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ABSTRACT

Base stations (BSes) in the 3G cellular network are not energy
proportional with respect to their carried traffic load. Our mea-
surements show that 3G traffic exhibits high fluctuations both in
time and over space, thus incurring energy waste. In this paper,
we propose a profile-based approach to green cellular infrastruc-
ture. We profile BS traffic and approximate network-wide energy
proportionality using non-load-adaptive BSes. The instrument is
to leverage temporal-spatial traffic diversity and node deployment
heterogeneity, and power off under-utilized BSes under light traf-
fic. Our evaluation on four regional 3G networks shows that this
simple scheme yields up to 53% energy savings in a dense large
city and 23% in a sparse, mid-sized city.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Computer-
Communication Networks—Network Architecture and Design;
C.4 [Computer Systems Organization]: Performance of Systems

General Terms

Design, Measurement, Performance

Keywords

Energy Efficiency, Cellular Networks, 3G Network Traffic

1. INTRODUCTION
We are currently experiencing surging energy consumptions on

the wireless cellular infrastructure. Recent reports show energy
consumption of mobile networks would reach 124.4B KWh in
2011 [3], and the power bill is expected to double in five years
for one Chinese mobile operator [19]. To build a green cellular
network, we need to first improve the most critical subsystem that
is the dominant contributing factor to overall energy. In the 3G
context, it is the base station (BS) subsystem. BSes consume about
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80% of overall infrastructure energy, while the user clients typically
take around 1% [15].

In this paper, we seek to make the 3G infrastructure more energy
efficient. We use real traffic traces, actual BS deployment map and
measured BS power consumption, collected from four regional 3G
networks, each of which has 45 to 177 BSes and is operated by
a largest mobile operator in the world. Our analysis reveals that,
3G traffic load exhibits wide-range fluctuations both in time and
over space. However, energy consumption of current networks is
not load adaptive. The used energy is unproportionally large under
light traffic. The root cause is that each BS is not energy propor-
tional, with more than 50% spent on cooling, idle-mode signaling
and processing, which are not related to the runtime traffic load.

We design a solution that approximates an energy-proportional
(EP) 3G system using non-EP BS components, in order to cope
with temporal-spatial traffic dynamics. The main instrument of our
proposal is to completely power off under-utilized BSes when their
traffic load is light and power them on when the traffic load be-
comes heavy. The challenge is to devise a distributed solution that
uses a small set of active BSes, while satisfying three requirements
of traffic capacity, communication coverage, and minimal on/off
switching of each BS. To this end, we take a location-dependent
profile-based approach. We divide the network into grids, so that
BSes in each local cell can replace each other when serving user
clients. We then perform location-dependent profiling to estimate
the aggregate traffic among BSes in the grid. Based on the peak/idle
of the traffic profile, we decide the corresponding set of active BSes
for each duration. It turns out that, if we select the active sets ap-
propriately, we only need to power on a sleep BS and shut down an
active BS at most only once during each 24-hour period.

Our evaluation using real traces shows that our scheme leads to
average daily energy saving of 52.7%, 46.6%, 30.8% and 23.4%
in the four regional 3G networks. The savings are more signifi-
cant during midnight and weekends and in dense deployment ar-
eas, while the miss rate to deny client requests is kept lower than
0.1% in the worst case. While our scheme saves energy on cellular
infrastructure, it does negatively increase client power for uplink

transmission during idle hours (e.g., late nights and weekends).
The rest of the paper is organized as follows. Section 2 intro-

duces 3G background and Section 3 explores the operating energy-
load curve in 3G networks and models BS power consumption.
Section 4 analyzes 3G traffic, and Section 5 describes the proposed
solution as well as its implementation within the 3G standard. Sec-
tion 6 evaluates the performance and Section 7 discusses the related
work. Section 8 concludes the paper.

2. BACKGROUND
The 3G network infrastructure has two main parts of radio access
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Figure 1: A typical BS in 3G networks.

network (RAN) and core network (CN). Its RAN is composed of
the User Equipment (UE), the Base Station (BS)1, and the Radio
Network Controller (RNC). Each RNC manages tens of BSes, each
of which provides network access services to mobile users via its
air interface to the UE.

