 
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Figure  5.1: A block diagram of the RSRS. 
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a. The Camera: 

A good digital camera which gives clear and sharp still images with different 

sizes is necessary. No special equipment is needed for this purpose. Images collected 

by this camera are used in later stages to develop and validate the colour segmentation 

algorithm, the recognition stage, and to build the classification system. 

b. Colour Segmentation:  

Colour segmentation is an important step to eliminate all background objects and 

unimportant information in the image. It generates a binary image containing the road 

signs and any other objects similar to the colour of the road sign. This step reduces the 

amount of calculation needed in the following steps as it radically reduces the number 

of probable objects. A colour segmentation algorithm should be robust enough to work 

in a wide spectrum of environmental conditions and be able to generate binary images 

even when traffic sign colours are attenuated.   

c. Shape Analysis: 

The main task of this module includes cleaning the binary image from noise and 

small objects, applying connected components labelling algorithm, and recognising 

the traffic sign. This module normalises the recognised traffic sign so that it becomes 

invariant to the in-plane transformations. This means that the resultant sign has a fixed 

size and it is located in a standard position where its centre of gravity is located in the 

centre of the image. This module works in two modes; the training and the prediction 

mode. In the training mode it is invoked to create or update the training image 

database. In the prediction mode it prepares every object in the binary image to be in 

standard format and ready for feature extraction.  

d. Raw Image Database 

This database is simply a collection of traffic scenes gathered by the camera. 

Images in this database are categorised according to the type of the sign, condition of 

the sign such as occluded, damaged, or faded, weather conditions, light geometry, and 

defects in the images such as blurring. The database represents the main source of 

images from which another database called the “training database” is built. The 

number of images in this database should be extensive enough to cover the large 
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variety of traffic signs which are used for training the system. In addition to this, the 

number of images containing the same type of sign should be vast to provide a good 

number of examples for training.  An Access database program manages the images 

and the information about them so that selecting images with certain characteristics is 

straightforward. 

e. Training Database 

The training database consists of binary images of a normalised size such as 

36x36 pixels. The database is created and updated in the training mode in such a way 

that binary images of the desired traffic signs are selected from a set of images. This 

database is used either directly or by extracting some features to train and validate the 

classifier.  In the prediction mode, the database is invoked to train the classifier before 

any classification task takes place.  

f. Feature Extraction: 

This module contains algorithms which are used to extract features from either the 

training images in the training database or images directly from the shape analysis 

unit. It allows the classifier to be trained by either binary images or by features. 

Among the features which can be used are geometric moments, Zernike moments, 

Legendre moments, Orthogonal Fourier-Mellin Moments and Binary Haar features.  

g. Classification: 

Classification is carried out using a Support Vector Machine (SVM) described in 

Section 4.4.  

5.2 The Camera 

In this research a Minolta DiMAGE 7Hi camera shown in Figure 5.2 was used for 

data collection. It was selected because of the price and the specification which could be 

gained. The camera has a 5 mega pixel resolution with 7X optical zoom and 2X digital 

zoom capability. The full specifications of this camera are listed in Table 5.1. 
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Table  5.1: Specifications of Minolta DiMAGE 7Hi. 

 
Features 

 

Specifications 

Lens Minolta GT Lens, 7.2 – 50.8mm, mm49φ  

Image formats � RAW 
� Super Fine (TIFF)  
� Extra Fine (JPEG) 
� Fine (JPEG) 
� Standard (JPEG) 

Max Resolution  2560 x 1920 (5 Megapixel) 
Zoom Capability 7X optical + 2X digital 
Max. Aperture F2.8  - F3.5 
Focal length 208mm -200mm 
ISO sensitivity 100/200/400/800/Auto 
Movie mode (format) Yes (QuickTime) 
Timed slow shutter � Timed up to 15 seconds depending on selected ISO  

� Bulb up to 30 seconds 
Max shutter speed � Program AE : 1/4000 sec 

� Aperture Priority: 1/4000 sec 
� Shutter Priority: 1/2000 sec 
� Manual: 1/2000 sec 

White Balance � Auto,  Daylight,  Tungsten, Fluorescent 1,  Fluorescent 2,   
  Cloudy, Manual preset (1, 2, 3) 

Continuous drive  � UHS - 7 fps @ 1280 x 960 
� High-continuous - 3 fps (9 frames) At 2560 x 1920 resolution 
� Continuous - 2 fps (9 frames) At 2560 x 1920 resolution 

Colour modes � Natural colour (sRGB) 
� Vivid colour (sRGB) 
� B&W (neutral or toned) 
� Solarisation 
� Adobe RGB 

Embedded profile Yes, optional embedded ICC profile 
Video out Yes 
USB Support Yes 
Sound Recording  Yes 

5.3 The Raw Images Database 

During this research, images were collected for the development and verification of 

the algorithms used for traffic sign recognition. A total of 3415 images were collected in 

Sweden and 330 images in other countries. These images comprise one of the biggest 

databases of traffic signs in Europe [104].  All images collected in Sweden were taken 

from the same position in the vehicle, but different vehicles were used depending on 
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availability. All still images were taken manually when traffic signs were seen by the 

camera operator. They were collected in different light conditions, in different weather 

conditions and in different road conditions including different speeds. For all images and 

without any exception, the camera was set to 640x480 pixels; Extra Fine JPG format and 

Continuous drive which allows a sequence of images to be taken at different distances 

between the vehicle and the sign.  

 

 
 

Figure  5.2: Minolta DiMAGE 7Hi. 

 

Images in this database are classified into 30 categories depending on weather 

conditions, type of the sign, sign condition, image condition and light geometry.  Table 

5.2 presents these categories together with the number of images in each category. Some 

of the images can be classified into different categories depending on the condition of the 

image. 

Furthermore, this database includes additional traffic sign images taken from 

different places around the globe. Most of them are collected in Europe but some of them 

are taken in Canada, the USA, Singapore and Japan. These images are taken using 

different cameras depending on availability. Some of them are taken by a pedestrian and 

they can be of different sizes and different resolutions. One of the objectives of collecting 

images from different countries is to study the differences and compare the colours and 
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pictogram shapes used by these countries. Another objective is to test the compatibility of 

the algorithms developed in the research.  

 

 

Table  5.2: Raw images database comprises different categories. 

Category Number of 

Images 

Category Number of 

Images 

Bad light geometry 77 SL-5 2 

Blurred images 290 SL-10 5 

Closed to all Vehicles  62 SL-15 3 

Faded signs 158 SL-20 21 

Fog 27 SL-30 94 

Highlight 40 SL-50 196 

Information Signs 508 SL-70 326 

No Entry sign 125 SL-90 351 

No Parking sign 92 SL-110 81 

No Standing 93 Snowfall 80 

Noisy images 48 Stop sign 120 

Occluded signs 96 Sunny 922 

Physically Damaged 61 Sunrise and Sunset 489 

Prohibitory signs 227 Warning signs 443 

Rain 122 Yield sign 157 

 

A Microsoft Access application was developed to manage these images and 

associated information. It consists mainly of two tables: the pictures table and the signs 

table. In the pictures table, each record consists of the picture’s name, date, weather 

condition under which the picture was taken, defects in the picture, light geometry, and 

time of day. The signs table contains all the signs gathered during the development stage 

of this research. As any picture may contain one or more sign depending on the nature of 

the sign, each record in this table is set to consist of the following fields: type of the sign, 

x and y coordinates of the centre of the sign, rim colour, interior colour, sign shape, sign 
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condition, and picture ID which represents the picture in which the sign is found. Other 

tables are created to prevent typing mistakes in the pictures and signs table. Such tables 

are called phrase tables and they contain all the phrases used in this database. A full 

description of this database is given in Appendix E.  

5.4 Colour Segmentation Algorithms 

The aim of the colour segmentation algorithm is to recognise multicolour traffic 

signs. Its success in doing so is judged according to the following criteria: 

• Robustness to a change in the viewing direction. 

• Robustness to a change in object geometry. 

• Robustness to a change in the direction of illumination. 

• Robustness to a change in the intensity of illumination 

• Robustness to a change in the Spectral Power Distribution (SPD) of illumination.  

• Robustness to changes in weather conditions. 

Some of the above criteria are interrelated. The choice of a colour model not only 

depends on its robustness to the variation in the illumination across the scene, but also on 

its robustness to changes in the surface orientation of the object.  Two other factors may 

affect the robustness of the colour model: robustness to noise and robustness to 

occlusions and cluttering. 

The Swedish National Road Administration defined the colours used for traffic and 

road signs [105] in CMYK colour space. The original CMYK values are given in Table 

2.1 in chapter 2. The values in this table are converted into Normalised Hue and 

Normalised Saturation and are listed in Table 5.3. 

Table  5.3:  Normalised Hue and Saturation. 

 Colour Normalised Hue [0,255] Normalised Saturation [0,255] 
Red 250 207 

Yellow 37 230 
Green 123 255 

Light Blue 157 255 
Dark Blue 160 230 
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There now follows a discussion of the new colour segmentation algorithms 

developed by the author in this research. The evaluation of the performance of these 

algorithms will be presented in the next chapter.  

5.4.1 The Dynamic Threshold Algorithm 

In this algorithm colour segmentation is carried out by converting the RGB image 

into the IHLS colour space. Hue, Saturation and Luminance images are normalised to 

[0,255]. In the first step of the algorithm, the global normalised mean Nmean  of the 

luminance image is calculated. This is achieved in two steps. In the first step, the global 

image mean is calculated. In the next step the normalised global mean is computed by 

dividing the mean by 256, as shown in the following equations: 
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256/meanNmean =  (5.2) 

 
where m and n  are the image dimensions, ),( jiL is the luminance of the current pixel, 

and Nmean  is the normalised global mean in range [ ]1,0 . 

The reference colour and the unknown colour are represented by two vectors on the 

hue colour circle by using hue and saturation values of these two colours, Figure 5.3. 

 

 
 

Figure  5.3: The vector model of the Hue and Saturation. 
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 Let 1H  and 2H  be the hue angles of the reference colour and unknown colour 

respectively, and 1S  and 2S  be the saturation values of the reference colour and unknown 

colour respectively, then, the Euclidian distance between the two vectors is calculated 

using the following equation: 

( ) ( )( ) 2/12
1122

2
1122 sinsincoscos HSHSHSHSd −+−=  

(5.3) 

 
Because the hue angle and saturation can be affected by the light conditions at the 

time the image is taken, a dynamic threshold is calculated in correspondence to the 

normalised global mean which reflects these dynamic light conditions. This threshold is 

calculated as: 

Nmean
ethresh
−=  (5.4) 

                                                        
The main idea here is to develop a dynamic threshold related to the brightness of 

the image. When the brightness of the image is high, the threshold is small, and vice 

versa. This allows the luminance image to control the relationship between the reference 

pixel and the unknown pixel. Hence, the Euclidian distance is related to the normalised 

global mean. When the image is bright, i.e. the value of the normalised global mean is 

high, a lower threshold is considered and vice versa. 

The algorithm checks all the pixels in the image seeking for object pixels.  The 

pixel is considered to be an object pixel if the Euclidian distance is less than or equal to 

the threshold; otherwise it is considered as background. The output of the algorithm is a 

binary image containing all pixels with similar colour to the reference colour. Figure 5.4 

shows the results of colour segmentation using this method. This method was published 

by the author in 2004 [66] and its performance is presented in the next chapter. 
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Figure  5.4: Results of colour segmentation using dynamic threshold algorithm 

applied for Red, Yellow and Green signs. 

5.4.2 A Modification of de la Escalera’s Algorithm 

 This is a modified version of the algorithm described by de la Escalera et al. [16]. In 

the modified algorithm, the RGB image is converted into the IHLS colour space, and 

both saturation and hue are normalised to be [0,255]. The transfer functions of saturation, 

red, green, blue hues are shown in Figures 5.5 - 5.8. To avoid the achromatic hue 

subspaces defined by Vitabile et al. [11], the minimum and maximum values of 

saturation are chosen to be 51min =S , 170max =S  in the normalised scale i.e. [0-255], and 

saturation is then calculated as follows: 
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Hue is calculated by: 
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Figure  5.5: Saturation transfer 

function. 

Figure  5.6: Hue transfer function of 

Red. 

  

Figure  5.7: Hue transfer function of 

Green. 

Figure  5.8: Hue transfer function of 

Blue.  

 
 When saturation is below a certain level, Figure 5.5, hue is meaningless and no 

colour information can be extracted. This is the achromatic region. In contrast, when 

saturation is above the upper limit, a pure hue is involved and there is no need to involve 

saturation in the calculations. However, saturation helps the hue in the region between the 

lower and upper limits. A logical AND between outS  and outH  will generate a binary 

image containing the road sign with the desired colour.  Figure 5.9 shows segmented 

images produced by this algorithm. This method was published by the author in 2004 

[66] and the performance tests are presented in the next chapter. 
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Figure  5.9: Results of applying the modified version of de la Escalera algorithm. 

5.4.3 The Fuzzy Colour Segmentation Algorithm  

The fuzzy colour segmentation algorithm published by the  author [106] is carried 

out by converting RGB images into HSV colour space. The HSV colour space is chosen 

because Hue is invariant to variations in light conditions as it is multiplicative/scale 

invariant, additive/shift invariant, and it is invariant under saturation changes. In practice, 

this means that it is still possible to recover the tint of the object when it is lit with 

intensity varying illumination space.  
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Normalised Hue and Saturation which are mentioned in Table 5.2 are used as a 

priori knowledge to the fuzzy inference system to specify the range of each colour in this 

system. To detect and segment any of the colours used for traffic signs, seven fuzzy rules 

are applied. These rules are as follows: 

 

1. If (Hue is Red1) and (Saturation is Red) then (result is Red) 

2. If (Hue is Red2) and (Saturation is Red) then (result is Red) 

3. If (Hue is Yellow) and (Saturation is Yellow) then (result is Yellow) 

4. If (Hue is Green) and (Saturation is Green) then (result is Green) 

5. If (Hue is Blue) and (Saturation is Blue) then (result is Blue) 

6. If (Hue is Noise1) then (result is Black) 

7. If (Hue is Noise2) then (result is Black) 

 

The membership functions of Hue and Saturation are depicted in Figures 5.10 and 

5.11, respectively. Hue is represented as an angle of a range [0-360].  

 
Figure  5.10:  Hue membership functions. 

 

By normalising hue values to [0-255] to fit the image processing demand, small 

changes are needed here. Since the range of the Hue of the red colour is around zero 

(above zero values or below 255), two fuzzy variables are defined for Hue. They are 

called Red1 to represent colour values above zero, and Red2 to represent colour values 

below or equal 255. Moreover, there are two regions of Hue values which are not used 

for road signs. They are defined as Noise1 and Noise2. If any of these colours are faced 

by the fuzzy inference system, it responds by initiating a black pixel.  
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Figure  5.11: Saturation membership functions. 

 

Membership functions of Saturation show that almost all of the values of the 

colours used in road signs are located on the right side and they are similar to each other 

with small differences in their ranges. 

Figure 5.12 depicts the “result” output variable. There are five member functions, 

one for each colour. They represent a certain range of grey levels in the output image 

which correspond to the colours used in road signs. The fuzzy surface is shown in Figure 

5.13, and it shows the relation among Hue, Saturation, and result variables. It is derived 

from the membership functions of Hue, Saturation and result variables.  

 
Figure  5.12: The Output functions. 

 
Grey level slicing is used to separate different grey levels generated by the fuzzy 

inference system, which represent different colours. The output of this grey level slicing 

is a binary image containing the desired colour.  
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Figure  5.13: The fuzzy system surface. 

 
The algorithm is based on invoking the HSV colour space, and uses hue and 

saturation to generate a binary image containing the road sign of a certain colour. The 

system uses a fuzzy inference to achieve colour segmentation and some of the sample 

images are shown in Figure 5.14.  
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Figure  5.14: Segmentation results from fuzzy colour segmentation algorithm. 

 

The algorithm is further tested on “Children” sign images collected from different 

European countries [23] and the results are shown in Figure 5.15. Further analysis of the 

performance of this algorithm is presented in the next chapter. 

 

 

 
Figure  5.15: Children signs from different European countries. 



 96

5.4.4 Shadow and Highlight Invariant Algorithm 

Daylight has two components, sunlight and the ambient component.  The 3D 

direction of the traffic sign determines the amount of light received by the traffic sign 

from each source. Surface reflectance, based on the combined geometry of the 

illumination and viewing, affects the composition and amount of light reflected by the 

surface into the camera. As described earlier, when the angles between the vectors sn,  

and vn,  approach each other, the traffic sign reflects more light from the source to the 

camera, otherwise ambient light is reflected by the sign. The model described in this 

section covers two major problems: the effect of shadows (different parts of the sign are 

exposed to different illumination levels) and the effect of highlights (light from sky or 

source is reflected to the viewer by the sign). 

The Reflection Model 

Consider a certain surface patch which is illuminated by an incident light with a 

certain Spectral Power Density (SPD) denoted )(λe . The RGB sensors of the camera 

which is used to take an image of this surface patch are characterised by their spectral 

sensitivities )(λCf  },,{ BGRCfor = . The Cth  sensor response of the camera is given 

by: 

∫∫ +=
λλ

λλλλλλλλ dcefmdcefmC sCsbCb )()()(),,()()()(),( vsnsn

},,{ BGRCfor =  

(5.7) 

where )(λbc  and )(λsc  are the surface albedo and Fresnel reflectance respectively,  λ  is 

the wavelength at which the sensor responds, and vsn ,,  are unit vectors  which represent 

the direction of the normal vector to the surface patch, the direction of the source of 

illumination, and the direction of the viewer, respectively. Furthermore, the terms bm   

and sm denote the geometric dependencies on the body and surface reflection component, 

respectively [107]. 

Assuming that Fresnel albedo )(λsc  is constant and independent of the wavelength, 

and white illumination is used (white illumination means equal energy for all 

wavelengths within the visible spectrum), then  ee =)(λ  and ss cc =)(λ which are 

constants. 
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The sensors responses can be modified as: 

∫+=
λ

λλ dfcemkemC CssCbw )(),,(),( vsnsn },,{ wwww BGRCfor =  (5.8) 

 

In this equation, wC  is the response of the RGB sensors under the assumption of 

white light source, and Ck  is given by: 

∫= λ
λλ dcfk bCC )(  (5.9) 

where Ck is the compact formulation depending on the sensors and the surface albedo 

only. 

If the assumption of white illumination holds, then  

fdfdfdf BGR ∫∫∫ ===
λλλ

λλλλλλ )()()(  (5.10) 

 

and the reflection of the surface can be given by: 

fcemkemC ssCbw ),,(),( vsnsn +=  (5.11) 

 

Effect of Shadows on Colour Invariance 
Based on the discussion in the previous section, colour invariant to shadows 

(surface illuminated by different levels of brightness) is tested for different colour spaces. 

Consider the body reflection term in equation (5.11) 

Cbb kemC ),( sn=    },,{ bbbb BGRCfor =  (5.12) 

 

where bC  is the sensor response for the RGB under the assumption of a white light 

source.  

According to equation (5.12), the colour perceived by the sensor depends on three 

factors: 

1. Sensor response and surface albedo represented by Ck . 

2. Illumination intensity e . 

3. Object geometry (surface orientation and illumination direction) ),( snbm . 

The following colour spaces were examined for variations of brightness. 

RGB colour space: 

The RGB colour space is easily affected by all of the factors mentioned above since 
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RbR kemC ),( sn=  (5.13) 

 

GbG kemC ),( sn=  (5.14) 

 

BbB kemC ),( sn=  (5.15) 

 

Each of the RGB channels is affected by the sensor response, surface albedo, illumination 

intensity, surface orientation, and illumination direction.  

The intensity I: 

 The intensity I  is defined by: 
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According to this equation, intensity I depends on illumination intensity, object geometry, 

and surface albedo. 

The Nrgb colour space: 

 The Nrgb colour space is insensitive to surface orientation, illumination direction, 

and illumination intensity as: 
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Hue and Saturation: 

Hue and saturation are invariant against variations of brightness which means that 

they only depend on the sensor response and surface albedo as long as white illumination 

condition holds. 

