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ABSTRACT Container-based Internet of Things (IoT) applications in an edge computing environment
require autoscaling to dynamically adapt to fluctuations in IoT device requests. Although Kubernetes’
horizontal pod autoscaler provides the resource autoscaling feature by monitoring the resource status of
nodes and then making pod adjustments if necessary, it evenly allocates pods to worker nodes without
considering the imbalance of resource demand between nodes in an edge computing environment. This paper
proposes the traffic-aware horizontal pod autoscaler (THPA), which operates on top of Kubernetes to enable
real-time traffic-aware resource autoscaling for IoT applications in an edge computing environment. THPA
performs upscaling and downscaling actions based on network traffic information from nodes to improve
the quality of IoT services in the edge computing infrastructure. Experimental results show that Kubernetes
with THPA improves the average response time and throughput of IoT applications by approximately
150% compared to Kubernetes with the horizontal pod autoscaler. This indicates that it is important to
provide proper resource scaling according to the network traffic distribution to maximize IoT applications
performance in an edge computing environment.

INDEX TERMS Kubernetes, horizontal pod autoscaler, network-aware resource provisioning, IoT.

I. INTRODUCTION
With the massive boom in Internet of Things (IoT) appli-
cations in daily life, such as in industry, healthcare, logis-
tics, and military [1], [2], many IoT devices collect data
from the environment and generate huge amounts of data.
These data are transferred to and processed at cloud servers
located at the network core, resulting in high bandwidth
consumption and response time [3]. Recently, many studies
have aimed to improve the quality of IoT services in cloud
computing, e.g., [4], [5]. However, in particular, the response
time of cloud computing has become unable to meet the
requirements of many time-sensitive IoT services, such as
augmented/virtual reality, smart factories, and smart trans-
portation systems [6], [7]. Edge computing is a new paradigm
that overcomes the inherent limitations of cloud computing
by distributing edge nodes with computing resources closer
to IoT devices [8], [9]. By processing data at local edge nodes
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without transferring them to the cloud, edge computing can
sufficiently reduce the response time to satisfy the require-
ments of time-critical applications [10].

Using containerization, due to the lightness and portabil-
ity of containers [11], it is easy to deploy, install, update,
and delete application services on edge nodes, and vari-
ous types of IoT services can be provided simultaneously
at each edge node. As such, containerization is widely
considered as the most suitable technology for provid-
ing IoT services in edge computing environments. How-
ever, containerization technology is limited to deploying
and managing container-level application services, requir-
ing container orchestration to monitor and manage resource
status through multiple edge nodes in an edge computing
environment [12], [13].

Kubernetes [14] is a representative open source-based
container orchestration platform that provides a variety of
functions, such as service placement, resource monitoring of
edge nodes, and service automation. For example, Kubernetes
can easily deploy container-based IoT service to designated
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edge nodes in the form of pod without requiring any manual
configuration. Moreover, Kubernetes autoscaling can opti-
mize the resource usage and cost by automatically upscaling
or downscaling resources according to demand. Among the
several autoscaling options provided by Kubernetes, such as
cluster autoscaler, vertical pod autoscaler, and horizontal pod
autoscaler (HPA), the HPA provides seamless autoscaling by
dynamically adjusting the number of pods without restarting
the existing pods [15]; thus, it can play a key role in an edge
computing environment that requires both high availability
and dynamic resource adjustment.

However, despite the many benefits of Kubernetes, it is
still in its infancy in an edge computing environment. In edge
computing infrastructure, requests from devices are handled
by container-based applications on edge nodes, and the traffic
load varies over location and time. Namely, as some nodes
are too busy to handle a large amount of traffic while oth-
ers are idle [16], an imbalance of demand occurs between
nodes. In Kubernetes, the kube-proxy balances resource
usage between nodes by sharing the incoming traffic at
each node to all pods in the cluster in a random or round-
robin manner. Because edge nodes are geographically dis-
tributed, there is network delay in their communication,
so this kind of redirection offered by the kube-proxy can
increase the response time of applications. Therefore, it is
necessary to allocate more or terminate redundant computa-
tional resources according to network traffic at each node to
maximize the amount of locally handled traffic while mini-
mizing network delay by minimizing the number of requests
handled by pods on remote nodes. Nevertheless, when the
resource demands of the applications change, Kubernetes’
HPA (KHPA) only tries to evenly distribute new pods to nodes
or terminate redundant pods on nodes based on pod status
without considering the network delay between edge nodes
and the volume of network traffic accessing them in real time.
This limitation of KHPA can result in the degradation of the
quality of service and overall throughput of the system [17].

To solve the aforementioned problem of KHPA in a
Kubernetes-based edge computing infrastructure, this paper
proposes traffic-aware HPA (THPA), which operates on top
of Kubernetes to provide dynamic resource autoscaling by
considering the IoT service demand at each edge node.
Specifically, in an upscaling event, THPA allocates a number
of additional pods proportional to the distribution of network
traffic accessing the nodes, whereas in a downscaling event,
it terminates the pods in the node with low demand. Exper-
imental evaluations prove that THPA significantly improves
the average response time and throughput by maximizing the
amount of traffic handled locally and avoiding the round-trip
delay from redirection between edge nodes in an edge com-
puting environment.

