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Abstract

We propose an unsupervised, low-latency traffic congestion estimation algorithm that operates

on the MPEG video data. We extract congestion features directly in the compressed domain,

and employ Gaussian Mixture Hidden Markov Models (GM-HMM) to detect traffic condition.

First, we construct a multi-dimensional feature vector from the parsed DCT coefficients and

motion vectors. Then, we train a set of left-to-right HMM chains corresponding to five traffic

patterns (empty, open flow, mild congestion, heavy congestion, and stopped), and use a Maxi-

mum Likelihood (ML) criterion to determine the state from the outputs of the separate HMM

chains. We calculate a confidence score to assess the reliability of the detection results. The pro-

posed method is computationally efficient and modular. Our tests prove that the feature vector

is invariant to different illumination conditions, e.g. sunny, cloudy, dark. Furthermore, we do

not need to impose different models for different camera setups, thus we significantly reduce the

system initialization workload and improve its adaptability. Experimental results show that the

precision rate of the presented algorithm is very high around 95%.
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Traffic Congestion Estimation Using HMM Models Without

Vehicle Tracking

Fatih Porikli and Xiaokun Li

Abstract— We propose an unsupervised, low-latency traffic
congestion estimation algorithm that operates on the MPEG
video data. We extract congestion features directly in the
compressed domain, and employ Gaussian Mixture Hidden
Markov Models (GM-HMM) to detect traffic condition. First,
we construct a multi-dimensional feature vector from the
parsed DCT coefficients and motion vectors. Then, we train a
set of left-to-right HMM chains corresponding to five traffic
patterns (empty, open flow, mild congestion, heavy congestion,
and stopped), and use a Maximum Likelihood (ML) criterion
to determine the state from the outputs of the separate
HMM chains. We calculate a confidence score to assess the
reliability of the detection results. The proposed method is
computationally efficient and modular. Our tests prove that the
feature vector is invariant to different illumination conditions,
e.g. sunny, cloudy, dark. Furthermore, we do not need to
impose different models for different camera setups, thus we
significantly reduce the system initialization workload and
improve its adaptability. Experimental results show that the
precision rate of the presented algorithm is very high around
95%.

I. INTRODUCTION

Although the dominant technology for current vehicle

traffic management systems is loop detectors, which are

buried underneath highways to count vehicles passing over

them, video monitoring systems promise more advantages

[1]. First, more traffic parameters can be estimated into

the system. Second, cameras are less disruptive and less

costly to install than the loop detectors and other pneumatic

sensors. Third, vision based systems provide more precise

information than the nets of loop detectors. Therefore, video

cameras increasingly becoming more popular in traffic

monitoring and control systems.

An efficient traffic management system needs accurate

traffic condition information. Since a modest system may

consists of hundreds of video cameras, the computational

complexity is another important consideration. Such sys-

tems also require maximum automation to decrease the

burden on human operators as well.

Most existing vision systems for monitoring road traffic

relied on stationary cameras and vehicle tracking, [2], [4],

[6], [12], [1], and [13]. Sullivan [4] set up a system that

can locate and track vehicles in 3D space when they move

across the ground plane, classify their trajectories, and take

account of occlusions of vehicles by stationary parts of the
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scene or occlusions between vehicles. Malik [11] proposed

an occlusion reasoning for robust multiple car tracking.

Koller [12] employed a contour tracker and affine motion

model based Kalman filters to extract vehicle trajectories

and used a dynamic belief network to make inferences to

traffic events happened on highway. One main disadvantage

of the tracking based systems is that their accuracy relies

on the tracking performance. Depending on the lighting

conditions, speed of the traffic, and object occlusion, the

tracking can become unstable easily. Cucchiara [7] pre-

sented a system for detecting vehicles in urban traffic scenes

by means of rule-based reasoning on visual data. Six traffic

events were defined and tested in their system. Shuming

[8] used a non-parameter regression method to forecast

traffic incident from signal curve extracted from moving

area. Maurin [9] designed a system which addresses a

multi-level approach to monitoring traffic scenes using the

technologies of optical flow, Kalman filtering, and blob

merging. Yu [10] proposed a tracking based algorithm that

extracts traffic information from compressed video and uses

the ratio between the moving blocks and all blocks to

estimate traffic situation. However most of these systems

are designed for specific camera setups and computationally

expensive.