From equations (B.29) and (B.30), the hue angle and saturation are given as:  
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Equation (5.20) and (5.21) show that hue and saturation are only affected by sensor 

response and surface albedo.  

 

Effect of Highlights on Colour Invariance 

Under certain conditions when the viewer is situated in a position so that the angle 

between the vectors nv  and ns are approximately equal, the viewer receives two 

components of light. The first component is a light from the source reflected on the 

surface of the object, and another component which is the amount of light reflected by the 

object itself. The first component is called the highlight and is generated because the 

surface of the object acts as a mirror reflecting the light from the source to the viewer. 

The contribution of the body reflection component bC  and the surface reflection 

component sC  is added together as shown in equation (5.11), and hence, the measured 

colour represents the contribution of the two components. 

Testing different colour spaces according to the aforementioned argument shows 

that only the hue feature is invariant to the highlight component of the perceived colour.  

Some test results follow: 

RGB colour space: 

The RGB colour space is easily affected by the highlight component since 

fcemkemR ssRbw ),,(),( vsnsn +=  (5.22) 

 
fcemkemG ssGbw ),,(),( vsnsn +=  (5.23) 

 
fcemkemB ssBbw ),,(),( vsnsn +=  (5.24) 

 

Each of the RGB channels is affected by the sensor response, surface albedo, 

illumination intensity, surface orientation, and illumination direction.  They are also 

affected by the highlight component. 
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The intensity I: 

 The intensity I  is defined by: 
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According to this equation, intensity I depends on illumination intensity, object 

geometry, and surface albedo. Furthermore, it is also affected by the highlight 

component. 

The Nrgb colour space: 

The Nrgb colour space is sensitive to the highlight because it depends on the 

contribution of the surface reflection component as: 
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Hue and Saturation: 

Following the same procedure used in the aforementioned colour spaces, hue is the 

only invariant feature for the surface reflection component and so invariant for highlight, 

and hence it depends only on the sensor and the surface albedo. 
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In the case of saturation, it is at variance with the surface reflection component, and 

so cannot be used to develop any robust algorithm for highlights.  
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Table 5.4 summarises the abilities of the different colour models to be invariant to 

different imaging conditions. In this table, the letter ‘Y’ denotes an invariant colour 

model to the imaging condition and ‘N’ denotes the sensitivity of the colour model to that 

imaging condition. 

 
Table  5.4:  The effect of imaging conditions on invariance of colours. ‘Y’ denotes 

invariance and ‘N’ denotes sensitivity of colour models to imaging conditions. 

Colour 
feature 

Viewing 
direction 

Surface 
orientation 

Highlight Illumination 
direction 

Illumination 
intensity 

I N N N N N 
RGB N N N N N 
Nrgb Y Y N Y Y 

H Y Y Y Y Y 
S Y Y N Y Y 

 
The Algorithm 

As a conclusion from the previous discussion, hue is the only component which is 

invariant to shadows and highlights. Therefore, this colour segmentation algorithm is 

carried out by converting the RGB images into HSV colour space.  Hue, saturation, and 

value are normalised into [0,255].  

While normalised Hue is used as a priori knowledge to the algorithm, normalised 

Saturation and Value are used to specify and avoid the achromatic subspaces in the HSV 

colour space described earlier. When the hue value of the colour of the pixel in the input 

image is within the specified colour, and its hue value is not in the achromatic area, then 

the corresponding value in the output image is set to white. The output image is then 

divided into a number of 16x16 pixel sub-images and used to calculate the seeds for the 

region growing algorithm. A seed is initiated if the number of white pixels in the output 

image is above a certain threshold level. The region growing algorithm is then applied to 

find all the objects in the output image which are large enough to initiate at least one 

seed. Noise and other small objects are rejected because of the region growing algorithm. 

This has the advantage that no more filtering is needed to delete these objects and the 

remaining objects are only the ones which potentially can be used for recognition. The 

flow chart of this algorithm is depicted in Figure 5.16. The colour segmentation 

algorithm [108] is given by the following pseudo code: 
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• Convert the RGB image into HSV colour space. 

• Normalise the grey level of every pixel in the H image from [0,360] to [0,255]. 

• Normalise the grey level of every pixel in the S image from [0,1] to [0,255]. 

• Normalise the grey level of every pixel in the V image from [0,1] to [0,255]. 

• For all pixels in the H image 

o If (H_pixel_value >240 AND H_pixel_value <= 255) OR (H_pixel_value 

>= 0 AND H_pixel_value < 10)  

 Then H_pixel_value  := 255 

o If corresponding S_ pixel_value < 40 

 Then H_pixel_value := 0 

o If corresponding ( V_ pixel_value < 30) OR ( V_ pixel_value > 230) 

 Then H_pixel_value := 0 

• Divide the H image into 16x16 pixel sub-images. 

• For every sub-image 

o Calculate number of white pixels 

o If number of white pixels >= 60 

 Then put a white pixel in the corresponding position in the seed 

image. 

• Use seed image and H image, apply region growing algorithm to find proper 

regions with signs.  

 

This method shows that hue and saturation are invariant to the effects of illumination 

variations and hence they can be used to develop shadow-invariant algorithms for colour 

segmentation.  It also shows that hue is invariant to the effects of highlights and can be 

used to develop highlight-invariant colour segmentation algorithms. The algorithm 

invokes merely hue for colour segmentation, but saturation and value features of the HSV 

colour space are used to define the chromatic subspace in which hue can be used.  Figure 

5.17 depicts examples of images segmented using this method. The original images are 

shown in column a, and the results of segmentation using one shadow-highlight variant 

algorithm are shown in column b, while column c shows the results of the shadow-

highlight invariant algorithm.    
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Figure  5.16: Flowchart of shadow and highlight invariant algorithm. 

Convert RGB to HSV 

Normalise H, S, and V 
to [0-255] 

For all pixels in H

H pixel within 
desired colour 

S pixel is 
achromatic 

V pixel is out 
of range 

No

Yes

No

No

Yes

Yes

White pixel in H 
image 

Black pixel in H image 

All pixels? 
No

Yes

Divide H image into sub-regions

Calculate number of white pixels in each sub-region 

Put a seed if enough white pixels are found 

Apply region growing to H image 
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Original images  Results of colour 

segmentation using Hue-

Saturation algorithm.  

Results of Shadow-Highlight 

invariant algorithm.  

Figure  5.17: Results from shadow and highlight invariant algorithm. 

 

 All noise and small objects which cannot be recognised as traffic signs are deleted 

by the algorithm. This reduces the chances of false alarms and improves detection. The 

algorithm was published by the author in 2006 [108] and its performance will be 

presented in the next chapter.  
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5.4.5 Colour Segmentation in Poor Light Conditions 

In most parts of Europe, and especially in Scandinavia, winter is a long season, 

during which daylight hours are few, and weather conditions are generally foggy, rainy, 

or snowy.  In other words, the entire environmental brightness is weak and consequently, 

the amount of incident light and reflected light from the road sign is also weak. Since 

colour information is very sensitive to the variations of light conditions, the need for 

improved algorithms to deal with such weather conditions represents a high priority in 

the future work of traffic sign recognition and computer vision. 

In order to be able to change the levels of the RGB channels for each pixel, a colour 

segmentation algorithm is carried out by treating the RGB channels of the digital image 

separately.  For this reason, the image acquired by the digital camera is separated into 

three different images, one in each of the RGB channels, and then histogram equalisation 

is applied to each channel. The resultant RGB images are then forwarded to the colour 

constancy algorithm to extract the true colour of the road signs.  The block diagram 

depicted in Figure 5.18 illustrates this algorithm. 

Although colour constancy is a parallel process in origin, it is carried out like a 

convolution process in serial computers. It is applied separately for each of the RGB 

channels. Let { }BGRiyxai ,,);,( ∈  be the current estimate of the local space average 

colour of channel i  at position ),( yx  in the image, ),( yxci  be the intensity of channel i  

at position ),( yx  (this represents the input image in either of the RGB channels), and p  

be a small percentage of current pixel intensity greater than zero ( 0005.0=p  is chosen). 

The algorithm is implemented in four steps: 

1. Copy ),( yxci  to  ),( yxai , and normalise both images to the range [0,1]. 

2. Iterate the following two operations a large number of times(10000 times):  

0.4/))1,()1,(),1(),1((),( ++−+++−=′ yxayxayxayxayxa iiiii   

 

)1(),(),(),( pyxapyxcyxa iii −⋅′+⋅=   

3. Calculate the output image as  

)),(2/(),(),( yxayxcyxout iii ⋅=   

4. Normalise the RGB channels of the output image to the range [0,255], Ebner [71, 80].  
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The method is based on invoking the histogram equalisation, colour constancy, 

HSV colour space, and the use of hue, saturation, and value images to generate a binary 

image containing the road sign of a certain colour. Colour segmentation is carried out by 

converting the RGB image from the former step into the HSV colour space and then 

applying one of the segmentation algorithms discussed earlier. 

The algorithm is tested on images collected in different poor light conditions. The 

first row of Figure 5.19 shows sample images. The second row shows images from the 

first row segmented by a normal colour segmentation algorithm without applying the 

algorithm described here. The third row shows the images after enhancement by 

histogram equalisation and colour constancy. It is clear that the colours of the signs are 

enhanced in these images. The fourth row of Figure 5.19 shows the results of the 

segmentation. The algorithm was published by the author in 2005 [109]. Further 

performance tests are shown in the next chapter.  

 

Figure  5.18: Block diagram of the colour segmentation algorithm for poor light 

conditions. 
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Original images. 

 

   
Results before applying the new algorithm.  

   
Test images after applying the histogram equalisation, and colour constancy.  

 

   
The segmented images.  

 

Figure  5.19: Results of applying colour segmentation in poor light.  

5.5 Recognition by Combining Colours and Shapes  

 Dividing traffic signs into groups according to their colour combinations gives 

four alternatives, Figure 5.20: 

♦ Red signs such as the Stop sign  
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♦ Red-Yellow signs such as Warning, Prohibitory, and Indicatory signs. 

♦ Red-Blue signs such as No Parking and No-Stop signs.  

♦ Blue signs such as Regulatory and Informative signs. 

 

  
 

 
Figure  5.20: Colour combinations of traffic signs. 

 
 This colour grouping helps the recognition algorithm to perform in a better way 

and to reduce the number of false alarms which can be generated by this algorithm. 

Therefore, the detection and recognition of different signs requires testing the presence of 

different colour combinations in the image together with the presence of the specific 

shape. For example, if a stop sign is to be detected, a check for red colour combined with 

the octagon shape is searched for in the image. By contrast, if a warning sign is to be 

detected, a red-yellow combination together with a triangle rim would be the search 

criteria for the image. Figure 5.21 illustrates the details of this concept.  

In the first stage colour segmentation is applied. Two rim colours exist for traffic 

signs in Sweden; red and blue. A traffic sign shape tree is built according to these two 

colours. In the blue branch, two shapes can exist; the circle and the rectangle. However, 

in the red colour branch, the categories shown in Figure 5.21 can be found. The seven 

sign rims are illustrated in the shapes box. They are the upward pointed triangle, 

downward pointed triangle, STOP, circle, circle with bar, circle with x, and no-entry 

signs. These signs can be described in three general shapes; circle, octagon and triangle. 

If the indicatory signs are added then another shape can be added to the list; a rectangle.  

The Speed-Limit signs are on the third level and belong to the circular shape signs. 

Speed-Limit signs are chosen for classification because it is a priority of the traffic 

authorities in Sweden to keep a vehicle’s speed within the indicated speed limit and 

because speed limit signs are very similar to each other; even the pictograms are similar 

to each other, and hence they represent a good challenge for research.  
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Figure  5.21: Traffic sign tree. 

 
  

 

Shapes 

Speed-Limit signs 
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This model can be implemented by simple IF-THEN statements given by: 

STOP:  

            IF (Colour is red  

       AND Convex hull contains no yellow pixels 

       AND Convex hull contains no blue pixels 

       AND shape is octagon) 

            THEN sign is STOP 

 

WARNING: 

             IF (Colour is red  

          AND Convex hull contains yellow pixels 

          AND Convex hull contains no blue pixels 

          AND shape is triangle) 

             THEN sign is WARNING 

 

PROHIBITORY: 

              IF (Colour is red  

          AND (Convex hull contains yellow pixels  

           OR Convex hull contains blue pixels) 

          AND shape is circle) 

             THEN sign is PROHIBITORY 

 

INDICATORY: 

              IF (Colour is red AND Convex hull contains yellow pixels  

            AND shape is rectangle) 

              THEN sign is INDICATORY 

 
 Colour segmentation algorithms described earlier generate a segmented image in 

which objects that could be signs are represented by white pixels while all other pixels 

are black. However, this image may contain unwanted objects with colours similar to that 

of the signs. This colour-shape combination reduces the number of false alarms and 
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hence decreases the number of objects to be sent for classification. In this manner the 

whole efficiency of the system can be improved. The general shape of the sign is 

determined by a fuzzy system which is based on the use of what are called shape 

measures.  These shape measures are used to determine whether the object under 

consideration belongs to one of the shapes that the sign could belong to i.e. circle, 

triangle, rectangle and octagon. Once a positive result is achieved the classification step 

is initiated. 

5.5.1 Shape Measures 

 Four shape measures are used to decide the shape of the sign. They are ellipticity, 

triangularity, rectangularity, and octagonality.   

Ellipticity can be obtained by applying an affine transform to a circle. The simplest 

Affine Moment Invariant 1I  [110] is given: 

4
00

2
1102201 /)( µµµµ −=I  (5.31) 

Where 0220, µµ  and 11µ  are the second order central moments, and 00µ  is the zero order 

central moment. To discriminate shapes more precisely higher order invariants should be 

involved. However, they are less reliable and very sensitive to the noise. In contrast 1I  is 

stable and more practical to use. To measure the ellipticity, the following equation is 

used: 
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Ellipticity E  ranges over [ ]1,0  and for a perfect ellipse its value is 1. 

The aforementioned approach is used to characterise triangles.  The triangularity 

measure T  is given by: 
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11  
 

(5.33) 

Triangularity has the same range as the ellipticity. A perfect triangle has triangularity T  

of 1. 

Rectangularity is measured by calculating the ratio of the area of the region under 

consideration to the area of its minimum bounding rectangle (MBR)[111]. 
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  A new measure has been created during this research; octagonality. It gives the 

degree of similarity of any object with an octagon.  Following [111], octagonality is 

given by: 

( )
( )⎪⎩

⎪
⎨
⎧ ≤

=
otherwiseI

IifI
O

1
2

2
11

2

932.15/1

932.15/1932.15

π

ππ
 

 
(5.34) 

Octagonality O  has the same range as ellipticity and triangularity which is [ ]1,0 . A 

perfect octagon has an octagonality of 1. 

5.5.2 Fuzzy Shape Recogniser 

The four shape measures described in the previous subsection assume that the 

object is a solid one. This means that the object under consideration does not contain any 

holes.  Since traffic signs have two different colours, one for the rim and the other for the 

interior, the rim colour is used for the segmentation and then the holes should be filled by 

the same grey level of the object to make it solid.  

One problem which may arise here is that when the object under consideration is 

occluded by another object; it will be difficult to fill these holes. The reason is that the 

object does not form a closed shape. The first row of Figure 5.22 shows an object 

occluded by other objects and the second row shows the object after segmentation. This 

case can be treated by calculating the convex hull of the object which represents the 

actual solid shape of the object under consideration.  A shape’s convex hull is 

implemented using Graham’s scan algorithm [112] and the results are shown in the third 

row of Figure 5.22. After getting the convex hull, the four shape measures are calculated 

and their values are forwarded to the fuzzy shape recogniser. 

The fuzzy recogniser, which was published by the author as a part of this research 

[113], consists of five fuzzy input variables, and one output variable. The input variables 

are R1, R2, T, E, and O. The membership functions of these variables are shown in 

Figures 5.23 - 5.28. 
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Figure  5.22: Occlusions and Convex hull. First row: Occluded objects. Second row: 

Results of Segmentation and Extraction. Third row: Convex hull. 

 

To perform the recognition of traffic signs, five rules are used as follows: 

1. If (R1 is Low) and (R2 is Low ) and (T is  One) and (E is Low) and (O is High) then 

(Shape is Triangle) 

2. If (R1 is One) or (R2 is One ) then (Shape is Rectangle) 

3. If (R1 is Low) and (R2 is Low ) and (T is  High) and (E is Low) and (O is One) then 

(Shape is Octagon) 
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4. If (R1 is Low) and (R2 is Low ) and (T is  High) and (E is One) and (O is Low) then 

(Shape is Circle) 

5. If (R1 is not One) and (R2 is not One) and (T is not One) and (E is not One) and (O 

is  not One) then (Shape is Undefined) 

 

Where R1 is rectangularity calculated for horizontally aligned objects, R2 is the 

rectangularity of objects oriented in any other angle, T is triangularity, E is the ellipticity, 

and O is the octagonality. 

Shape measures of five different samples such as the Stop sign (octagon), the Yield 

sign (triangle), the No Entry sign (circle), and different rectangular signs are calculated 

and shown in Tables 5.5-5.8. These values are used to implement the fuzzy shape 

recogniser and to verify the results.  

 Since the shape measures are computed using the Affine Moment Invariants which 

are invariant to the general affine transformation, the algorithm is invariant to rotation, 

scaling and translation. It is also invariant to the distortion of objects by perspective 

projection, which takes place when the viewing angle between the camera and the sign is 

not zero, and there is no need to normalise the detected signs. Evaluation of the 

performance of this recogniser is presented in the next chapter. 

 

 
Figure  5.23:  The R1 Membership Functions. 
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Figure  5.24:  The R2 Membership Functions. 

 

 
Figure  5.25:  The T Membership Functions. 

 

 
Figure  5.26: The E Membership Functions. 

 

 
Figure  5.27: The O Membership Functions. 
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Figure  5.28:  Output Membership Functions. 

 

Table  5.5: Shape Measures of Stop Sign. 

R1 R2 T E O 

0.802083 0.609371 1.4553 0.995308 1.0004 
0.819853   0.724007 1.4579 0.997082 0.9986 
0.827206   0.827206 1.4557 0.995595 1.0002 
0.820683   0.758180 1.4559   0.995694 1.0001 
0.822917   0.559804 1.4568 0.996312 0.9994 

 

Table  5.6:  Shape Measures of Yield Sign. 

R1 R2 T E O 

0.627880   0.593256 1.1195 0.765624 1.3006 
0.633641   0.588887 1.1381  0.778361 1.2793 
0.629464   0.584195 1.1077 0.757563 1.3144 
0.597701   0.595498 1.1424 0.781334 1.2744 
0.671053   0.664599 1.2104 0.827840 1.2028 

 

Table  5.7:  Shape Measures of No-Entry Sign 

R1 R2 T E O 

0.802521   0.802521 1.4605 0.998834  0.9969 
0.789719   0.772936 1.4620 0.999885 0.9959 
0.776591   0.776618  1.4618 0.999765 0.9960 
0.790977   0.760449 1.4617 0.999701 0.9960 
0.782466   0.775507 1.4621 0.999936 0.9958 

 

Table  5.8:  Shape Measures of Rectangular Signs. 

R1 R2 T E O 

0.916325   0.938060 1.3318 0.910852 1.0932 
0.923166   0.959186 1.3350 0.913026 1.0906 
0.944465   0.535576 1.3368 0.914245 1.0891 
0.956602   0.839174 1.3391 0.915847 1.0872 
0.926373   0.802776 1.3378 0.914982 1.0883 
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5.6 The Algorithm 

The algorithm starts by converting the RGB image into the HSV colour space. A 

shadow-highlight invariant colour segmentation algorithm is invoked to segment this 

image according to the desired colour. This colour segmentation algorithm is applied 

twice; for the red colour which corresponds to the rim of the sign and for the yellow 

which represents the interior of the sign.  

