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Abstract —  Traffic classification is a very important 

mathematical and statistical tool in communications and 
computer networking, which is used to find average and 
statistical information of the traffic passing through certain 
pipe or hub. The results achieved from a proper 
deployment of a traffic analysis method provide valuable 
insights, including: how busy a link is, the average end-to-
end delays, and the average packet size. These valuable 
information bits will help engineers to design robust 
networks, avoid possible congestions, and foresee future 
growth. 
This paper is designed to capture the essence of traffic 

classification methods and consider them in packet-, flow-, 
and application-based contexts. 
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I. INTRODUCTION 

Traffic classification techniques are used to categorize 

traffic flows into tangible selections. These selections 

may be in two major forms; packet information (e.g., 

packet size, flow duration, etc) and packet representing 

the application in use. 

There are numerous selections of packet 

classifications, which are based on how they are 

observed and analyzed. An observation can be at the 

packet level, including the consideration of; packet size, 

duration, burstiness and patterns of transmission.  

Another observation is to consider the context of which 

the packets are used in. This can include the application 

by which the packets are created for, performance 

measures, and different underlying protocols stacks in 

use.  These will be discussed in later sections.  

The management of this paper is as followed: Section 

II will discuss traffic classification parameters. Sections 

III and IV are dedicated to flow-based and Quality of 

Service (QoS)-application-specific traffic classifications 

respectively, followed by conclusion and references. 

 

A. Traffic analysis in the literature 

 

In the traffic classification literature, the classical 

method of identifying flows is based on various 

parameters observations, such as IP addresses, ports, etc. 

Reference [1] proposes a method for relying on the first 

five TCP packets observation to identify the application 

in use. The proposed classification technique works 

around two phases: an online traffic classification phase  

and an offline learning phase. The learning phase uses 

the training data, which checks the TCP flows to extract 

common behaviors. The traffic classification phase is 

used to extract the applications running above the TCP 

layer. 

BLINC [2] discusses a new approach in traffic 

classification where applications and devices hosting the 

applications are associated. BLINC considers flow 

activities of hosts instead of considering every individual 

TCP/UDP flows. The limitation about BLINC is that it 

is capable of analyzing the statistics only after the 

connection is terminated. Therefore BLINC is incapable 

of analyzing the flows on the fly. 

Reference [3] presents a framework for traffic 

classification while packet payload is present. The 

scheme utilizes several building blocks that are used to 

create sufficient confidence for application identity. This 

is done by collecting packets with payloads on the 

Internet backbone and sorting the TCP/UDP flows based 

on their port numbers. The results show that a 

classification based on simple port numbers will provide 

approximately 70% accuracy for the traffic 

classification. 

Reference [4] is based on NBAR (Network-Based 

Application Recognition), which is counted as a traffic 

classification based on Internet applications (e.g., web-

based), TCP/UDP port assignments, and other difficult-

to-classify applications. 

A few studies [5,6] have shown that there are 

orthogonal correlations between four main traffic 

classification dimensions; rate, duration, burstiness, and 

size. These correlations are more accurate for heavy-

hitters (e.g., long lasting connections), which contain 

DNS (Domain Name System) traffic.  

Reference [7] presents a security-based application 

classification technology called App-ID, which operates 

by establishing application sessions. App-ID identifies 

different traffic using one of the following approaches: 

a). Protocol and Port Numbers, b). SSL (Secure Socket 

Layer) Decryption, c). Application Decoders, and d). 

Application Signatures. 

In the study of traffic classifications, Peer-to-Peer 

(P2P) networks are also important to consider where 
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both TCP and UDP on top of IPv4 are used to convey 

file sharing data between individual users [8,9,10,11]. 

Reference [8] emphasizes on two main issues, first is 

P2P applications have matured over the past few years 

and their usage will be on the rise. The other issue 

mentioned is that since P2P applications use non-

standard and random port numbers, the conventional 

flow classification techniques are not adequate for 

proper classifications. Reference [9] demonstrates the 

accuracy, feasibility and robustness of high speed P2P 

application signature-based traffic. It discusses a number 

of P2P application protocols, such as eDonkey, 

BitTorrent, DirectConnet, Gnutella, and Kazaa 

protocols. The measurements show that using 

application-level signature technique, less than 5% false 

position/negative ratios can be achieved.  