Figure 1 shows a typical BS in 3G UMTS networks. It has
the communication subsystem and the supporting subsystem. The
communication subsystem includes Remote Radio Unit (RRU),
Base Band Unit (BBU), and Feeder. RRU is the radio specific hard-
ware for each sector. Each BS may install several RRUs near the
antennas to provide different coverage and capacity. BBU, as the
main unit, provides all other communication functions, including
control, base band, switching and Iub interfaces to RNC. Each BS
may have several BBUs. Feeder is the optical-fiber pair cable that
connects RRUs to BBUs. The supporting subsystem includes the
cooling subsystem and other auxiliary devices. The cooling sub-
system, including air conditioning and fans, maintains an appropri-
ate operation temperature at the BS. The auxiliary devices include
power supply and environment monitoring modules.

From the energy efficiency perspective, the cooling subsystem
and some transmission modules consume a significant portion of
overall power at each BS, regardless of the traffic load intensity.
Our measurement shows that it reaches 50% or more in an opera-
tional BS. This is a main factor that leads to energy inefficiency for
the 3G infrastructure as we show next.

3. TOWARDS TRAFFIC LOAD-ADAPTIVE

ENERGY CONSUMPTION
We now describe the problem with current 3G networks from

the energy consumption perspective, present the BS power models
based on measurements, and identify the roadmap to the solution.

3.1 Energy-Load Curve in 3G networks
Our study on real traces of 3G networks shows that the current

network operation is not energy proportional to its carried traffic
load. The used energy is unproportionally large under zero or light
traffic load. Figure 2 shows an illustrative example based on our
trace analysis on Region 1 network (see Table 1 for more details).
The Region 1 network is an operational 3G network in a big city
with 177 BSes shown in Figure 6(a). From the plot of the total
consumed power2 versus the aggregate traffic load in Figure 2, we
see that even with light traffic (say, 2000 or below), the consumed
power is still quite significant, about 380Kw in total, approximately
95% of the peak power. In contrast, the desired energy proportional
operation (also shown in the figure) will consume much less power,
about 100Kw in total, under light traffic.

We have also digged into the trace and discovered why. It turns
out that the traffic load at each BS varies significantly over time
(see Figure 7(a) for a snapshot of traffic at four BSes in different

1It is also called Node B in the 3G context.
2The power is averaged over a time window (e.g., 15 minutes). We
do not differentiate between power and energy hereafter.
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Figure 2: Energy-Load Curve for Region 1 Network.

regions). There is a large fraction of time (more than 10 hours over
each 24-hour period) that the BS carries very light traffic. This im-
plies that each BS system is not energy proportional to the traffic
load. The root cause is that the large fraction of cooling power and
fixed radio transmission overhead are invariant of traffic load (as
we show next), further contributing to non-energy-proportionality
feature at each BS. Therefore, without energy-proportional opera-
tions, the 3G network suffers from large energy waste.

3.2 Understanding BS Power Consumption
We now model the overall BS power consumption, including

both the radio communication and the auxiliary parts (e.g., cool-
ing). We use real measurement data taken on both transmission
and cooling systems at BSes. Early models only consider radio
transmission but ignore power for cooling and other auxiliary de-
vices [9, 11], or over/under-estimated power consumption coeffi-
cients [5, 26].

The total power consumption P at a BS is given by

P = Ptx + Pmisc,

where the first part Ptx accounts for power used to provide net-
work access to mobile clients. It includes power consumed by
RRUs, BBUs, feeder and RNC transmission. The second part
Pmisc records the auxiliary power for cooling, power supply and
monitoring. We next show that Ptx mainly changes with carried
load while Pmisc typically remains constant given a fixed operat-
ing environment.