The algorithm checks every red segmented image for any objects. If any objects are 

found, it calculates the number of these objects by applying the connected components 

labelling algorithm. The colour segmentation algorithm is designed to reject noise and all 

small objects which cannot be recognised by using the region growing algorithm, and 

hence no median filter is needed. 

Using the red segmented image, a list of objects is then generated and objects are 

sent sequentially to the next stage. At this stage, the convex hull of the object under 

consideration is computed using Graham’s algorithm. Using the convex hull of the red 

segmented image, the corresponding area of the yellow segmented image is checked for 

the presence of pixels. If yellow pixels are found with a reasonable ratio, this area is 

considered as a probable sign and sent to the next stage, otherwise the object is rejected 

and the next object in the list is treated in exactly the same manner. Once an object with 

these specifications is found, the fuzzy shape recogniser starts to put the object into one 

of the four categories described earlier. Once the object fits in any category, a rectangle is 

drawn around it; otherwise the object is removed from the list of objects. Figure 5.29 

shows a number of images recognised using this algorithm. It is tested under bad light 

conditions, blurred images, faded signs, under highlight condition, occlusion, rain and 

snow, and it shows very good robustness. Further details of these tests are presented in 

the next chapter.  
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Figure  5.29: Examples of sign recognition 

5.7 Training Database of the SVM Classifier 

Warning and Prohibitory signs are characterised by a red rim and a pictogram 

which has a different colour. For Swedish traffic signs, the pictograms have a yellow 

background with black shape or text. Figure 5.30 illustrates this model of a traffic sign.  

Classification is carried out in two stages; in the first stage the shape of the sign’s 

rim is classified and if the desired shape is found then the next stage is carried out by 

initiating the pictogram classification. This concept is illustrated in Figure 5.31.  For this 

reason, two databases are created: one for the sign’s rims and the other for the 

pictograms. 

 
Figure  5.30: A traffic sign is a rim and a pictogram. 

 

 
 
 

                                                                                                                          
 

Figure  5.31: Classification is carried out by rim classifier and pictogram classifier. 

 

Every image in this database is 36x36 pixels and is invariant to in-plane 

transformations, which include scale, translation and rotation. The binary image output of 

Rim Shape 
Classification 

Pictogram 
Classification 
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colour segmentation is normalised to 36x36 pixels. This is done to standardise the size of 

the ROI (Region of Interest) irrespective of its scale in the original RGB image. This will 

also improve the reliability of the shape and pictogram classifier at a later stage. 

Normalised images are created as follows: 

1. Apply the connected component labelling algorithm [114] to label each object in 

the binary image and select the desired sign for the database, then compute the 

convex hull of the object under consideration using Graham’s algorithm.  

2. To carry out the translation invariance, the object’s area a  and centroid 

),( cencen yx  are computed from the following equations:  

∑∑=
x y

yxfa ),(  (5.35) 
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3. Find the radius of the minimum circle containing the object by calculating the 

furthest object’s pixel from the centroid ),( cencen yx , denoted minr , using 

Euclidean distance.  

22
min )()( cencen yyxxr −+−=  (5.38) 

4. Use minr to calculate the coordinates of the four corners minx , maxx , miny  and 

maxy  of the rectangle containing the object. 

5. Calculate the new coordinates of all pixels inside the convex hull of the object to 

the normalised size; say NxN pixels by using the following formulas: 
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where ),( yx ′′  are the coordinates of a generic point in the new 36x36 matrix 

corresponding to the ),( yx  coordinates of the pixel of the original matrix.  

 A convex hull is invoked in order to preserve all the details of the object under 

consideration. Figure 5.32 depicts the importance of using convex hull in the creation of 

normalised images. The data set which is built using this method contains 350 binary 

images classified in seven categories of traffic sign shapes (Figure 5.35) and 250 binary 

images classified in five categories of Speed-Limit signs (Figure 5.36). Each road sign 

category has 50 data samples. 

     
Figure  5.32:  Convex hull is used to preserve objects details. 

 

(a) Class 0, Name = NOE, No Entry 

(b) Class 1, Name = STP, Stop 

1 

2 

3 
Without 

convex hull 

With convex 
hull 
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(c) Class 2, Name = RC, Red Circle 

(d) Class 3, Name = YLD, Yield 

(e) Class 4, Name =WAR, Warning Sign 

(f) Class 5, Name = RCB, Red Circle with Bar 

(g) Class 6, Name = RCX, Red Circle with X bars 
Figure  5.33: Part of the training database and their corresponding categories of 

traffic sign rims. 

 

(a) Class 0, Name = SL30, Speed Limit 30 

(b) Class 1, Name = SL50, Speed Limit 50 

(c) Class 2, Name = SL70, Speed Limit 70 

(d) Class 3, Name = SL90, Speed Limit 90 
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(e) Class 4, Name = SL110, Speed Limit 110 
Figure  5.34: Part of the training database and their corresponding categories of 

Speed-Limit signs. 

5.8 Classification with SVM 

Images from the training database were invoked either directly or by calculating the 

following features; Geometric moments, Zernike moments, Legendre moments, 

Orthogonal Fourier-Mellin moments and Binary Haar Features. Ten pairs of training/test 

datasets were created either from the binary images or from these features. Each pair of 

datasets was selected randomly without repetition from the database for binary images or 

from feature files for features. There were 35 training instances and 15 test instances for 

every category of traffic sign rims or Speed-Limit signs. These ten pairs of datasets were 

invoked, separately, for training and testing of the SVM model which were carried out in 

this experiment and those which follow. The conditions under which this experiment was 

carried out are given: 

♦ Kernel Type: Linear kernel  

♦ SVM Type: C-SVM   

♦ 1=C   

The classification results of these ten experiments are listed in Appendix D. In the 

following subsection, the classification details are presented. 

5.8.1 Classification using Binary Images 

Binary images comprising seven categories of traffic sign rims and five categories 

of Speed-Limit signs were used for training and testing of the SVM classifier. The SVM 

classifier was trained and tested using the aforementioned conditions. Each category and 

its desired output are shown in Figures 5.34 and 5.35 respectively.  

Classification of Traffic Sign Rims 

 For each road sign rim there are 35 training instances and 15 test instances. In this 

way every dataset pair contains 245 instances in the training set and 105 instances in the 
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test set. Tables 5.9 and 5.10 show the confusion matrices of the training and testing sets. 

From the confusion matrices, it is clear that using images to train the SVM gives very 

good results. The classifier can classify all the test images. There are two reasons for this: 

first, the categories are not similar to each other and second the pre-processing step has 

achieved good training sets. However, the main drawback of using binary images is the 

high number of attributes which causes the SVM to take a longer time in the training 

phase.   

 

Table  5.9: Confusion matrix of training set of Rims with binary images. 

Classified As Desired 
Output NOE STP RC YLD WAR RCB RCX 

Total 

NOE 35       35 
STP  35      35 
RC   35     35 

YLD    35    35 
WAR     35   35 
RCB      35  35 
RCX       35 35 
Total 35 35 35 35 35 35 35  

 
Table  5.10: Confusion matrix of test set of Rims with binary images. 

Classified As Desired 
Output NOE STP RC YLD WAR RCB RCX 

Total 

NOE 15       15 
STP  15      15 
RC   15     15 

YLD    15    15 
WAR     15   15 
RCB      15  15 
RCX       15 15 
Total 15 15 15 15 15 15 15  

Classification of Speed Limit Sign 

In the same manner ten pairs of training/test datasets from the database of speed 

limit sign images are created. Each dataset pair contains 175 instances in the training set 

and 75 instances in the test set. The SVM is trained and tested with these dataset pairs. 

The worst pair of results that are performed is 100% accuracy for training set and 96% 
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for the test set. The confusion matrices of the worst result are shown in Tables 5.11 and 

5.12, respectively. 

 

Table  5.11: Confusion matrix of training set of Speed-Limit with binary images. 

Classified As Desired 
Output SL30 SL50 SL70 SL90 SL110 

Total 

SL30 35     35 
SL50  35    35 
SL70   35   35 
SL90    35  35 
SL110     35 35 
Total 35 35 35 35 35  

 

 

Table  5.12: Confusion matrix of testing set of Speed-Limit with binary images. 

Classified As Desired 
Output SL30 SL50 SL70 SL90 SL110 

Total 

SL30 15     15 
SL50 1 14    15 
SL70 1  14   15 
SL90 1   14  15 
SL110     15 15 
Total 18 14 14 14 15  

 

Due to the poor quality of some images, they are incorrectly classified. Table 5.13 

shows the images which are misclassified by this method. From the confusion matrix 

depicted in Table 5.12, all of the three misclassified instances are classified as SL30. The 

first image is damaged badly, while the second and third images are distorted and the 

right hand side of the sign is missing.  

 

Table  5.13: Speed-Limit images which are incorrectly classified. 

Road Sign Images Classified Incorrectly As 

 
Speed Limit Sign 30 

 
Speed Limit Sign 30 

 
Speed Limit Sign 30 
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5.8.2 Classification with Moments and Features 

Some moments such as Zernike and Legendre moments have the property of 

rotation invariance, which means that the values of these moments are invariant to any 

rotation in the image. This is a useful property as far as traffic signs are concerned since 

there is no guarantee that all the signs are located perpendicularly to the ground level. 

However, it is problematic when upward and downward pointed triangles are involved 

since these moments cannot distinguish between these two types of signs. Therefore, 

there are only six categories for traffic sign rims presented by moments. Table 5.14 

shows the new category set after merging the two triangle categories into one.  

 

Table  5.14: Traffic signs rims and their categories. 

Binary 
Image       
Name NOE STP RC TRI RCB RCX 

Desired 
Output 

0 1 2 3 4 5 

 
Different moments and features are calculated for the traffic sign rims and Speed-

Limit signs. Each moment set is divided randomly and without repetition into a training 

set and a test set.  Ten pairs of training/test datasets are created. A total of 210 instances 

are included in the training set per experiment compared with 90 instances for the testing 

set per experiment.   

The SVM recognition model is trained with different moments and features using 

the ten training/testing sets. Confusion matrices of one experiment for each moment per 

sign rim type are presented in Tables 5.15-5.19, and per Speed-Limit signs in Tables 

5.20-5.24. 

From the confusion matrices of the rim classification, it is noticed that the major 

source of error is the two categories, RCB and RCX, which are both circles. The degree 

of similarity between the two categories makes the distinction between them using 

moments and features difficult. The other source of error is the similarity between the 

NOE sign and the RCB sign. If the RCB is inverted in colour and rotated by a certain 

angle, it will be very similar to the NOE sign. Since some of the moments are rotation 

invariant, it is a good reason to understand why this kind of misclassification occurs. On 
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the other hand, using moments to classify sign rims gives good results compared with the 

binary images.  

For the Speed-Limit signs and under the specific conditions of the experiment, it is 

clear that Legendre moments are the best among the others. Binary Haar features come 

next, then Zernike moments, Geometric moments and finally OFMM. This judgement is 

restricted merely to this experiment. The figures shown in the confusion matrices can 

definitely be improved when a new set of conditions are applied. This will be 

demonstrated in the following chapter. The results of the Legendre moments confusion 

matrix shown in Table 5.22 demonstrate good consistencies with results of binary images 

which are shown in Table 5.12. The two tables are similar to each other and the classifier 

fails to recognise the same categories. Binary Haar Features show a high classification 

rate but the errors in the classification show a different direction. With the exception of 

the results of Zernike moments which are fair, the results of the OFMM and Geometric 

moments are very scattered.    

 

Table  5.15: Confusion matrix of test set of Rims with Geometric moments. 

Classified As Desired 
Output NOE STP  RC  TRI RCB RCX 

Total 

NOE 15      15 
STP 1 14     15 
RC   15    15 
TRI    15   15 
RCB     12 3 15 
RCX   1  2 12 15 
Total 16 14 16 15 14 15  

 

 

Table  5.16: Confusion matrix of test set of Rims with Zernike moments. 

Classified As Desired 
Output NOE STP  RC  TRI RCB RCX 

Total 

NOE 15      15 
STP  15     15 
RC   14  1  15 
TRI    15   15 
RCB 1    14  15 
RCX      15 15 
Total 16 15 14 15 15 15  
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Table  5.17: Confusion matrix of test set of Rims with Legendre moments. 

Classified As Desired 
Output NOE STP  RC  TRI RCB RCX 

Total 

NOE 15      15 
STP  15     15 
RC   15    15 
TRI    15   15 
RCB   1  14  15 
RCX      15 15 
Total 15 15 16 15 14 15  

 

 

Table  5.18: Confusion matrix of test set of Rims with OFMM moments. 

Classified As Desired 
Output NOE STP  RC  TRI RCB RCX 

Total 

NOE 14    1  15 
STP  15     15 
RC   14  1  15 
TRI    15   15 
RCB  1 1  13  15 
RCX   1  2 12 15 
Total 14 16 16 15 17 12  

 
Table  5.19: Confusion matrix of test set of Rims with Haar features. 

Classified As Desired 
Output NOE STP  RC  TRI RCB RCX 

Total 

NOE 15      15 
STP  15     15 
RC   15    15 
TRI    15   15 
RCB   1  14  15 
RCX   1   14 15 
Total 15 15 17 15 14 14  

 
 

Table  5.20: Confusion matrix of test set of Speed-Limit with Geometric moments. 

Classified As Desired 
Output SL30 SL50 SL70 SL90 SL110 

Total 

SL30 11 3   1 15 
SL50  13  2  15 
SL70 2  12 1  15 
SL90 1 7  7  15 
SL110 3 5 1 2 4 15 
Total 17 28 13 12 5  
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Table  5.21: Confusion matrix of test set of Speed-Limit with Zernike moments. 

Classified As Desired 
Output SL30 SL50 SL70 SL90 SL110 

Total 

SL30 11  3 1  15 
SL50 1 13 1   15 
SL70 1  13 1  15 
SL90 1 1  13  15 
SL110    1 14 15 
Total 14 14 16 16 14  

 

 

Table  5.22: Confusion matrix of test set of Speed-Limit with Legendre moments. 

Classified As Desired 
Output SL30 SL50 SL70 SL90 SL110 

Total 

SL30 15     15 
SL50  15    15 
SL70 1  14   15 
SL90    15  15 
SL110 1    14 15 
Total 17 15 14 15 14  

 

Table  5.23: Confusion matrix of test set of Speed-Limit with OFMM moments. 

Classified As Desired 
Output SL30 SL50 SL70 SL90 SL110 

Total 

SL30 2  11 2  15 
SL50  1 13 1  15 
SL70   15   15 
SL90   5 9 1 15 
SL110   4  11 15 
Total 2 1 48 12 12  

 

 

Table  5.24: Confusion matrix of test set of Speed-Limit with Haar Features. 

Classified As Desired 
Output SL30 SL50 SL70 SL90 SL110 

Total 

SL30 14  1   15 
SL50 1 13   1 15 
SL70   15   15 
SL90    15  15 
SL110     15 15 
Total 15 13 15 15 16  
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5.9 Summary 

In this chapter, the building block of the proposed system of traffic sign recognition 

has been presented.  To develop a traffic sign recognition system, a database of images 

which were collected using a camera was built to test and validate the developed 

algorithms. This database is managed using an Access database application.  

The problem of traffic recognition was divided into three steps: colour 

segmentation, recognition and classification. In the first step, four colour segmentation 

algorithms which show a wide range of methods and ideas that can be used for colour 

segmentation were presented. The result of colour segmentation was a binary image 

containing the road sign as well as a number of other objects with similar colours.  

In the second step, a description of the sign recognition algorithm using colour-

shape combination was discussed.  Recognition is achieved by a fuzzy shape recogniser. 

It uses a number of fuzzy rules derived from a set of shape measures which are immune 

to in-plane transformations.  

The last step of traffic sign recognition was classification. The Support Vector 

Machines classifier was used in this stage. This classifier was trained and tested by either 

a set of normalised images or a set of features which involve geometrical moments, 

Zernike moments, Legendre moments, Orthogonal Fourier-Mellin moments, and Binary 

Haar features. 

The performance of the whole system in general and every individual step in 

particular together with failure analyses and reasons for failure are presented in the next 

chapter.  
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6. Results Analysis 
 

This chapter is concerned with the evaluation of the performance of the Road Sign 

Recognition System described in the previous chapter. A series of experiments are 

carried out for each stage of the RSRS, colour segmentation algorithms, the fuzzy shape 

recogniser, and the SVM classifier. 

The performance of each of the colour segmentation algorithms is evaluated by four 

experiments. In the first experiment, the overall performance of the colour segmentation 

algorithms is evaluated by using a number of images which are selected randomly. In the 

second experiment, each algorithm is evaluated with respect to the environmental and 

lighting conditions. The third and fourth experiments are concerned with performance 

time and quality of segmentation, respectively. 

Similar experiments are carried out to evaluate the performance of the shape 

recogniser. This analysis included a comparison among the ability of the shape recogniser 

to recognise different groups of signs and analysis of the reasons for failure.      

The last part of this chapter is an analysis of the classifier performance and the 

parameters which could affect the classification rate. Five different experiments are 

carried out to show the performance of different combinations of the SVM models, 

different SVM types, different kernels and different parameters. These experiments 

included a study of the effect of different moments and different orders of these moments 

on the performance of the classification rate.     

6.1 Colour Segmentation Algorithms 

6.1.1 Performance Evaluation 

The performance of colour segmentation algorithms which were described in 

section 5.4 is evaluated by using four different experiments. They are as follows: 

Experiment 1: 

 In this experiment, the global performance of each of the colour segmentation 

algorithms is evaluated via 560 signs distributed in 500 images (set 1). These images are 
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selected randomly and without any repetition using a random number generator. Each 

algorithm is tested using these signs for complete or incomplete segmentation. Complete 

segmentation means that the algorithm generates a complete binary object but it may 

contain a certain amount of noise. Incomplete segmentation means that the object is not 

fully segmented because of different surface illumination or noise in the image or any 

other similar reason. It may also be because the algorithm fails completely to produce a 

segmented image because of colour loss or weather conditions.  Table 6.1 depicts the 

segmentation results of different colours and different segmentation algorithms.  In this 

table, the proposed algorithms are tested to segment the red, yellow and blue colours.  

Furthermore, the performances of these algorithms are compared with that of de la 

Escalera [16]. This algorithm is chosen for comparison because of its high robustness and 

the fact that it is described in a clear way which helps to re-implement it. The Shadow 

and Highlight invariant algorithm achieved the best performance in the red and blue 

colour segmentation being 97.6% and 96%, respectively, compared with 91.3% and 

89.9% for the de la Escalera algorithm. It achieved the next best result in the yellow 

colour after the modified version of de la Escalera. This explains why the shadow and 

highlight invariant algorithm is selected as the main segmentation algorithm in this 

research.   

 

Table  6.1: Segmentation success rate (%) of different colour segmentation 

algorithms. 

Segmented 

Colour 

Shadow and 

Highlight 

invariant 

Dynamic 

Thresholding

Modified de 

la Escalera 

Fuzzy de la 

Escalera 

Red 97.6 86.3 92.3 91.5 91.3 
Yellow 90.0 76.6 90.1 89.4 88.3 
Blue 96.0 90.1 91.0 90.0 89.9 
 
 
Experiment 2: 

In the second experiment, the performance of each algorithm is evaluated by using 

images taken under different light conditions or different effects. The set of images used 

in this experiment is different from the set of images used in experiment 1 and is called 

set 2. However, the images are selected using the same criteria of randomness by which 

the images in experiment 1 are selected. This experiment is carried out for red rim-yellow 
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interior set of signs as this category includes Swedish speed limit signs, which are of 

course of importance to highway authorities in Sweden.  Images are selected by invoking 

the Access database application which is used to make a list of images with certain 

requirements such as weather conditions and different sign properties. These images are 

used to test the different colour segmentation algorithms. Table 6.2 presents the results of 

the segmentation of different algorithms tested under different conditions. From this 

table, the most effective reduction of performance of all algorithms takes place when 

faded signs are segmented, followed by the effect of fog. The algorithms performed 

better in the case of snowfall and bad lighting geometry. The best performance is 

achieved for the case of sunny, blurred or noisy images followed by highlighted signs and 

images taken in dusk or dawn, and rainfall conditions. When a sign becomes faded, the 

hue of the colour changes and when the sign is severely faded, the red rim of the sign 

becomes yellow. This change in hue value makes the segmentation of these signs very 

difficult. While in the case of fog, a white component of light diffuses in the image, 

which affects the tint of the colour of the sign.  

