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The Traffic Assignment Problem for a General Network™

Stella C. Dafermos ' and Frederick T. Sparrow *
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A transportation network is considered. The traffic demands associated with pairs of nodes and
the (convex) traveling cost functions associated with the links are assumed given. The two problems
of finding the trathe patterns which either minimize the total cost or equilibrate the users” costs are
formulated. and algorithms are constructed for the solution of these problems.
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Introduction

Many economic systems can be visualized as networks where nodes stand for commodities,
and links and paths stand for simple and complex production processes. The type of system which
can be thus described in the most natural way is probably a transportation network. In this case
the nodes stand for “cities,” the links stand for roads directly connecting two cities, and the paths
stand for roads connecting two cities directly or indirectly.

A certain demand is associated with every pair of connected nodes of the network. This
demand will be distributed among paths which join the pair of nodes. This gives rise to a traffic
pattern, the determination of which is known as the traffic assignment problem. With every link
of the network we associate a “traveling’™ cost which is assumed to be a function of the “traffic
volume™ on the link. We assume that the units traveling along this link uniformly share this cost.

In some cases the trafhie pattern can be regulated by some central authority, as for example.
a network used for the transportation of military supplies or for a railroad network. It is obvious

“ that in this case, the problem which the central authority faces is to determine the trafic pattern
which minimizes the total cost over the whole network.

On the other hand a broad class of transportation networks can be described as user opti-
mized. Here travel patterns are set up by individual users each choosing the cheapest way (in the
light of other users” decisions) to arrive at his respective destination, rather than having his travel
pattern dictated by a choice consistent with some aggregate system optimum.

That the two above criteria lead generally to different traffic patterns was observed first by
Pigou [1. p. 1943 in an example of a simple two node., two link network. Interest in this problem
has been revived by Wardrop [2], who calculates the traffic patterns according to the above two
criteria for the case of a network consisting of two nodes connected by n independent paths and
for a special cost function. Wardrop discusses briefly the case of a general network and sketches
the equilibrium equations, but he does not discuss their solution.

Since 1952 several authors have reexamined the problem of flow patterns in a transportation
network. For a complete bibliography we refer to a survey acticle by Beckmann [3]. We should
observe here that two problems discussed by Wardrop. the problem of calculating the flow patterns
according to the above two criteria, and the problem of planning an optimal investment allocation
for improvement of the traffic network, still remain open.
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Some progress towards the calculation of the flow patterns has been made. Almond [4] has
constructed an algorithm for the solution of the user optimized network in the case of very simple
networks. However, no extension of the algorithm for more complicated networks and no proof
of convergence has been provided so far.

A different method of attack is based on the observation that the user optimization problem
can itself be reformulated as a total cost minimization problem for an appropriately chosen objective
function [5, 3]. )

When viewed in this manner the problem is of the “multicommodity network flow™ class,
which has been considered [13, 14] in the literature. Tomlin [14] has shown that for the case of linear
cost (congestion) functions, the problem reduces to a linear programming problem that can be solved
fairly efficiently by the Dantzig-Wolfe decomposition principle. Others [11] have suggested the use
of convex programming techniques to get around the nonlinearity of the objective function. In
fact, it was the enormous number of constraints associated with the convex programming formula-
tion of the problem for the simplest of networks that led us to develop the special algorithms pre-
sented in the paper.

Returning to the Tomlin algorithm, it should be emphasized that his algorithm takes advantage
of the linearity of the objective function; on the contrary, the success of ours hinges on the non-
linearity of the objective function, as will be demonstrated below. The algorithms should be viewed
as a contribution to the theory of nonlinear multicommodity flow, as well as a contribution to the
trafhic flow literature.

In the present paper we mainly try to solve the open problem of the calculation of the traffic
pattern in a general network, for the two criteria proposed by Wardrop. Some progress has been
made [10] on Wardrop’s resource allocation problem; these results will be reported in a later
publication.

The paper is divided into two sections: the first concerns itself with problem formulation.
Section 1.1 introduces the notation to be used, and the concept of a feasible flow pattern for a
network. Section 1.2 describes two problems associated with transportation networks. The first,
Py, is 1o find a feasible flow pattern that minimizes the total cost of traveling in the network; the
second, Ps, to find the feasible low pattern that would be arrived at if users considered only their
own interests in choosing these paths. Section 1.3 spells out the conditions that are assumed con-
cerning the congestion functions for the links of the network, and then goes on to give the necessary
and sufficient conditions for the existence, uniqueness, and stability of a solution for problem P;.
Then the same conditions are derived for problem P; by showing that there is always a problem Py,
associated with problem P, whose solution is that for Ps, yet whose formulation is that of P,. This
theorem is a translation into the present paper’s perspective and notation of the result of Jorgensen
[5] referred to before, and implies that every traffic assignment problem of a user optimized network
can be solved by solving the associated problem of a total optimized network. In addition, we
extend Jorgensen’s work by examining the stability of user optimized networks, as well as giving
a more general condition for the user optimized and total cost optimized travel patterns to coin-
cide. The section concludes with the conditions on the congestion functions that will cause the
solutions of Py and Ps to coincide.

Section 2 constructs algorithms for the solution of problems P, and P.. Section 2.1 introduces
the concept of an equilibration operator. and the conditions that must hold for such operators
to obtain a solution to P, referred to as the process of “inducing an algorithm for the solution
of P..” The section concludes with the introduction of the notion of disjoint paths. In section
2.2, we construct two equilibration operators, Eg; for networks with disjoint paths, and F,q,
for any network. The operators are first applied to quadratic models, and we discuss under what
conditions they induce algorithms for P;. In brief, we show that E,; induces an algorithm for
simple (disjoint paths) and almost simple (see text) networks with quadratic cost functions, and give
evidence that E4; converges rapidly to a solution. Next, we show that the operator E,4; induces
an algorithm for problem P, for arbitrary networks with quadratic cost functions.
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Section 2.3 extends the results of the previous section to cases where the cost function is
required only to be twice continuously differentiable and convex, rather than quadratic. Section
2.4 briefly compares the two operators and presents the respective conditions that appear favorable
for their use.

1. The Problem of the Traffic Distribution in a Transportation Network

1.1. Generalities

We start by introducing the concept of a transportation network. Let ¥ be a network in the
sense of Ford and Fulkerson [7, ch. 1, sec. 1], i.e., & is a pair (4, ¥) where A is a collection of
elements which will be called nodes and ¥ is a set of pairs of ordered elements of 4" which will
be called links.

By a path connecting the ordered pair w= (x, y) of nodes we mean a sequence of links (x;, x2),
(x2, x3), . . ., (Xn—1. xn) where xy, x2, . . ., x,, are distinct nodes, x;=x, and x,=y. Thus a path here
is a chain in the terminology of [7, ch. 1, sec. 1]. In particular, every link is a path. The set of all
paths of & will be denoted by 2. A pair w of nodes will be called connected if there exists at least
one path connecting w. The set of all connected (ordered) pairs of nodes of & will be denoted by %"
The set of all allowable travel paths which connect a w will be denoted by 223.

With every w= (x, y)e¥//” we associate a nonnegative demand d,, for travel with origin x and
destination y. This demand will be distributed among all paths in 2,. Suppose that pe?,. By
J» we denote the part of d,, which travels through p. Thus we have the conservation equations

ffip: 2 fp H {]])
e P,
We define
F = {f, : pe P}, D = {dy: we¥'}. (1.2)

A fixed value of # will be called a flow pattern since it characterizes completely the flow. In the
present paper we assume that the traffic flows are nonnegative real numbers and that the links
of the network have infinite capacity.

We will assume that a cost ¢, is associated with every ae# of 4. The value of ¢, is assumed
to be a function of the total amount of traffic f, through a. That is,

ca= ca( fa) (1.3)
where
fa= mz Bap o (1.4)
with
= Lp e oo
We define

&= {ﬁ: . (I',E,g}, = {Cﬂ{)‘-;:) rae?, ﬁ,e[ﬂ, m)}

The triple 7 = {¥, &, €} will be called a transportation network.

Throughout the paper we consider problems of the following type: A transportation network
7 is given and the flow pattern # is the basic unknown. So far % has to conform io the conserva-

* We assume that @, is a reasonably small set which can be enumerated in advance with little difficulty. This assumption, certainly a plausible one to make for
traffic networks, avoids the problem of computing all paths in a network, an enormously time consuming task for large networks.
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tion equation (1.1). An % which satisfies (1.1) will be called a feasible flow pattern. The set of all
feasible flow patterns (for fixed ¥, &) will be denoted by 2%, Z]. 1t is obvious that there exists
a unique feasible flow pattern only in the case for which for any we #” which is connected by more
than one path, d,,=0 holds. Leaving aside this trivial case, we observe that there is an infinity of
feasible flow patterns,

We are now ready to formulate the two basic problems with which we will deal in the paper.