The remainder of this paper is organized as follows.
Section II presents related works, and Section III describes
the fundamental background about Kubernetes. Section IV
describes the proposed THPA and how it solves the problem
of KHPA in an edge computing environment. Performance

evaluations of THPA compared with KHPA in various traffic
scenarios are reported in Section V. Finally, we conclude the
paper in Section VI.

II. RELATED WORKS
Since its first announcement by Google in 2014 [18],
Kubernetes has been the most prominent container orches-
tration platform for many applications that require the ease
of deployment, scaling, and management. Although new fea-
tures have been continuously released to improve applica-
tion production environments, there have been many studies
addressing the limitations of resource provisioning and scal-
ability in Kubernetes [19], including serveral in recent years.

Santos et al. [20], [21] proposed the network-aware sched-
uler (NAS), which is an effective scheduling mecha-
nism implemented by extending Kubernetes’ scheduler to
reduce latency and prevent bandwidth usage violations for
container-based IoT applications. The NAS selects a node
to schedule a pod by finding the best node that satisfies
the bandwidth constraint and round-trip time to the targeted
node. Likewise, in [22], the service function chaining (SFC)
controller was proposed to optimize the resource provisioning
in the Kubernetes-based fog computing environment. SFC
was developed by extending the Kubernetes scheduler to
enable latency-aware or location-aware resource scheduling
to improve the quality of smart city applications. However,
in [20], [21], and [22], latency was built in to the initial
configurations, so these approaches can not provide dynamic
adaption for latency and throughput varying in time.

NetMARKS [23] was proposed as a scheduler extender
to enable traffic-aware resource provisioning. Specifically,
NetMARKS improves Kubernetes scheduling by exploiting
dynamic network metrics collected with the Istio Service
Mesh. Similarly, ElasticFog [17] enables elastic resource
provisioning in a fog computing environment. The aim
of the corresponding study was to appropriately allocate
resources for each location based on its real-time incom-
ing network traffic to improve the quality of IoT services.
Nevertheless, the quality of service can not be guaranteed
in the presence of computational resources overhead since
the approaches of [23] and [17] do not consider the amount
of network traffic accessing the system, nor do they support
autoscaling.

Libra [24] is a hybrid scaling mechanism implemented on
Kubernetes by mixing both vertical and horizontal scaling
mechanisms. The aim of Libra is to control the horizon-
tal scaling process by finding and updating the appropriate
resource limit for each application pod. Interestingly, many
studies have employed machine learning to solve the scala-
bility problem. Tengfei Hu et al. [25] proposed an intelligent
enhancement of KHPA by applying a forecast model to pre-
dict the number of replicas to be adjusted in a cluster. This
approach improves the automation of HPA and optimizes
the application performance based on the load fluctuation.
L.Toka et al. [26] proposed HPA+, which provides proactive
autoscaling to improve the quality of application services
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by exploiting the multi-forecast machine learning models.
HPA+ applies the best prediction result from these forecast-
ing models as the custom metric if their accuracy proves to
equal that of the custom metric; otherwise, HPA+ uses CPU
metrics to make scaling decisions. However, despite efforts
such as mixing both vertical and horizontal scaling mecha-
nisms [24] and applying the machine learning to KHPA [25],
[26], the quality of application services can be reduced if the
network delay between worker nodes in an edge computing
environment is high.

Although the aforementioned studies have introduced
many approaches to address the ongoing problems of
resource provisioning and scalability, their proposed
approaches do not address the scalability problem of Kuber-
netes in an edge computing environment, where the amount
of data fluctuates over time as well as location. In this paper,
we propose THPA to adapt to the demands of applications
in an edge computing environment, and we prove that the
quality of service can be significantly improved by both
upscaling and downscaling pods based on the network traffic
information at each edge node.

III. PRELIMINARIES
This section introduces the fundamentals of the Kubernetes
concept, its scheduling, and KHPA mechanisms to better
describe our proposed mechanism.

A. KUBERNETES
Kubernetes is a prominent open-source platform that
automates the process of deploying, managing and scaling
containerized applications. A Kubernetes cluster consists of
master nodes and worker nodes, and the running container-
ized applications are managed in a unit called a pod, which is
the smallest execution unit in Kubernetes.

The control plane of a cluster is responsible for moni-
toring and managing worker nodes and pods and consists
of the kube-apiserver, etcd, kube-controller-manager, and
kube-scheduler. The kube-apiserver exposes the Kubernetes
API and communicates with node components. The sys-
tem administrator can interact and control the system via
the command-line tool of the kube-apiserver. In Kubernetes,
data such as metadata, current state, and desired state of all
Kubernetes’ resources are stored in the etcd under key-value
format [27]. The kube-controller-manager is a core control
loop in Kubernetes, and it assures the matching between
the current state and desired state of a cluster. The kube-
controller-manager continuously watches for the current state
of the cluster via the kube-apiserver and it updates, creates,
and terminates resources if necessary [28]. The creation of a
pod is managed by the kube-scheduler, which finds the best
node for an unscheduled pod based on the pod’s container
specification, scheduling policies, and available resources
across nodes [29].