Modeling Ptx Using real measurement data on transmission
power, we find out that linear models can offer reasonably good ap-
proximation for a variety of BSes; This model has also been widely
adopted in the literature [5,9,11,26]. Figure 3 gives the scatter plot
of power and load at three BSes. The figure clearly shows that a
linear model can approximate the transmission power with respect
to the carried traffic load, i.e., Ptx(L) = Pα · L+ Pβ , where L is
the utilization level, i.e., the traffic load factor.

The above empirical model can be also explained by the ac-
tual BS operations. The two dominant components in Ptx are the
power consumed by RRUs and BBUs. When the traffic load is
heavy, RRU has to spend more power to support more active links.
Therefore, it increases in proportion to the traffic volume. On the
other hand, BBU does baseband processing for all frequency carri-
ers used by the BS. No matter how many links are active, its power
consumption is mainly determined by the number of frequency car-
riers unless it is in sleep mode. Moreover, signaling over control
channels, even during idle modes, also incurs energy overhead on
transmission modules.

Note that the power coefficients (i.e., slope and offset) may vary
over BSes. This is caused by different vendor products and the
changing number of installed BBUs and RRUs at each BS. Product
data sheets show that Ptx varies from 600w to 3000w [13, 18, 23].
In our model, transmission power also increases when the opera-
tional range expands. Specifically, when the BS reaches its maxi-
mum transmission range via cell breathing or duplicate long-range
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Figure 3: Ptxvs. load at 3 BSes.
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Figure 4: Pmisc vs. temperature.
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Figure 5: Pmisc on 4-day and 1-year time scales.

radios (see Section 5.3 for details), we model that the power also
grows in proportion to the traffic load but uses a larger coefficient
Pa, say, Pa doubles at its maximum range. Our design and evalua-
tion consider such diversity factors.

Modeling Pmisc We focus on modeling the cooling (i.e., air
conditioner) power consumption since it is the dominant factor in
Pmisc based on real measurement. It depends on the amount of the
extracted heat and the desired operating temperature. It also varies
with chillers that use a variety of compressors and drivers. Previous
work does not model this part, though it is known that cooling may
consume about 50% power at BSes [15].

Figure 4 shows the scatter plot of the cooling power and temper-
ature at a BS in 2010. It can be seen that the cooling power mainly
depends on the temperature. It increases approximately linearly
from 1000w to 2000w when the environment temperature varies
from −10oC to 30oC (i.e., from winter to summer). We also check
daily and yearly pattern in Figure 5. The upper line is the yearly
pattern (1-25-50-75-99th percentile in 96 bins) that varies with four
seasons. The lower line is a 4-day measurement in early winter. It
shows that though the cooling power fluctuates slightly at different
hours of a day (e.g., BBUs and RRUs tend to raise the air temper-
ature and the chiller workload). It can still be approximated as a
constant within a short period of time (say, a day), here in [1200w,
1400w]. Over a larger time window (say, a year), it varies with
the external environment temperature. For simplicity, we assume
pmisc remains constant on a daily basis but changes with seasons.

In summary, our analysis shows that each BS is not energy pro-
portional to its carried load, mainly due to the residual factors of
Pmisc and Pβ . Recent efforts [12, 14] have been made to reduce
them to some extent, but cannot eliminate them.

3.3 Roadmap to the Solution
Given that 3G network is not energy proportional to traffic load,

our ultimate goal is to build a load-adaptive solution to energy sav-
ings in operational 3G networks. To this end, we need to address
three issues: (1) What are the characteristics of traffic load in oper-
ational 3G networks? We use real traffic traces and BS deployment
map to conduct detailed analysis on traffic dynamics both in time
and over space (Section 4); (2) Given the traffic dynamics, how can
we achieve network-wide energy proportionality (EP) using non-
EP components shown in Section 3.2? We need a solution that can
achieve load-adaptive energy operation using the current non-EP
BS (Sections 5.1 and 5.2). (3) How can the proposed solution work
with the current 3G standard? The solution needs to be standard
compliant (Section 5.3). We next elaborate on these aspects.