1.2. Formulation of the Problems P, and P,

PROBLEM P,[.7 ]: Given a transportation network .7 = (%, &, €). find a feasible solution
F1(77) which minimizes the total cost

CF)= Y clfa) (1.6)

ae?

spent in the network.

A solution #,(7) of problem P{[7 | will be called a “system optimizing” flow pattern.

As noted in the introduction, this is a reasonable problem but in many cases the network is
in fact “user optimized.” Each user of a link @ will be charged with a portion of the total cost ¢,
on this link. It is natural to assume that there is full interaction between all units traveling on
link a; that is, the cost is distributed uniformly among them. Thus, the share of the cost of each
unit traveling on a will be given by

Ea:('-ﬂ[f_;:]z C_ﬂ“@ _ (17)

Ja
In consequence, the personal cost &, of a unit traveling on pe? will be given by
('-Pz 2 Sﬂpﬁu (18)
ey

where the incidence symbols 8., have been introduced by (1.5).
In order to make clear the notion of a flow pattern which is
the following definition.

‘user optimized,” we introduce

DErFiNITION (1.1): For given T = (4, &, €), by an equilibrium flow pattern F' we mean a
Seasible flow pattern with the following property. Let wel~ such that dy, > 0. Choose any pe?
Jor which f,; >0, and any number Af. 0 < Af< f,. Consider another path qe?,.. Then the individual
cost €,(F ' )Af of Af in the original flow pattern F' is not greater than the individual cost ¢,(F ' )Af
in the flow pattern F'' defined by

fi=f—Af,
1 =f; +Af, (1.9)
fi=fl  SrePorpiql

In other words, an equilibrium flow pattern is an equilibrium point in the sense of Nash
(e.g. [8, sec. 7.8]) of the noncooperative game among the various users of the network. Having
given the definition of an equilibrium flow pattern, we now formulate problem Ps

ProBLEM P, [77]: Given a transportation network 7, find an equilibrium flow pattern
(C}:g= .9_;;: {3—).

5 Under the assumption 4 to be imposed shortly, this condition implies that no distribution of Af among several paths of 2, — {p} reduces the cost for Af,
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1.3. Study of the Solutions to Problems P, and P,

It is not to be expected that the problems P, P, formulated above are well posed unless some
conditions are set on the form of the cost functions ¢, (fs). Whenever we consider the problem P,
we will assume that the above functions satisfy the following assumptions for all e .

1. ¢a (fu) is continuous on [0, ).

2. ¢, (0)=0.

3. ¢a (fa) is strictly increasing on [0, ).

4y. cq (fa) is strictly convex on [0, =),

The interpretation of conditions 1-3 is obvious. Conditions 4y, for differentiable ¢, l_fﬂ]. means
that the rate of increase of the cost, i.e., the marginal cost, is a strietly increasing function of the
traffic flow £, (congestion effect).

Whenever we consider the problem P, we will assume that conditions 1-3 above are satisfied
but, in the place of 4,, we will impose the condition

4o, @, (fu) is strictly increasing on [0, %)

with the understanding that

éel0) = lim Calfa),

fa= v Ja

Assumption 4, provides a slightly different interpretation of the congestion effect with the emphasis
placed on the individual rather than on the marginal cost. In fact conditions 1, 2,3, 4, imply condition
45. (However, conditions 1, 2. 3. 4. do not imply. in general. condition 4,.)

The simplest model which satisfies the above requirements corresponds to a cost function of
the form

(.HL)(_:‘I} =.Lrn.)"_:}:'+ h r’f‘}(_-ﬂ, Ea = n. h = 0 [I.IO]

and will be called the quadratic model. In this model the congestion effect depends linearly on the
traffic flow.

Having specified the admissible form of €, let us consider the problem P, |7 ]|,.7 = (4, &, €).
Recall that this problem calls for the vector (#, %) which solves the minimization problem:

min C (#)= Et',.(ﬁ,) (1.11)

subject to

/_'f = afuafp =0, ae?,

PE:

Hh=0, pe?, (1.12)
2 fo=du, wel”.
PEFy

Observe that a fixed .# induces a unique # through (1.12);. But it is possible that more than one
feasible # induces the same F. The set of all feasible # which induce a given fixed # will be
denoted by R[ 7 ]. On account of (1.12), R[.7 | is a convex set. # will be called feasible if R[.7 | is
non-empty. The set of all feasible % will be denoted by 7 [%., /]. In appendix I we give an example
of a transportation network such that for some 7 eZ [4, 7], R[.# ] contains an infinite number of
elements.

Note that if (#', # '), (#". F") satisfy the constraints (1.12) so does any convex combination

(F.F)=N(F' . F)+N(F" FY) N N>, +HN=1.
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On the other hand and on account of 44,
C(F)=NC(F')+NC(F"

and equality may hold only if %' =%". Consequently, P, is a convex minimization problem in
ZDF and, in particular, it is strictly convex in Z. Using the theory of convex programming and
observing that the total cost function depends only on F, we arrive at the following theorem.

THEOREM (1.1): Given 7 = (4., 2, €). there exists a unique F,€Z[9, 2| such that C(F,) is the
minimum of C(F) over Z|%4, Z|. Every element # €R[F ] is a solution of problem P.

Thus, problem P, always possesses solutions and in particular it possesses a unique solution
if and only if R[.Z,] consists of a unique element.

In the special case where the c,(fs) are differentiable functions we can prove the following
theorem.

THEOREM (1.2): The flow pattern #e% is a solution of problem P, if and only if it has the
following property. For any we¥#" connected by precisely the paths p,, . . ., pm. these paths can
be so numbered that

e (F)=...=c, F)=Muv=c, F)=...=¢,(F),

m

P — (1.13)

fo. =0,  r=a+l .. m,
where we use the notation

o (F)= z Bupcy (ﬁr) s

aed

dc, (fa
ol (ft!) = [fﬂ,

PROOF OF SUFFICIENCY: Assume that #eZ satisfies (1.13). Let % +A%eZ be a feasible
reallocation. The change of the total cost is given by

ﬁcz z [C,,(f:, =+ Af-;;)_ Cn(f_n)] .

aed

Applying the mean value theorem and using the fact that the functions ¢, (f,) are (strictly) increasing
we obtain

AC;%c.’.{ﬁ:)A_ﬂ. & AL, (1.14)
Recalling (1.4),
Afa =‘§; Baplfy. (1.15)
Then.
ACZ Y 3 ducalfdAfy= 3 Afpcp(F). (1.16)
& = )

Note that if f,= 0. then Af, = 0. Thus, using (1.13).

Afuey(F) Z AfyM, (1.17)
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where w is the pair of nodes which is connected by p. Recalling that 2 Af,=0, we obtain from
(1.16) and (1.17), s,

AC=0

which proves that # is a solution of problem P,.

Q.E.D.
PROOF OF NECESSITY: Suppose that # €2 is a solution of problem Py, but there exist paths
p. qeP  such that £, > 0 and

e)(F)—cy(F)=e> 0. (1.18)
Assume now that a portion Af of f, is reallocated to the path ¢. The change of the total cost is given

by _ = -
AC= Y dplcafa—AN—calf) 1+ Y, Sylcalfut AN = calfa) ]

aed aed
where T ) )
51 = Sup if a is not contained in g, (1.19)
P10 if a is contained in g, ’

and 84, is defined in an analogous fashion.
Applying the mean value theorem and recalling that ¢/(f,) are (strictly) increasing functions
we end up with

;\(:<1 S Stcatfa— AN+ 3 88ecalfutBf) L AS.

=~ yed e/

Now E Syl fu—AS). z ﬁi;qr',f.{f,,-!— Af) are continuous functions of Af. Hence, we may choose
ne.¥ e

a positive Af (for feasibility it must be such that /, —Af= 0. whence Af = f,) such that

2 Snpf n{f” ‘l-{ } = E Sr:p{ r:lﬁi

ne e

: = €
E u,: r!'f:‘*+A'”{ Es;i!rj "{J‘ﬂ,_'—i

uEe_d e
Hence,

AC<— Zﬁw,,(f,,mH Af+ S 8gcal ,,1..\.,f+ Af.

e e

It is easily seen that the above inequality may be written in the form

AC <{ 3 Supcalfa)+ 3, Suge ,,{/,.!+ } Af
e med
or. using (1.18), -
AC < —3 Af<0
which is a contradiction to the assumption that % is a solution of problem P,. Q.E.D.

Actually it can be shown that (1.13) are simply the Kuhn-Tucker conditions (see [9, ch. 6])
for the minimization problem (1.11). (1.12). However. these conditions have been derived inde-
pendently here in order to keep the paper self-contained.

In the case of the quadratic model. P, reduces to a quadratic programming problem and
(1.13) become linear.

From the convexity of problem P, we can obtain additional information. namely that the
solution is stable. To make this precise we introduce the following definition.
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DEFINITION (1.2): Let € > 0. We say that 7€ satisfies (1.13) modulo € if and only if for any
p, q connecting any wel/" and such that f, = de, either

e (F) —es(F )| = :—'!e (1.20)
holds. or else both
W LB ;
(T )= c (F l-l—(—fe (1.21)
and
fa<de

where ¢, d are arbitrary but fixed magnitudes having dimensions of cost and traffic flow, respec-
tively. and included in order to make € dimensionless.