In this paper, we propose an accurate, computationally

simple, lighting and camera setup independent method.

Instead of monitoring traffic by tracking individual vehicles,

we construct motion and residual features for separate lanes

and build event models using them. Since most traffic videos

are already encoded using the MPEG compression, our

discussion is focused on the MPEG video data.

Compressed domain analysis have significant advantages.

Unlike the pixel domain techniques that require decoding

of the entire input video before event detection, it is com-

putationally inexpensive. Furthermore, compressed video

contains useful information such as color, texture, edge

and other spatial frequency statistics. Most importantly,

compressed video embodies valuable motion information

in terms of block-based motion vectors. We fuse the mo-

tion, color, texture, and other information embedded in

compressed data to construct a multi-dimensional feature

vector for a group of frames. We define a traffic event as a

stochastic temporal process such that its features at multiple

temporal scales are the samples of the stochastic process to

construct an empirical distribution associated with the event.

Since HMM’s effectively capture the dynamic properties of

the stochastic processes and successfully represent temporal

continuity, we use a set of mixture of HMM’s to model



Fig. 1. Flow Diagram of congestion detection.

traffic events. Since the feature values are continuous, we

employ Gaussian shape functions. The proposed method has

four main stages as shown in fig. 1:

• Parsing

• Feature vector extraction

• Off-line GMHMM training

• Real-time Maximum Likelihood classification

In section II, we describe the parsing process and feature

extraction. We explain training of GM-HMMs and classifi-

cation using ML in section III. We present the experiment

results in Section IV.

II. MPEG PARSER AND FEATURE EXTRACTION

MPEG compression scheme reduces the spatial redun-

dancy in one frame by using Discrete Cosine Transform

(DCT) and temporal redundancy between successive frames

via motion compensation to achieve a low-bit rate com-

pression. The result of motion compensation is stored as

motion vector in video. An MPEG video consists of a

sequence of intra-coded I frames with a number of B and P

frames, where a P frame is predicted from the immediately

preceding I or P frame, and a B frame is bidirectionally

interpolated using the two I or P frames before and after it.

The basic unit of a sequence is group of pictures (GOP) and

its typical encoding order is I B B P B B P B B P. We only

use the I and P frames because the B frame information is

already contained within the I and P frames. Compressed

video encodes an I frame using the DCT coefficients Cuv of

a N ×N image region {Ixy : 0≤x ≤N,0≤y≤N}

Cuv =
1

N
K2

N−1

∑
x=0

N−1

∑
y=0

Ixy cos
πu(2x+ 1)

2N
cos

πv(2y+ 1)

2N
(1)

where u and v are the horizontal and vertical frequencies

(u,v = 0, ..,N − 1), N = 8, and K = 1√
2
. When u,v = 0,

this coefficient is called as the DC parameter (DC = C00)

and it is considered as a color mean. The remaining

coefficients u,v = 1, ...,N − 1, called as AC, describe the

(a) (b)

Fig. 2. (a) An I frame from 352×240 input video (b) magnitude of the
8×8 DCT block matrix. Upper left is the DC values.

spatial frequency energy and directionality. Since the most

prominent texture and edge information is captured in

the lower indexed AC terms, we use lower indexed DCT

coefficients to compute an AC mean value

ĀC =
1

K

(

K

∑
u=1

Cu0 +
K

∑
v=1

C0v

)

. (2)

Note that the DC parameter and AC mean value only exist

for the I frames. We compute these features using the Y

color channel since illumination has the highest resolution

in the MPEG compression (MPEG uses the YUV color

space). The DC and AC coefficients of a sample I frame

are given in fig. 2.

Motion vectors (MV) only exist in P and B frames.

There is one motion vector for each block. Motion vectors

are obtained by searching for the similar block. Although

motion vectors represent the best color match instead of the

true motion, they still give important motion information.