A few studies [10,11] offer comparative approaches 

for studying P2P traffic behaviors. Reference [11] offers 

three such approaches for P2P application 

classifications; port-based, application-layer signature, 

and transport-layer longitudinal approaches using 

empirical network traces over a two-year period. The 

results show that classic port-based analysis is not 

accurate, which is inline with the results achieved in 

reference [8]. Application-layer signature approach, on 

the other hand, yield more accurate results, agreeing on 

the results achieved in reference [9]. 

Reference [12] uses Naïve Bayesian estimator for 

Internet traffic classification analysis.  With fine-tuning 

this estimator’s variants, the results show 65% accuracy 

on per-flow traffic classification. The accuracy was 

increased to 95% when data from the same period was 

analyzed in addition to the usage of techniques, such as 

Bayes based kernel-estimator was combined with FCBF 

(Fast Correlation-Based Filter). 

Reference [13] uses a supervised Naïve Bayesian 

estimator algorithm, which features building statistical 

models, which described the classes based on training 

data (machine learned classification). The results show 

an accuracy of better than 83 % on both per-byte and 

per-packet classifications. 

Reference [14] provides an accuracy of 82-100% 

based on an empirical evaluation technique, which 

models both host-specific- and aggregate-protocol 

behaviors. Such an accurate classification is independent 

of port label, which opposes the traditional classification 

methods. 

If certain traffic attributes are not considered 

effectively, the performance of a traffic classifier can be 

greatly affected. An example of such traffic attributes 

include flow sizes (mice/elephant), which will contribute 

to degradation of traffic classification accuracy. [15]. 

Another attribute is the QoS measures and identifiers, 

which requires CoS (Class of Service) measurement 

classifications [16]. 

Certain protocols have certain attributes, which can be 

measured for traffic classifications. One series of 

protocols that are often noticed on the Internet backbone 

are routing protocols. There are two types of routing 

protocols; internetwork and intranetwork routing 

protocols. Internetwork (aka Internet Autonomic System 

“AS”) routing schemes operate on larger scales, such as 

BGP (Border Gateway Protocol), whereas interanetwork 

routing schemes work inside one network’s boundaries, 

such as OSPF (Open Shortest Path First). It is obvious 

that only internetworking routing schemes are observed 

on the Internet backbone. Flow classifications based on 

classifying BGP level prefix flows are one example of 

routing traffic classifications [17,18]. Reference [17] 

uses a method based on Dirichlet Mixture Processes, 

modeling flow histograms with a capability of examining 

macroscopic flows while distinguishing between various 

classes of traffic.  

An empirical approach to Inter-AS traffic 

classification [18,19] includes extensive Internet-wide 

measurements and classifying and ranking them into 

individual ASs based on the utilities they derive (e.g., 

residential, business). The scatterplots show that there 

are correlations between various pairs of utilities. 

Machine Learning (ML) methods have also been 

widely used in traffic classification [20,21], where traffic 

clusters are created based of various traffic 

characteristic. Early ML techniques mostly relied on 

offline and static analysis of traffic batch traces. 

However recent work is mostly towards real-time ML-

based IP traffic classifications. 

Traffic classifications with various security measures 

in mind; have been considered in various literatures 

[22,23,24]. It is shown [22] that it is possible to classify 

and categorize Internet traffic flows without proper 

content analysis. Using statistical signatures, it is 

possible to classify services even when they are running 

on non-conventional port numbers [23]. Reference [24] 

argues that the application of SSL is on the rise and 

characterization of SSL and a method, which recognizes 

applications running on encrypted SSL connections 

based on the first packet size, provide an accurate traffic 

classification technique with more than 85% accuracy.  

Many of the parameters used in the traffic 

classifications study, exist at the network layer. 

Therefore several studies [25,26] included deeper 

attention on the IP protocol, which operates at the 

network layer in the TCP/IP suite. 

II. TRAFFIC CLASSIFICATION PARAMETERS 

In this section we introduce a number of network 

traffic parameters. These parameters are mostly 

considered in the study of packet and traffic 

classification techniques. 
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A. Packet Size 

 

Packet size is one form of traffic classification. Most 

of the traffic volumes on the Internet can be categorized 

into either very small (mouse) packets or very large 

(elephant or heavy tailed) packet sizes. The large packet 

size is usually associated with higher link usage. 

Basically 20% of the connections on the Internet are 

responsible for 80% of the traffic [27,28,29], mostly 

containing elephant packets. 

Zipf’s law is a more generalized form of this context. 