THEOREM (1.23): Let 7 =(%, &, € ) be a transportation network with twice continuously differ-
entiable cost functions, and .7 a solution of problem P\[ ]. Then there exist numbers K and L
which depend solely on 7 . such that

C(#F)— CF')< cKe. (1.22)
|\ZF—F"|r = Z [fa—fi? < d2Le, (1.23)
e

for any F e Z |7 | which satisfies (1.13) modulo €. € > (.
PrROOF: Assume that % e 2 satisfies (1.13) modulo e. We set AF =% " — #. As in the proof
of Theorem (1.2) (see eq (1.16)), we have

C(F')—C(F)= S Afpeci(F ) . (1.24)

pEF

We decompose %, %" =" U ¥, so that if we¥", then f,<de for all pe?,, while if wel’,,
then f, = de for at least one pe?,. In particular one of #7 %" may be empty.

For wel, .
A_fp S (I'E. !}Gﬁau-‘

Hence

> EA,,‘;;C;.(?)B—C:%’EE > ey F)=—cKie (1.25)

we i peP, wel ' pe P,

where K; can be easily estimated in terms of elements of .7,

Fix now we¥’s. and let Z,.={py. . . .. Pm,t- Suppose that

fo Zde,r=1, .. s, andfu <de r=s+1, .. .. Mw
We write

Mp. = f'},l,.[-Ti—(';,ll?). = o T Ton
and we observe that since % satisfies (1.13) modulo €.

I,U-vp'.|{£€ S S 2 e
d

(42
lu'-“;-}__i.e et e ISR o
[

It is also easy to obtain an estimate of the form

c
}.L,,ré—[E,,, Jr=stl, .. L my
(
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where the number £, depends at most on .7 and w. For example

€ Eo= max; N ﬁ,,;,r “( E rf"-) (1.26)

( ut / welty

where i, is the set of all we//, which are connected by at least one path containing a. Notice also

the useful estimates
Eﬁfp:(]»
PeF
Afy, = —de Jr=stH1o. L my,

My

!Af{;!’.lgdrr i g s, oy de

z Aj{_uf ple /‘ = (-”Il f' ) E —\f:r+ z#r;a Af‘h E 'u‘.i',-'l.’(}‘,- + E #J»,. AJ{.“,
r=s+1

Hence

s pe r=1 =1

= { = g,-f%— (11— §)c Max ('—% A ) } € = — muc max (Z_f" E, ) €

From this last inequality. (1.25). and (1.24) we deduce (1.22) for
K= Zm : max(d—"' E. )-i-!\] i1.27)
! S\ d T

we iy

We now proceed to the proof of (1.23). Note that

T NG = I o N
ClF)—C(F') = 2 M” 2 Z;;,f,,a,ﬁ,“\' s

aed "Jf” 2 ahe

g2 ; . =
“—_calculated at a fixed intermediate point # '+ 0AF

. aC e
with — calculated at the point %' and ——
dfa rijdf;,

0=6=1. Since # " is a solution of problem P, and 7'+ A% = FeZ, then

al
2 f”!l|3j“

UL =y

On the other hand I
92C r':,{ﬁ,l. if @ =b,
ofdfe 0 if a#b.

Hence.
e v T l =\ HITN X
C(.7)—C(.7 ]:Ez (.-‘I[.f"}ﬂf\‘?“

ae.t

Since ¢, (fy) are strictly convex. the constant

——}’. = min min ¢j( fi+ 0Af.)

f- e el 1]

(1.28)
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is positive and (1.23) follows with the help of (1.22) for

2K

L=

(1.29)
Q.E.D.

The interpretation of the above theorem is that the solution of problem P, is stable. We em-
phasize here that. as follows from the proof. the constants K, L can be estimated explicitly in
terms of known characteristics of the transportation network. Then, apart from its theoretical
importance, the Theorem (1.3) is useful in practice since it provides a means of estimating the
distance of a given feasible flow pattern from the solution of problem P,. An explicit application
of the above observation will be presented in part 2 of the paper. With these comments we complete
the study of problem P,

We now proceed to a similar study for problem P,. We start by proving a theorem analogous
to Theorem (1.2).

THEOREM (1.4): The flow pattern FeZ is a solution of problem P, if and only if it has the
following property. For any well” connected by precisely the paths py, . . ., pw. these paths can
be so numbered that

E”’(Fﬁ): R =E“x(?] =A4,= Ef‘,+1[§} = é(‘_.pm(}:}.
fpr>0, T
fo,=0, r=s+1 . ...,m (190

PROOF OF SUFFICIENCY: Assume that .7 e Z satisfies (1.30). Let p, g be two paths connecting
the same we /" and such that f, = 0. By (1.30)

Ep(F) SE,(7). (1.31)

Suppose that a portion Af. of f,. 0 < Af = f,, selects the path q. By # " we denote the resulting
flow pattern. Recalling (1.19) we have

C(F') = F) =Y b leafatAN—C(fi)] >0

ned

where use has been made of the fact that &, (f,) is a strictly increasing function. In particular.
recalling (1.31),

Cl F') > EpF)

which shows that # is an equilibrium point in the sense of Definition (1.1).

The proof of necessity is essentially a repetition of the proof of the necessity in Theorem
(1.2) and will be omitted. : Q.E.D.

The above conditions are nothing more than the standard average cost equality conditions
an economist would expect to find in a system that is optimized by individuals acting independently
of one another with no regard for total system optimization. Conditions (1.30) are known (but not
in full generality) at least since the time of Pigou's treatise referred to in the introduction. Many
authors consider the conditions themselves as a definition of problem Ps.

Comparing (1.13) with (1.30). we observe that there exists a remarkable similarity between
them. The role of the average cost &, in (1.30) is played in (1.13) by the marginal cost c,. Starting
from the above observation, we will now show that there exists a close relationship between the
set of problems P, and the set of problems P..
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DEFINITION (1.3): Given Py|7 | = P4, 7, € |. we construct a set of cost functions 1€ in the
Sfollowing way. For any ae.f we set

- e e
:!1'-‘u{j;!} = J- z?a{ﬂdﬁ (1.32)
(1]

Note that if sc, satisfies conditions 1,2, 3. 4. then ,,c, satisfies conditions 1.2, 3, 4. Furthermore,
21Cq 1S continuously differentiable. The problem P,[%, &, .,%] will be called problem P, associated
with problem P:[%, %, 5] and will be denoted by P\»[¥, 2, ,¥].

Similarly, given P[4, 2, 6] where ¢ consists of continuously differentiable functions, we
construct the set of cost functions »€ through the use of

1€alfa) = 1ca(falfa. (1.33)

Note that if 1ca(fu) satisfies conditions 1, 2, 3, 44, then 12cq(fu) satisfies conditions 1,2, 3, 4 The
problem P.[%. &, 1»€] will be called problem P. associated with problem P,[%, %, €] and will be
denoted by Py 4, 2, ,€].

The above given definition of the associated problem is justified by the following theorem.

THEOREM (1.5): Let .# be a solution of problem P&, 7, €|. Then # is also a solution of
problem Py:[4, 7, €|. Similarly if .7 is a solution of problem P4, &, €] with € consisting of
continuously differentiable functions. then .7 is also a solution of problem Py,|'4, 7, €|.

PROOF: The proof follows from the construction of the associated cost functions. In fact we
observe that (1.30) written for Ps4, &, €] and (1.13) written for P9, &, 5,¢ | coincide. Similarly
(1.13) written for Py|4, &, 2% | coincides with (1.30) written for 4|9, &, €. E.D.

The notion of the associated problem is very simple but it will be of essential importance
throughout the paper. For example note that Theorem (1.1) and Theorem (1.3) immediately imply
the following corresponding theorem for problem ;.

THEOREM (1.6): Given 7 = (94, &, +€ ) there exists a unique F =Fy (4, 7, € ) such that every
FeR[F | is an equilibrium solution of problem Ps |4, %, ¢ |. Furthermore, this solution is stable
(in a sense quite analogous to the notion of a stable solution of problem P, induced by Theorem (1.3)).

ProOF: Consider the problem Py, [4, 2, € ], i.e. the problem P, (¥, Z, € |, and let # =7,
(%, 2, 1»¢) be its solution. Obviously, F is also the unique and stable solution to problem Ps [¥,

Q.E.D.

We will close this section with certain simple observations about the associated problems.
In the case of a quadratic model, the associated problem is also quadratic. More precisely. if
If'u{ﬁ:.} :'J."g-‘lf-:':'_"hfuﬁ: then l‘lffﬂ(ﬁl} = &y ‘-fc"' h, -u- Simi[arly if 2Ca(fu] :grtt-;z"_huﬁ: then 2I"HU;1J
=1g.ft+ hofu. In general, it is obvious that 2.¢ =% and 12, = ,%.