4. 3G DATA TRAFFIC: DIVERSITY IN

TIME AND SPACE
In this section, we present our measurement results on 3G traf-

fic diversity in both time and space, and show the design in-
sights on how to improve the current 3G network’s non-energy-

proportionality. We use traces collected from the operational 3G
network in four regions to study their temporal-spatial traffic pat-
terns. All four regional networks are managed by one of the largest
operators in the world. Figure 6 shows the BS locations in these
four regions; we hide the detailed deployment map for privacy con-
cerns. They have different geographic scales and represent diverse
city types: Region 1 is a large, populous city, Region 2 is a medium-
size city, and Regions 3 and 4 are large cities in a large metropolitan
area. All regions have diverse residential and downtown areas. The
coverage area and the number of BSes in each region are given in
Table 1. Our data sets contain 15min-bin traffic volume records for
two months from August 2010 to October 2010. For proprietary
reasons, the presented traffic volume is normalized by an arbitrary
constant, but normalization does not change the dynamic range in
the figures.

Region 1 Region 2 Region 3 Region 4

Area (km) 11x11 8x4 16x28 30x45

# BS 177 45 154 164

BS density dense dense/normal normal/sparse sparse

Table 1: Basic statistics of 4-region traces.

4.1 Temporal Diversity

Temporal traffic dynamics We first find that each BS exhibits
high traffic dynamics over time. Figure 7(a) plots the traffic load at
four individual BSes in different regions. We observe strong diur-
nal patterns on both daily and weekly basis, alternating between
peak and idle durations3. We separate the weekday and week-
end data here, and only present the weekday case unless explicitly
stated; the result for weekend is similar.

To quantify the degree of temporal traffic dynamics, we compute
the ratio of peak-to-idle traffic load at each BS in four regions. We
define the peak (/idle) duration of each BS as the hour h, when
it has the maximum (/minimum) traffic load (typically between
10AM-18PM for peak, or 1AM-5AM for idle), plus two adjacent
hours, i.e., h−1 and h+1. Figure 7(b) presents CCDF of peak-to-
idle traffic-load ratios in four regions. We see that the peak-to-idle
traffic ratio is larger than 4 in most (70-90%) BSes, and the smaller
ratio (say, 2–4 in Region 1) is only due to relative small traffic vol-
ume at BSes. We also study the effect of time window size (here,
3hr) and find that large peak-to-idle ratios still exist when the win-
dow is smaller than 8 hours.

Design insight 1: This result shows that the traffic distribution

of each BS is quite diverse over time everywhere. Such strong tem-

poral diversity indicates the under-utilization of each BS in the time

domain, resulting in system-wide energy inefficiency at BSes.

Near-term traffic stability We also observe that the traffic
volume is stable over short term (e.g., the same time of consecu-
tive days), while it may slowly evolve over a long term (e.g., 26%
global increase in 2010 [10]). Although the traffic load fluctuates

3We use the term “idle” duration for light traffic cases in our work.
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Figure 7: Temporal traffic diversity.

Traffic load variation in consecutive days

Location 10th 30th 50th 70th 90th

Region 1 2.1% 6.7% 12.1% 20.1% 38.7%
Region 2 1.9% 6.4% 11.8% 20.6% 45.0%
Region 3 2.1% 6.8% 12.3% 20.4% 42.0%
Region 4 2.0% 6.3% 11.4% 18.8% 36.6%

Table 2: Near-term stability in four regions. The values indi-

cate the traffic difference between consecutive days.

over time, the time-of-the-day traffic at each BS is quite stable over
consecutive days (see Figure 7(a)). For example, BS1 has similar
traffic load at 5 pm in Days 1 and 2, Days 2 and 3, and so on.