In the packet size scenario, Zipf’s law characterizes the 

frequency of occurrence of certain packet sizes as a 

function of its rank in the frequency table [30].  This 

means that there exists an imbalance in the network due 

to the fact that 20% of the connections carry 80% of the 

traffic and the rest of the 80% of the connections are for 

small packet traffic.  

Traffic Engineering (TE) [31] is a term applied to a 

systematic process in which traffic flows are arranged in 

“classified” groups to simplify their transmission 

throughout networks and decrease the chance of 

congestions. TE, by nature, is well positioned to deal 

with very large volumes through the aggregation of 

traffics.  However TE tends not to perform as efficiently 

when dealing with mice flows. The drawback of TE in 

regards to traffic classification is the fact that traffic in a 

large and random environment (e.g., the Internet) would 

exhibit volatility in several flow specifications, namely; 

volume and bandwidth [31]. Fluctuations in these 

network parameters reduce the efficiency of TE in the 

process of traffic classifications.  

In many cases, flows exhibit inherent bandwidth 

fluctuations. As mentioned, this creates complications in 

the traffic classification criteria, leading to frequent 

reclassification, thus reduction in the classification 

performance. These fluctuations are due to the following 

factors [31]: 

Connection termination following the link exhaustion 

- The duration of a connection can be modeled as a 

stochastic variable dependant on the following 

parameters [32,33]: The protocol in use, the current 

(kth) connection arrival time, the current connection 

(kth) time duration, and client/server performance 

metrics (e.g., round-trip delay, client delay, server delay, 

etc) for client/server based applications such as FTP. 

The effect of these parameters contributes to the 

creation of a median time for the flow.  This median time 

for elephant flows (aka heavy-hitters) will be higher 

since according to reference [34], the longer the 

connection duration (heavy-hitters), the higher the 

probability for the link to continue its connection. 

Burstiness Effect - Multimedia traffic, especially 

video data, can be affected by the burstiness of traffic 

flows, reflected by a number of parameters, such as [34]: 

Peak-to-average ratio (PAR) and the temporal auto-

covariance function (ACF). 

Burstiness is a time sensitive parameter and 

probability-wise, burstiness is more probable to be an 

issue in heavy-hitter connections compared to mouse 

flows. 

Bandwidth Fluctuations - Bandwidth fluctuations 

occur relatively frequently in wireless networks 

compared to wired networks. In wired networks, 

bandwidth fluctuations may happen due to various 

reasons, such as, a sudden increase of user demands or a 

congestion period.  

Reasons behind bandwidth fluctuations in wireless 

networks, mostly related to PHY and MAC layers, 

include: handoff and handover between Access Points 

(APs), limitations of available bandwidth in multi-user 

environments, physical limitations (e.g., reflections, 

refractions, multipath, etc), vulnerability to various 

interferences, and dependency of performance to the 

distance of the client (wireless user) to the server (AP). 

 

A.1 Heavy Hitters (Elephants) versus Mice packets 

 

Heavy hitters can be identified by both their large 

packet sizes and long duration connections. It has been 

presented in the literature [35,36] that there’s a strong 

correlation between the rate of a stream and its packet 

sizes mainly based on the protocol in use.  

In wired connections, from a packet size point of 

view, packets are usually between a few tens of bytes up 

to 1514 bytes. Depending on the Maximum 

Transmission Unit (MTU), large files being transmitted 

are usually broken down into various fragments. Based 

on captured real traffic, we notice that control packets 

(packets containing control commands), which do not 

usually have any data payloads, are less than 200 bytes. 

Data packets are usually above 200 bytes. Heavy hitter 

packets, according to the data we have gathered, from 

packet size point of view, are packets with payloads of 

300 to 1514 bytes.  

Wireless traffic starts from 14 bytes (e.g., ACKs, 

CTS, etc) with no data payloads, up to 1530 bytes, 

which is a limit by which fragmentation occurs. Based 

on our real traffic analysis, we label packets with over 

400 bytes in lengths as heavy hitters. 

 

B. Duration 

 

Duration of packet streams is another form of packet 

classification. Depending on the application, a short 

lived packet can last from a few milliseconds up to a few 

minutes. Long-lived packets, on the other hand, can last 

from a few minutes up to several hours. Statistics [35,36] 

show that there are direct links between larger packet 

sizes and longer durations. Based on captured real traffic 

from multimedia-rich connections, most control packets, 
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such as beacons, ACKs, CTSs, etc, are light connections 

(tortoises) and other packets forming connections 

(connection requests, confirmations, data transmission, 

acknowledgement transmission, teardowns, etc), are 

considered heavy hitters (dragonflies). 