A worker node is composed of the kube-proxy, kubelet
and container runtime, which runs on every node in a cluster
to provide a runtime environment and keep pods healthy.

The kube-proxy is a network proxy that runs on each node and
maintains network rules that are necessary for establishing
the connection to pods from inside or outside the cluster.
Kubelet ensures that pods on a node are running and healthy,
and the container runtime (e.g.Docker) enables the execution
of containers and management of container images on a
node [30].

In a Kubernetes cluster, it is difficult to rely on the
IP address of an application pod to access the applica-
tion because the pod’s IP changes whenever it is restarted.
To ensure the reachability of an application, an abstraction
layer called a Service is used to expose a group of appli-
cation pods to the clients. A virtual IP address called Clus-
terIP is assigned to each Service. Because ClusterIP is not
changed unless it is re-created, an application’s reachability
can be guaranteed [31]. Note that Cluster IP is only reachable
within a cluster. If a Service needs to be reachable from
outside of a cluster, it must be configured with NodePort
or LoadBalancer. Whenever a NodePort Service is created,
a static port is opened on each node and the application
can be accessed from inside or outside of the cluster using
nodeIP:port. LoadBalancer is another option that uses the
load balancing mechanisms provided by the cloud provider
to expose the Service externally. Whenever there is traffic
accessing an application, it is routed to the application pods,
which are watched by the Service. The routing decision is
based on kube-proxy modes, such as user-space, iptables, and
IPVS. By default, the kube-proxy works in user-space mode,
which chooses a pod to handle the traffic based on a round-
robin algorithm. Different from user-space mode, iptables
mode randomly picks out a pod for traffic handling. For
large scale applications, IPVS provides much more efficient
routing algorithms, such as round-robin, least connection,
destination hashing, source hashing, shortest expected delay,
and never queue [32].

B. KUBERNETES SCHEDULING MECHANISM
In Kubernetes, scheduling is a process of choosing the
best node to place a new pod, which is performed by the
kube-scheduler on the control plane. The kube-scheduler’s
node selection process follows two steps: filtering and
scoring. The filtering step finds feasible nodes that sat-
isfy the predefined predicates in the kube-scheduler con-
figuration, such as PodFitsResources, PodFitsHostPorts,
NoDiskConflict, etc [33]. Based on the set of candidate
nodes from the filtering step, the scoring step assigns a
score to nodes according to priorities, such as Selector-
SpreadPriority, LeastRequestedPriority, MostRequestedPri-
ority, etc [33]. After the scoring step, the final scheduling
decision can be made by selecting the node with the highest
score, and the pod is scheduled and run on the selected
node.

C. KUBERNETES HORIZONTAL POD AUTOSCALER
The HPA is a Kubernetes’s controller that periodically adjusts
the number of pod replicas to move the current state of a
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cluster towards the desired state based on targeted metric
values [34]. These metrics can be set based on the average
usage of resources such as CPU, memory, or a combination
of them. Moreover, Kubernetes supports custom metrics to
support various demands of applications.

Algorithm 1 KHPA Algorithm
pods : list of application pods in cluster .
curPods : current number of application pods.
dPods : desired number of application pods.
curMetricVal : current metric value.
dMetricVal : desired metric value.
HPA_Sync_Period : HPA sync period .

——————————————————————–
1: while true do
2: curPods = getCurPods(app)
3: curMetricVal = getCurMetricValue(app)
4: dMetricVal = getDesiredMetricValue(app)
5: ratio = curMetricVal ÷ dMetricVal
6: dPods = ceil[ratio× curPods]
7: if dPods ! = curPods then
8: setDesiredPods(app, dPods)
9: end if

10: time.sleep(HPA_Sync_Period)
11: end while

Algorithm 1 describes the detailed algorithm of KHPA.
Let curPods and dPods denote the current and desired num-
bers of application pods, respectively, while curMetricVal
and dMetricVal store the current and desired metric values,
respectively. In each period defined by HPA_Sync_Period,
KHPA collects the current number of pods in the cluster
(curPods), current metric value (curMetricVal), and desired
metric value (dMetricVal) to calculate the desired number of
pods (dPods). If the desired number of pods is different from
the current number of pods in the cluster, KHPA adjusts the
number of pods in the cluster to the desired number (line 8 in
Algorithm 1).

If the desired number of application pods is higher than the
current number of pods in the cluster, the upscaling process is
invoked, whereas in the opposite case, the downscale process
is invoked. For example, assuming that the CPU utilization
metric is used, if the current metric value is 100 m (where m
stands for millicore) and the desired metric value is 50 m,
KHPA doubles the number of pods in the cluster. In con-
trast, when the current metric value is 50 m and the desired
metric value is 100 m, KHPA halves the current number of
pods in the cluster. Note that if the current metric value is
equal to the desired metric value, the number of application
pods in the cluster remains the same.

IV. TRAFFIC-AWARE HORIZONTAL POD AUTOSCALER
In this section, we discuss the Kubernetes based edge com-
puting infrastructure and describe the current problem faced
by KHPA. Then, we describe THPA, which automatically
scales the number of application pods up or down according

to real-time traffic information in an edge computing
environment.