Motion vectors that have nonzero value indicate a moving

object in the spatial domain. The average direction of the

majority of the motion vectors reflects the global motion,

and the average magnitude of the motion vectors indicates

the average velocity within the frame. To obtain more reli-

able motion information, a trimmed mean filter is employed

to remove the marginal values as

mvi j =
1

7

7

∑
m=1

mv∗i j (3)

where mv∗i j is the magnitude ordered MV’s |mv0| ≥ |mv1| ≥
...≥ |mv9| within the 8-neighborhood of block (i, j) includ-

ing the center block (i, j). This is simple but still effective

pruning technique.

A predefined region of interest (ROI) mask is applied

to the DCT coefficients and MV’s. A ROI corresponds to a

traffic lane. Since traffic camera is assumed to be stationary,

these regions are entered once at the beginning. We use only

the DCT coefficients and MV’s within the corresponding

ROI’s and dismiss other coefficients when we compute

the feature vector. To make the feature vector invariant to

different camera setups, we apply a geometrical correction.

First, an affine transformation with rotation matrix R and

a translation vector T maps the block locations onto a

reference coordinate system pr = Rp + T where p : (i, j)



Fig. 3. Relationship of motion vectors and moving objects. MV’s reflect
the marked moving object between the successive frames.

is the original coordinate of the block. The rotation and

translation matrices are obtained at the initialization stage

using the shape of the ROI. After this transformation, an

area compensation along the axis of camera coordinate

system is employed. This compensation assigns the weight

parameters to the blocks within the ROI such that the

contribution of blocks are proportional with respect to their

distance from the camera imaging plane. For instance, the

MV’s of two blocks that show closer and faraway areas of

the road will become identical in case of the traffic flow

speed remains same on the corresponding parts of the road.

Note that, before this compensation, the motion vectors have

different magnitudes since vehicles will appear smaller in

distance, thus their motion vectors.

A. Feature Vector

Traffic congestion is defined by two important property;

speed and density of the traffic. Therefore, we designed our

feature vector such that it captures the speed and density of

vehicles.

For each ROI of a GOP, a single feature vector is

constructed. One component of this vector represents the

average difference of the DC parameters and it indicates the

density and speed of the traffic. It becomes large for higher

speeds and larger number of vehicles. The average DC

difference Rdc is the ratio of the residues of DC components,

which are parsed from two consecutive I-frames

Rdc =
Mdc

M

M

∑
i∈ROI

(DCi, j,t −DCi, j,t−1) (4)

where Mdc is the number of blocks whose residue is larger

than zero and M is the total number of blocks in the

corresponding ROI. Similarly, the second component is the

moving AC difference Rac, which is the ratio of the residues

of AC means

Rac =
Mac

M

M

∑
i∈ROI

(ĀCi, j,t − ĀCi, j,t−1) (5)

where Mac is number of blocks whose AC residue is larger

than zero.

Our experiments show that the speed may also repre-

sented by the motion vectors statistics. The mean µmv and

variance σmv of MV’s are calculated within an ROI for

the all P frames a GOP (usually a total of 4 P frames)

using the trimmed MV’s. Finally, hmvmmvlmv are the number

of the MV’s into three magnitude bands high, middle,

Fig. 4. Left-to-right HMM topology is used for continuous processes.

and low. These features represent the distribution of the

speed within the ROI. Since a GOP contains multiple P

frames, the mean is assigned for each band. Then, the

seven-dimensional feature vector is constructed as v =
[RacRdcµmvσmvhmvmmvlmv]. One advantage of this feature

vector is that the motion energy, which changes along

temporal direction, is accurately described. Furthermore,

since all components in vector are density parameters, the

vector is invariant to the size of inspected area. Another

useful property is the values of these density parameters are

insensitive to the different illumination since the residual is

used.

III. GM-HMM

The normal traffic situation can be roughly categorized

into two states, open and congestion. But we observed that

such a classification is not enough to describe the traffic

situation. Thus, in our system we used five traffic pat-

terns; Stopped (S), Heavy congestion (HC), Mild congestion

(MC), Open flow (OF), and Empty(E) are defined. Stopped:

there is a large number of vehicles and almost all of the

vehicles run very slowly or completely stopped. Heavy

congestion: there is a large number of vehicles and most

vehicles run slowly, Mild congestion: most of the vehicles

run at half speed. Open flow: vehicles run at normal speed.

Empty: there is no vehicle or minimum number of vehicles

in the ROI.