 

C. Confidence Interval (CI) 

 

CI is a population-related parameter, which is an 

interval estimator [38,43,46]. Confidence intervals are 

used give an estimate on how reliable a sample is. For an 

extreme diverse sample space, such as the traffic patterns 

on the Internet backbone, either one has to monitor the 

lines for a long period of time (e.g., months or years) and 

then run traffic classification techniques over the saved 

traces, or use small sample space with an aid of a 

confidence interval estimator. A confidence interval of 

higher than 95% is a relatively good estimation. 

Bayesian and Gaussian interval estimations are 

examples, by which confidence intervals can be 

estimated. 

III. FLOW-BASED TRAFFIC CLASSIFICATION 

A flow is defined as a unidirectional series of IP 

packets with unique source/destination addresses, port 

numbers (assuming TCP or UDP to be the transport 

layer protocol) and protocol number [40,41,42]. 

The main focus of this section is to discuss application 

specific classes of traffic. However it is important to talk 

about a few basic and fundamental definitions first. 

Four main parameters associated to every flow are: 

size, duration, rate, and burstiness. Correlation between 

size and rate is protocol-based. In regards to 

small/medium flow sizes, due to different timeout 

mechanisms, the strong correlation between size and rate 

is more likely a pervasive artifact. Such an argument 

might require the use of a larger packet size or the 

deployment of a larger initial window to improve TCP 

performance. This will increase the chance that more 

data is sent in one round trip time “RTT” before the 

timeout occurs. There is a strong correlation among flow 

size and rate. Size can be chosen based on bandwidth 

availability [42]. 

A. Flow-Level Metrics 

Reference [40] classifies flows according to their 

sizes, durations, and inter-arrival times. These are 

defined as followed [40]: 

 

A.1 Flow Size 

 

Flow size is the total number of bytes transferred 

between a server and a wireless client during a 

connection. From the client point of view, it does not 

matter if a new server giving service (handover happens 

with a new IP address) while the connection is still 

ongoing. However this measurement is usually done per 

server/client pair [42,43,45,46]. 

Mice Flows - Mice flows are those with relatively low 

sizes transmitting for a short duration. The duration limit 

is less than the time required for the accumulation of 10 

KB data and the packet sizes are usually less than 500 

Bytes each. 

P Elephant Flows - Elephant flows on the other hand 

are flows, which usually last more than an hour carrying 

relatively large packet sizes (often larger than 1 KB 

each).  Therefore for a typically elephant flow (on 

average) more than 3 MB of data is accumulated 

compared to 10 KB in the mice flow case.  

Peer-to-Peer (P2P) networking has gained much 

popularity in the recent years. The statistical flows for 

both P2P and Internet have been well modeled and 

bounded between Pareto and Weibull distributions [40] 

and their probability density functions (pdf) can be 

derived from the following two Equations (fWEB and 

fP2P): 

 
 

 

 

 

 

 

 

 

Fig. 1 shows the comparison between web and P2P 

distribution functions across the 4 kB flow size space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Probability Density Functions versus flow size for 

WEB versus P2P activities 
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The distribution for the web-flow size includes a long-

tailed distribution. A probability distribution is called 

long-tailed (aka heavy-tailed) when high probability 

regions are far from the median or mean. 

 

A.2 Inter-Arrival Time between Flows 

 

This is the time between any two consecutive flow 

arrivals. Inter-arrival times in flows are practically 

independent from each other and are distributed 

exponentially according to Poisson process. IP traffic on 

top of TCP and UDP, also has uncorrelated inter-arrival 

flow times (also true in regards to the flow lengths), 

therefore it can be modeled by a combination of 

algorithmic scaled normal distributions [47]. 

 

A.3 Flow Duration 

 

This is calculated from the start of the initial 

handshake of the flow until the last data packet and tear-

down of the link related to the flow. At this level we also 

have mice flow and elephant flow concepts.  

To quantify these two concepts, Internet traffic 

measurements have shown that 80% of total traffic on 

the backbone is caused by 20% of the traffic flows with 

relatively long flow durations.  