A. KUBERNETES-BASED EDGE COMPUTING
INFRASTRUCTURE
Fig. 1 (a) illustrates the architecture of a Kubernetes-based
edge computing system. IoT devices can access the appli-
cation services being deployed on edge nodes in the form
of pods, and there is a considerable network delay between
node communication. Note that the kube-proxy is config-
ured with the round-robin load balancing algorithm which
evenly distributes incoming requests at each worker node to
all pods in the cluster to balance the resource usage among
nodes. Furthermore, to adapt to the application demand,
which varies in time, KHPA is enabled to periodically
inspect the current and desired CPU metric values to deter-
mine whenever the number of pods in a cluster need to be
adjusted [19].

Although the incoming traffic is different among locations
(edge nodes), which indicates that their resource demands are
not identical, KHPA only tries to evenly allocate additional
pods or terminate redundant pods in a cluster whenever the
resource demand is above or below the threshold. As such,
a proportion of incoming requests at a specific node are
locally handled by local pods, while the remainder are dis-
tributed to pods on remote nodes by the kube-proxy, and
this kind of redirection with the existence of network delay
between nodes significantly reduces the application qual-
ity [35]. More specifically, without awareness of the incom-
ing traffic at each node, the adjustment process of KHPA
can unwittingly increase the proportion of incoming traffic
that is redirected to remote nodes and therefore increase the
response time of applications at a specific node. For example,
in Fig. 1 (a), assuming that each device sends one request
to an application on each node at a time, KHPA increases
the number of application pods in the cluster from 3 to 6 as
the network traffic accessing worker 1 increases from 1 to 7.
Then, without awareness of the incoming requests at each
node, KHPA simply evenly distributes new pods to theworker
nodes, which cause the numbers of pods on workers 1, 2, and
3 become 2, 2, and 2, respectively. It is clear to see that only
1/3 of the incoming requests at worker 1 can be locally han-
dled because worker 1 has 2 application pods, compared with
the total 6 application pods in the cluster. Meanwhile, 2/3 of
the incoming requests at worker 1 are distributed to other pods
on remote nodes by the kube-proxy for processing, which
indicates that these requests require more time to response.
Therefore, the application performance can not be improved
significantly although more resources are put into the
cluster.

Considering the aforementioned problem, we propose
THPA, which adjusts application pods on edge nodes based
on the proportion of incoming traffic accessing nodes in real
time during the scaling process. For example, in Fig. 1 (b),
assuming that THPA decides to add three more application
pods to the cluster (upscaling) as the number of requests
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FIGURE 1. (a) KHPA in Kubernetes-based Edge computing Architecture and (b) THPA in Kubernetes-based Edge computing Architecture.

accessing worker 1 increases from 1 to 7. Before distributing
new pods to the cluster, THPA collects the network traf-
fic information at each worker node, which results in 7:1:1
distribution, where w1:w2:w3 denotes the number of con-
current requests accessing worker 1, 2, and 3, respectively.
In addition, w1-w2-w3 represents the number of application
pods on worker 1, 2, and 3, respectively, and it can also
be used to indicate the number of pods to be added or
deleted. Then, THPA calculates the number of new pods to
allocate to each worker node based on the collected traffic
information, which results in 3-0-0. This result indicates that
all new pods are distributed to worker 1, while the numbers
of pods on other nodes remain the same. After finishing
the upscaling process, the pod distribution in the cluster
becomes 4-1-1. From this result, it is clear to see that 2/3
of the incoming requests at worker 1 can be handled locally,
whereas only 1/3 of them are redirected to remote nodes
for processing, which significantly reduces the response time
of the application at worker 1. Therefore, by adjusting the
number of pods in the cluster according to the traffic distri-
bution, THPA can minimize the application response time
compared to KHPA. It is noteworthy that THPA also con-
ducts downscaling, where it terminates application pods on
edge nodes based on the network traffic accessing them in
real time.

B. TRAFFIC-AWARE HORIZONTAL POD AUTOSCALER
This subsection describes the detailed THPA algorithm,
which consists of Algorithms 2, 3, and 4.

In Kubernetes, it is important to note that KHPA itself
does not allocate or terminate pods during upscaling or

downscaling; it only updates the desired number of applica-
tion pods. Then, after the desired number of pods is updated,
in the case of upscaling, the kube-scheduler schedules new
pods to worker nodes, whereas the Replicaset controller
terminates redundant application pods when downscaling
occurs. Therefore, to make both the upscaling and down-
scaling processes aware of network traffic, THPA modifies
the pod scheduling and terminating processes as described in
Algorithm 3 and 4, respectively.

Moreover, because THPA requires real-time traffic
information at worker nodes in a Kubernetes cluster
(lines 9 and 17 in Algorithm 2), we followed the mechanism
suggested by [17], which uses an Endpoint objects to the
network traffic information of nodes.