 
Table  6.2: Segmentation success rate (%) of different algorithms tested under 

different effects. 

Effect No. of 

Signs  

Shadow 

and 

Highlight 

invariant 

Dynamic 

Thresholding 

Modified 

de la 

Escalera 

Fuzzy  de la 

Escalera 

Bad Lighting 
Geometry  

48 87.5 56.2 75.0 75.0 75.0 

Blurred images 40 97.5 90.0 87.5 85.0 87.5 
Dusk/Dawn 66 93.9 78.9 87.8 86.3 87.8 
Faded Signs 45 53.3 33.3 33.3 33.3 33.3 
Fog 27 74.0 77.7 62.9 62.9 62.9 
Highlights 40 97.5 77.5 77.5 75.0 77.5 
Noisy images 46 95.6 95.6 93.4 91.3 93.4 
Rainfall 44 95.4 75.0 95.4 90.9 95.4 
Snowfall 44 88.6 65.9 65.9 65.9 65.9 
Sunny 112 98.2 98.2 97.3 96.4 97.3 
 

The Shadow and Highlight colour segmentation algorithm performs the best among 

all algorithms under all test conditions. The algorithm shows high robustness of 

segmentation in all conditions except for the case of fog where a certain drop in 
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performance is noticed. The algorithm shows better performance even for faded signs. It 

could successfully segment 53% of images selected for this test compared with 33% for 

the rest of algorithms.  

Experiment 3: 

This test is to measure the processing time of each segmentation algorithm. 

Segmentation times from previous experiments are computed for each algorithm and the 

minimum, maximum, and average times together with standard deviation are calculated. 

These values which are depicted in Table 6.3 are measured using DELL Latitude D620 

computer with 2.0 GHz processor speed. The Shadow and Highlight invariant algorithm 

shows the best time performance and the best standard deviation which denotes small 

time variations around the average, followed by the modified version of the de la 

Escalera. The dynamic thresholding algorithm comes last because of the heavy 

computations carried out by this algorithm, a burden avoided by the aforementioned 

algorithms. The Fuzzy segmentation algorithm is not included in this test because it is 

implemented in MATLAB while the other algorithms are implemented using C++.  

 
Table  6.3: A comparison of the processing Time of different colour segmentation 

algorithms. 

Timing Shadow and 

Highlight 

invariant 

Dynamic 

Thresholding 

Modified de 

la Escalera 

de la 

Escalera 

Minimum (sec.) 0.1940 0.2664 0.1935 0.2018 
Maximum (sec.) 0.2458 0.3262 0.2637 0.2675 
Mean (sec.) 0.2070 0.2782 0.2138 0.2185 
Standard deviation 0.0099 0.0106 0.0126 0.0156 

 
Experiment 4: 

The last test is concerned with the quality of segmentation. Recognition time is 

related to the number of objects produced by the segmentation algorithm in a certain 

image. Therefore, the fewer the objects produced by the segmentation algorithm the 

better the speed of recognition. In this experiment, the number of objects produced by 

each segmentation algorithm is computed for 100 images which are randomly selected 

and the average number of objects is computed. This result is shown in Table 6.4. 

Dynamic thresholding and shadow and highlight invariant algorithms produce fewer 

objects compared with other algorithms which produce 40 times the number of objects. 
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This high number of objects must definitely be filtered as most of them are few pixels in 

size or they will slow down the recognition speed.  

 

Table  6.4: Average number of objects generated by different segmentation 

algorithms. 

 Shadow and 

Highlight 

invariant 

Dynamic 

Thresholding 

Modified de 

la Escalera 

de la 

Escalera 

Average No. of 
objects 

14 11 463 439 

 
Figure 6.1 depicts a comparison of the output of the shadow and highlight invariant 

algorithm and the de la Escalera algorithm. It is clear that the segmented image generated 

by the latter is very noisy. By comparing the time needed for recognition, the shadow and 

highlight invariant algorithm takes 0.215 seconds while recognition based on the de la 

Escalera algorithm takes 10.99 seconds and it fails to recognise the sign in the image.  

 

  

Image segmented by de la Escalera 
algorithm  

Image segmented by Shadow and 

highlight invariant algorithm  
 

Figure  6.1: Comparison of quality of segmentation of two different algorithms. 
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6.1.2 Failure Analysis 

Effect of Fog: 

The segmentation of images collected in foggy conditions shows the worst results 

compared to other weather conditions. The reason is that a white light component is 

diffused between the camera and the object which affects the tint of the colour. Figure 6.2 

depicts an image taken in foggy conditions. The segmentation of this image fails to give 

any results. The colour constancy algorithm described earlier in chapter 5 is an effective 

algorithm to recover colours in such cases and helps to give better segmentation.  In 

Figure 6.2, a comparison of the results before and after applying the colour constancy 

algorithm is depicted. In the upper row, the image is segmented directly using the shadow 

and highlight invariant algorithm which gives very poor segmentation results, and in the 

lower row, it is enhanced with the colour constancy algorithm and then segmented by the 

same algorithm. This improvement in segmentation helps correct recognition of the sign.   

 

  

  

Figure  6.2: The effect of fog and how it can be treated. 
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Instability of yellow colour segmentation:  

One reason for the drop of the segmentation success rate is the failure of algorithms 

in segmenting yellow. Regardless of the quality of the sign and its age, this failure 

happens when the image is taken from a certain angle in which a different yellow (hue) 

can be seen. Figure 6.3 shows one example of such a case.  When the segmentation of 

yellow fails, recognition of the sign also fails, as it based on combining red-yellow colour 

for sign recognition.  This failure in colour segmentation is responsible for 30% of all 

failures in the recognition stage which is very significant.   

  

  

Figure  6.3: Instability of segmentation with yellow. 

 

  

Figure  6.4: Yellow Instability because of low illumination. 

 
Loss of yellow in dark images:  

Dark images can represent another reason for segmentation failure where yellow 

colour is concerned. When an image is dark due to a wrong camera setting, for instance, 

the colour hue will either be in the instable or in the achromatic area of the HSV colour 

space. Segmentation of hue in these two regions does not give any significant result, and 
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hence poor quality segmentation is produced. Figure 6.4 depicts such case. About 15% of 

the whole loss of performance of recognition is caused by this problem. 

6.2 The Recognition Stage  

6.2.1 Performance Evaluation 

The performance of the recognition stage which was described in sections 5.5 and 

5.6 is evaluated. Images segmented by the Shadow and Highlight invariant algorithm are 

then recognised by the fuzzy recogniser. Hence, the performance shown here is the 

resultant of the performance of colour segmentation algorithm and the performance of the 

recogniser.  

Experiment 1: 

The main objective of this experiment is to evaluate the global performance of the 

recogniser. The set of images selected in this experiment is the one used in experiment 1 

in the preceding section and called set 1. The recogniser achieves a successful recognition 

of 88.4 %. This result is depicted in the first row of Table 6.5. 

 

Table  6.5: Recognition rates of traffic signs in different test conditions. 

 
Test Condition Image Set No. of Signs Recognition Rate % 

Overall Performance  1 560 88.4 

Bad Lighting Geometry  2 48 81.2 
Blurred  2 40 92.5 
Dusk/Dawn  2 66 90.9 
Faded Signs  2 45 53.3 
Fog  2 27 81.4 
Highlights  2 40 95.0 
Noisy images  2 46 73.9 
Occluded Signs  2 32 56.2 
Rainfall  2 44 95.4 
Snowfall  2 44 90.9 
Sunny  2 112 94.6 
 

Experiment 2: 

In this experiment, images in set 2 are used. The performance of the recogniser is 

tested by recognising red rim-yellow interior signs in different test conditions such as 
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different sign conditions, weather conditions, lighting geometry, and image conditions.  

The best performance achieved by the recogniser is 95% for images collected in sunny 

conditions, during rainfall, and signs with highlights. The worst performance is for faded 

and occluded signs which achieved 53.3% and 56.2%, respectively. Table 6.5 illustrates 

the results of these tests.  

Experiment 3: 

The third test is carried out to measure the processing time. Red rim-yellow interior 

signs in 100 images are recognised and time of recognition is calculated for every image. 

Table 6.6 presents the processing time achieved by the recogniser. The time needed to 

recognise a sign varies depending on the distance between the camera and the sign. The 

minimum time required to recognise a sign located at a long distance is 0.2 seconds, 

while the maximum time required to recognise a close sign is 1.5 seconds. The reason for 

this time difference is the big area of the sign which is located close to the camera, and 

hence more time is spent to calculate connected components labelling and shape 

measures. Further discussion about this issue will be presented in the next subsection. 

 

Table  6.6: Time of recognition. 

Timing Value 

Minimum (sec.) 0.2040 
Maximum (sec.) 1.5380 
Average (sec.) 0.5824 
Standard Deviation 0.3493 

 

6.2.2 Failure Analysis 

Occluded signs: While the recognition algorithm shows a high rate of success in most 

test conditions, the next worst recognition result is for occluded signs. The main reason 

for this significant drop in performance is that the algorithm is based on shape measures 

which indicate the similarity of the object under consideration with the basic shapes, i.e. 

rectangle, ellipse, triangle, and octagon. When the sign is occluded, its shape departs 

from these basic shapes and the fuzzy system rejects it as it is not close to any of these 

shapes. This problem is of great interest and is discussed in more detail in the future work 

section.   
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False Alarms:  Experiment 1 and 2 show that the system fails to recognise some of the 

traffic signs for different reasons such as weather conditions, sign condition or occlusion. 

This is called false negatives. The figures of false negative generated by the system are 

listed in Table 6.5. In addition to the false negatives, there is a number of false positives 

generated by the system due to the presence of objects similar to traffic signs in the 

image. Figure 6.5 shows two examples of these false positives. In the example on the left, 

the interior of the sign is detected as a standalone sign because of the presence of a 

yellow blob in the convex hull of a red object. In addition to this the convex hull of the 

external object is an oval shape which makes the system think that it is a sign. In the 

example on the right, the traffic light is detected as a sign due to the reasons mentioned in 

the previous example.  The number of false positives generated by the recogniser is 

around 1% of the images tested in the aforementioned experiments. The reason for this 

low number of false positives is the design of the recogniser which is based on combining 

colour and shape information to recognise the sign.  

 

  

Figure  6.5: False Positives. 

 
Speed of Recognition:  The speed of recognition is related to the size of object in the 

scene. When a big object is encountered, the system takes more time to recognise that 

object compared to a small one. In order to come up with a concrete result, a sign was 

photographed at 40, 60, and 80 meters respectively, and the time of recognition was 

computed for every image. This experiment was repeated 10 times and the minimum, 

maximum and the average values were computed. Table 6.7 shows the results. The sign 

at 80m took 0.356 seconds to be recognised compared with 0.841 seconds for the 40m 

sign. When an image without a sign is introduced to the recogniser or when the sign is 
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faded, the recogniser takes about 0.06 seconds to decide that. Two parts of the system are 

computationally expensive: the connected components labelling algorithm and the shape 

measures.  The last one is much more computationally expensive than the first parameter. 

This part of the work will be improved in the future either by improving the algorithm 

itself, or by moving to another kind of shape measures.  

 

Table  6.7: Speed of recognition is affected by size of the sign. 

Image Distance

(m) 

Minimum 

Recognition 

Time (sec.) 

Maximum 

Recognition 

Time (sec.) 

Average 

Recognition 

Time (sec.) 

 

 

 

80 

 

 

0.355 

 

 

0.357 

 

 

0.356 

 

 

 

60 

 

 

0.578 

 

 

0.580 

 

 

0.579 

 

 

 

40 

 

 

0.839 

 

 

0.844 

 

 

0.841 

 

Sensitivity to connected signs: The algorithm fails to detect traffic signs when two signs 

are attached together. The overall shape of the two signs departs from the basic shapes 

which the algorithm is designed to recognise. Morphological opening is used to separate 

some of these attached signs when the attachment is not so severe. It is successful in 

many cases but it fails when the two signs are very close to each other such as the one 
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shown in Figure 6.6.  This failure in the recognition stage reduces the number of objects 

correctly recognised by the system and the entire performance is affected negatively.  

  

Figure  6.6: Sensitivity to connected signs. 

6.3 The Classification Stage 

6.3.1 Classification with Different Features 

Tables 6.8 and 6.9 show the average classification rates of the ten experiments 

described in section 5.8. The performances of road sign shape classification with binary 

representation are identical and appear to be extremely high, achieving 100% accuracy, 

on all dataset pairs. None of these instances are classified incorrectly for either the 

training or testing datasets. However, it is a little bit lower than that when features are 

used.  

 

Table  6.8: Average classification rate of traffic sign rims with different features. 

Feature Training% Testing% 

Binary Images 100 100 
Geometric Moments )7,7( == qp  95.8 96.2 

Zernike Moments 
)12,5( maxmin == pp  

100 98.9 

Legendre Moments (min=0, max=12) 100 99.7 
Orthogonal Fourier-Mellin Moments 

)8,7,0( maxmin === qpp   
96.6 94.7 

Binary Haar Features )7,7( =∆=∆ yx  99.6 99.1 

 

The feature which showed the best results is the Legendre moments followed by 

Zernike moments and the other features come after that. Whilst this is not quite as high as 
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the use of binary images, using features is much faster than binary images in the training 

and testing phases. This is because of the number of attributes of binary images which are 

much higher compared to the number of attributes for features, as shown in Table 6.10.  

 

Table  6.9: Average classification rate of speed-limit signs with different features. 

Features Training% Testing% 

Binary Images 100 98.1 
Geometric Moments )7,7( == qp   78.5 68.6 

Zernike Moments 
)12,5( maxmin == pp   

98.8 88.1 

Legendre Moments(min=0, max=12) 100 98.3 
Orthogonal Fourier-Mellin Moments 

)8,7,0( maxmin === qpp  
53.4 50.0 

Binary Haar Features )7,7( =∆=∆ yx  98.1 94.7 

 

For the classification of Speed-Limit signs with binary images, the average 

performances are 100% for training sets and 98.1% accuracy for test sets. Those road 

sign images which are classified incorrectly had very poor image qualities.  

From this discussion, it is concluded that using features has the advantage of 

reducing the amount of computation needed by the system without reducing the 

classification abilities.  

The results in Tables 6.8 and 6.9 reflect the classification under certain 

circumstances in which the results vary if different conditions are tested. Orthogonal 

Fourier-Mellin moments, for instance, can give much better classification results if the 

SVM is trained under different parameter values. This will be shown in the coming 

subsections.   

 

Table  6.10: Default values of γ  computed for different features. 

Feature No. of Attributes γ  

Binary Images 1296 0.00077 
Geometric Moments 64 0.01562 
Zernike Moments 40 0.02500 
Legendre Moments 169 0.00590 
OFMM 72 0.01388 
Binary Haar Features 63 0.01587 
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6.3.2 Classification with Different Kernels and SVM Types 

This part focuses on the analysis of the performance of the SVM using different 

kernels and different SVM types. The SVM recognition model is trained using four basic 

kernels: Linear, Polynomial, Radial Basis Function (RBF) and Sigmoid. It is tested using 

two kinds of SVM types, the C-SVM and the ν -SVM. Four groups of experiments are 

carried out. Each group of experiments is carried out using the same pair of training/test 

dataset. Other parameters of the SVM model are given as:  

 

1=C , 5.0=ν , n/1=γ , 0=r , 3=d .  
 

where n  is the number of attributes for an input vector.  

Tables 6.11 - 6.16 show the experimental results of training and testing the SVM 

recognition model with binary images and for different features for both traffic sign rims 

and Speed-Limit signs. 

 

Table  6.11: Classification rates of sign rims and Speed-Limit signs using different 

kernels and SVM types when binary images are used. 

 
Sign Rims 

 

Speed-Limits 

 

 

 

SVM Type 

 

Kernel 

 Training % Testing % Training % Testing % 

Linear 100 100 100 100 

Polynomial 100 100 100 100 

RBF 100 100 100 100 
C-SVM 

Sigmoid 100 100 100 98.7 

Linear 100 98.9 100 98.9 

Polynomial 100 97.8 100 98.7 

RBF 100 98.9 100 98.7 
ν -SVM 

Sigmoid 100 98.9 100 98.7 
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Table  6.12: Classification rates of sign rims and Speed-Limit signs using different 

kernels and SVM types when Geometric moments are used. 

 
Sign Rims 

 

Speed-Limits 

 

 

 

SVM Type 

 

Kernel 

 Training % Testing % Training % Testing % 

Linear 95.7 95.5 81.1 70.6 

Polynomial 68.6 66.6 49.7 46.6 

RBF 70.0 66.6 47.4 37.3 
C-SVM 

Sigmoid 64.3 60.0 49.7 44.0 

Linear 95.7 97.8 84.6 73.3 

Polynomial 96.2 97.8 86.3 74.7 

RBF 96.2 97.8 84.0 69.3 
ν -SVM 

Sigmoid 95.7 97.8 82.3 70.7 

 

Table  6.13: Classification rates of rim shapes and Speed-Limit signs using different 

kernels and SVM types when Zernike moments are used. 

 

Sign Rims 

 

Speed-Limits 

 

 

 

SVM Type 

 

Kernel 

 Training % Testing % Training % Testing % 

Linear 100 100 97.7 89.3 

Polynomial 93.3 90.0 75.4 64.0 

RBF 99.0 98.9 95.4 86.7 
C-SVM 

Sigmoid 98.1 96.7 90.8 82.7 

Linear 99.0 98.9 96.0 89.3 

Polynomial 96.7 93.3 99.4 89.3 

RBF 99.0 98.9 96.6 89.3 
ν -SVM 

Sigmoid 99.0 98.9 96.0 85.3 

 

Many of the experiments showed that the linear kernel combined with C-SVM had 

a better performance than others. One of the reasons is that the linear kernel normally has 

a good performance when the number of attributes is large. The leading cause, however, 

is that the accuracy of a SVM model is highly dependent on the selection of the model 

parameters.  
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Table  6.14: Classification rates of rim shapes and Speed-Limit signs using different 

kernels and SVM types when Legendre moments are used. 

 

Sign Rims 

 

Speed-Limits 

 

 

 

SVM Type 

 

Kernel 

 Training % Testing % Training % Testing % 

Linear 100 98.9 100 98.7 

Polynomial 94.7 94.4 97.7 97.3 

RBF 100 98.9 98.8 97.3 
C-SVM 

Sigmoid 100 98.9 99.4 97.3 

Linear 100 98.9 98.8 97.3 

Polynomial 100 98.9 100 97.3 

RBF 100 98.9 98.8 97.3 
ν -SVM 

Sigmoid 100 98.9 98.8 97.3 

 

Classification of traffic sign rims and Speed-Limit signs perform better results when 

OFMM is combined with ν -SVM rather than C-SVM. This is regardless of the type of 

kernel used as shown in Table 6.15. 

 The last point to be mentioned here is that there is a drop in the performance of the 

classification system when the polynomial kernel is used.  

 

Table  6.15: Classification rates of rim shapes and Speed-Limit signs using different 

kernels and SVM types when OFMM are used. 

 
Sign Rims 

 

Speed-Limits 

 

 

 

SVM Type 

 

Kernel 

 Training % Testing % Training % Testing % 

Linear 97.6 94.4 61.7 57.3 

Polynomial 83.3 82.2 45.7 38.7 

RBF 83.3 82.2 58.3 54.7 
C-SVM 

Sigmoid 83.3 82.2 60.6 60.0 

Linear 94.8 94.4 93.7 90.7 

Polynomial 94.8 94.4 91.4 89.3 

RBF 95.2 94.4 94.3 90.7 
ν -SVM 

Sigmoid 95.2 94.4 85.7 84.0 
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Table  6.16: Classification rates of rim shapes and Speed-Limit signs using different 

kernels and SVM types when Binary Haar Features are used. 