A natural problem is the following: Suppose that a network & is given. Characterize the type
of € for which the solutions of problem P, [¥4, &, € | coincide with the solutions of problem P [¥,
9, €] for every 7. Such cases are extremely desirable because in them the pattern created by
the individuals acting in their own self interests coincides with the pattern most economical for
the total society. We have already seen that the solutions of the associated problem P,[¥%, &, € ]
coincide with the solutions of the associated problem P,[¥, &, ¢]. In consequence, the solutions
of problem P[4, 2, €] will coincide with the solutions of problem P,[¥, &, #] if and only if they
coincide with the solutions of problem P.[%, 2, € ].

Recalling (1.32). we conclude that the solutions of problem P,[¥4, 2, €] coincide with the
solutions of problem P[4, @, €] if

ite

v F — & [ f 1€.%
(n{fu) T} J(-l f"[.)‘:ldf‘ ”E'f '1.34‘)
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where n is an arbitrary positive constant, the same for all «e#. Integral equation (1.34) has the
following solution:

calfa) =S fy (1.35)

where ¢% is an arbitrary constant. In order for ¢,(f,) . as given by (1.35), to satisfy conditions 1. 2.
3.4 or 4. we restrict ¢f}, m so that ¢%> 0. ae#. n > 1. Actually (1.35) gives the most general type
of cost functions which guarantee coincidence of the solutions of P,[%, 2, € ] with those of Pu[¥,
7, ¢ ] for an arbitrary %. It should be noted. though. that for special networks the class of such
functions can be broadened.

2. Development of Algorithms for the Solution of the Problems P, and P,

2.1. Generalities

In this section we develop algorithms for the solution of problem P,[7 ]. Obviously if such an
algorithm is available. the solution of problem P»[.7 | can be obtained as the solution of a P, prob-
lem. namely the associated problem Py, [.77].

Roughly. the method of solution can be described as follows: Starting from an initial feasible
flow pattern we construct a sequence of feasible flow patterns which converges to the optimal
solution.

To be precise, we introduce the notion of an “equilibration operator.”

A map ) . =
By —> G, wel

will be called an equilibration operator associated with we¥” if it sends FeZ into #'eZ such that

f=h
unless pe?,.
A map

k2 —=&

will be called an equilibration operator associated with a transportation network .7, if £ can be
factored,

E=E., 0. . .0E, (2.1)

where {w. . . ., w,} =¥ and E,, is an equilibration operator associated with w;.

We now give our definition of an algorithm.

DEFINITION (2.1): Let 7 be a transportation network and E an equilibration operator associ-
ated with 7. We will say that E induces an algorithm for the solution of problem P,[7 | if for any
F0eZ,

F W F(T), n— (2.2)
where
F )= Engeo) n—=1.2 u 2.3)

and #, is a solution of problem P,.

The following theorem gives sufficient conditions for an equilibration operator to induce an
algorithm for the solution of problem P,.

THEOREM ® (2.1): Let .7 be a transportation network and E an equilibration operator associated
with 7 and having the following properties:

(1) EF =% for some FeZ implies that F satisfies (1.13) for all we’, so that F = F,.

(2) E is a continuous mapping from # to 7.

(3) C(EF)= C(F) for all FeZ.

4) C(EF)=C(F) for some FeZ implies that EF = .

YA prool of convergence along similar lines has been communicated independently 1o us by W. A, Horn of the National Bureau of Standards.
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Then E induces an algorithm for the solution of problem P,[.7 ].
PROOF: Let #WeZ and F W =E"F 0 _pn=1,2, ... . We have to prove thai

T — (T, n—> o, (2.4)

We first prove that every convergent subsequence {7 '} of { %W} converges to a solution .7,
of Py [.7]. In fact, let
F ) — F k— o0, (2.5)

Since 7 is closed. #e7. The sequence {C(# ™)} is decreasing and bounded from below by 0,
hence is convergent. By Cauchy’s theorem. given € > 0.

“J F ey — (O, é@-fﬂ'ﬁl |— |( { );,ur;\d}} ('('.}"IM;‘-I” 4%

if k=ki(e). -
Since C(.7) is continuous, !in_l C(Fm)y=C(F). Hence

Ny — €
|C(F ) —C(F)| <3

if k= ko(€). Furthermore. the continuity of € (% ) implies the existence of 8, some such that

|IC(F)—C(F")| < if | # —Z'| <6..

wlm

On the other hand. since £ is a continuous mapping. given 8 = 0 there exists m(8) such that

EF —EF'|<8& if|F—F'|<n(d).

Finally. from (2.5) it follows that given 5 > 0. there exists /A3(n) such that
|?—?“'k'|<_‘n. l[';t_z.;ﬂ!ﬂ}

Suppose now that k= max {/i(€). hkz(€). kz(n(8:)) }. Combining the above results we obtain

|C(EF) —C(F)| = |C(E. C(EF )|+ |C(EF ")) — C(F ") |+ |C(F ) —C(F)| <e.

But the left-hand side of the above inequality is independent of k& and hence

C(EF)—C(F)=0.
whence # is a solution of problems P, by (4) and (1).

We now proceed to the proof of (2.4). Suppose that it is false. Then there exists a positive
number & and a subsequence {# "'} such that

|7 ) — 7, =S fi) — fral > 8. (2.6)

[

The sequence {704} is bounded. By the theorem of Bolzano-Weierstrass there exists a con-
verging subsequence {# ")}, As proved above

J;‘:["Jﬁ]_’-;rl- [— =
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where %, is a solution of problem P,. In particular.

Fowi—>F,. >

and this is a contradiction to (2.6).
Q.E.D.

The above theorem provides a criterion for establishing that a given equilibration operator
induces an algorithm for the solution of problem P;. A limitation of the usefulness of the theorem
may arise from the fact that it is not always easy to check whether assumptions 1-4 are satisfied.
The following proposition simplifies this problem.

THEOREM (2.2): Let {E . : we¥'} be a collection of equilibration operators associated with the
pairs of connected nodes of a transportation network 7. Suppose that for every we¥’, E, satisfies
the following conditions.

(1) EpF =% for some FeZ implies that F satisfies (1.13) for this fixed w.

(2') Ew is a continuous mapping from & 10 Z.

(3') CE,ZF)=C(ZF) for all FeZ.

(4") C(E.F)=C(# ) for some F€Z implies that E % =%.

Then any equilibration operator associated with 7 and constructed by composition of the above
collection {E,:weW} satisfies conditions 1-4 of Theorem (2.1).

Proor: Assumption 1 follows easily from 1" and the structure of an equilibration operator
associated with a pair of nodes. Assumption 2 is an obvious consequence of 2'. Similarly 3 follows
immediately from 3’. Finally 4 follows by a combination of 3’ and 4'. .

Q.E.D.

The above theorem reduces the problem of checking conditions 1-4 of Theorem (2.1) to the
much simpler problem of checking conditions 1'=4" of Theorem (2.2).

Sometimes an equilibration operator E associated with a transportation network satisfies
conditions 1 and 2 of Theorem (2.1) but it does not satisfy (or at least we cannot prove that it satis-
fies) conditions 3 and 4. Then of course we do not know whether E induces an algorithm for the
solution of P,[.7 ]. Nevertheless the sequence {E"#9} may lead to the solution of problem
P.[7] as shown by the following theorem, the proof of which is similar to the proof of Theorem
(2.1).

THEOREM (2.3): Suppose that an equilibration operator E satisfies conditions 1, 2 of Theorem
(2.1). Suppose further that for some choice of F'9 the sequence {E"F ™} converges as n—>%. Then
{E"F W} converges to the solution %, of the problem P,.

REMARK (2.1): We have seen that an equilibration operator E which induces an algorithm for
the solution of problem P, enables us to calculate through (2.2) the unique %, associated with a
problem P,[.7]. Then we know that R[.# ] is the set of solutions of problem P;. The calculation
of an element of R[.#,]. given #,, amounts to finding a solution to the system (1.1). (1.4). which
might be accomplished by phase 1 of the Simplex method. This requires a rather tedious calculation.
However, as shown in the proof of Theorem (2.1), some elements nfR[:??] can be obtained directly
from the algorithm as limits of the convergent subsequences of {E"#©}. In particular, if R[#,]

consists of a unique element then
EnF Y — 5, n—> oo

REMARK (2.2): The stability results of Theorem (1.3) can be employed here in order to estimate
||F,—E"F9||. n=1. . . . . and thus they provide a means for deciding whether the approxi-
mation is satisfactory. in which case the algorithm is terminated. In fact the estimation of the
smallest € modulo which E"%'" satisfies (1.13) can be obtained for example by a method com-
municated to us by Alan Goldman and which is given in appendix 3. Then a use of estimates
(1.22). (1.23) reveals the accuracy of the aprpoximation.