The base of the THPA algorithm is described by Algo-
rithm 2. Similar to KHPA, THPA periodically collects the
resource metric to determine whether scaling is necessary
(lines 2–6 in Algorithm 2). Once the scaling is decided, THPA
calculates the number of pods to be adjusted according to
the traffic distribution. For upscaling, THPA distributes new
pods to worker nodes proportionally to the current traffic
information (lines 7–14 in Algorithm 2), and that information
is stored in podsToAddAtNode, which will then be referred
to by the scheduler in Algorithm 3. For example, in Fig. 1
(b), assuming that the desired number of pods (dPods) in line
6 in Algorithm 2 is 6, THPA calculates the distribution of
three new pods according to the 7:1:1 proportion of traffic.
By dividing the totalTraffic, the distribution of new pods
(podsToAddAtNodes) becomes 3-0-0, which indicates that
worker 1 is assigned three more pods to handle concentrated
traffic, while workers 2 and 3 keep the same numbers of pods.
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Algorithm 2 Calculating Number of Pods Will Be
Created/Terminated at Each Worker Nodes

pods : list of application pods.
curMetricVal : current metric value.
dMetricVal : desired metric value.
curPods : current number of application pods.
dPods : desired number of application pods.
HPA_Sync_Period : HPA period .

nodes : list of worker nodes.
nodesTraffic : contains traffic information of worker
nodes.
——————————————————————–

1: while True do
2: curPods = getCurPods(app)
3: curMetricVal = getCurMetricValue(app)
4: dMetricVal = getDesiredMetricValue(app)
5: ratio = curMetricVal ÷ dMetricVal
6: dPods = ceil(ratio× curPods)
7: if dPods > curPods then F Upscale
8: nPodsToAdd = dPods− curPods
9: nodesTraffic = getCurTraffic()

10: totalTraffic = sum(nodesTraffic)
11: for node ∈ nodes do
12: prop = nodesTraffic[node]/totalTraffic
13: podsToAddAtNode[node] +=

prop ∗ nPodsToAdd
14: end for
15: else if dPods < curPods then F Downscale
16: nPodsToTerm = curPods− dPods
17: nodesTraffic = getInverseCurTraffic()
18: totalTraffic = sum(nodesTraffic)
19: for node ∈ nodes do
20: prop = nodesTraffic[node]/totalTraffic
21: podsToTermAtNode[node] +=

prop ∗ nPodsToTerm
22: end for
23: allPods = getAllPods(app)
24: setTerminateAnno(allPods,False)
25: for pod ∈ allPods do
26: node = pod .getNode()
27: if podsToTermAtNode[node] > 0 then
28: setTerminateAnno(pod,True)
29: podsToTermAtNode[node] −= 1
30: end if
31: end for
32: end if
33: setDesiredPods(app, dPods)
34: time.sleep(HPA_Sync_Period)
35: end while

Let n denote the number of nodes in the cluster. The upscaling
process (lines 7–14 in Algorithm 2) assigns new pods to each
individual node proportionally to the traffic, and this process
is iterated for all n node. Thus, the time complexity of the
upscaling process in Algorithm 2 is O(n).

Algorithm 3 Selecting Node for Scheduling Pod
Required :
Desired application pods > current application pods.
——————————————————————–

1: unScheduledPod = getNextPodToSchedule(app)
2: if unScheduledPods! = null then
3: filtering()
4: scoring()
5: / ∗ ∗Extender logic
6: for node ∈ nodes do
7: if podsToAddAtNode[node] > 0 then
8: assignPodToNode(pod, node)
9: podsToAddAtNode[node] −= 1
10: return
11: end if
12: end for
13: ∗ ∗ /

14: end if

Algorithm 4 Choosing Pods for Termination
Required :
Desired application pods < current application pods.
Termination annotation is set for all application pods.
——————————————————————–

1: pods = getAllPods(app)
2: podsToTerminate = []
3: for pod ∈ pods do
4: if pod .getTerminateAnno() == True then
5: podsToTerminate.add(pod)
6: end if
7: end for
8: for pod ∈ podsToTerminate do
9: terminate(pod)
10: end for

Algorithm 3 describes how the scheduler schedules new
pods to the worker nodes in a cluster during the upscaling
process. It is important to note that the scheduler finds the best
node to place a pod according to scheduling policies, such as
predicates and priorities, through filtering and scoring steps
(lines 3–4 in Algorithm 3). In THPA, to overwrite these poli-
cies and schedule new pods according to podsToAddAtNode
decided by THPA, the scheduler extender, described in lines
6–12 inAlgorithm 3 is used. Regarding the time complexities,
it is clear that those of the filtering and scoring steps in the
worst case with n nodes are O(n) because they must iterate
over all n workers in a cluster to filter and score them. For
the extender logic, the algorithm traverses over all workers to
find the intended node for scheduling new pods, so the time
complexity for the extender logic is also O(n). Therefore, the
time complexity of Algorithm 3 is O(n).

The downscaling process also requires information about
network traffic accessing worker nodes. However, we inverse
the value of traffic to make nodes with lower incoming traffic
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have more pods to terminate (line 17 in Algorithm 2). Then,
THPA calculates the number of pods to terminate for each
node based on the reversed traffic (lines 19–22 in Algo-
rithm 2). Note that we use the termination annotation to notify
the Replicaset controller that is responsible for terminating
pods in Algorithm 4. Thus, all pods are initialized as False,
as in line 24 in Algorithm 2, and pods stored in podsToTer-
mAtNode are set to True (lines 25–31 in Algorithm 2) so that
the Replicaset controller can refer to these in Algorithm 4.
Let n and p denote the numbers of nodes and pods in the
cluster, respectively. The downscaling process iterates n times
and then p times to calculate the number of pods to terminate
at each node (lines 19–22 in Algorithm 2) and to set the
termination annotation for an individual pod (lines 25–31 in
Algorithm 2). Therefore, the time complexity of the down-
scaling process is O(n+p).