Sign Rims 

 

Speed-Limits 

 

 

 

SVM Type 

 

Kernel 

 Training % Testing % Training % Testing % 

Linear 99.5 98.8 97.1 93.3 

Polynomial 66.2 65.6 35.4 30.6 

RBF 97.6 98.9 86.8 84.0 
C-SVM 

Sigmoid 97.6 97.8 77.7 77.3 

Linear 96.6 97.8 94.3 90.7 

Polynomial 94.2 90.0 86.3 81.3 

RBF 97.1 97.7 93.7 90.7 
ν -SVM 

Sigmoid 96.7 97.8 94.3 90.7 

6.3.3 Performance of SVM with Different Parameters 

To analyse how the performance of SVM is affected by changing the values of 

parameters, the worst pair of training/test dataset of Speed-Limit signs in each moment 

type, which is shown in Appendix D, is chosen to train and test the SVM classification 

model in a set of experiments which is illustrated in this section. 

1. The Parameter C 

The parameter C  defines the upper bound of α  in the C-SVM model; it is a trade-

off between maximum margin and classification error. Figure 6.7 shows the performance 

of the SVM model using linear kernel and C-SVM type with different values of 

parameterC . There is no kernel parameter in the linear kernel; therefore the parameter C  

is the only variable in this model. A higher value of the parameter C  allows α  to have a 

large value. The accuracy of classification could be improved by increasing α . However, 

it is not useful to define an excessive upper bound of α .  

A good example to illustrate this case is depicted in Table 6.9.  According to this 

table, the performance of the Orthogonal Fourier-Mellin Moments is not as good as the 

others. This can be improved by using higher C  values. As shown in Figure 6.7, the 

classification rate can be improved from about 40% up to 88% only by changing the 

value of C .   
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Figure  6.7: The effect of parameter C on the classification accuracy of the SVM 

classifier when C-SVM and Linear kernel are used. 

 

2. The Parameter ν  

The ν -SVM uses another parameter ν  which was defined in chapter 4, to control the 

number of margin errors and the number of support vectors. Figures 6.8 and 6.9 show the 

performance of the SVM model using the linear kernel and ν -SVM type with different 

values of ν . The number of support vectors increases by increasing the value of ν . 

However, since the number of margin errors also increases, the accuracy of the training 

classification decreases and the overall accuracy of the classification of the test set 

decreases. 
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Figure  6.8: Number of support vectors versus parameter ν of SVM model using ν -

SVM model and linear kernel. 
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Figure  6.9: Performance of the SVM model using Linear kernel and different values 

of parameter ν . 

 
3. The Parameter γ  

The RBF kernel contains one parameter which is called γ . The parameter γ  is 

normally given a very small value. In all of the above experiments, it is initialised as 

n/1=γ , where n  is the number of attributes for an input vector. Figure 6.10 illustrates 

the performance of SVM with different values of γ . The training classification improves 

by increasing the value of γ .  
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Figure  6.10:  Performance of the SVM model using C-SVM, RBF kernel, 1=C  and 

different values of parameter γ  
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The generalisation of the SVM model, however, degrades when the value of γ  

exceeds a certain limit. In the aforementioned experiments, the number of attributes 

differs according to the type of moments under consideration. Therefore different values 

of γ  are used. However, it is always good to start with n/1=γ , but it is not always the 

right choice and some experiments are needed before the optimum value is reached. 

4. The Parameter r  

In addition to the parameter γ , the sigmoid kernel has another parameter which is 

known as r . This parameter is also used in the polynomial kernel. It is not a very 

important one and normally it is initialised to zero. Figure 6.11 shows the performance of 

the SVM with different values of r . The accuracy of classification degrades by 

increasing the value of r . In this Figure a logarithmic scale is used to show the effect on 

a wide range of this variable. 
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Figure  6.11: Performance of the SVM model using C-SVM, Sigmoid kernel, 

1=C , 1.0=γ  and different values of parameter r . 

 
5. The Parameter d  

There are three kernel parameters in the polynomial kernel, γ , r  and d . Figure 

6.12 shows the performance of classification corresponding to different values of d . 

Normally, small values of d  are good choices. On the whole, the generalisation of the 

SVM model drops by increasing the value of d . 



 151

50

60

70

80

90

100

110

120

0 2 4 6 8 10

Parameter d

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 %

Training Testing

 

Figure  6.12: Performance of the SVM model using C-SVM, polynomial kernel, 

1=C , 1=γ , 0=r and different values of  parameter d . 

6.3.4 Classification with Different Moment Orders 

The next set of experiments illustrates the effect of changing the order of features 

on the classification rate. Without any exception, increasing the order of moments 

improves the classification rate.  However, the exact increase of order differs from one 

type of moments to another. Generally speaking, the lower orders of the moments 

describe the general shape of the object under classification, while the higher orders 

describe the fine details. However, high order moments can easily be affected by noise. 

Therefore, a compromise between the two issues should always be taken into 

consideration.  

This experiment is applied on one set of train/test datasets of Speed-Limit signs 

listed in Appendix D. It is important to illustrate the effect of the order of moments on the 

classification rate. All experiments are carried out using C-SVM, Linear Kernel, and 

C=1. Values of moments are changed from lower values up to a certain value and for 

every step, the classification rate is computed. The results of this test are depicted in 

Figures 6.13-6.17. Geometric moments show that they reach the maximum classification 

by order 6, while Zernike moments reach the maximum by order 10.  Legendre moments 

and Binary Haar features show similar curves and they reach the maximum classification 

rate by orders 6 and 8 respectively.  
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Figure  6.13:  Effect of the order of Geometric moments order on classification rate 

when C is constant. 
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Figure  6.14:  Effect of the order of Zernike moments on classification rate when C is 

constant. 

 

Some curves such as OFMM show some kind of fluctuation, but the general trend 

of the classification rate curve improves as the order is increased. The reason behind 

these fluctuations is the effect of noise on the training and testing datasets as the order of 

moment increases. 
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Figure  6.15:  Effect of the order of Legendre moments on classification rate when C 

is constant. 
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Figure  6.16:  Effect of the order of OFMM moments on classification rate when C is 

constant. 



 154

C-SVM, Linear Kernel

40

50

60

70

80

90

100

110

2 3 4 5 6 7 8 9 10

Delta of Haar Features

C
la

s
s

if
ic

a
ti

o
n

 A
c

c
u

ra
c

y
 %

Training Testing

 
 

Figure  6.17:  Effect of )( yx ∆+∆  of Haar Features on classification rate when C is 

constant. 

6.3.5 Classification Time 

The timing performance of the SVM classifier is evaluated via computing the 

training and testing times of different features together with that of the 36x36 pixel 

normalised images.  

 

Table  6.17:  A comparison of training and testing times using different features and 

normalised images. 

Feature Training Time (sec.) Testing Time (sec.) 

Geometric Moments - shape 0.187 0.047 
Geometric Moments - speed limit  0.141 0.046 

Zernike - shape 0.110 0.047 
Zernike – speed limit 0.140 0.047 

Legendre - shape 0.140 0.063 
Legendre – speed limit  0.109 0.047 

OFMM - shape 0.109 0.063 
OFMM – speed limit 0.109 0.079 

Haar - shape 0.094 0.047 
Haar – speed limit 0.109 0.047 

Images - shape 1.109 0.532 
Images – speed limit 1.234 0.531 

 
Table 6.17 depicts the results of this test. From the table, training and testing the 

SVM with features is much faster than that with images. However, the computation time 
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of some of these features such as Zernike moments and Legendre moments is relatively 

high. This will not cause any problems for the classification as these computations can be 

carried out at any time outside the experiment time and can be saved in a file which can 

be retrieved when the experiment is carried out.  

6.3.6 Search for Optimal Parameters 

Two types of search mechanisms are implemented to find optimal parameters: Grid 

search and Simulated Annealing (SA). Grid search could be feasible to find the optimal 

parameters of an SVM model when the number of model parameters is small, normally 

less than three. The time complexity of the search is increased exponentially by 

increasing the number of parameters, making optimality an impossible goal. Heuristic 

search is a good choice to find near optimal parameters in an efficient manner. SA search 

is one heuristic search methods, which works efficiently when the number of model 

parameters is more than one. 

The real search space is infinite. This means that it is impossible to search all the 

space with the grid search. The upper bound (UB), lower bound (LB) and search step for 

each parameter are defined, so that the search space is partitioned geometrically. The 

search regions of kernel parameters are defined as: 

 

}1,15,5|2{ ==−== istepiUBiLBC
i   

 

}1,3,15|2{ ==−== jstepjUBjLB
jγ   

 
}1.0,1,1.0|{ ==== kstepkUBkLBkν   

 

Grid Search: 

Grid search works as an exhaustive search, where the size of the search step 

controls the complexity of the search. As the model must be evaluated at every grid 

region and the time complexity of the search is increased exponentially with the increase 

of parameters, the grid search of the SVM model is tested with the RBF kernel only.  

The same pairs of training/test datasets used in the former experiments are used 

here. The performances with and without grid search for the SVM model are illustrated in 
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Tables 6.18 and 6.20. Tables 6.19 and 6.21 show the corresponding values of C, γ , and 

ν  .  

 

Table  6.18: Classification rates of grid search for sign rims when C-SVM and        

ν -SVM are used. 

C-SVM 
 

ν -SVM 

 
 

 

Features 

 
Training% 

Bfr (Aftr) 
Testing% 

Bfr (Aftr) 

Training% 

Bfr (Aftr) 

Testing% 

Bfr (Aftr) 

Binary Images 100 (100) 100 (100) 100 (100) 100 (100) 

Geometric Moments 100 (100) 92.2 (97.7) 100 (100) 92.2 (97.7) 

Zernike Moments 100 (100)  96.6 (96.6) 100 (100) 96.6 (96.6) 

Legendre Moments 100 (100) 98.9 (98.9) 100 (100) 98.9 (98.9) 

OFFM 97.1 (99.5) 90.0 (92.0) 97.1 (99.5) 90.0 (93.3) 

Binary Haar Features 100 (100) 97.7 (97.7) 100 (100) 97.7 (97.7) 

 

 

Table  6.19: SVM parameters of grid search for traffic signs rims when C-SVM and 

ν -SVM are used. 

C-SVM 
 

ν -SVM 

 
 

 

Features 

 
C γ  

ν  γ  

Binary Images 4 0.000122 0.1 0.000122 

Geometric Moments 64 0.5 0.1 0.5 

Zernike Moments 4 0.03125 0.2 0.03125 

Legendre Moments 1 0.012562 0.1 0.015625 

OFMM 1 4 0.1 4 

Binary Haar Features 8 0.0625 0.1 0.25 

 
After grid search the performances of the SVM model with RBF kernel are 

remarkably improved, sometimes even better than that of the linear kernel. Grid search, 
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however, only finds a region near the global optimal point. The global optimal point 

could be found after combining the pattern search with the grid search.  

 

Table  6.20: Classification rates of grid search for Speed-Limit signs when C-SVM 

and ν -SVM are used. 

 
C-SVM 

 
ν -SVM 

 
 

 

Features 

 
Training% 

Bfr (Aftr) 
Testing% 

Bfr (Aftr) 

Training% 

Bfr (Aftr) 

Testing% 

Bfr (Aftr) 

Binary Images 100( 100) 96.0( 96.0) 100( 100) 96.0( 96.0) 

Geometric Moments 81.7 ( 99.4) 60.0 (72.0) 81.7 (96.5 ) 60.0 (72.0) 

Zernike Moments 100 (98.2) 82.7 (85.3) 100 (96.0) 82.7 (86.6) 

Legendre Moments 
 

100 (100) 97.3 (96.0) 100 (100) 97.3 (96.0) 

OFMM 49.1 (98.8) 42.7 (94.7) 49.1 (99.4) 42.7 (99.4) 

Binary Haar Features 98.8 ( 100) 90.7 ( 90.7) 98.8 (99.4 ) 90.7 (92.0 ) 

 
 

Table  6.21:  SVM parameters of grid search for Speed-Limit signs when C-SVM 

and ν -SVM are used. 

 
C-SVM 

 
ν -SVM 

 
 

 

Features 

 
C γ  

ν  γ  

Binary Images 2 0.0009765 0.1 0.0009765 

Geometric Moments 4096 0.0078125 0.2 0.015625 

Zernike Moments 64 0.0039106 0.3 0.000122 

Legendre Moments 2 0.015625 0.1 0.015625 

OFMM 4 8 0.2 8 

Binary Haar Features 20480 0.000976 0.1 0.001953 
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Simulated Annealing: 

A Simulated Annealing (SA) search is also called a Monte Carlo Annealing derived from 

the process of physical crystal formation. It starts with some solution which is totally 

random and changes it to another solution which is similar to the previous one. It makes 

slight changes to the result until it reaches a result close to the optimum. The algorithm 

uses random numbers in its execution. Therefore, it comes with a different result every 

time the program is executed. An important part of the simulated annealing process is 

how the inputs are randomised. This randomisation process takes the previous values of 

the inputs and the current temperature as inputs. The input values are then randomised 

according to the temperature. A higher temperature will result in more randomisation 

while a lower temperature will result in less randomisation. The new solution is always 

accepted if it gives a better evaluation than the current one; otherwise it is accepted with 

some probability p .  The probability of acceptance is defined as: 

T

VevalVeval nc

e

p
)()(

1

1
−

+

=  
 

(6.1) 

 

where cV  is the current point, nV  is the new neighbour and T  is an additional parameter 

looked at such as temperature.  

There are two major processes which occur during the simulated annealing 

algorithm. First, for each temperature the simulated annealing algorithm runs through a 

predetermined number of cycles. As the cycle runs the inputs are randomised. Once the 

specified number of training cycles has been completed, the temperature can be lowered 

and checked whether it has reached the lowest permissible temperature. If the 

temperature is not lower than the lowest allowed permissible one, then it is lowered and 

another cycle of randomisation will take place. If the temperature is lower than the 

minimum temperature allowed, the simulated annealing algorithm is complete. The 

cooling ratio, the rate at which the temperature is reduced, is another important definition 

of the SA search. Similar to the process of crystal formation, the solution is not good if 

the cooling is done too quickly or too slowly.  
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The performances with and without SA search for the SVM model are depicted in 

Tables 6.22 and 6.24. Tables 6.23 and 6.25 show the corresponding values of C, γ , and 

ν  .  The algorithm gives better results in the majority of the cases. However, there is a 

drop of the performance in some cases such as the case of using OFFM which is 

indicated in Table 6.22.  

 

Table  6.22: Classification rates of SA search for sign rims when C-SVM and ν -

SVM are used. 

 
C-SVM 

 
ν -SVM 

 
 

 

Features 

 
Training% 

Bfr (Aftr) 
Testing% 

Bfr (Aftr) 

Training% 

Bfr (Aftr) 

Testing% 

Bfr (Aftr) 

Binary Images 100 (100) 100 (100) 100 (100) 100 (99.0) 

Geometric Moments 100 (100) 92.2 (97.7) 100 (100) 
 

92.2 (97.7) 

Zernike Moments 100 (100)  96.6 (96.6) 100 (100) 96.6 (96.6) 

Legendre Moments 100 (100) 98.9 (98.9) 100 (100) 98.9 (98.9) 

OFFM 97.1 (99.5) 90.0 (94.4) 97.1 (98.6) 90.0 (94.4) 

Binary Haar Features 100 (100) 97.7 (97.7) 100 (100) 97.7 (97.7) 

 

Table  6.23: SVM parameters of SA search for traffic signs rims when C-SVM and 

ν -SVM are used. 

 
C-SVM 

 
ν -SVM 

 
 

 

Features 

 
C γ  

ν  γ  

Binary Images 30.47 0.0002548 0.39 3.05e-005 

Geometric Moments 32768 0.0003776 0.02 0.369828 

Zernike Moments 3.699 0.113393 0.10 0.005606 

Legendre Moments 5.806 0.011629 0.04 0.015008 

OFMM 0.7972 8 0.08 0.007355 

Binary Haar Features 54.53 0.05022 0.01 0.016551 
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Table  6.24: Classification rates of SA search for Speed-Limit signs when C-SVM 

and ν -SVM are used. 

 
C-SVM 

 
ν -SVM 

 
 

 

Features 

 
Training% 

Bfr (Aftr) 
Testing% 

Bfr (Aftr) 

Training% 

Bfr (Aftr) 

Testing% 

Bfr (Aftr) 

Binary Images 100 (100) 100 (96.0) 100 (100) 100 (96.0) 

Geometric Moments 81.7 (96.0) 60.0 (72.0) 81.7 (91.4) 60.0 (72.0) 

Zernike Moments 100 (100) 82.7 (92.0) 100 (98.3) 82.7( 85.3) 

Legendre Moments 
 

100 (100) 97.3 (97.3) 100 (100) 97.3 (96.0) 

OFMM 49.1 ( 99.4) 42.7 (94.6) 49.1 (98.8) 42.7 (94.6) 

Binary Haar Features 98.8 (100) 90.7 (93.3) 98.8 (99.4) 90.7 (93.3) 

 

 

Table  6.25:  SVM parameters of SA search for Speed-Limit signs when C-SVM and 

ν -SVM are used. 

C-SVM 
 

ν -SVM 

 
 

 

Features 

 
C γ  

ν  γ  

Binary Images 207.243 3.05e-005 0.09726 0.000258 

Geometric Moments 1669 0.005202 0.33735 0.015625 

Zernike Moments 1547 0.029662 0.37626 0.897143 

Legendre Moments 1489 0.000246 0.15903 3.91e-005 

OFMM 1133 5.36484 0.27698 8 

Binary Haar Features 32768 0.013252 0.22334 0.061115 

 
To demonstrate the effectiveness of simulated annealing algorithm, an experiment 

is carried out to measure the time of execution of both grid search and simulated 

annealing algorithms. Times of search for the parameters of the SVM using different 

features and normalised images are computed for both road sign rims and Speed-Limit 

signs. Tables 6.26 and 6.27 show a comparison of search times between that obtained by 
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grid search and simulated annealing. By the latter algorithm the semi-optimum values 

could be obtained in almost 20% of the time needed for grid search. Both types of SVM 

were tested in this experiment. The grid search and the simulated annealing are used to 

search for the best classification and then find the corresponding parameters. Once these 

parameters are computed, they can be saved in a file for the fast training of the SVM. 

 

Table  6.26: A comparison of times of search of grid and SA for traffic sign rims. 

 
Search time for C-SVM 

 
Search time forν -SVM 

 
 

 

Features 

 
Grid (sec.) 

 
SA (sec.) 

 

Grid (sec.) SA (sec.) 

 

Binary Images 438.0 62.4 295.0 55.6 

Geometric Moments 37.6 8.0 26.1 5.4 

Zernike Moments 37.6 8.4 26.1 5.4 

Legendre Moments 36.3 5.9 22.5 4.9 

OFFM 32.3 5.5 23.0 4.5 

Binary Haar Features 26.8 4.6 19.9 5.1 

 
Table  6.27: A comparison of times of search of grid and SA search for Speed-Limit. 

 
Search time for C-SVM 

 
Search time for ν -SVM 

 
 

 

Features 

 
Grid (sec.) 

 
SA (sec.) 

 

Grid (sec.) SA (sec.) 

 

Binary Images 329.0 48.5 211.0 40.3 

Geometric Moments 28.5 4.6 15.2 3.4 

Zernike Moments 22.7 3.5 13.2 3.1 

Legendre Moments 26.0 3.8 15.6 3.4 

OFFM 30.6 4.6 15.5 3.7 

Binary Haar Features 24.9 3.5 14.5 3.3 
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6.4 Summary   

In this chapter, the techniques used for traffic sign recognition are evaluated.  The 

problem of traffic sign recognition was divided into three steps: colour segmentation, 

shape recognition and classification.  

Different colour segmentation algorithms were tested by four different experiments 

which include the global performance of each algorithm, the specific tests of different 

image or sign conditions, the quality of segmentation, and processing times. The Shadow 

and Highlight invariant algorithm performed better than others. The algorithm was faster 

than the others and showed high robustness in different weather and lighting conditions. 