An HMM is a probabilistic model composed of a number

of interconnected states a directed graph, each of which

emits an observable output. Each state is characterized by

two probability distributions: the transition distribution over

states and the emission distribution over the output symbols.

A random source described by such a model generates a

sequence of output symbols as follows: at each time step the

source is in one state, and after emitting an output symbol

according to the emission distribution of the current state,

the source jumps to a next state according to the transition

distribution of its current state. Since the activity of the

source is observed indirectly, through the sequence of output

symbols, and the sequence of states is not directly observ-

able, the states are said to be hidden. Since traffic event is a

continuous process and the profile of the probability density

function in one state is a combination of several Gaussian

curves, an HMM with Gaussian mixtures is selected to

model traffic event. The parameters of the HMM is denoted

as λ = {A,B,π}. Here, the initial state distribution is given



Fig. 5. Each row illustrates one of the five traffic events happened in
the marked ROI. From top to bottom: the stopped, heavy, light, open, and
empty traffic states. Each column corresponds to consecutive frames, i.e.
initial, and 50, 100, 150 frames apart.(courtesy of DoT, Washington State)

by π = {π1, ..,πH} where πi = P(q1 = i), and H is the

number of hidden states, q1 = i is the i state at t = 1. State

transition matrix is represented as

A =

⎡

⎣

a11 · · · a1H

. . .

aH1 · · · aHH

⎤

⎦ (6)

where ai j = P(qt+1 = j|qt = i). The observation probability

distribution is denoted as B = [b1(v), ..,bH(v)] where in state

j: bi(v) = P(vt |qt = i),

bi(v) =
1

(2π)2 det(Σ)
e−

1
2 (v−µt)

t Σ−1(v−µt) (7)

where v is feature vector, and Σ is the correlation vector.

The above unknown GM-HMM parameters are learned

by use of Expectation Maximization (EM) algorithm. The

EM algorithms perform an iterative computation of maxi-

mum likelihood estimation when the observed data are in-

complete. The aim of parameter learning is to find the model

parameter λ which maximizes λ = argmax(log p(v|λ)) for

a given feature vector v. One EM algorithm, Baum-Welsh

algorithm, is applied to learn the traffic event model param-

eters. The learning process produces a sequence of estimates

for lambda. After setting the initial values, the parameter

estimation is repeated until the reaches to a local maximum.

One advantage of the EM algorithm is the convergence is

guaranteed and the convergence time is short (usually less

than 10 times in our system). Also, the local maximum is

usually an adequate model for the data. The left-to-right

model is chosen as the HMM topology for all states due to

its simplicity. One advantage of it is the model associates

time with model states in a fairly straightforward manner.

Fig. 4 illustrates the left-to-right topology.

Five identical topology GM-HMMs are trained for the

five traffic states using the hand-annotated training data

Fig. 6. GM-HMM classifier.

including different camera setups and illumination condi-

tions. Then, the ML-based classifier is designed to detect

the traffic event. Fig. 6 illustrates the classifier. The input

sequence of feature vectors is fed into the trained GM-

HMMs and then, the most likely sequence of states and the

corresponding likelihood to each class is determined using

the Trillis algorithm (an alternative is the Viterbi algorithm).

Finally, the class with the highest likelihood is picked up

to determine the traffic event. In our system, the Trillis

calculation is implemented.

Since the traffic classification is not a completely objec-

tive process, it will be very helpful that the system can

output the traffic detection result with a confidence score.

The confidence score should be low in case of erroneous and

large in case of correct detection of the state. The distance

between the highest likelihood and the second highest like-

lihood fits this requirements. Another possible confidence

score definition is the value of the highest likelihood itself.

Still another measure is the transition between the previous

detection result and the current state.

IV. EXPERIMENTAL RESULTS

We evaluated the proposed method using different data

sources of real traffic scenes provided by the Department

of Transportation, Washington State. The data set includes

various illumination conditions, e.g. sunny, overcast, dark,

nighttime. A total of 600 minutes, which corresponds to

interstate highways, are chosen for testing. All testing clips

are hand-labeled to make a comparison with a ground truth.