Recall that the proof of Theorem (1.3) involved an estimate of the form

|| i) _?] ||- = % |("|Err__;<._-[lll )— (A?I ']-
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which enables us to estimate the convergence of {E"7} in terms of the convergence of
{CE"F™)}. Thus when we apply the algorithm it is sufficient to inspect the sequence of the
successive values of the total cost. From the rate of convergence of this sequence we can judge
the rate of convergence of the sequence {E"7 0},

It is convenient to introduce here the concept of disjoint paths. Let we//". The set 2, will be
called disjoint if there is no ue” which is contained in more than one pe#,.

A network 4 will be called simple if 22, is disjoint for every we 7.

In the following paragraphs we will construet two equilibration operators Eq, Enag and we
will discuss under what conditions they induce algorithms for the solution of problem P;. These
operators will be introduced first for the quadratic model and then the definition will be extended
to the case of general convex cost functions. In particular Eq can be applied more naturally to
simple networks while £, has been designed for application to nonsimple networks, for which
Easj need not induce an algorithm for the solution of problem P,.

2.2. The Quadratic Model
Let .7 =(4, 7, %) be a transportation network with quadratic cost functions,
l"u(_)(.:r}:gﬂ .7;+hu_ﬁa- aeS .
According to (2.1). in order to define the equilibration operators Euy, Euag associated with the
given ./ it is suflicient to define their factors E®i Frdsi respectively, for every wel/ .
a. The Equilibration Operator I, for the Quadratic Model

We start by motivating the definition of K99, Let we// " such that A= {p,.. . .cpn} is disjoint,
and consider any 7€ 7. By 7, we denote the subset of # such that

F'eZ i {fo=Sa:0Pw}-
et us seek the element . # '€ 77 which
minimizes C(.7 ") over 7 - 2.7)

In order to solve this minimization problem it is convenient to introduce the following notation.

Ep. = 2 ﬁrm,}fu- 12.8)

I-L;JJ.LL'}_'] = Z arl}J,.[2gt!f:!'+ fn‘"]._. 2.9)
aes

hp 7)) = oy, — 280 S, (2.10)

Without loss of generality assume that
Rl = o = f.'.,,mtfi'*"_ ).
A comparison with (1.13) leads to the conclusion that the solution # ' of (2.7) satisfies the
following equilibrium condition:
U’“|+ 2*"’1‘: ({:1 _fﬂl) =...=pp+2g (f;m _f.u,;} = fpgy T 28py4 (ﬁm: ~friin)
=l f-LJ!m+2gﬂm(f;:m _f;:m) s

2 J::r =du.

preFe

5. =0 =l . sk =0 rssEl, o L (2.11)

e
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On account of (2.10), (2.11); reads

’”"' = ngl-/..;’l + hpl = . T zgﬂsfi’v 57 h“x = zg"x-.-t-’r;‘x-‘ 1 1 b”.u+| é = Zgﬂ m J!;m + ""Pm

and the solution of (2.11) gives

. Mo—h,,

e r=1,.. .5,

2gﬂ,.

f::a,,=ﬂ. f‘=s+1, S (L (2.12}
where

2d+ Eh ;,I}g,,r

My=—"-1— (2.13)

§
Eugﬂ,,
r=1

Thus %' may be calculated through (2.12), (2.13), provided that the critical index s is known.
We now give a procedure for the evaluation of 5. From (2.11), (2.12) we obtain the condition

hp = o Zhy  EMy>hp=hy, (=. . .= hy, (2.14)

Let .
2(im+2hpkf:gﬂk
My=—2>1 r=1,...m (2.15)
Eug"k
=1

The index s for which M. satisfies (2.14) is the critical one. The existence of a unique s having this
property follows from the existence ot a unique solution to the minimization problem in question.
Nevertheless, we demonstrate separately the existence and uniqueness of such an s, using the
following identities which are of interest in themselves:

2dd,
1l — e ‘
ML= fgpl-l—h,,l >his (2.16)
r=1
(W;}—- U:;‘) 2 ];"gp,\=1."gp,_(hp,—wf,)q {217)
or !
(M= M5) 3 Vgp, =gy, (hp,—M5). (2.18)
k=1

Let S be the set of indices such that re S if and only if M}, > h, From (2.16) it follows that
l€S. Suppose that reS. Then M}, > h;,. From 2.17) Mi;7' > M3 Thus by, =h, <M, <M,
i.e., (r—1)e S and hence 1,2, . . ., reS. Let s be the maximum index in S. Then h, < M3, Further-
more, either s=m or s+ 1¢S which implies h, = M. Using (2.17), (2.18), we conclude that
Mt = hy,,, implies M5, = Mi', which in turn implies M5, = h,,_ . Thus the existence of a unique
s has been established and another method of construction of s (as the maximum index in S) has
been given.

Summarizing. to calculate the solution # " of the minimization problem (2.7) we apply the
following procedure:

(1) We calculate the quantities g, , hy (7). r=1.. . ..m.

(2) We arrange h, (.7 ) in nondescending order and we relabel them according to this order.
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(3) We calculate M., r=1,. . ., m from (2.15).

(4) If .-'W{j!x:‘r,,m we set s=m. If M}l = hpm. we find the unique index s such that ;'1.,,_\. = L’f,.‘:-'-h,,Hl_
(or equivalently such that h, < M3}, and Ay, > M)

(5) We calculate f;, .r=1.. . .. m. using formula (2.12).

Suppose now that we¥#” with #, disjoint. We define £ by

EWF =F' (2.19)

where # " is the solution of the minimization problem (2.7) for the given .# . This definition induces
the definition of Eyu; for simple networks with quadratic cost functions.

Note that (2.7) simply states that .7 ' = E.7 satisfies (1.13) for the pair w. Thus, if Ed5.%
=%, . satisfies (1.13) for the pair w, i.e., K% satisfies condition 1" of Theorem (2.2). Condition
2" of the same theorem follows immediately from the continuity of the funetions involved in (2.12).
Finally. conditions 3'. 4’ are also satisfied since # '=E% 7 minimizes C1.# ") over the set 7 ;.

By Theorems (2.1), (2.2) it follows that £ 4 induces an algorithm for a simple network with
quadratic cost functions.

We should emphasize here that the effectiveness of the solution of the minimization problem
(2.7) is due essentially to the assumption of the disjointness of .7, and of the quadraticity of
{calfu) s ae / }.

We now proceed to extend the definition of E% in the case for which #, is not digjoint. Note
that the minimization problem (2.7) is meaningful even in this case. The solution of this problem
would provide a natural extension of the definition of £ 10 cases where 4, is not disjoint. Un-
fortunately an effective solution of this problem does not seem possible. Thus we devise the follow-
ing kind of extension:

We choose to calculate

F ' =EdF
by following the steps (1), (2). (3). (4). and (5) described above.

This is clearly possible since this procedure, though motivated for disjoint Z,.. does not de-
pend in its definition on the assumption of disjointness. In this way we retain the simplicity of the
caleulations. Let us show that the condition 1" of Theorem (2.2) is satisfied. Suppose that

Mo—hy.
F'=EoF=F for some #eZ. From (2.12). f,, = fp.= _'2#—“ p=ll . . S mul_,!;,i_fj;lf 0,
j.i’.

r=s+1,. . .,m. Then, recalling (2.9) and (2.10). pp =M . r=1,. . s, pp. =Mp.r=s+1,. . ..m.
Now ohserve that p,_is the (real) marginal cost along the path p,. Hence the equilibrium equations
(1.13) are satisfied for w and the proof of condition 1" is complete. Furthermore. we can prove, as
before. that the condition 2' of Theorem (2.2) remains valid. On the other hand. the motivation
which was present in the case of disjoint #, and which was justified by the proof of the validity of
conditions 3', 4", of Theorem (2.2) is not present any more. Thus. it is not obvious that conditions
3. 4" are still satisfied. and we have to go through the following lengthy calculation in order to
check whether they are valid.
Let us set A# = %' — % . The change of the total cost is given by

C(F)~C(F) =3 [&ulfutBf)2+ha(fat Bfa) — gafd—hoful = S, &abf?

e e

i 2 [ng(f_u+ hu] I;{u: E A;‘(p 2 {Eg‘ir{ _r.' i !f:;]ﬁr;;: 1 2 F-f'rrA_f.?;

T fiTae e e

= Z A_!:N[:z:'-fp_r(p'f ""p.] t 2 ‘ulnils_ﬁ_;

peF, e
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where use has been made of (2.9). Thus

C(}!)_C[rﬁ_‘) =—2 E g}JA,)(;z;"l" Z :l_f},[Egp_f';,+h,,]+ E ﬁ-"r:&_,,!‘},:-

e e et
By (2.11)
S A, et hpl =M X Ay, — Y, (=Afp) 0y, =M > Afp,=0. (2.20)
e r=1 r=g+1 r=1
Hence,

C(F)-C(F)=Y glfi—2 gAf:

ae st e
Recalling the Definition (2.8) of g,,. and (1.4),
CF)=CF)=S & {[2 6,;,)4/;,]-—2 3 a,mAﬁ—I}. (2.21)
aet S peF

We want to study now the sign of C(.7')— C(#). It is convenient to consider links of a special
type. A link « will be called simple. double. or total with respect to w depending upon whether « is
contained in precisely one. two or all of the paths of 2,.. Note that if #, is disjoint. then all links
contained in 2, are simple.