We first assess the similarity of near-term traffic by computing
their autocorrelation at each BS with the time-lag factor being 24
hours. Our results show that, in all four regions, the autocorrelation
values are higher than 0.963 for 70% BSes – confirming strong
correlation between traffic load during two consecutive days. To
further measure the near-term stability, we also compute the near-
term traffic variation V (i, t) at time t at BS i:

V (i, t) = |R(i, tcur)−R(i, tprev)|/R(i, tprev),

where R(i, tcur) and R(i, tprev) denote the traffic load of BS i at
time t on the current day and on the previous day. Table 2 shows
the near-term variation statistics using our two-month data in four
regions. We see that, at any time, the traffic load difference in two
consecutive days is less than 20% for 70% BSes. We also note that
high variation values are mostly caused by the low traffic volume
at the idle time and their absolute values of traffic difference are,
in fact, quite small. We further examine the impact of different ag-
gregation granularity (e.g., from 15-min bins to several hours). The
near-term variation increases as the aggregation granularity grows,
but remains highly stable when the window is smaller than 2 hours.

Design insight 2: The near-term stability result makes a case

for traffic profiling to estimate the next day’s traffic trend and moti-

vates us to develop power-saving schemes using traffic profiles. The

measurement also indicates that hourly traffic aggregation achieves

good balance between estimation accuracy and simplicity.

Time-domain multiplexing diversity We find that the aggre-

gate traffic load in a region hardly reaches the aggregate BS capac-
ity in the region. To verify such a trend, we define time-domain
“multiplexing” gain M(t) as the ratio of the sum of the peak traffic
at each BS (i.e., lower bound of BS capacity) to the aggregate traffic
load at time t in the region: M(t) =

∑
i
R(i, tmax)/

∑
i
R(i, t),

where R(i, t) is the traffic load of BS i at time t; tmax is the peak
traffic time. Figure 8 plots the multiplexing gains M(t) in four re-
gions. We see that the multiplexing gain is around 2 even during
daytime in all regions. Note that the gain can be even larger in
reality because the operators often deploy BSes with much larger
capacity than the actual traffic demand to account for forthcom-
ing market growth. The root cause for large multiplexing gain is
that not all BSes reach their peak load simultaneously. We study
the peak hour distribution in subregions A (residence area) and B
(business area) and find that the peak hour spans from 10 AM to
6 PM in A, and from 4 PM to 8 PM in B (see Figure 9). The op-
erator has to deploy the infrastructure that can accommodate the
peak traffic at each location, even though the peak load may only
last two or three hours a day. As the peak hour varies with each
location, the deployed capacity (i.e., the sum of each BS’s capac-
ity) is much larger than the actual traffic volume at the time. Note
that, our observation also explains why current operators tend to be
overly conservative in BS deployment density, since they largely
ignore the multiplexing effect of traffic load.
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Design insight 3: This multiplexing gain shows that the aggre-

gate BS capacity is highly under-utilized in each region. It also ex-

plains why current BS deployment tends to be overly conservative

in operational networks. The inherent temporal-spatial diversity

opens venue for energy savings via aggregating traffic load.

4.2 Spatial Diversity

Diverse BS deployment density The BS deployment density
varies across locations (see Figure 6 for location distributions). In
the hot spots of a city (e.g., subregion B), more BSes are provi-
sioned, thus creating location-dependent diversity. Figure 10 de-
picts the distribution of the number of neighbors per BS (within 1
Km, which is the typical communication range of many BS prod-
ucts [22]), representing the BS deployment density in four regions.
We see that the deployment density is quite diverse across differ-
ent regions, as well as in the same region. We also see that a large
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number of BSes have multiple neighbors, especially in Regions 1
and 2. For example, for more than half of BSes in Region 1, each
has at least 10 neighbors within its 1Km range. In contrast, Region
4 has the most sparse deployment; only 40% BSes have multiple
neighbors. The dense BS deployment is partly due to the current
practice that operators mostly ignore the traffic multiplexing effect
we have discovered before.

Design insight 4: This BS deployment practice provides us an

opportunity to exploit such topological “redundancy” for energy-

proportional power savings, and the expected gain tends to vary

across regions.
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Peak time Idle time

Location 20th 50th 80th 20th 50th 80th

Region 1 4.0 6.5 17.1 2.3 3.9 6.0
Region 2 6.2 9.1 12.3 3.7 6.2 8.7
Region 3 7.5 13.4 28.2 3.6 4.9 10.6
Region 4 1.7 3.2 6.0 1.5 1.9 3.1

Table 3: Max-to-min traffic ratio in neighboorhood.