Similar tests were used to evaluate the performance of the recognition algorithm. It 

is evaluated by a large set of images which reflect the overall performance of the 

recognition algorithm. It was also evaluated by another set of images taken under specific 

weather conditions. The algorithm was robust to a substantial variety of weather 

conditions, but there was a drop in performance in the case of occluded signs and fog 

conditions.   

The last stage of this analysis was the evaluation of the performance of the SVM 

classifier. It is important to illustrate the conditions under which the classification takes 

place and which parameters affect the classification. In this analysis five types of tests are 

involved including classification with different features, classification with different 

SVM types and different kernels, classification with different moment orders, and 

searching for optimum parameters. Finally, a comparison between exhaustive search and 

simulated annealing search was presented which showed that using Simulated Annealing 

reduces the computational time down to 20% of the grid search without reducing the 

classification rate.         
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7. Conclusions  
 

In this thesis a road and traffic sign recognition system which can help in creating a 

road sign inventory was developed, implemented and evaluated. This system, which 

involves a mixture of computer vision and pattern recognition problems, was able to 

extract road signs from still images of complex scenes subject to uncontrollable 

illumination. In the computer vision part, algorithms were developed to segment the 

image by using colours and to recognise the sign by colour-shape combinations as a 

priori knowledge. In the pattern recognition part, two SVM classifiers were invoked to 

put the unknown sign in one of the traffic sign categories depending on the sign rim and 

interior. This goal has now been reached and the system shows high robustness according 

to the experiments illustrated in sections 6.1, 6.2, and 6.3.  

  The following sections summarise the main findings and the contribution made by 

this research, which could be the beginning of a new approach to traffic sign recognition 

pointing to new directions for further research.  

7.1 Collection of Traffic Sign Images 

A library of images is created for the purpose of developing and testing the different 

algorithms of the traffic sign recognition system. The number of images collected in 

Sweden is 3415 images. Another 330 images are collected from different parts of Europe 

and some other countries such as Canada, the USA and Japan. Thousands of kilometres 

are driven in Sweden for this purpose. The majority of the images are collected in 

Dalarna, Stockholm, and southern parts of Sweden. All images are collected using one 

camera and they are all taken using one size: 640x480 pixels. The library is one of the 

biggest in Europe and is processed by Microsoft Access as shown in appendix E.  

7.2 Colour Segmentation Algorithms 

In this research, four colour segmentation algorithms are developed. They are as 

follows:   
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• Shadow and Highlight invariant colour segmentation algorithm, 

•  The dynamic threshold algorithm,   

• A modification of de la Escalera’s algorithm, 

• The Fuzzy colour segmentation algorithm. 

 

The experiments and tests carried out show that the Shadow and Highlight invariant 

algorithm is the best performer, compared with the other algorithms. The reasons behind 

this can be attributed to: 

1. The high segmentation performance achieved by this algorithm which is 97.6% 

(Table 6.1),  

2. The ability of the algorithm to achieve colour segmentation under a wide range of 

weather, sign, and image conditions (Table 6.2), 

3. The highest segmentation speed among the other algorithms (Table 6.3) and  

4. Its ability to enhance the recognition speed by suppressing noise and producing 

fewer objects in the segmented image (Table 6.4).  

The performance of the developed algorithms, however, may be affected by several 

parameters, including weather conditions under which the image is taken, poor 

environmental lighting and the age of the sign under consideration.  

7.3 Colour Segmentation in Poor Light Conditions 

Colour segmentation in poor light conditions is a process which is specially 

developed by this research to eliminate the effect of fog and snowfall which often occur 

in many parts of Europe and more frequently in Scandinavia. These light conditions 

affect the general brightness of the image and hence affect the stability of the colours. In 

order to eliminate these effects, the colour segmentation algorithm is enhanced by 

invoking a special treatment of colour. The histogram equalisation technique is separately 

applied to the RGB channels of the captured image and the resultant RGB image is 

further treated by the colour constancy algorithm. Figure 6.2 shows the superiority of this 

algorithm in enhancing the image for colour segmentation. In this research, the user 

selects this algorithm manually when snowfall is noticed. In the future, however, an 

automated method can be adopted to switch to this algorithm when snow fall is detected. 
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This could be part of the future work in which metrological sensors can be attached to the 

computer to detect the snow fall.     

7.4 Octagonality as a New Shape Measure 

In order to specify the shape of any object in the segmented image, a specific 

criterion should be considered. As a traffic sign’s shape can be a triangle, a circle, a 

rectangle or an octagon, four shape measures representing these shapes are invoked. 

Otagonality is introduced in section 5.6.1 and developed as a new measure in this 

research. Other shape measures include ellipticity, triangularity, and rectangularity. These 

shape measures give an idea of the shape of the object under consideration, and their 

range is [0,1] in which the value 1 means a perfect shape. They are easy to calculate since 

they use the Affine Moment Invariants. They are invariant to in-plane transformation, i.e. 

translation, rotation and scaling which suits the work with traffic sign recognition 

because images taken from different distances show the signs in different sizes. In 

addition, the sign could exist anywhere in the image and it could be in any orientation. 

7.5 The Fuzzy Shape Recogniser 

A fuzzy shape recogniser which relies on the four shape measures is developed 

during this research. A set of fuzzy rules are invoked to decide the shape of the sign. To 

recognise the right sign, simple IF-THEN rules are developed. These rules check the 

presence of a certain combination of information which includes the shape of the object 

under consideration, its rim colour, and its interior colour. Once a sign with these 

specifications is found it is sent to the classification stage, otherwise the object is deleted 

from the object list. This method prevents any unknown object with a specification 

different from traffic signs being sent to the classifier, and hence reduces the number of 

false alarms and the amount of calculations. The recogniser is tested in different test 

environments and it shows high robustness. Table 6.5 shows that the overall performance 

of the recogniser is 88.4%. It performs even better in some difficult environmental 

conditions such as snowfall, rainfall, dusk and dawn. The performance evaluation of this 

recogniser is illustrated in Table 6.5.  
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7.6 SVM for Traffic Sign Recognition  

The SVM is a classifier which belongs to what is called linear classifiers. It 

separates data into two sets by using a hyperplane and makes the distance between them 

as large as possible. This classifier is invoked in this research to classify an unknown 

traffic sign in one of the traffic sign categories. Two stages of this classifier are invoked. 

The first stage classifies the sign rim and the second stage classifies the pictogram of the 

sign. In addition to normalised images, the classifier is trained and tested using other 

features. Among these features Legendre moments and Binary Haar invariants perform 

the best, bearing in mind that the road sign inventory can be handled during daytime and 

the system does not have to work during other times. The performance achieved by this 

classifier, which is about 97%, suites this kind of application.  

Based on the preceding discussions, the road and traffic sign recognition system 

that can be used for automatic traffic sign inventory is presented.  This system can assist 

local and national authorities with the task of maintaining and updating their road and 

traffic signs.  

7.7 Future Directions  

There are several avenues for further research which could follow from work begun here. 

They are given as follows: 

7.7.1 Occluded Signs and Object Recognition 

Signs are often occluded by obstacles and they are usually surrounded by many 

other objects. Figure 7.1 illustrates such a situation. This kind of situation often happens 

when images are taken from different angles. The main problem with these occlusions is 

that these signs are unpredictable and the shapes produced by them are also 

unpredictable. A number of researchers have already started to tackle this problem 

seriously [53], but the amount of work is still below what is necessary.  

One approach to solve this problem is to use the type of features which are 

unaffected by clutter or partial occlusion. These features should also be invariant to in-

plane transformations, 3D projective transformations, and common object variations. 
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Figure  7.1: Occlusions produced by the existence of obstacles. 

 

Scale Invariant Feature Transform (SIFT) suggested by Lowe [115] is one kind of 

features which may fulfil these requirements. The image is transformed into a large 

collection of local feature vectors which are invariant to translation, scaling, and rotation, 

and partially invariant to illumination changes and affine or 3D projection. These features 

share a number of properties with the responses of neurons in Inferior Temporal (IT) 

cortex in primate vision. The scale-invariant features are identified by using a staged 

filtering approach. The first stage identifies key locations in scale space by looking for 

locations that are maxima or minima of a difference-of-Gaussian function. Each point is 

used to generate a feature vector that describes the local image region sampled relative to 

its scale-space coordinate frame. The features achieve partial invariance to local 

variations, such as affine or 3D projections, by blurring image gradient locations. The 

resulting feature vectors are called SIFT keys. The SIFT keys derived from an image are 

used in a nearest-neighbor approach to identify candidate object models. When at least 3 

keys agree on the model parameters with low residual, there is strong evidence for the 

presence of the object. Since there may be dozens of SIFT keys in the image of a typical 

object, it is possible to have substantial levels of occlusion in the image and yet retain 

high levels of reliability. 

7.7.2 Detachment of Signs 

Another problem emerges when groups of signs share the same pole and are often 

attached to one another. When the image is colour segmented, the signs become attached 

to each other and hence connected component labelling creates a single object. This new 
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object does not belong to any of the expected sign shapes which the algorithm deals with. 

Of course, this problem affects the whole performance of the system.  Figure 7.2 depicts 

samples of these images in which two signs are attached as one object. These signs 

should be detached from each other.  

 

  

Figure  7.2: Traffic signs may be seen as one object after segmentation. 

 

7.7.3 Similarity Measures for Sign Detection  

Traffic sign detection is the most important stage in the whole process. It decides 

whether the sign can be classified or not. In this research a fuzzy shape recogniser is used 

to detect the sign. However, there are other methods which can be used at this stage. One 

is image similarity or Hausdorff distance which measures the similarity between two 

images. These methods can be used as part of the future work. Another factor, the aspect 

ratio of the object under consideration, can be used as an additional measure to detect the 

traffic signs. This is because all traffic signs have uniform shapes and are designed to 

have the same width and height.  A combination of image similarity measures and shape 

measures can be a good solution to achieve better detection.  

7.7.4 Real Time Applications  

Another direction for further research is to develop a real time traffic sign 

recognition system which captures a video by a camera mounted on the vehicle, detects 

and recognises the traffic signs in real time and gives the result to the driver within a 

sufficient time frame in order to take the right action. The crucial issue in real time 

applications is the time spent to recognise the traffic sign. This should be reduced to the 
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minimum by choosing the proper techniques for real time applications and by optimising 

the code.  

  The methods presented in this thesis can be modified to fit the real time 

requirements. After detecting the border of the traffic sign and its interior, it can be 

tracked by a Kalman filter or by a suitable blob tracking algorithm which can be 

developed for this purpose. The main objective of this blob tracking algorithm is to 

minimize the search region from the whole image to an area which fits the traffic sign. 

Taking into consideration that the size of the traffic sign increases as the vehicle 

approaches the sign, the blob tracking algorithm should be able to match the traffic sign 

in the current frame with that in the next frame. The algorithm should be immune to the 

in-plane transformations. Tracking the traffic sign has an advantage that if the traffic sign 

is occluded in some frames or disappeared, it is still possible to follow that sign in the 

frames that follow.  

If such a system is integrated with a GPS, it can be used to provide the driver with 

useful information about the actual speed limit on a certain road. By comparing the 

signed limit with the GPS speed reading, the driver can be warned when the speed limit is 

exceeded or when the driver does not stop before a STOP sign. 

7.8 Final Remarks 

  The problem of traffic sign recognition for the purpose of road sign inventory has 

been approached by using colour and shape information of the traffic signs. A new set of 

algorithms, which has been developed and evaluated in a wide range of conditions, is 

exhibiting a good and robust performance.  

 The success of the proposed system opens new frontiers for further research in the 

future. Automation of road sign inventory is becoming a necessity for road authorities 

and such a system will be in use in the very near future.  
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Appendix A - The Swedish Road and 
Traffic Signs 

Warning Signs 
 

 
Dangerous bend, 

bend to right 

 
Dangerous bend, 

bend to left 

 
Dangerous bends, first 

bend to right 

 
Dangerous bends, 
first bend to left 

 
Steep hill 

downwards 

 
Steep hill upwards 

 
Road narrows on both 

sides 

 
Road narrows from 

right side 

 
Road narrows from 

left side 

 
Opening or swing 

bridge 

 
Quayside or ferry 

berth 

 
Uneven road 

 
Road works 

 
Slippery road 

 
Falling rocks from 

right 

 
Falling rocks from 

left 

 
Loose chippings 

 
Junction 

 
Roundabout 

 
Junction with a road 
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the users of which 
must give way, 90° 

left, 90° right 

 
Junction with a road 
the users of which  
must give way, 45° 

left, 45° right 

 
Junction with a road 
the users of which 
must give way, 90° 

left, 45° right 

 
Junction with a road 
the users of which 
must give way, 45° 

left, 90° right 

 
Junction with a road 
the users of which 
must give way, 90° 

left 

 
Junction with a road 
the users of which 
must give way, 45° 

left 

 
Junction with a road 
the users of which 
must give way, 90° 

right 

 
Junction with a road 
the users of which 
must give way, 45° 

right 

 
Traffic signals 

 
Level crossing with 

gates 

 
Level crossing 
without gates 

 
Intersection with 

tramway line 

 
Pedestrian crossing 

 
Children 

 
Animals (elk) 

 
Animals (deer) 

 
Animals (cow) 

 
Animals (horse) 

 
Animals (reindeer) 

 
Animals (sheep) 

 
Cyclists and moped 

riders on 
carriageway 
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Skiers crossing 

 
Crossing horses 

 
Low-flying aircraft 

 
Crosswind from 

right 

 
Crosswind from left 

 
Two-way traffic 

 
Tunnel 

 
Other dangers 

 
Give way 

 
Distance to level 

crossing 
 

Single track level 
crossing 

 
Multitrack level 

crossing 
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Prohibitory Signs 

 
Closed to all 

vehicles in both 
directions 

 
No entry 

 
No power-driven 

vehicles 

 
No power-driven 
vehicles except 

motorcycles without 
side cars 

 
No motorcycles 

 
No power driven 

vehicles drawing a 
trailer other than a 

semi trailer or a 
single axle trailer 

 
No lorries 

 
No tractors, 
construction 
vehicles etc. 

 
No cycles or 

mopeds 

 
No mopeds 

 
No animal-drawn 

vehicles 

 
No riding 

 
No pedestrians 

 
No off-road vehicles

 
No vehicles having 

an overall width 
exceeding ... meters

 
No vehicles having 
an overall height 

exceeding ... meters
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No vehicles 

exceeding ... tons 
laden weight 

 
No vehicles having 
a weight exceeding 
... tons on one axel 

 
Minimum distance 

between power 
driven vehicles 

 
No vehicles or 
combination of 

vehicles exceeding 
... meters 

 
No vehicles or 
combination of 

vehicles exceeding 
... tons laden weight 
or bearing capacity 

class 

 
No vehicles having 
a weight exceeding 
... tons on a tandem 

axel 

 
passing without 

stopping prohibited 
at customs 

 
Priority for 

oncoming vehicles 

 
No right turn 

 
No left turn 

 
No U-turns 

 
No overtaking 

 
No overtaking by 

lorries 

 
Maximum speed (30 

km/h) 

 
Maximum speed (50 

km/h) 

 
Maximum speed (70 

km/h) 
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Maximum speed (90 
km/h) 

Maximum speed 
(110 km/h) 

No vehicles 
carrying dangerous 

goods 

Priority for 
oncoming vehicles 

 
No parking 

 
No standing or 

parking 

 
Stop 

 
No parking zone 

 
End of overtaking 

restriction 

 
End of overtaking 

by lorries restriction

 
End of no parking 

zone 

 

 
 

Mandatory Signs 

 
Direction to be 

followed. Right only 

 
Direction to be 

followed. Left only

 
Direction to be 

followed. Straight 
ahead only 

 
Direction to be 

followed. Turn right

 
Direction to be 

followed. Turn left 

 
Direction to be 

followed. Turn right 
or continue straight 

ahead. 

 
Direction to be 

followed. Turn left 
or continue straight 

ahead. 

 
Direction to be 

followed. Turn left 
or right. 
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Pass this side. Right 

 
Pass this side. Left 

 
Pass this side. Either 

side 

 
Roundabout 

 
Foot path 

 
Track for cycles and 

mopeds 

 
Compulsory track 

for pedestrians, 
cyclists and moped 

drivers. 

 
Compulsory track 

for pedestrians, 
cyclists and moped 
drivers. Dual track 

 
Compulsory track 

for pedestrians, 
cyclists and moped 
drivers. Dual track 

 
Track for rider on a 

horseback 

 
Track for off-road 

vehicles 

 
Beginning of lane 

reserved for 
scheduled buses etc.

 
End lane reserved 

for scheduled buses 
etc. 

   

 



 188

 

Informative Signs 

 
Post office 

 
Telephone 

 
Radio station for 
road and traffic 

information 

 
Information 

 
Workshop 

 
Petrol station 

 
Refreshments 

 
Restaurant 

 
Hotel 

 
Picnic site 

 
Toilet 

 
First aid 

 
Industrial zone 

 
Youth hostel 

 
Holiday chalets 

 
Caravan site 

 
Camping site 

 
Bathing 

 
National heritage 

 
Open-air recreation

 
Hiking trail 

 
Chair lift 

 
Tow lift 

 
Fishing licences on 

sale here 
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Golf course 

 
Lorry 

 
Car 

 
Bus 

 
Airfield 

 
Airfield straight 

ahead 

 
Ferry 

 
Taxi rink 

 
Low-speed road 

 
End of low-speed 

road 

 
Residential area 

 
End of residential 

area 

 
Pedestrian area 

 
End of pedestrian 

area 

 
Priority over 

oncoming vehicles 
  

No through road 

 
Lay-by or passing 

place 

 
Parking 

 
Park and ride  

Pedestrian crossing

 
Motorway 

 
End of motorway 

 
Expressway 

 
End of expressway 
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Road number sign 
European highway 

 
Main highways 

(other than 
European highways) 

numbered 1-499 

 
Road number sign. 

Direction to a 
numbered road 

 
Road number sign 
for traffic diversion

 
Built-up area 

 
End of built-up area

 
Maximum 

recommended speed

 
End of maximum 

recommended speed

 
Toll road 

 
Temporary sign, left 

most lane ends  
Temporary sign, 

Lane merges with 
oncoming traffic 

 
Temporary sign, 
oncoming traffic 
merges with this 

lane 

 
Priority road 

 
End of priority road

 

 
One-way traffic 

 

 
Advance direction 
sign, diagrammatic 

type 

 

 
Advance direction 

sign, stack type  
Lane pre-selection 

sign 

 
Advance direction 
sign diagrammatic 

indicating 
prohibition of left 

turning 

 
 

 
Direction sign flag 

type 
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Direction to 
motorway or 
expressway 

 

Sign to specific 
district or area 

 

 

Sign to place 
reached by a private 

road 

 

Sign to local 
amenities 

 

Lane assignment 
type 

 

Advance direction 
sign exit ahead from 

motorway or 
expressway 

 

Advance direction 
sign exit ahead from 

other road than 
motorway or 
expressway 

 

Direction sign exit 
sign 

 
Place indication 

sign 

 
Confirmatory sign 

 
Collection sign 

 
Interchange number

 
Recommended route 
for vehicles carrying 

dangerous goods 

 
Tourist route 

 
Tourist attraction 

area 

 
Landmark 

 
Recommended route 
for pedal cycles and 

mopeds 

 
Recommended route 

for pedestrians 

 
Disabled persons  

Stack type design 
 
 

 
Flag type sign 

 

 
Place indication 

sign 

 

 
Confirmatory sign 
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The long turn — 
mandatory turning 

manoeuvre for pedal 
cycles and mopeds 

 
Lane merge 

 
Lane ends 

 
World heritage site

 

 
Sign to temporary 

event 

 
Cycle track 

   

 

Supplementary Signs 

 
Symbol plate for 

specified vehicle or 
road user category 

(lorry) 

 
Symbol plate for 

specified vehicle or 
road user category 

(car) 

 
Symbol plate for 

specified vehicle or 
road user category 

(bus) 

 
Symbol plate for 

specified vehicle or 
road user category 

(caravan) 

 
Symbol plate for 

specified vehicle or 
road user category 

(car + caravan) 

 
Soft shoulder 

 
Forestry vehicle 
crossing ahead 

 
High tension cable 

 
Blind persons 

crossing or in the 
vicinity of the road  

Deaf persons 
crossing or in the 

 
All way stop 
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vicinity of the road 

 

Direction sign 

 

Direction sign 

 

Direction sign 

 
 

Direction sign 

 
Direction sign 

 
Prohibition effective 
in both directions of 

the sign 

 
Prohibition end at 

sign 

 
Prohibition effective 

in the direction of 
arrow 

 

Stop and give way 
at specified distance 

ahead 

 

Lateral clearance 

 

Total weight 

 

Times the restriction 
applies. 