Suppose now that a is a simple link contained in a path pe#,. Then.

af| S oubn| =2 S budss|-—adsz=0 2.99)

PEF, PEF,

with equality holding it and only if Af,= 0.
Let ¢ be a double link contained in two paths p, geZ,.. Then,

af| 3 out|=2 S subf]=edl8f+ M1 28R+ AL =~ m(Af— 0250 .23

e, pER,
with equality holding if and only if Af,=Af,.
Suppose finally. that « is a total link with respect to w. Then,

2
el S subh] -2 3 sudf=—2a T an=0 (2.24)

ped, peFy pePy,

with equality holding if and only if Af,= 0. pe#y.
Thus (2.21) implies that. if all links contained in #, are simple and/or double and/or total
links, then

C(F)—C(F )=0. (2.25)

Two paths of 2, will be called directly connected if they share at least one double link (with
respect to w); will be called connected if they can be joined by a finite sequence of direct connec-
tions. We now introduce the following definition.

DEFINITION (2.2): The set 2, will be called almost disjoint if the following conditions are
satisfied.

(1) All links contained in .2, are simple, double, or total with respect to w.

(2) Any two paths of .#,., which consist exclusively of double links and are connected only to

paths consisting exclusively of double links. must be connected to each other,
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If 7, is almost disjoint for all we?". the transportation network will be called almost simple.
In particular a simple network is also almost simple.

Assume now that 2, is almost disjoint. Then (2.25) is satisfied. In addition. we claim that
equality can hold only if A% = 0. In fact, suppose that equality holds in (2.25). From (2.22). (2.24)
it follows that

A;".u =1

in the case where pe./,. contains at least one simple and/or total link. Let p. geZ, be two paths
which are directly connected. On account of (2.23).

Af,=Af, (2.26)

It is clear that then the validity of (2.26) extends to the case where p and ¢ are connected. Thus
Afp=0 even for all pe.7,. which are connected to a path containing a simple and/or total link. In
order to complete the proof it remains to consider the set .2, of paths in Z, consisting exclusively
of double links and not connected to any path containing simple and/or total links. On account
of the definition of almost disjointness. if p, ge#,.. then p and ¢ are connected in which case

Af,=Afi=Af . (2.27)
Recall the conservation equation
> Af=> Af=0. (2.28)
f PEFp

Using (2.27), (2.28) we deduce that Af= 0. i.e.. 12.25) holds as equality only if A.7 =0,
Combining the above results with the Theorems (2.1), (2.2) we reach the following conclusion.
THEOREM (2.4): The equilibration operator Eag induces an algorithm which solves problem

Py for almost simple networks, with quadratic cost functions.

Actually. this result is the best possible in the sense that there exist networks with triple
links for which the operator E 4; does not induce an algorithm which solves problem P, for arbi-
trary initial # "' An example of such a network is given in appendix 2. Nevertheless, recall that
E satisfies conditions 1°. 2" of Theorem (2.2) for arbitrary Z,.. From Theorem (2.3) it follows that
if {mﬁ?""} converges then it will converge to the solution #; of problem P;. In consequence,
it is worthwhile to try an application of E 4y even for networks which are not almost simple.

In order for an algorithm to be appropriate for application in practice, it is not enough that
it converges; it must converge rapidly. We have the following evidence about rapid convergence
of the algorithm induced by Eq4; in the case of almost simple networks. We consider the test net-
work of fizure 1 (with 60 paths) which is almost simple, but is not simple.
We have developed a computer program which solves problem P, for this
network by application of E4;. We have calculated the solution for a very
wide range of demands and choice of the initial distribution. We have
observed extremely rapid convergence. More specifically if g, h, were

X,
|

- i the average values of ga, ha. ae ¥, and d is the average demand in the
{44 . : i 7 T
network, we chose —fomermg in Definition (1.2) equal to 2gd+ h, and after
([
5 iterations the flow pattern satisfied eqgs. (1.13) modulo 10-°. Furthermore,
X we have treated the same network algebraically and have shown that
FiGURE 1.

|I‘L-.::'.-j<5"_"'}_ E';m! FOl

decreases with the speed of a geometric progression with a ratio less than 1.
With these observations we conclude the discussion of the equilibration operator Euy for
transportation networks with quadratic cost functions.
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b. The Equilibration Operator E,q;; for the Quadratic Model

In this section we introduce an equilibration operator E,4; which does induce an algorithm
for the solution of problem P, for arbitrary transportation networks with quadratic cost functions.

Fix some we# . The motivation of the introduction of E%% is similar to that of E4¥. Namely,
E"89 will be selected to be a minimization operator of C(F) but over a set less broad than the
set Z 5 defined earlier.

Let #e%. We define #' = E'§9% by the minimization problem

minimize C(# '), over F'eZFE where 22, 1o be defined. is a subset of 27 containing %.

(2.29)

Note that the minimization problem (2.29) is very similar to (2.7). Such a definition of E7gs
guarantees automatically that condition 3" of Theorem (2.2) is satisfied. The main difficulty is
that we must select the set 2 in such a way so that conditions 1’, 2, 4’ of Theorem (2.2) are
also satisfied while, at the same time, the solution of (2.29) can be obtained in an elegant way.”

The marginal cost on a path te?, corresponding to the flow pattern # is given by p, (%)
of (2.9) with p,=1.

Let p, g €2, be defined by

tp(F ) =min {w (F ) :te?}*.

2.30)
ol F) = max {7 ) :teP. fi > 0}°.
We define the set ZZ by
53‘??— ={7'e€?:f,=f, unless t=p. q}. (2.31)

We now define E4% # = % as the solution of the minimization problem (2.29) over 77 as
selected above.

The calculation of F'=E} % amounts to the calculation of the two new flows f,. .

Let us define

r‘-’?;E 2 63;:’-!':“ gl,: = 2 6{:1;:"{” '2'32)

e e+

where the incidence symbols 8¢,. 8%, have been defined by (1.19).
The minimization problem (2.29) leads to the following equilibrium conditions analogous to
(2.11):

ol F )+ 2885~ 1,) = o F) + 288 (fs — o).
frtfo=fotfo (2.33)
£20.f;20.

with the understanding that. if (2.33); holds as a strict inequality, then the second one of (2.33)
must hold as an equality. and conversely, if both (2.33); hold as strict inequalities, then (2.33),
must hold as an equality. The solution of (2.33) is given by

Kol F) — pl F)
2(gg+ &%)

So=hot

TIf we selected 3";;—- }',,’ we would be led 10 the minimization problem (2.5), In this case we know that (2.29) does not have an elegant solution unless 2, is
disjoint. This observation emphasizes the fact that the selection of an appropriate f?-is not easy.

“If e attains its minimum for more than one path, then select poas any of these paths,

SIf p attains its maximum for more than one path, then select g as any of those paths,
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b !-‘-p{“;:’ _#-‘;{7;)
=" + a
Ja=tu 2(zg+gb) (2.34)

po F) — pp(F)

li ,"r.:": 2( ’l'+g{,j}

or by
J{h:.f:'f +f;f-

Ja=0, (2.35)

!—‘-q{-'ﬂl“:) = P-p{ E(‘:)
2(g0+ gh)

if fy <

Thus. the selection nf.b?i;’-'_}las led to a minimization problem (2.29) whose solution can be
calculated efficiently through (2.34) or (2.35).

We now proceed to prove that E® satisfies the conditions 1’1" of Theorem (2.2). From (2.33)
it is clear that Ept6i% =7 if and only if w,(.#)=pw,(.# ) (recall that f; > 0).

The paths p. ¢ have been selected so that for any te 2, with f; = 0.

wpl F) S F )= gl F )

Thus. if krdsi 7 = %  then all paths te#, with f; > 0 have the same marginal cost and the equilibrium
conditions are satisfied for w. Hence Ep® satisfies condition 17 of Theorem (2.2). Condition 2" is
obviously satishied,

Let us now calculate AC = C(.7 ) — C(Ey#7 ). Obviously AC is given by

AC= E 8?l,ul P!.-‘U{?T} -+ hrvf_;r = gflf_;f httlﬂj T 2 8rr.'.: ﬁ—t(ﬁf L htl/_;! = ."—'flfriz == h-‘!)“:‘; l

e e

—Zsﬁhlzr-m{r:"'hu --ﬁlf-‘r fp.-}JUfr fu]"'zmw ),'.','.-J_.:;‘l‘h,,—;:" -u_ﬁ;”(.ﬁ!_ﬂ;)

neS

Note that in the first sum f, —fi =f,—fy. while in the second sum f, —fi; = f,— fr. Hence. recall-
ing also the definition (2.32) of gj. 2. we get

C=(f—L) ub— &y —Fp)* + =) b — B fu—13)? (2.36)
where
"LBE 2 5:’;;){2}5 _rr+;l,;]_ {2’3?]
e
ph=> 8,[28dut hal. (2.38)

By (2.33)s, fy —fo=—(fa—fa). Hence
= [ui+&d(fs — 1) — b — &y —f) 1 (f—13)
= [ug+2e3fp—fp) —wh— 28U — )1 —F) + g+ &) h— 1) 2.39)
But p§— = pp— py. Then, using (2.33); and the fact that f, — f,, = 0. we obtain

AC= (g8t+e8) (—fu)? =0 (2.40)
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with equality holding only if f,=f,. i.e., if Fl##% =%. Hence conditions 3", 4" of Theorem (2.2)
are satisfied. Combining the above results we reach the following conelusion:

THEOREM (2.5): The equilibration operator E"%i induces an algorithm which solves problem P,
for an arbitrary transportation network with quadratic cost functions.