For example, assume that the cluster has three worker
nodes and three pods are running on each node. If the cur-
rent traffic is reduced to 1:1:7 and the number of pods to
terminate (nPodsToTerm) in line 16 in Algorithm 2 is given
as 4, THPA calculates the number of pods to terminate at
each node based on the inversed traffic (1:1:1/7), and the
resulting number of pods to terminate is 2-2-0 (podsToTer-
mAtNode). Then, THPA refers to podsToTermAtNode to set
the termination annotation values of two pods at worker
1 and two pods at worker 2 to True. Finally, the Repli-
caset controller terminates all pods with termination value set
to True.

Note that the Replicaset controller is designed by default
to select the pods in the cluster to terminate according to
criteria in the order of assignment status of pod, phase of
pod, readiness of pod, pod’s ready transition time, pod’s
container restart count, and pod’s creation time. Because it is
impossible to designate a worker node of a pod to terminate
with default criteria, so we newly define the termination
annotation [36] in Algorithms 2 and 4 and put this anno-
tation on top of the comparison criteria in pod termination
selection in the Replicaset controller. Therefore, THPA can
control the pods set to terminate, which will be chosen by the
Replicaset controller, and we can conclude that THPA adjusts
the number of pods at worker nodes in both downscaling and
upscaling. Algorithm 4 iterates over all targeted application
pods and then checks for their termination annotation to select
which pods will be terminated. Thus, with p pods in the
cluster, the time complexity of Algorithm 4 is O(p).

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of THPA in
terms of throughput and response time in diverse scenarios.
A Kubernetes cluster with three worker nodes was set up
as shown in Fig. 2 with versions of Kubernetes and Docker
as 1.18.0 and 19.03.13, respectively. The master node was
configured with 4 CPU cores and 8 GB of RAM, while
worker nodes were configured with 4 CPU cores and 4 GB of
RAM. Another machine called a traffic generator was set up
with 6 CPU cores and 8 GB of RAM, and the Apache HTTP

FIGURE 2. Kubernetes-based Edge computing testbed.

server benchmarking tool [37] was installed to generate
requests to the application. To simulate the geographical
distribution of edge nodes in the edge computing environment
and to see the effect of delay clearly, the round-trip delay
time between worker nodes was set to 10 ms. A simple
web application was deployed on worker nodes, and it was
exposed to the clients via the NodePort service. Furthermore,
the minimum number of pods, maximum number of pods,
and target CPU utilization values of KHPA and THPA were
set as 3, 12, and 80%, respectively.

A. POD AUTOSCALING IN REAL-TIME
Fig. 3 illustrates the pod adjustment processes of KHPA
and THPA according to the fluctuation of network traffic
accessing worker nodes over time. Overall, THPA adjusts the
number of application pods in a cluster according to the actual
network traffic at worker nodes, whereas KHPA does not. For
the first 30 s (from the 0th to 30th second), as the proportion
of concurrent requests accessing worker nodes was 1:1:1,
and the pods distribution in cluster remained at 1-1-1 for
both KHPA and THPA. This is because the current number
of pods in a cluster was sufficient to handle the incoming
network traffic, so neither KHPA nor THPA performed the
scaling. From 30–150 s, as the number of concurrent requests
accessing worker nodes increased from 1:1:1 to 8:8:8, both
KHPA and THPA allocated three more pods to each worker
node so that the distribution of pods in the cluster became
4-4-4. At this stage, both KHPA and THPA evenly allocated
new pods to worker nodes to handle the increased traffic.
From 150–570 s, the numbers of concurrent requests access-
ing workers 2 and 3 fell to zero, whereas the incoming traffic
at worker 1 remained the same. This caused both KHPA and
THPA to remove five pods from the cluster, which led to the
distributions of pods becoming 2-3-2 for KHPA and 4-2-1
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FIGURE 3. Pod scaling in real time.

for THPA (at 570 s). From the obtained pods distributions,
KHPA continued to show its unawareness of traffic when it
terminated two pods on worker 1 although high traffic was
accessing it. Meanwhile, THPA maintained the number of
pods at worker 1 and prioritized terminating five pods on
workers 2 and 3 because there was no traffic accessing them.

For the remaining time (from 570–960 s), KHPA and
THPA continued to scale down the application pods from
seven at 570 s to three at 810 s according to the continuous fall
of network traffic from 8:0:0 to 1:1:1. After downscaling, the
distribution of pods of KHPA became 1-2-0, which empha-
sized that KHPA only relies on pod status to perform the
downscaling. Meanwhile, the distribution of pods of THPA
became 2-1-0. This is because THPA considered that the
traffic accessing nodes was the same, so it terminated two
pods on worker 1 and one pod for each of workers 2 and
3 because the number of pods to terminate was 4, which can
not be fully divided by three, and the number of remaining
pods on worker 3 before the downscaling was 1.