 
Distance to 

 
No parking between 

times indicated  
No parking between 

times indicated 
(with weekday 

given) 

 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 
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Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

Direction of priority 
road at intersect 

 

 

Parking 
configuration 

 

Parking 
configuration 

 

Parking 
configuration 

 

Parking 
configuration 

 
Symbol plate for 

specified vehicle or 
road user category 

(lorry) 

 

Symbol plate for 
specified vehicle or 
road user category 

(handicapped) 

 

Symbol plate for 
specified vehicle or 
road user category 

(car) 

 
Symbol plate for 

specified vehicle or 
road user category 

(bus) 
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Symbol plate for 

specified vehicle or 
road user category 

(motorcycle) 

 

Symbol plate for 
specified vehicle or 
road user category 

(bike) 

 

Symbol plate for 
specified vehicle or 
road user category 

(caravan) 

 
Symbol plate for 

specified vehicle or 
road user category 

(car + caravan) 

 
Parking permitted 

for specified period 
between times 

shown 

 
Two-way traffic on 
cycle and moped 

tracks 

  

 

Direction sign 

 

Direction sign 

 

Direction sign 

 

Direction sign 

 
Direction sign 

 
Direction sign 

 
Direction sign 

 

 
Direction sign 

 
Direction sign 

 
Direction sign 

 
Direction sign 

 

Direction sign 

 

Direction sign 

 

Direction sign 
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Parking house 

 

Parking, effective in 
both directions of 

the sign 

 

Parking ends at sign 

 

Parking, effective in 
direction of arrow 
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Appendix B - Colour Physics and Colour 
Spaces 

B.1 Introduction 

Visible light, ultraviolet light, infrared light, x-rays, TV and radio waves, etc are all 

forms of electromagnetic energy which travels in waves. These different types of waves 

consist of what is called the electromagnetic spectrum shown in Figure B.1.  

 

Figure B.1: The electromagnetic spectrum [116]. 

There is a narrow range of this electromagnetic energy from the sun and other light 

sources which creates wavelengths visible to humans. Each of these wavelengths, lying 

between 4000 - 7000 Angstroms, is associated with a particular colour response. This 

means that colour can be defined as this part in the visible region of the spectrum having 

wavelengths in the region of 400-700 nm. For example, the wavelengths near 4000 
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Angstroms (400 nm) are violet in colour while those near 7000 (700 nm) are red. Figure 

B.2 shows the visible light of this electromagnetic spectrum [116].   

 

Figure B.2: The colours of the wavelengths of visible light. 

B.2 Model of the Eye 

Light which has a dominant frequency or set of frequencies is called chromatic, and 

that without such dominant frequencies (white light) is called achromatic. Our eyes have 

two different types of receptors: cones and rods. The cones are sensitive to chromatic 

light and the rods are sensitive only to achromatic light. That is, our rods can tell that 

there is light and they are very sensitive to it, but cannot tell what colour it is. Cones can 

tell what colour the light is, but it appears that they are not very sensitive to dim light. 

There are three types of cone cells in the human retina, each of which responds to 

incident radiation with different spectral response curves.  

 

Figure B.3: Spectral Sensitivity Curves of Rods & Cones. 
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The peak sensitivities of light frequencies are called red (564 nm), green (534 nm) and 

blue (420 nm), Figure B.3. Light, at any wavelength in the visual spectrum range from 

400-700 nm will excite one or more of these three types of sensors. Our perception of 

which colour we are seeing is determined by which combination of sensors are excited 

and by how much. 

The sensitivity curves of the ρ  (for Red), γ  (for Green), and β  (for Blue) cones 

in our eyes determine the intensity of the colours we perceive for each of the wavelengths 

in the visual spectrum. Figure B.4 shows an approximation of the visual spectrum 

illustration adjusted for the sensitivity curves of  ρ , γ  and β  sensors. 

 

Figure B.4: Sensitivity Curves of Red, Green & Blue. 

The general sensitivity of the eye is not identical in the whole thread of the visible 

radiation in the consideration of wavelength. Extreme sensitivity is placed in the green 

part, while the receptors of the blue colour are the least sensitive [117].  

B.3 Colour Spaces 

B.3.1 Device dependent and device independent Colour Space  

A device dependent colour space is a colour space where the resultant colour 

depends on the equipment and the set-up used to produce it. An RGB = (250, 134, 67) 

will be altered as the brightness and contrast of the device are changed by the user. If the 
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red, green and blue phosphor of the monitor is slightly changed, the characteristics of the 

colours produced by this monitor will change. In this case, RGB is a colour space which 

depends on the device; it is device dependent. 

A device independent colour space is the one where the coordinates used to produce 

the colour will produce the same colour wherever they are applied. The CIE L*a*b* 

colour space is an example of the device independent colour spaces [118]. 

B.3.2 Colour Gamut  

A colour gamut is the area enclosed by a colour space in three dimensions. The 

usual way to represent colour gamut of a colour reproduction system is to show a range 

of colours available in a device independent colour space. Colour gamut is often 

represented in two dimensions  [118]. 

B.3.3 Terminology 

The International Commission on Illumination (CIE) (Commission Internationale 

de l’Eclairage) defined some terms which are used through this document. These 

definitions are as follows [119]: 

 

Colour: is the perceptual result of light in the visible region of the spectrum, having 

wavelengths in the region of 400 – 700 nm, incident upon the retina. 

Intensity: is a measure over some interval of the electromagnetic spectrum of the flow of 

power that is radiated from, or incident on, a surface. It is measured in units such as watt 

per square meter. 

Brightness: the attribute of a visual sensation according to which an area appears to emit 

more or less light. This attribute is measured subjectively and has no unit of 

measurement. 

Luminance: Luminance is the luminous intensity per unit surface area, measured in the 

SI units of candela per square metre (cd/m2). Luminous intensity (unit: Candela) is 

radiant intensity (unit: watts/steradian) weighted by the spectral response of the human 

eye. The luminance measure therefore takes into account that for the three light sources 

which appear red, green, and blue, and have the same radiant intensity in the visible 

spectrum, the green one will appear the brightest, and the blue one is the dimmest. 
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Lumen: a unit of measure for light radiation per unit solid angle from a “standard” point 

light source. 

Lightness: A measure which takes into account the non-linear response of the human eye 

to luminance. A source having a luminance of only 18% of a reference luminance 

appears about half as bright. The CIE uses lightness in their L*a*b and L*u*v* spaces. 

Colour temperature: The temperature of the Planckian radiator whose radiation has the 

same chromaticity as that of a given stimulus. 

Achromatic colour: Colour devoid of hue (white, black, grey, neutral). 

Candela, cd:  The unit of luminous intensity. The candela is the luminous intensity, in a 

given direction, of a source emitting a monochromatic radiation of frequency 540 x 1012 

Hz, the radiant intensity of which in that direction is equal to 1/683 Watt per steradian. 

Chromatic colour: Colour exhibiting hue, as opposed to achromatic colour. 

Hue: according to the CIE, hue is the attribute of a visual sensation according to which 

an area appears to be similar to one of the perceived colours, red, yellow, green and blue, 

or a combination of two of them. Hue is more specifically described by the dominant 

wavelength in models such as the CIE system.  

Saturation:  refers to the dominance of hue in the colour. On the outer edge of the hue 

wheel are the ‘pure’ hues. Moving towards the centre of the wheel, the hues are used to 

describe decreasing /receding colour dominance. 

B.3.4 CIE XYZ Colour Space 

In 1931, the Commission Internationale de l’Eclairage (CIE) developed a method to 

systematically measure colours in relation to the wavelength they contain. This model is 

called the CIE XYZ model, in which three primaries are defined. They are called X, Y, 

and Z, and can be combined to generate any colour which humans can see. This means 

that any colour )(λC  can be represented as: 

),,()( ZYXC =λ  (B.1) 
The X, Y, and Z are calculated by using the colour-matching functions shown in 

Figure B.5 as: 
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Figure B.5: The colour matching functions.  

 

∫=
λ

λλλ
visible

X dIfkX )()(  (B.2) 

 

∫=
λ

λλλ
visible

Y dIfkY )()(  (B.3) 

 

∫=
λ

λλλ
visible

Z dIfkZ )()(  (B.4) 

where k is a  normalisation coefficient (it has the value 683 lumens/watt), the 

function )(λI  is the spectral radiance, and )(λYf  is the colour matching function, which 

is chosen so that the parameter Y is the luminance of the colour [120]. This is different 

from brightness as defined in the terminology section. The original CIE colour model is a 

3-D model. The Z axis is projected on the XY-plane to give the 2-D model; this is shown 

in Figure B.6.  

The CIE chart represents hue and saturation on a two dimensional chart. Fully 

saturated hues lie along the outside edge with desaturated colours toward the centre of the 

chart. This CIE X-Y chart was later revised to better reflect human perception of colour. 

While the CIE chart is a very useful tool, the colour space it defines does not provide an 

intuitive model for our colour vision system or the devices we use to reproduce colour.  

The Y primary was defined to match the luminous-efficiency function of the human 

eye. X and Z were obtained based on experiments involving human observers. The 

chromaticity values are defined as: 
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)/( ZYXXx ++=  (B.5) 
 

)/( ZYXYy ++=  (B.6) 
 

)/( ZYXZz ++=  (B.7) 
 

Knowing x and y, z can be found as yxz −−=1 .  

 

 
 

Figure B.6: The Three-Dimensional model of the CIE-XYZ colour space. 

 

The CIE Chromaticity diagram which is shown in Figure B.7 is a plot of x versus y 

for all visible colours. Each point on the edge denotes a pure colour of a specific 

wavelength. White is at the centre where all colours combine equally (x = y = z = 1/3). 

RGB values in a particular set of primaries can be transformed from and to CIE XYZ 

colour space by using matrices. To transform the XYZ colour space to RGB with D65 

white point, the following equation is used [121]: 
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The range of the RGB generated by equation (B.8) is [0,1]. Negative values in this 

matrix mean that it is not possible to generate all of the visible colours using the RGB 

colour space.  

 
Figure B.7: The CIE diagram. 

On the other hand, given the RGB values [0,1], the XYZ values can be computed 

by  inverting  equation (B.8) as follows: 
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(B.9) 

B.3.5 The RGB Colour Space 

This colour space is used for computer graphics. It is the best-known and most 

widely used colour space. Each colour in this system is represented by three values 

referred to as R (red), G (green), and B (blue). It is built in the form of a cube in the 

Cartesian coordinate system in which the x, y, and z axis are represented by R, G, and B 

respectively, Figure B.8. The range of the RGB values are [0,1]; which leads to  black, 

which is located at the centre of the coordinates, being given as (0,0,0) and white as 

(1,1,1). These two colours (the black and white) represent the opposite corners of RGB 
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space cube. Vertices of the cube on the axes represent the primary colours, and the 

remaining vertices represent the complementary colour for each of the primary colours. 

The other corners of the cube are red, green, blue, cyan, magenta, and yellow [120].  

The grey scale is located on the diagonal of the cube between the black and the 

white. This space has many drawbacks such as: 

o It is difficult to do any segmentation because of the 3-D nature of the system. 

o The coordinates of the three colours are highly correlated, and as a result any 

variation in the ambient light intensity affects the RGB system by shifting the cluster 

of colours towards the white or the black corners. As a result, it will be hard to 

recognise the object under consideration under different brightness conditions [10]. 

 

 
Figure B.8: The RGB colour space. 

 
The RGB colour scheme is an additive model. Intensities of the primary colours are 

added to produce other colours. Each colour point within the bounds of the cube can be 

represented as the triple (R, G, B), where values for R, G, and B are assigned in the range 

from 0 to 1. The magenta vertex is obtained by adding red and blue to produce the triple 

(1, 0, 1), and white at (1, 1, 1) is the sum of the red, green, and blue vertices. Shades of 
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grey are represented along the main diagonal of the cube from the origin (black) to the 

white vertex. 

B.3.6 The CMY and CMYK Colour Space 

This system is based on the secondary colours (cyan, magenta, and yellow), Figure 

B.9. It is used very often in colour printers and copiers which deposit pigment on paper. 

Each colour in this colour space is simply represented by the difference between white 

light and NOT reflected light. The following formula is used to convert the RGB to 

CMY: 
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(B.10) 

The range of the C, M, and Y is assumed to be [0,1].  

 
Figure B.9: The CMY colour space. 

 

The CMYK is mostly used by printers. Since it is hard to mix the colours to get the 

black colour a dark grey is generated instead of black a pure black is added to this system 

as a separate colour with a range [0,1]. The conversion from the CMY to CMYK is 

achieved by the following formulas: 

),,min( YMCK =  (B.11) 
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KCC −=  (B.12) 
                          

KMM −=  (B.13) 
               

KYY −=  (B.14) 
Due to the same reasons described in the RGB colour space, it is impossible to 

describe all of the colours in the CMY colour space. 

B.3.7 The Nrgb Colour Space 

This is a simple colour space in which colour is represented by its normalised value 

with respect to the intensity. The impact of the light variations is reduced in this space, 

but it is not possible to recover the tint of the object when it is lit with intensity varying 

illumination. The Nrgb is given by: 

),,(, BGRCfor
BGR

C
NC =

++
=  

 
(B.15) 

Figure B.10 shows an outdoor scene in RGB colour space converted to the 

normalised RGB (Nrgb) colour space. This colour space is more immune to the changes 

of illumination as long as that the changes takes place in white light. 

  

Figure B.10: The Nrgb colour space. 

B.3.8 HSV (HSB) Colour Space 

One of the big disadvantages of using the RGB colour space is its difficulty to 

separate the colour information from the brightness one. Instead of a set of colour 

primaries, the HSV (Hue, Saturation, and Value) colour space or as it is sometimes called 

HSB (Hue, Saturation, Brightness), created in 1978 by Alvey Ray Smith, uses colour 

descriptions which have a more intuitive appeal to users. To give a colour specification, a 
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user selects a spectral colour and the amounts of white or black which is to be added to 

obtain different shades, tints, and tones.  

The three-dimensional representation of the HSV model is derived from the RGB 

cube. If the RGB cube is viewed along the diagonal from the white vertex to the origin 

(black), the outline of the cube, which has a hexagon shape, can be seen as shown in 

Figure B.11. The boundary of the hexagon represents the various hues and it is used as 

the top of the HSV hexcone; Figure B.12. In the hexcone, saturation is measured along a 

horizontal axis, and value along a vertical axis through the centre of the hexcone. 

 
Figure B.11: RGB Colour Cube is viewed along the Diagonal from White to Black. 

 

Hue (H) is described with the words we normally think of as describing colour: red, 

purple, blue, etc. Hue is more specifically described by the dominant wavelength in 

models such as the CIE system. Hue is also a term which describes a dimension of colour 

we readily experience when we look at colour. It will be the first of three dimensions we 

use to describe colour. It is represented as an angle about the vertical axis, ranging from 

0° at red through 360°.  
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Figure B.12: The Colour-Cube Outline is a Hexagon. 

 

The vertices of the hexagon are separated by 60° intervals. Yellow is at 60°, green 

at 120°, and cyan opposite red at H = 180°, Figure B.13. Complementary colours are 

180° apart. Figure B.14 shows the hue colour circle. In this figure, the outer border of the 

circle represents the pure hue, while the centre shows the white.  

Saturation (S) refers to the dominance of hue in the colour. On the outer edge of the hue 

wheel are the 'pure' hues. Moving towards the centre of the wheel, the hues are used to 

describe decreasing/receding colour dominance. As the centre of the wheel is reached, no 

hue dominates. Those colours directly on the central axis are considered desaturated. 

These desaturated colours constitute the grey scale; running from white to black with all 

of the intermediate greys in between. Saturation, therefore, is the dimension running from 

the outer edge of the hue wheel (fully saturated) to the centre (fully desaturated), 

perpendicular to the value axis (Figure B.13). In terms of a spectral definition of colour, 

saturation is the ratio of the dominant wavelength to other wavelengths in the colour. 

White light is white because it contains an even balance of all wavelengths. It varies from 

0 to 1. It is represented in this model as the ratio of the purity of a selected hue to its 

maximum purity at 1=S . A selected hue is said to be one-quarter pure at the value 

25.0=S . At 0=S , we have the grey scale. 
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Figure B.13: HSV Colour Space. 

Value V varies from 0 at the apex of the hexcone to 1 at the top. The apex represents 

black. At the top of the hexcone, colours have their maximum intensity. When 1=V  and 

1=S , we have the “pure” hues. White is the point at 1=V  and 0=S . In terms of a 

spectral definition of colour, value describes the overall intensity or strength of the light. 

If hue can be thought of as a dimension going around a wheel, then value is a linear axis 

like an axis running through the middle of the wheel, Figure B.14 [120, 122]. 

 

 
 

Figure B.14: The Hue Colour Circle. 
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Colour concepts associated with the terms shades, tints, and tones are represented in 

a cross-sectional plane of the HSI hexcone, Figure B.15. Adding black to a pure hue 

decreases V down the side of the hexcone. Thus, various shades are represented with 

values 1=S  and 10 ≤≤V . Adding white to a pure tone produces different tints across 

the top plane of the hexcone, where parameter values are 1=V  and 10 ≤≤ S . Various 

tones are specified by adding both black and white, producing colour points within the 

triangular cross-sectional area of the hexcone [120]. 

 

 
 

Figure B.15: Cross Section of HSV hexcone. 

 

 
Figure B.16: The HSV inside the RGB Colour Space Box. 
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B.3.8.1 Converting Colours from RGB to HSV 

Assuming that the RGB values are normalised to be in the range [0,1], the hue angle 

H  is measured with respect to the red axis in the range [0,360], S and V in the range 

[0,1], the HSV components can be calculated from the RGB colour space as follows 

[123]: 

The Value is given by: 

),,max( BGRV =  (B.16) 
The Saturation component is calculated by: 
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0),,max(0 == BGRifS  (B.18) 

The Hue is given by: 
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HH ×= 60   

 
3600 +=< HHthenHif   

 
Where H  is the hue angle measured from the red. 

B.3.8.2 Converting Colours from HSV to RGB 

Given that the hue angle H  is in the range [0,360] and S and V in the range [0,1], 

the RGB equivalents in the range [0,1] are calculated as follows [123]:   

When 0=S , the colour is on the black-and-white centre line and there is no Hue. In this 

case, the algorithm assigns V to RGB as follows: 

VBGR ===   
 
  When 0≠S , Hue exists and the RGB can be calculated as: 
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• Divide the Hue angle by 60 to specify which hex angle at which hue is located. 

6mod
60⎥⎦
⎥

⎢⎣
⎢=

H
i  

 
(B.22) 

• Calculate the fractional part of H  as  

i
H

f −=
60

 
 
(B.23) 

• Calculate tandqp ,,  as: 
)1( SVp −=  (B.24) 

 
)1( SfVq −=  (B.25) 

      
))1(1( SfVt −−=  (B.26) 

• Calculate the RGB according to the value i  as follows: 
o 0=iif ;  

VR =  
tG =  
pB =  

o 1=iif ;  
qR =  
VG =  
pB =  

o 2=iif ;  
pR =  
VG =  
tB =  

o 3=iif ;  
pR =  
qG =  
VB =  

o 4=iif ;  
tR =  
pG =  

VB =  
o 5=iif ;  

VR =  
pG =  
qB =  

To get an impression of what the hue, saturation, and value images look like, Figure 

B.17 shows an RGB image converted into HSV colour space. The Hue image is 

normalised from [0,360] to [0,255] so that it will be possible to show it as an image. 
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Saturation and Value images are normalised from [0,1] for each of them to [0,255] for the 

same reason. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure B.17: (a) RGB image, (b) Hue, (c) Saturation, and (d) Value images. 