We wish to compare the algorithms induced by the equilibration operators E 45, Eyasj and to:
point out their corresponding advantages. We prefer to postpone this comparison until £y, Eay
have been extended to cover the case of nonquadratie cost functions. This extension is the subject
of the next section.

2.3. The General Model

In this section, we will extend the definitions of the equilibration operators Egg. E,u to the
case of a general transportation network 7 = (¥, 7, %). We will assume that ¢, is twice continuously
differentiable for all ve#.

Note that the minimization problems (2.7), (2.29), through which the operators E%, Es have
been introduced for the quadratic model, are well set also for the general model. Thus it appears
that the proper extension of Ef¥. E49 would be obtained through the same minimization prob-
lems set for general cost functions. However, a review of the theory described in section 2.2 indi-
cates that the simplification induced by the assumption of quadratic cost functions lies in the fact
that for such cost functions the equilibrium conditions (2.11), (2.33) corresponding to (2.7), (2.29),
respectively. are linear. This fact permits a very effective and elegant solution for both minimization
problems (2.7), (2.29).

In the case of general convex cost functions, the equilibrium conditions are in general non-
linear and hence a simple solution of problems (2.7), 12.29) is no longer possible. In order to devise
a working extension of the definition of Euj. Euag for the general model we use the following
considerations:

By Taylor’s theorem. if fiis close to fu.

f'rr(f;r) = f'r:(ﬁr] T (':;{}Fu ) {f_:p_f_u} = ér:;(‘f:, ) (f(-u '_f:: )2- ’ (24] )
In particular, for quadratic f'.,lf,,} = guf2 + hafa.
cal fa) = ci(fu) + Caafa +ha) fi—fo) +gal fa—Fo)2- (2.42)

Comparing (2.41) with (2.42) we observe that the quadratic cost function ga(fa) fi2 + hal fu)fo which
approximates the general cost function e,(f,) in the neighborhood of f, has coefficients

alfu) =4ci(fu). (2.43)
hu (_/_:rrl — r'f:(f_;rJ - F;;{‘Ei}f_u- '2.-14}

Using as a motivation this observation, given %€ # we construct the collection of quadratic
cost functions

¢ =ty ) B+ Lealf) — i f) fl Fusae 2. (2.45)

We now define E49 (resp. Ep®i) by identifying E .7 (resp. £439.57) for the transportation net-
work 7 = (¢, ¥, €) with EF (resp. E}29.%) for the transportation network J5% =(4, &, €5,
the latter being well defined since #5 consists of quadratic cost functions. In other words.
F'=EdF (resp. F' = EN"F) will be caleulated through (2.12). (2.13) (resp. (2.34) or (2.35))
where

o 1 « e
gl ) = 2 z‘ 8(1;:('.‘.- @) s (2.16)

e
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]-Lp{j? Y= z Su,u"'::{f_r.-} . (2.47)

hy(#) = pp (F )= 2g,(F) f. (2.48)
{ righ T l e
.L’;{': H } = QE szr'r: :i'} - 12.4‘)}

Hence the definition of Eg;j. E,q has been extended to transportation networks with general
convex cost functions.

The numerical application of these operators to a given .7 €7 follows precisely the same
pattern as in the case of the quadratic model. the only difference being that the coefficients g,
hp. pp. &h are not constants any more but should be calculated at every step.

It remains to examine under what conditions Fg. £, do induce alzorithms for the solution
of problem ;. As in the case of the quadratic model. conditions 17, 2" of Theorem (2.2) are satisfied.
It is intuitively expected that 3'. 4" of the same theorem are more apt to be valid if the approxima-
tion of € by ¢ is faithful. that is if ¢,(f,) is suficiently close to a quadratic function, ae #. This
idea has been verified for simple networks in [10]. where we give sufficient conditions so that
Edy satishies 3', 4. We will go here through a similar analysis for the operator £ in the case of
d ,‘,’J‘l!(‘l'ill net “«'l’lrk<

Fix wel/” and let .7e 2. We set #' = Eutsi gz, The change of the total cost

AC=C(F)—C(F) (2.50)
is given by
AC= E SH;J [ Cy {f_rr’ — Cq l!"—ﬂ ) ] t 2 F’#q[ Ca lf(—u] = ('r.'(_f‘_;; ) l 12.51)

where p. ge#, are the paths which are “equilibrated.” Applying Tavlor’s theorem,

= e s e e
AC=— }_‘ 52;;' l"r;{_,"ar] [‘/r: _fﬁ} + :_2 f'r:‘jr: ) {‘;‘(r: __f”)‘]

e = o I 1" = = = v 8
— }: 8!::; lffrrr Uar ) U‘r: _J(u ]' T E "'u(fu ) Urr _fu) _]

L

with £, between f, and fi. Note that in the first sum f,—f, =fp—fp while in the second sum

fo—fi=fo—1a-

Let us set

M= (F) = 8.cilfa), (2.52)

wh=pg(F) = 3 8,cqfa). (2.53)
e

”_ﬂr}_l R o -

r'—'"!.a — f—’f;{-f )= E ‘E qurul‘fn] - (2..‘:1!

M ,.;—_] 5 Wi F 9 55

& =&F) =5 2; e (2.55)

and recall that f, —f,=— (f,—f;). Then
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AC= [ug+ &3 — 1) —wli =&y —f) 1 —13)
= [up+ 2e8(f5 — 1) —pb =284 (g — 1) 1 Up— 1)
+ [28) — &3+ 28 — &3] (i —13)? 2.56)

where gf. o stand for g;ﬂl_n':"?!, gh(F ) as defined by (2.49). On account of the definition of Ej®,
we have the equilibration condition (2.33); written in the form

i+ 288 (fo—1f,) — b —2e8(f,— 1) =0, (2.57)
where use has been made of the obvious equation
Hop— g = pjl— p.
Combining (2.56) with (2.57) and the fact that f, —f;, = 0 we obtain
AC = [2g8— 28+ 222 — 21 (f, —fo) % (2.58)
From this last result we deduce that conditions 3'. 4" of Theorem (2.2) are met if

- 284(F ) — gy F) +280(F) —gh(F) >0 (2.59)
for all possible #, . 7.
A sufficient condition for the validity of (2.59) is that

—_ ] a
ca(fa) > 5 ci(fa) (2.60)

for all possible j_;,-,f,,, ae . Suppose that we know that f,, f,, are limited in some interval /,. Then

fa will also be limited within I,. Condition (2.60) is obviously satisfied if

rr}ir: c(f) >é max e f). (2.61)

Thus, if (2.61) is valid for all ae.#, then Eli#J satisfies conditions 1', 2°, 3', 4" of Theorem (2.2) for
any we¥”. Using Theorems (2.2) and (2.1) we reach the following conclusion:

THEOREM (2.6): Let 7 = (%4, 2, €) be a (general) transportation network. If condition (2.61)
is satisfied for all ae¥, then the equilibration operator Engs; induces an algorithm for the solution
of problem P[7].

Actually condition (2.61) states that the oscillation of the function ¢ (f,) on I, is not very large,
or in other words, that ¢,(f;) is sufficiently close to some quadratic function on I,. Thus Theorem
(2.6) is in accordance with the intuitive idea cited before.

In order to put the assertion of Theorem (2.6) into practical use we have to find intervals I,
with the propertv stated above.

Using the feasibility condition (1.1) we conclude that we may take

!(I': [(bm (I)u] 12.62}
where
(brl = E dh‘-_n (Dﬂ = 2 duu (2.63)
wel i wekl,
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Here %, stands for the set of all we#” which are connected by at least one path p containing the
link a, and %", stands for the set of all we¥#", with lepr‘Ll to which a is total (if # ', = D, then g = 0).

Note that (2.61) is more apt to be satisfied if [, is “small.”” Actually the /,, as given by lzl.()d),
are the best possible (i.e., the smallest possible) if we are to expect a convergent sequence
{Ena;# W} for every #WeZ. In practice, though, we are merely interested in knowing whether
{E}4;# W} converges for a specific #, namely the one selected as the starting point. If we re-
strict ourselves to this problem, then it is possible, at least for special types of networks, to obtain
I. which are proper subsets of the I, given by (2.63) and hence are preferable.