In the Flow Size section a simple math was carried out 

to calculate a time range for both mouse and elephant 

flows. According to the definition a typical mouse flow 

can be as short as a few micro-seconds (based on current 

802.11 bandwidth limit of 54 Mbps) up to several 

minutes. A typical elephant flow lasts from an hour to 

several days and could transmit up to several thousand 

terabits of data in a single flow. 

 

A.4 Flow Fluctuation Patterns 

 

In general, one can categorize flow fluctuation 

patterns as: Slowly varying continuous data flow, a fast 

varying continuous data flow, traffic with common 

periodic trends, short-lived bursts, and noise. 

Slowly varying continuous data flows are long-lived 

connections generated from a steady source with 

relatively high correlation among successive data.  

Therefore, only small variations are observed in a short 

period of time.  An example would be the data 

transmitted from thermal sensors. 

Fast varying data flows are long-lived flows where the 

volume of data generates fluctuates rapidly over a 

relatively short period of time.  In these types of flows, 

high variations are observed with low correlation 

indexes among successive data.  An example of this 

would be data transmission across a busy LAN. 

Common periodic trends are long-lived traffic patterns 

which are observed to be periodic in nature, such as web 

server traffic and scheduled backup data. 

Short-lived bursts are also part of most data network 

traffic.  As mentioned before, a long established busy 

LAN connection may exhibit fast varying data flow, 

however over a short period of time, such a connection 

may include short-lived bursts resulting from rapidly 

fluctuating traffic levels. A burst can be characterized as 

a fluctuating data stream over a relatively short period of 

time. 

Background noise is an inevitable part of any network 

traffic. A high SNR (Signal-to-Noise Ration) value 

ensures relatively high level of signal and low level of 

noise. 

The network traffic categories mentioned can be applied 

to almost all aggregated network traffic.  Thus, proper 

analysis of these flow types is of great importance. 

 

B. Traffic Control 

Depending on the nature of the flows, either majority 

being mice, elephant, or a combination of both, network 

will deal with various conditions differently. For 

instance if the majority of the flows are mice and the 

network has undergone congestion periods, dropping 

packets will do little in dealing with congestion control. 

In general, such a network will pose random behavior 

with high adaptability to sudden changes, which can be a 

favorable issue for time-sensitive applications. Telnet 

and HTTP transfer streams tend to be of mice flow type 

[41]. 

For a network where majority of the flows are 

elephant, depending on the protocol in use, it can be 

tolerant against congestion, in particular if the majority 

of the traffic is based on TCP, as TCP features a built in 

congestion avoidance mechanism. TCP (FTP 

applications) and UDP (video applications) flows are 

examples of elephant flows [41]. 

Flow duration increase may increase the Long Range 

Dependence (LRD) (aka long memory, measured by 

Hurst parameter) as well. LRD is an autocorrelation 

value of a data stream, which approaches a constant 

value (normalized to 1) as the number of data bits 

increases. If the limit in equation 3.1 exists for a real 

number of r, then α (s) is the autocorrelation function 
and Xt is the LRD stationary process (Fig. 2 [adapted 

from [48], Equation 3). 

 

 

 

 

 

 

 

 

Fig. 2. Autocorrelation function in an elephant flow 

merging to the value r 
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Thus for a typical elephant flow, equation 1 should 

hold. The following definitions are related to LRD: 

Hurst parameter - is an indicator parameter, which 

increases when traffic volume and burstiness increase.  

Self similarity - is a statistical property, fractal-like, to 

examine produced data for similar patterns over a scale 

of time. A few of its properties are: slow decaying 

variance, long-range dependence, and Hurst effect. 

IV. QOS-APPLICATION-SPECIFIC TRAFFIC CLASSIFICATION 

The purpose of this section is to study traffic 

classifications from different QoS requirement 

perspectives. These types of classifications can be 

layered-based, such as: application, network, and lower 

layers (MAC and PHY), which makes it a fairly complex 

task to configure. Therefore in this section we try to 

break down different aspects of QoS from traffic 

classification point of views and discuss the details for 

each part. 

A. QoS Traffic Classes 

 

QoS is an essential part of a non-best-effort traffic 

classification, which is important to ensure priority data, 

in particular; multimedia applications running on 

stringent wireless links are handled with proper priority 

in a timely manner (upper limits on delay values). These 

multimedia applications (data containing both audio and 

video), based on the delay tolerability, can be grouped in 

the following categories [49,50]: 

Streaming - Clients request audio/video files from 

servers and pipeline reception over the network and 

display. Streaming data can be interactive, that is the 

user can control some operations (e.g., pause, resume, 

fast forward, rewind, etc.). 