The training video data is chosen such that there is no

overlap with the testing data. The total length of the training

data for each of the five traffic states is around 15 minutes.

Fig. 7-a shows a sample output of the feature extraction.

The results of the traffic taken from US Highway I-5 NE

are shown for 4000 GOPs (about 33 minutes) are presented.

The ROI is the most left lane. All of the five states exist

in this clip. From top to bottom, are the DC difference,

AC difference, mean of MV’s, variance of MV’s, means

of the MV’s in high, middle, and low bands. Fig. 7-b

presents the estimation result. The first row is the confidence

score calculated using the distance between the highest

likelihood and the second highest likelihood, the second

row is unfiltered direct output from ML classification, the



sequence 2− states 4− states 5− states

Source−1 (I5NE,33min) 86% 90% 95%

Source−2 (I5SR,50min) 84% 91% 96%

Source−3 (I405,40min) 81% 90% 94%

Source−4 (SR520,40min) 83% 92% 97%

TABLE I

ACCURACY RATE FOR 2-, 4-, AND 5-STATES FOR TEST DATA THAT

CONTAINS DIFFERENT LIGHTING CONDITIONS AND CAMERA SETUPS.

third row is the result after time-wise median filtering, and

the last row is the hand-labeled result .

It is visible that all of the existing traffic states are

successfully detected. We compared our results with the

hand labeled ground-truth. When we examine the ‘false’

alarms given by the ML, another interesting fact is found

that our system is more sensitive than the human operator.

We saw that most false alarms, the traffic state changes

very rapidly, which is very demanding for human operator

to find, and the state that indicated by our estimator is the

correct one. Even assuming all false alarms as real false

detection and directly comparing the hand-labeled ground

truth with the initial output from ML, the accuracy rate

reaches 94%. The accuracy rate is defined as the ratio of

correctly estimated states to the total length of the data.

The correct rate raises 97% for the filtered result, i.e. only

3% error rate. In case of slowly state changing traffic, the

accuracy rate improves to 98% for the initial output and

99% for the filtered result. Fig. 7-b also shows the fitness

of the confidence score. We find that the score is always

low at the place of event change and the false alarm.

Since for each ROI of a GOP a single feature vector is

constructed, the computational complexity is very low. In

case of an ordinary MPEG sequence that has 2 GOP per

second and a traffic setup that consists of 3 ROI’s, we need

to compute only 6 feature vectors at a second. We find that

our algorithm can process at least six video encoded streams

simultaneously in real-time.

We also implemented different state number of states;

2-states scheme (open traffic and congested traffic) and

4-states scheme (stopped, heavy, light, and open). The

comparison of these 2-, 4-, 5-states schemes is given in table

I. We observed that increasing the number of states is not

possible due to the limited image resolution and subjective

assignment of the traffic condition by the human operator.

With the higher number of states (more than 6), the accuracy

decreases rapidly.

The optimum length of input feature sequence is also

learned by testing different length of input sequence (the

number of feature vector that are fed into the GM-HMM

in detection process). We exhaustively tested the various

input lengths. Fig. 8 illustrates the optimum length of input

sequence after a polynomial fit. From the graph, the range

of the optimum value is obtained between 15 to 20.

Fig. 8. Optimum length of input sequence.

V. CONCLUSIONS

We presented a traffic congestion estimation method that

directly extracts features in the MPEG compressed domain.

Our system has several advantages: 1) it is highly accu-

rate, i.e. precision rate is around 95%, 2) computational

inexpensive, i.e. we can process more than 6 encoded

streams real-time on a P4 3Ghz platform, 3) very agile

and has a small latency approximately 2 seconds, which is

the best reported result we are aware of, 4) robust towards

illumination changes, 5) invariant to different camera setups.

Furthermore, we provide a confidence score to assess the

reliability of the estimation.

The compressed domain traffic congestion estimation

method significantly improves the performance of traffic

management systems by providing timely and accurate data.
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Fig. 7. Feature extraction and detection result (a) seven-dimensional feature vector graphs, (b) up: GM-HMM responses, and down: confidence score,
(c) estimated traffic condition: up: raw ML output, middle: filtered result, and down: hand-labeled ground truth for comparison. As visible, the estimator
accurately detected the traffic condition with minimal delay.
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