B.3.9 The HSI (HLS) Colour Space 

Every colour in this system is represented by three components: the hue (H): the 

apparent colour of the light determined by the dominant wavelength, the saturation (S): 

the purity of colour, and the intensity (I): the total light across all frequencies, or the 

synonymous system HLS (Hue, Lightness and Saturation). This colour space is 

represented by double hexagons or double cones attached to each other as shown in 

Figures B.18 and B.19. It is very important and attractive colour space for the 

applications of image processing because it represents colours in a way similar to which 

the human eye senses colour. 

The Hue component describes the colour, and it is described by an angle between 

[0,360] degrees, where red is located at 0 degrees, green at 120 degrees, and blue at 240 
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degrees. The saturation shows how much the colour is mixed with white. It ranges 

between [0,1]. The intensity ranges between [0,1] where 0 represents black, and 1 is 

white. 

 
Figure B.18: The HSI  (HLS)  Hexagon form. 

B.3.9.1 Converting Colours from RGB to HSI 

Assuming that the RGB values are normalised to be in the range [0,1], and the angle 

θ  is measured with respect to the red axis of the HSI space, the HSI components can be 

calculated from the RGB colour space. The HSI components can be calculated as follows 

[64]: 

The Hue H is given by: 

GBifH ≤= θ  (B.27) 
   

GBifH >−= θ360  (B.28) 
where: 
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The saturation component is calculated by: 
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And the intensity is given by: 
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3
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(B.31) 

                                                                                                

 
Figure B.19: The HSI (HLS) cone form. 

B.3.9.2 Converting colours from HSI to RGB 

Given the values of HSI in the interval [0,1], the corresponding RGB values can be 

calculated. The set of equations used for this conversion depends mainly on the values of 

H. There are three sets of equations corresponding to the 120° interval which represent 

the separation of the primary colours. The conversion is carried out by two steps: 

 Multiply H by 360°, to return the value of H to its original value. 

 Calculate the RGB values according to the Hue sectors as seen below [124]: 
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BRIG −−×= 3  (B.34) 

For oo 240120 ≤≤ H  
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⎥
⎦

⎤
⎢
⎣

⎡
−

−
+=

)300cos(

)240cos(
1

3 H

HSI
B

o

o

 
 
(B.38) 

                   

( )S
I

G −= 1
3

 
 
(B.39) 

   

BGIR −−×= 3  (B.40) 

 

  

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure B.20: (a) RGB image, (b) Hue, (c) Saturation, and (d) Intensity images. 
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Figure B.20 shows an RGB image converted into the HSI (HLS) colour space. The values 

of Hue, Saturation and Intensity are normalised to [0,255] in order to show them as 

images. 

B.3.10 Comparison of HSI (HSL) and HSV 

The HSL and HSV colour spaces are similar to each other. The HSL colour space 

reflects the intuitive notion of saturation and lightness as two independent parameters. 

The consequences of this are better results for the HLS colour space.  The behaviour of 

the HLS colour space is symmetrical to lightness and darkness which is not the case of 

the HSV colour space.   

The saturation component of the HLS colour space gives fully saturated colour to 

the equivalent grey, while the HSV colour space cannot do this. The reason is that the 

value components of the HSV colour space are always calculated as the maximum of the 

RGB colours which makes the system move from saturated colour to white, which may 

be considered counterintuitive. 

The Lightness in HSL always spans the entire range from black through the chosen 

hue to white (in HSV, the V component only goes half that way, from black to the chosen 

hue) [125]. 

There are some other common problems the two colour spaces share. Among them, 

in colour selection where lightness runs in the range [0,100], a lightness of 50 should lie 

in the middle of 0 and 100, but this is not the case in these two colour spaces. Simply 

speaking there is no reference to the lightness perception of the human vision. 

The lightness or brightness in these two colour spaces takes place by (R+G+B)/3. 

This computation conflicts badly with the properties of colour vision, as it computes 

yellow to be six times more intense than blue for the same lightness. 

Another problem may appear for both colour spaces is the discontinuity of hue at 

o360 . This leads to problems in the computations of colour mixtures in the polar 

coordinates. This same discontinuity problem appears in every o60  segment of the hue 

circle since the colour space involves different computations for each of these segments 

[119].  
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B.3.11 The Improved HLS colour space 

Hanbury and Serra [126] introduced an improved version of HLS colour space 

which was later called IHLS. This colour space is very similar to the aforementioned 

colour spaces, but it avoids the inconveniences of the other colour spaces designed for 

computer graphics rather than image processing. The colour space provides independence 

between chromatic and achromatic components [127].   

B.3.11.1 Converting Colours from RGB to IHLS 

The conversion from the RGB to this colour space is done as follows [126]: 
GBifH ≤=θ  (B.41) 

         
GBifH >−= θ360  (B.42) 

where: 
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),,min(),,max( BGRBGRS −=  (B.44) 

           
BGRL 0722.07152.02126.0 ++=  (B.45) 

B.3.11.2 Converting Colours from IHLS to RGB  

The transformation of colours from the IHLS colour space to RGB can be obtained 

by calculating the chroma of values from the saturation values as follows [126]: 
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(B.46) 

Where *
H is given by: 

o60* ×−= kHH  where }5,4,3,2,1,0{∈k  so that oo 600 * ≤≤ H  (B.47) 

From the chroma, one calculates 

)cos(1 HCC ×=  (B.48) 

 
)sin(2 HCC ×−=  (B.49) 

For the case where the hue is undefined: 021 == CC . 

Finally, the RGB colours are calculated from the following equation: 
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Figure B.21 shows an RGB image converted into IHLS colour space. The values of 

Hue, Saturation and Lightness are normalised to [0,255] in order to show them as images. 

  

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure B.21: (a) RGB image, (b) Hue, (c) Saturation, and (d) Lightness images. 

B.3.12 The YIQ Colour Space 

This colour space is used for NTSC television. The Y component represents the 

luminance; while the I image, which stands for Intermodulation and the Q image which 

stands for quadrature represent the chrominance information. The hue information of the 

colour is separated from the intensity. The system takes advantage of the fact that the 

human eye is more sensitive to changes in luminance than changes to hue or saturation. 

This separation has many advantages: 
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o Image processing algorithms can be applied on the intensity and colour information 

separately, such as applying histogram equalisation to enhance the image’s contrast 

while keeping the colours the same. 

o The system is used in TV broadcasting, because it helps to maintain compatibility 

with monochrome TV standards. 

 

Given the RGB values in the range [0,1], the corresponding YIQ values in the range 

[0,1] can easily be computed. The conversion from the RGB colour space which ranges 

[0,1] to the YIQ which ranges [0,1]  for Y and [-0.5,0.5] for I and Q, is linear and done 

using the following formula [121]: 
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(B.51) 

 

An inverse matrix operation can convert the YIQ, which ranges [0,1]  for Y and [-

0.5,0.5] for I and Q, to RGB, which ranges [0,1], as follows [121]: 
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(B.52) 

 
      Figure B.22 shows the RGB image and its equivalent in the YIQ colour space. 

In this figure, the Y image is shown in Figure B.22(b); Figure B.22(c) and (d) show the I 

and Q images. 

  

(a) 

 

(b) 
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(c) 

 

(d) 

Figure B.22: (a) RGB image, (b) Y image, (c) I image, and (d) Q images. 

B.3.13 The YUV Colour Space 

The YUV was originally used for PAL (European "standard") analogue video. The 

Y (range [0,1]) component represents the luminance and the U and V (range [-0.5,0.5], or  

[-128,127] in the signed digital form)  are the Chrominance (colour) component.  The 

colour space is based on the CIE Y primary, and also chrominance. Chrominance is the 

difference between a colour and a reference white at the same luminance.  

To convert from RGB in the range [0,1] to YUV colour space (ranges are [0,1]  for 

Y and [-0.5,0.5] for U and V), the following equation can be used:  
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On the other hand, the conversion from YUV colour space (ranges are [0,1]  for Y 

and   [-0.5,0.5] for U and V) to RGB in the range[0,1] is straightforward and achieved by 

the following equation: 
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Figure B.23 shows the RGB image and its equivalent in the YUV colour space. In 

this figure, the Y image is shown in Figure B.23(b); Figure B.23(c) and (d) show the U 

and V images. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure B.23: (a) RGB image, (b) Y image, (c) U image, and (d) V images. 

B.3.14 The YCbCr Colour Space 

This colour space is similar to the YIQ and YUV colour spaces, but it was 

developed to work with digital television. As before, Y is the luminance component and 

Cb and Cr are the chroma component. This colour space is often confused with the YUV 

colour space, but they are, in fact, two different colour spaces. 

The conversion can be achieved straightforwardly by a matrix form. Assuming that 

the RGB are gamma corrected and the values are in the range [0,1], the corresponding 

YCbCr values can be computed as follows [118]: 
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(B.55) 

In this equation, the value of Y is in the range of [0,1], while the range of the 

chroma (Cb and Cr) is in the range [-0.5,0.5].  
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The conversion from the YCbCr to the RGB colour space is given by the following set of 

equations assuming that the range of the Y component is [0,1] and the range of Cb and Cr 

is [-0.5,0.5] [128]: 

  
(B.56) 

Figure B.24 shows the RGB image and the corresponding YCbCr images 

normalised to [0,255] grey levels.  

  

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure B.24: (a) RGB image, (b) Y image, (c) Cb image, and (d) Cr images. 

B.3.15 The L*a*b* Colour Space 

This model is the most complete colour space because it can describe all the colours 

visible to human eye. It was developed by the CIE in 1976 as a refinement of the XYZ 

colour space because of the desirable property that a perceptual colour difference can be 

quantified by the Euclidian distance. The L*a*b* is device independent and represents 
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every colour through three components. The L value represents luminance which ranges 

from 0 for black to 100 for white. The a and b are represented as +a/-a for red/green and 

+b/-b for blue/yellow. The range of a* is [-500,500], while the range of b* is                          

[-200,200], Figure B.25.  

 
Figure B.25: The L*a*b* Colour Space. 

 
The transformation from the RGB to L*a*b* coordinates is done by the 

transforming the RGB into the XYZ; and the latter is transformed into L*a*b* where a 

linear relationship between them is assumed.  

The transformation from XYZ to L*a*b* is given by: 
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Where  

008856.0)( 3/1 >= tforttf   
(B.61) 
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008856.0
116

16
787.7)( ≤+= tforttf  

Where wX , wY , and wZ  are reference white tristimilus values-typically the white of a 

perfectly reflecting diffuser under CIE standard D65 illumination which is defined as 

3127.0=x  and 3290.0=y  in the CIE diagram. 

The conversion from the L*a*b* to XYZ for )008856.0/( >WYY  is given by: 

3)500/*( aPXX W +=  (B.62) 

 
3

PYY W=  (B.63) 

 
3)200/*( bPZZ W −=  (B.64) 

 Where  

116/)16*( += LP  (B.65) 

B.3.16 The L*u*v* Colour Space 

In 1976 the CIE made another attempt to linearise the perceptibility of colour 

differences.  The L component has the range [0,100], the u component has the range [-

134,220], and the v component has the range [-140,122]. The non-linear relations for the 

L*,u* and v* are given below: 
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)(*13* nuuLu ′−′= ;   )(*13* nvvLv ′−′=  (B.68) 

 

The quantities nu′  and nv′  refer to the reference white. For the o2 observer and 

illuminant C, 2009.0=′nu , 4610.0=′nv . The values of the u′  and v′  are calculated from 

the equations given below: 

)3122/(4)315/(4 ++−=++=′ yxxZYXXu  (B.70) 
 

)3122/(9)315/(9 ++−=++=′ yyZYXYv  (B.71) 
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Appendix C – Explicit Form of Zernike 
Polynomials 

 
),( qp  )(rR pq  

(0,0) 1 
(1,1) r  
(2,0) 12 2 −r  
(2,2) 2

r  
(3,1) rr 23 3 −  
(3,3) 3

r  
(4,0) 166 24 +− rr  
(4,2) 24 34 rr −  
(4,4) 4

r  
(5,1) rrr 31210 35 +−  
(5,3) 35 45 rr −  
(5,5) 5

r  
(6,0) 1123020 246 −+− rrr  
(6,2) 246 62015 rrr +−  
(6,4) 46 56 rr −  
(6,6) 6

r  
(7,1) rrrr 4306035 357 −+−  
(7,3) 357 103021 rrr +−  
(7,5) 57 67 rr −  
(7,7) 7

r  
(8,0) 1209014070 2468 +−+− rrrr  
(8,2) 2468 106010556 rrrr −+−  
(8,4) 468 154228 rrr +−  
(8,6) 68 78 rr −  
(8,8) 8

r  
(9,1) rrrrr 560210280126 3579 +−+−  
(9,3) 3579 2010516884 rrrr −+−  
(9,5) 579 215636 rrr +−  
(9,7) 79 89 rr −  
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(9,9) 9
r  

(10,0) 130210560630252 246810 −+−+− rrrrr  
(10,2) 246810 15140420504210 rrrrr +−+−  
(10,4) 46810 35168252120 rrrr −+−  
(10,6) 6810 287245 rrr +−  
(10,8) 810 910 rr −  
(10,10) 10

r  
(11,1) rrrrrr 610556012601260462 357911 −+−+−  
(11,3) 357911 35280756840330 rrrrr +−+−  
(11,5) 57911 56252360165 rrrr −+−  
(11,7) 7911 269055 rrr +−  
(11,9) 911 1011 rr −  
(11,11) 11

r  
(12,0) 142420168031502772924 24681012 +−+−+− rrrrrr  
(12,2) 24681012 21280126025202310792 rrrrrr −+−+−  
(12,4) 4681012 7050412601320495 rrrrr +−+−  
(12,6) 681012 84360495220 rrrr −+−  
(12,8) 81012 4511066 rrr +−  
(12,10) 1012 1112 rr −  
(12,12) 12

r  
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Appendix D – Results of Training and 
Testing of SVM 

Table D.1: Classification rates of Training and Testing using Binary Images 

SVM Type: C-SVM, Kernel = Linear, C=1 

Shapes Speed-Limit Experiment 

Training% Testing% Training% Testing% 

1 100 100 100 100 

2 100 100 100 96.0 

3 100 100 100 100 

4 100 100 100 96.0 

5 100 100 100 97.3 

6 100 100 100 97.3 

7 100 100 100 100 

8 100 100 100 97.3 

9 100 100 100 97.3 

10 100 100 100 100 

Ave 100 100 100 98.1 

 

Table D.2: Classification rates of Training and Testing using Geometric moments 

SVM Type: C-SVM, Kernel = Linear, C=1 

Shapes Speed-Limit Experiment 

Training% Testing% Training% Testing% 

1 95.7 95.5 81.1 70.6 

2 96.2 98.9 80.0 68.0 

3 95.7 92.2 74.8 69.3 

4 95.2 96.6 77.7 72.0 

5 96.2 96.6 81.7 60.0 

6 95.7 97.7 80.6 70.7 

7 96.6 93.3 74.3 74.7 

8 95.2 97.7 81.7 65.3 

9 96.6 95.5 76.0 68.0 

10 95.9 97.7 77.7 68.0 

Ave 95.8 96.2 78.5 68.6 
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Table D.3: Classification rates of Training and Testing using Zernike moments 

SVM Type: C-SVM, Kernel = Linear, C=1 

 

Shapes Speed-Limit Experiment 

Training% Testing% Training% Testing% 

1 100 100 97.7 89.3 

2 100 97.7 98.8 85.3 

3 100 96.6 100 82.7 

4 100 100 99.4 89.3 

5 100 97.7 100 86.7 

6 100 100 97.7 93.3 

7 100 98.9 99.4 85.3 

8 100 100 98.8 89.3 

9 100 100 98.2 90.7 

10 100 98.9 98.2 89.3 

Ave 100 98.9 98.8 88.1 

 

 

 

Table D.4: Classification rates of Training and Testing using Legendre moments 

SVM Type: C-SVM, Kernel = Linear, C=1 

 

Shapes Speed-Limit Experiment 

Training% Testing% Training% Testing% 

1 100 98.9 100 98.7 

2 100 100 100 98.7 

3 100 100 100 98.7 

4 100 100 100 97.3 

5 100 98.9 100 97.3 

6 100 98.9 100 97.3 

7 100 100 100 98.7 

8 100 100 100 97.3 

9 100 100 100 98.7 

10 100 100 100 100 

Ave 100 99.7 100 98.3 
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Table D.5: Classification rates of Training and Testing using OFMM moments 

SVM Type: C-SVM, Kernel = Linear, C=1 

 

Shapes Speed-Limit Experiment 

Training% Testing% Training% Testing% 

1 97.6 94.4 43.4 54.7 

2 97.1 90.0 61.7 54.6 

3 95.2 98.8 45.7 54.7 

4 96.6 96.6 59.4 50.6 

5 97.1 94.4 62.8 50.6 

6 97.1 92.2 49.1 42.7 

7 97.1 93.3 50.6 43.0 

8 96.2 97.8 48.0 46.7 

9 95.7 97.8 61.7 57.3 

10 96.7 92.2 51.4 53.3 

Ave 96.6 94.7 53.4 50.0 

 

 

 

Table D.6: Classification rates of Training and Testing using Haar Features 

SVM Type: C-SVM, Kernel = Linear, C=1 

 

Shapes Speed-Limit Experiment 

Training% Testing% Training% Testing% 

1 99.5 98.8 97.1 93.3 

2 99.5 98.8 99.4 93.3 

3 99.5 98.8 98.3 96.0 

4 99.5 100 97.1 94.7 

5 99.5 100 96.0 98.7 

6 99.5 100 99.4 96.0 

7 100 98.8 98.8 90.7 

8 100 97.7 98.3 94.7 

9 99.5 100 98.3 94.7 

10 99.5 98.8 98.3 94.7 

Ave 99.6 99.1 98.1 94.7 
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Appendix E – The Access 
Database 

 
The database presented in this appendix is to manage the big number of images 

collected in this research. The total number of images collected in Sweden is 3415 

images. There are collected between the years 2003 and 2006 in different parts of 

Sweden. Most of the images are collected at Dalarna province, Stockholm and Malmö 

while the rest are collected in other places such as Goteborg province.  It is a tedious 

work to classify these images manually; therefore an automatic system can be very 

helpful. The database is created using Microsoft Access 2000.  

Basically, there are two objects which can be classified: pictures and signs. These 

objects are represented in two tables shown in figures E.3 and E.4. However, there are 

other supplementary tables which are used to describe the phrases used for different 

conditions. Figure E.1 depicts the tables used in this database, while Figure E.2 shows the 

relationships among these tables.  

Pictures are collected in different light conditions, different weather conditions, 

different light geometry, and they may contain some defects. Further, as signs belong to 

different categories they have different colours and shapes, and they may be found in 

different conditions. To represent all these conditions in the database, a number of nine 

tables are created to represent the phrases used for different conditions, among them four 

tables are used to represent picture conditions and five tables to represent sign conditions. 

These tables are shown in Figure E.5. 

Beside this number of tables, the database contains three forms to enter the 

specifications of the pictures and signs in the corresponding tables. The first form is 

invoked to access the picture table, the second to access the sign table and the third is to 

access both tables at the same time. These forms are depicted in figures E.6-E.8, 

respectively. 

A number of queries are prepared for different conditions depending on the set of 

requirements involved in the search through the database.  Figure E.9 shows one example 

of a query.    
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Figure E.1: Tables used in the database. 

 

 
Figure E.2: The relationships among tables. 
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Figure E.3: Pictures table. 

 

 
Figure E.4: Signs table. 
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Figure E.5: The Phrases tables. 

 
Figure E.6: The Pictures list form. 

 
Figure E.7: The Signs list form. 
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Figure E.8: Pictures and Signs form. 

 
Figure E.5: An example of a query. 
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