Concluding this section, we want to emphasize that a very large subset of the set of cost func-
tions which satisfy conditions 1, 2, 3, 4, of section 1.3 do satisfy also (2.61), and hence the operator
E ,asj induces an algorithm for the solution of problem P; for a very wide class of transportation
networks. We also want to emphasize that it is worthwhile to try to solve problem P; by means of
one of the operators Egu; or Eyqs even if conditions 3. 4" of Theorem (2.2) are not met. In fact we
have shown that the above operators always satisfy conditions 1, 2 of Theorem (2.1) and hence,
according to Theorem (2.3), if {E"F# W} converges, then it will converge to a solution of problem P}".

2.4. Comparison Between E;; and E, 4

From the theoretical point of view £, is superior to E 4 since it can be used for the solution
of problem P, even in the case of not (almost) simple networks. From the practical point of view,
though, Ey; also has some advantages. In fact E% equilibrates the whole set of paths Z,. but does
so perfectly only if 22, is disjoint. On the other hand E1% equilibrates only the two “most un-
balanced™ paths but does so perfectly in all cases. It is clear that in the case of a network which
is not almost simple we must apply E, 4.

In the case of an almost simple network we advise the application of £ 4 if most of the links
are simple and #,, contains many (more than two) paths for at least one we”". On the other hand,
we advise the application of E4; in the case of a network in which 2, contains few (of the order
of two) paths for all we¥#” and there are relatively numerous double and/or total links in the network.

3. Appendix I. A Network With a Nontrivial R[.Z |

We consider the network of figure 2 with links

L

ar= (X1, X2). as= (X2. x3) . a3= (x1, x4), as= (x4, X3).
a5= (X3, X5), ag= (x5. x7), @r= (x3, X6), as=(x5., x7).
and paths
M= lay. as, as. dg). p2= (ay. az, az. ag) .
pa= las, aq. az. ag). py= (ay. ag. as. ag).
let d be the demand associated with the pair (x;. x7). For this network
we have
fPl +f.”2 +fp3+f.;'-’4:ds
f;’:+ﬁ‘2:ﬁ11v le +fm =f;15v
fpl +f;’2 =fﬂzs f.;h +f.0-| =ﬁl‘ni-:

i f}); +.fﬂ-1 f;! o] f}"’: +j;)3 :ﬁf';'

FIGURE 2.

W Syeh examples have been constructed,
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f:f*:: +J{;"4 :ﬂf-ﬂ j}*ﬁ +f;’;j =fﬂ:-\'

h, =00s=1, . .4 (L1)
The feasibility conditions on # read:
ﬁjxgu.szl, . . -‘8,

j_;’lzﬁl'z'f_n:ln:f_-ﬂ.-_f_ﬂ_v.:f_uﬁ-_f_f:;zﬁi,.- ([2]
f_ﬂ| +ﬂ!;;=f_;r;,+ﬁ1-{= d.

Suppose now that .# is given such that (1.2) are satisfied.

Assume first that at least one of the f; is 0. Then it can be shown that there exists a unique
solution of (I.1), i.e., in this case, R[Z] contains a unique element.

On the other hand, if % is such that f,,ﬂ >0,s=1, ..., 8, then it can be shown that the

solutions of (I.1) form a one parameter family, i.e. R[.%] is a convex subset of a one dimensional
vector space.

4. Appendix Il. An Example of a Network Which is not Almost Simple and for Which
Edsj Fails

In this appendix we present an example which shows that the assertion of Theorem (2.4) is
the best possible. To be precise, we consider the network of figure 3 with links

X

ar= (x1,25), @2= (%1, %), @3 = (22, %5) , @4 = (22, x3)

L)
as= (x3, x:,) , 5= (x2, x4), a7 = (x4, x,e.) 3
ay L ¥}
and paths
% 1=, pe= (. a4 as). ps= (az. az),
Xq
Oy Pa= (ag, g, a?).

Xy

FIGURE 3.

Let d be the demand associated with the pair (xi, x5) large enough so that all paths operate
at a nonzero level. We assume that the cost functions are quadratic of the form

Ca(fo) = gufi+ hr:.)‘;:-
Wh('l'(‘? gtl, = gu;, o 28, g(.lg = 88, gu., = gr.ln _— gu.; = ga, — g-:
hu‘ =3h 7 ll!ﬂ.; = hu‘, == hua = huH = hn; = h, h‘fn: 2-& Y

with arbitrary g >0, h = 0.

Note that the link a, is triple and hence this network is not almost simple. Thus Theorem
(2.4) does not guarantee that {E},; "} converges. In fact we will prove the following interesting
result. The sequence {E}; #"} converges only if the initially chosen F#© satisfies f" = /,,, where
F, is a solution of problem P,.
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To prove this result select #eZ. We want to calculate Af,, =7, — /. It will turn out below
that Ay, is the smallest of the A, . From (2.10). (2.12),

M— .,
’-ULFTEL’- (11.1)

Proceeding to the calculation and using (2.8), (2.9), (2.10) and the obvious relations
j_;h :ﬁ’l L] ﬁ'u :.)‘G*z +--'(:”:l +.ﬂh L j:"‘:l =f!"’31 f_"h =.f_ﬂs =ﬁ’z! .f_”ll =.)F"7=.ﬁ’i*

we end up with
= 2g" Epe= Em = Epa— ]Og’

Mo, =4gf, + 3h.
hp,=3h,
hy,=16g(fy,+fp,) + 3h,
hpy =168 (fp, + f,) + 3k,
hp,=16g(fy,+ fp.) + 3h.
Whence, from (2.13),

_13gd+ 6h—8gf,,

" 2

where use has been made of
.-{:‘11 +.f!*u +P(P1 +fﬂ| = d'
Substituting into (11.1) we obtain

13d—16f,,

Afp,= a (11.2)

Suppose now that we apply Eq; on #'. Let AF' = Eqy% ' — 7. From (11.2),

13d —16f,, _13d—16(f,, +4fy,) _13d—16f),

My = / .

_EA.f:i’: — a.)‘]'Jl _2Af."’| = Af}’l'

Thus, {E4,7 ™} will cycle unless # has been chosen in such a way that AffY=0."

5. Appendix lll. Calculation of the Smallest Number Modulo Which a Flow Pattern
Satisfies the Equations of Equilibrium

In this appendix we present a procedure which enables us to calculate the smallest number
€ module which a given flow pattern % satisfies the equilibrium equations (1.13).'*

Fix wel", and let fi, . . ., fu be the flows on the paths of . and ¢, . . ., ¢}, the correspond-
ing marginal costs. We want to find the minimum of the values of €, such that for any p. ¢ in
{1, . . ., m}, if f, = de,, then either

|e;—¢q| < cewld holds, or both of ¢, < ¢;+ cewld and f; < de, hold.

' Note that if A= 0 we can apply Theorem (2.4), since aq becomes then total for the network emerging by the omission of the path p,.
' This method has been kindly communicated o ous by Alan Goldman.
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This last disjunction is equivalent to an exclusive disjunction: either |c,—c,| < ce,/d holds,
or fq < de, and ¢, — ¢, < cex/d < | ¢, — ¢, | hold, with the last condition equivalent to the conjunction
of ¢, < ¢, and ceuw/d =< c;—c,,

Number so that 0=f,<f,= . . . =<f,. We ask whether it is possible to choose €, in the
interval (fi/d, fi+i/d]. For such an €,, the requirement is that if p>¢, then for each g either
€0 > (djc)|c,—cq|, or g=<t and ¢, < ¢, and €x < (d/c) (c;—c;). That is, if p>t, then (a) g>¢
implies €. > (dfc)|c,—¢cq|, while (b) ¢ =<t and ¢, = ¢; imply the same conclusion. Since this is
to hold for all p > ¢, we see that (a) is equivalent to

€w > (dfc) max{|c,—¢,|:p >1t, g >t} = (d|c) [max,.c,— ming..c,], (IT1.1)

while (b) is equivalent to
€w > (dfc) max{ec,—c,:q <t <p, ¢, = c,} = (dfc) max{max,-.c;,—ming=.c;, 0}. (IIL1.2)
Combining (II1.1) and (II1.2), and noting that the lower bound for €, in (I11.1) is nonnegative, we get
€ > (dfc) [max;, -c;,— ming=,cy, maxy-.c,— ming-c,] = (dfc) [max,-ic;,— ¢l (111 3)

where cqipn=min {ci, . . ., ¢),} . But (IIL. 3) can hold. for an €, in interval (fi/d, fr:1/d]. if and
only if
fiald = (dle) [ maxy=cp—cmin]- (111. 4)

Thus the infimum of the allowable €,-values is fi/d for the smallest ¢ such that (I11. 4) holds.
We set

€ = min €,
welt”

and obviously this € is the smallest number modulo which (1.13) are satisfied by %.
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