Unidirectional Real-Time (Half-Duplex): 

Functioning similar to existing TV and radio devices 

(e.g., mobile-TV), however data delivery direction is 

from the network to the device. It is a non-interactive 

service, only listen and/or view. 

Interactive Real-Time (Full-Duplex) - Two-way 

traffic, similar to a phone conversation and 

videoconferencing (e.g.., talking/listening broadcasting/ 

viewing at the same time). This class has a more 

stringent delay requirement compared to real-time 

streaming and unidirectional, requires normally less than 

150 msec of delay for both audio and video applications 

(in each direction). 

 

B. Wireless QoS Requirements 

 

QoS in general falls into two categories; user 

perspective (application interaction) and network 

perspective. Application perspective QoS refers to the 

quality of the high-level applications as perceived by the 

user, including multimedia (e.g., video, audio, streaming, 

text, file transfer, etc) presentation subjective quality. 

We already discussed delay, bandwidth, round-trip (end-

to-end) delay, and jitter as part of the QoS-related 

parameters. Other user perspective parameters in regards 

to QoS include: 

Connection Drop – When the delay or jitter figures 

increase passed certain limits, the link quality either 

becomes unbearable to the user or the underlying 

application drops the connection, causing a link failure. 

In either case, it will affect the user profoundly.  

Depending on the application in use (e.g., audio, 

video, voice messaging, audio streaming, etc), the 

requirements for the subjective QoS (user perception) 

figures may change. For instance, if the end-to-end audio 

delay becomes more than 150 msec, the user level of 

discomfort starts to increase dramatically. 

In regards to network perspective QoS, the QoS-

related parameters for multimedia applications include: 

Bandwidth or Throughput, Round-Trip Time (RTT), 

End-to-End Delay (E2ED), Bite error rate (BER), Packet 

Loss Ratio (PLR), Packet drop ratio (PDR), and Jitter 

[51,52,53,54]. A few of these parameters were 

introduced earlier in this section and the rest are defined 

as followed: 

Bit Error Rate – BER is the measure of the number of 

errors bit-wise; 1 is sent, however 0 is received, or 0 is 

sent and 1 is received. Channel conditions contribute to 

the value of BER, so when noise and/or interference 

levels rise, BER value rises too.  

Packet Loss Ratio – PLR is a parameter that 

represents the ratio of the number of lost packets to the 

total number of packets sent. The performance of the 

link and the intermediate nodes has direct impacts on 

PLR. The higher the PLR value, the less efficient the 

communication path between the source and the receiver 

is. 

Packet Drop Ratio – PDR is a performance measure 

that is mostly affected by the receiver’s input buffer. 

When the input buffer starts to get full, a mechanism 

starts discarding (dropping) the packets. The lower the 

PDR value, the better the quality of these buffers. 

 
B.1 Bandwidth Requirements 

 

Based on the multimedia application in use, bandwidth 

constraints are different. Table I (adapted from 

[52,59,60,61]) shows bandwidth requirements for 

various MPEG formats (combination of video and 

audio).  

 

B.2 Voice over IP (VoIP) Bandwidth Requirements 

 

Voice over IP is an important multimedia application, 

which has become a dominant engine of transporting 

voice across IP networks (Internet). 
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VoIP systems deploy specific codec to packetize voice 

messages. Each of these codecs has specific 

characteristics with unique bandwidth and delay 

requirements. The bandwidth requirements of a number 

of codecs are mentioned in Table II (adapted from 

[55,56,57,58]). The qualities of these codecs have direct 

effects on both user-perception (voice/video), as well as 

network perspective QoS (e.g., overall delays). 

 

B.3 End-to-End Delay 

 

In a VoIP system, the transmission of voice data 

packets is not instantaneous and latency is the term used 

to describe the time durations for the needed time that a 

packet of voice data to be packetized, encoded, moved 

across the network to an endpoint, decoded and de-

packetized, de-jittered, and decoded at the receiving end.  

As mentioned, the end-to-end delay has to be 

minimized for real-time and interactive applications. 

End-to-end delay reduction directly improves throughput 

figures. A thorough end-to-end delay analysis is needed 

for precise throughput calculations.  

Total latency is so-called end-to-end latency, mouth-

to-ear latency, round-trip-delay (RTD), or round-trip 

time (RTT) [56].  