B. POD SCALING ACCORDING TO NETWORK TRAFFIC
ACCESSING CLUSTER
Table 1 summarizes how KHPA and THPA allocated new
pods to worker nodes according to different network traffic

scenarios. In scenario 1, when there was one concurrent
request accessing each worker node, both KHPA and THPA
did not adjust the number of application pods in the cluster
because the current traffic did not make the average CPU
usage of pods exceeds the scaling threshold. However, except
scenario 1, both KHPA and THPA increased the number
of application pods in the cluster to adapt to the increase
in network traffic accessing worker nodes. For example,
as shown in Table 1, the total number of pods in the cluster
increased from 6 in scenarios 2–4 to 12 in scenarios 8–10 to
handle heavy traffic accessing worker nodes. It is remarkable
that KHPA evenly distributed new pods to worker nodes
regardless of the network traffic information, while THPA
distributed new pods to worker nodes according to the traf-
fic volume accessing them. For example, for scenarios 2–4
requiring three more pods in the cluster, KHPA only evenly
distributed new pods to the three worker nodes regardless of
the change in proportion of traffic. On the contrary, THPA
allocated three additional pods proportionally to the traffic
ratio accessing worker nodes. This is why the pod distribution
in scenario 3 became 3-2-1, while that in scenario 4was 4-1-1.
It is interesting to note that THPA considers the deployment
of new pods and termination of existing pods, not all the
application pods in the cluster, to provide a seamless service.
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TABLE 1. Pod autoscaling according to the proportion of network traffic.

TABLE 2. Comparison between KHPA and THPA.

Therefore, the pod distribution might not exactly match to
the proportion of traffic accessing worker nodes. Table 2
summarizes the differences between KHPA and THPA based
on the achieved results presented in Sections V-A and V-B.
Furthermore, the effect of pod distribution is discussed in the
next subsections.

C. EFFECT OF PODS DISTRIBUTION ON APPLICATION
PERFORMANCE
To demonstrate that the application performance can be sub-
stantially affected by the pod distribution in an edge comput-
ing environment, we evaluated the throughput and average
response time of the application while varying the traffic
distribution.

1) EFFECT OF POD DISTRIBUTION ON APPLICATION
PERFORMANCE AT ONE WORKER NODE
Fig. 4 (a) and (b) compare the average response times and
throughputs of an application at worker 1 by increasing the
number of concurrent requests accessing worker 1. Note that
the pods distributions of KHPA and THPA were fixed at
3-3-3 and 7-1-1, respectively, to focus on the effect of pod
distribution.

Overall, in Fig. 4 (a), the average response time of KHPA
slightly fluctuated from 15 to 19 ms regardless of the num-
ber of concurrent requests accessing worker 1 increasing
from 3 to 12. Meanwhile, the average response time of THPA
only varied from 5 to 7.5 ms, which is approximately a 150%
improvement over KHPA.

FIGURE 4. Application performance at worker 1 (a) Response time, and
(b) Throughput.

It is important to remember that the kube-proxy evenly dis-
tributes incoming traffic to all pods in the cluster. Therefore,
although the incoming requests concentrated on worker 1 in
this evaluation, they were handled by all pods in the cluster,
and the throughput could differ according to the distribu-
tion of pods. More specifically, the number of application
pods on worker 1 for KHPA was 3, which indicates that
the number of incoming requests that could be locally han-
dled at worker 1 for KHPA was only 3/9, whereas that of
THPA was 7/9 because the number of pods on worker 1 for
THPA was 7. In other words, 6/9 of the incoming requests
at worker 1 for KHPA were redirected to other pods on
remote nodes by the kube-proxy, while that of THPA was
oly 2/9. From these facts and the existence of network delay
between nodes, it is straightforward that a large proportion
of incoming requests at worker 1 for KHPA required more
time for responding, which directly increased the application
response time at worker 1. In contrast, the higher number of
pods at worker 1 for THPA effectively reduced the number
of redirected requests at worker 1, such that the application
response time at worker 1 could be improved by approxi-
mately 150% compared to KHPA. Consequently, in Fig. 4 (b),
although the throughput of application of KHPA and THPA
tended to increase as the number of concurrent requests
accessing worker 1 increased, the obtained throughput at
worker 1 of THPA was approximately 150% higher than at
KHPA in all concurrent request cases. This is because the
number of incoming requests that could be locally handled
in THPA was higher than that by KHPA, as we already
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FIGURE 5. Application response time at three worker nodes.

FIGURE 6. Application aggregated throughput at three worker nodes.

discussed for Fig. 4 (a). In other words, THPA reduced the
network latency effect on application throughput at worker
1 by allocating more pods to worker 1 as the traffic accessing
it increased. This result proves that application performance
at specific worker node can be significantly affected by the
distribution of pods in the cluster.

2) EFFECT OF POD DISTRIBUTION ON APPLICATION
PERFORMANCE AT CLUSTER SCALE
Fig. 5 and 6 compare the response time and aggregated
application throughput in scenarios 5, 6, and 7 from Table 1,
where the pod distributions of THPA for the 5:5:5, 10:4:1,
and 13:1:1 network traffic proportions were 3-3-3, 5-3-1, and
7-1-1, respectively, while those of KHPA were 3-3-3 for all
traffic cases.