In VoIP, real conversations usually involve “turn-

taking” with 200 msec breaks. When the latency of a 

network approaches the 200 msec limit, the conversation 

flow becomes distorted. The two end parties may 

interrupt each other by starting to talk simultaneously or 

remain silent at the same time. Degradations for delays 

over 150 msec (300 msec two-ways) will affect any 

signal greatly [62]. For video codecs there are also limits 

for the delay, for instance H.261 and H.263 are typically 

within the 200 msec to 400 msec limit. 

Multimedia applications often require bounded delay 

figures to offer seamless QoS. An end-to-end delay is 

comprised of the following delay figure combinations 

[63]: Packet loss, packet processing delay (codec, 

serialization, queuing, and propagation delays), and 

network jitter.  

 

Codec delay is the combination of frame processing 

and lookahead delays, which are defined as:  

- Frame processing delay is a delay of processing a 

single voice data frame.  

- Lookahead delay is the next frame processing delay, 

which is needed for algorithms with correlation 

schemes (e.g., ADPC) 

The rest of the delays are from: BER, PLR, PDR, 

PRDeR, echo, and Jitter. Jitter is one of the most 

important phenomena affecting the quality of a VoIP 

system.  

Jitter happens due to the fact that there is not delivery 

guarantees for the voice packets across IP networks, 

therefore there are possibilities that not all voice data 

packets travel the same path, causing variation in the 

packet arrival times. This may happen because some 

packets may chose paths with more hops than other 

packets. Therefore packets arrive at the destination node 

with variable delays causing much higher latency effect, 

called jitter, which is calculated per seconds. Table III 

(adapted from [64,65,66] shows a few audio codecs 

delay figures. 

Too many packets being processed at the intermediate 

gateways/routers may overwhelm the processing duties 

momentarily. Both of these circumstances cause latency 

to become irregular and this irregular delay, as 

mentioned, is called jitter. To lessen the effects of jitter, 

packets are gathered in a jitter buffers in the intermediate 

transmission devices and at the receiving-end device. 

Table IV (adapted from [52]) shows the acceptable VoIP 

jitter figures for Cisco-based systems, which should be 

below the 70 msec level and for inter-frame delay (frame 

delay jitter) in video, it should be less than 0.15 msec 

(for H.261). 

The combination of end-to-end delay, jitter, noise-

levels, and other factors are used to calculate a 

subjective measure for VoIP system, which is called; the 

Means Square Opinion (MOS) value. MOS values vary 

from 5 (highest) to 1 (lowest). 

 

 

TABLE I 

DIFFERENT DATA RATES FOR DIFFERENT VIDEO APPLICATIONS 

Algorithm Format Format Specific Properties Data Rate (kbps) 

DPCM 
 

H.120 625-line-50 field, 525-line-60 field 1544 (NTSC) 
2048 (PAL) 

DPCM, DCT, MC H.261 88x72, 176x144, 352x288, 704x576 
Comparable to MPEG-1 

20, 2048 

 
8x8 DCT, CIF, SIF 

 
MPEG-1 

352x288, 352x240, 25 fps (PAL), CBR, MPEG-1, 
Audio, Layer 2 VCD 

32 (audio) – 1,536 
(video) 

8x8 DCTVLC H.262 Similar to MPEG-2 60-2,048 

8x8 DCT, CIF, SIF  
MPEG-2 

MPEG-1, Low (352x288), Main (720x476), SD 
(1440x1152), HD (1920x1152), SVCD, DVD 

32-80,920 

OBMC, DCT, SQCIF, 
QCIF, CIF, 4CIF, 16CIF 

H.263 12bx96, 176x144, 352x288, 704x576, 1408x1152 – 
up to 72 fps 

10-64 (audio) 
1,024-20,480 

4x4 DCT, 8x8 DCT H.264 Similar to MPEG-4 64-983,040 

DCT, VBSMC MPEG-4 Level 4, 720x1280 progressive 1080x1920 interlace 24-24,5760 
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The quality of the audio codec has a direct impact on 

the MOS score (Table V). Table VI (adapted from 

[67]) shows a few codecs and their upper MOS limits. 

 

III. CONCLUSIONS  

 

This paper summarizes various criteria for traffic 

classification purposes, including packet-, flow-, and 

application-based aspects. We studied different 

parameters under each category, numerated the 

parameters considered for each section, and identified 

the QoS measures and parameters.  
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