Fig. 5 describes the average response time at each worker
according to three traffic distributions. When the traffic was
balanced, such as 5:5:5, the pod distributions of both KHPA
and THPA were 3-3-3, and the response time was approxi-
mately 14.4 ms irrespective of worker nodes. However, as the
network traffic became imbalanced, such as 10:4:1 or 13:1:1,
the difference between the average response times of KHPA
and THPA increased. For example, the average response time
at worker 1 for KHPA was approximately 60% higher than
that for THPA in the 10:4:1 case. Moreover, that difference
increased to approximately 130% in the 13:1:1 case. This is
because the number of pods on worker 1 for THPA was 7,
which is higher than that for KHPA, which was 3. This

indicates that a higher portion of incoming requests, 7/9 at
worker 1, were locally handled in THPA compared to KHPA,
where only 3/9 were locally handled. In other words, THPA
can reduce the average response time by approximately 38%
by allocating more new pods to worker 1. Nevertheless,
at workers 2 and worker 3, the average application response
times of THPA were slightly higher than those of KHPA
because the numbers of application pods at workers 2 and
3 were lower than KHPA.

Fig. 6 illustrates the aggregate throughputs of KHPA
and THPA according to traffic distribution. From the fig-
ure, we can observe that with the balanced traffic distribu-
tion 5:5:5, the aggregated throughputs of KHPA and THPA
were the same. Meanwhile, when the traffic distribution
became imbalanced, such as 10:4:1 and 13:1:1, the aggre-
gated throughput of THPAwas approximately 38% and 100%
higher than that of KHPA, respectively.

It is important to note that the distribution of pods of KHPA
was always 3-3-3 regardless of the change of traffic distribu-
tion. Because the kube-proxy distributes incoming requests
evenly to worker nodes based on a round-robin algorithm,
the proportion of incoming requests at worker 1 that can be
locally handled in KHPA is always 3/9. In other words, 6/9
of the incoming requests at worker 1 for KHPA are redirected
to remote nodes for processing and such redirection signifi-
cantly worsens the effect of network delay between nodes in
application response time at worker 1. Hence, even when the
incoming requests at worker 1 increase, the obtained through-
put at worker 1 of KHPA can not increase significantly.Mean-
while, because THPA allocates new application pods to the
worker nodes according to the traffic distribution, the number
of new pods distributed to worker 1 also increases as the traf-
fic accessing worker 1 increases. Therefore, the proportion
of incoming requests that can be locally handled by THPA
is maximized for each traffic distribution, and the response
time at worker 1 can be reduced. For instance, when the traffic
distribution was 13:1:1, the aggregated throughput of THPA
was approximately 100% higher than that of KHPA. This is
because the number of pods at worker 1 in THPA was 7,
which is higher than that in KHPA, which was 3. Hence, the
proportion of incoming requests that could be locally handled
at worker 1 for THPA was 7/9, whereas that for KHPA was
only 3/9. In other words, the incoming requests at worker 1 for
KHPA required more time for response because 6/9 of them
were redirected to remote nodes for processing, while that
for THPA was only 2/9. Therefore, the obtained throughput
at worker 1 for THPA was approximately 125% higher than
that for KHPA because the number of redirected requests was
minimized. It is important to note that because there was only
one request accessing worker 2 and 3, although the number
of pods on workers 2 and 3 for KHPA was three time higher
than for THPA (3 compared to 1), the obtained throughput
at workers 2 and 3 for KHPA was just slightly higher than
that for THPA. Therefore, we can conclude that adjusting
the number of application pods on worker nodes based on
the network traffic accessing them can significantly improve
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the response time and throughput of application in cluster
by maximizing the number of incoming requests that can be
locally handled and minimizing the effect of network delay
between nodes in an edge computing environment.

VI. CONCLUSION
Edge computing infrastructure has emerged to address the
challenge of handling a massive number of IoT devices
in many IoT applications requiring low response time.
Kubernetes provides flexible and powerful features to support
IoT services in edge computing; in particular, the KHPA
provides dynamic autoscaling for real-time service demand.
In this paper, we showed that KHPA is not suitable for an edge
computing environment where edge nodes are geographically
dispersed and the amounts of traffic accessing nodes are
imbalanced because new pods are scheduled to nodes regard-
less of traffic distribution. To overcome this problem, we pro-
posed THPA, which can maximize the amount of traffic
handled locally as well as minimize the long round-trip delay
in an edge computing environment. The experimental results
show that THPA dynamically adjusts the number of pods
in the cluster according to the network traffic distribution
accessing nodes in both upscaling and downscaling, resulting
in significant IoT services quality improvement. More specif-
ically, THPA not only provides better performance regard-
less of traffic distribution but also improves throughput and
response time by approximately 150% compared to KHPA
as the number of simultaneous requests increases. Therefore,
we can conclude that it is important to provide the proper
resource scaling according to the network traffic at each edge
node to maximize IoT applications performance in an edge
computing environment.
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