Spatial traffic diversity Another key observation is that traffic
load intensity is quite diverse even in each local neighborhood (i.e.,
traffic loads among the closely located BSes). Figure 11 shows
the spatial traffic diversity among neighboring BSes. Each point
represents, at any given time of the day, the traffic-volume ratio of
the maximum-traffic BS and the minimum-traffic BS within 1 Km
range of each BS in four regions. We see that the max-to-min traffic
ratio is larger than 5 in 50% cases, and larger than 10 in 30% cases
(in Regions 1, 2, and 3)4. We also observe that such neighborhood-
scale spatial traffic diversity is more evident during the peak time.
Table 3 presents the max-to-min BS traffic ratio at peak and idle
times. Note that, for example, the spatial diversity at the peak time
becomes a factor of 13.4 in 50% cases in Region 3.

Design insight 5: Such strong neighborhood-scale traffic diver-

sity indicates the under-utilization of a group of BSes in the spatial

domain, and sheds lights on energy savings in each local area.

5. DESIGN
Using the gained insights on traffic analysis, we seek to achieve

load-adaptive energy consumption in the 3G infrastructure. If traf-
fic varies over time (Insight 1) and in space (Insight 5), consum-
ing energy adaptive to the traffic variation becomes critical. The
near-term traffic stability (Insight 2) makes a case for profile-based
approach to estimating traffic envelope at any time. Since the mul-
tiplexing gain is high (Insight 3), the profile-based scheme on ag-
gregate traffic, rather than individual BS traffic, will deem more ef-
fective. To leverage diversity in BS deployment (Insight 4), we can
power off under-utilized BSes when their traffic is light and power
them on under heavy traffic. This way, we devise a distributed so-
lution that uses a small set of active BSes based on traffic estimate

4Region 4 gives the lowest max-to-min traffic ratio due to its sparse
BS deployment.

(defined in terms of active user clients). The solution has to satisfy
three requirements of traffic capacity (i.e., traffic does not exceed
BS capacity), communication coverage (i.e., each location is cov-
ered by at least an active BS), and minimal on/off switching of each
BS (i.e., we avoid powering on/off each BS frequently).

Our overall design takes a grid-based, location-dependent pro-
filing approach. We divide the entire network into grids, so that
BSes in each local grid cell can replace each other when serving
user clients. Once the grid is established, we perform location-
dependent profiling, which estimates the traffic envelope for the
aggregate BS traffic in the grid. Given the peak and idle hours of
the traffic profile, we decide the corresponding set of active BSes
for each duration. It turns out that, if we select the sets appropri-
ately, we only need to power on a sleep BS and shut down an active
BS only once during each 24-hour period. This minimal on/off
switching works well with the cooling subsystem, which needs 10s
of minutes when adjusting to the desired operating temperature in-
side each BS upon power-on.

Our design also eliminates several limitations of the popular
optimization-driven approach [9, 11, 21]. These drawbacks include
a centralized rather than distributed scheme, approximation to the
optimal solution, excessive on/off switching, unrealistic BS power
consumption model, one-time optimization targeting instantaneous
traffic load, and difficulty in addressing deployment diversity and
node heterogeneity. Finally, the related work does not exploit mul-
tiplexing gain to minimize active BSes.

5.1 Grid-based location-dependent profiling
The grid-based profiling approach estimates traffic in a given

area. It addresses two issues: (1) How to determine the grid to par-
tition the network and facilitate powering off under-utilized BSes
in a given area? The proposed solution has to accommodate diver-
sity in node deployment and communications. (2) How to perform
location-dependent traffic profiling to exploit the multiplexing gain
over time and among local BSes? We now elaborate our solution
to these two issues.

Grid size We partition the grid so that BSes in each grid cell
are equivalent. BSes are equivalent if they can replace each other
when communicating with user clients. We use location informa-
tion and transmission range of each BS to decide whether BSes in
spatial proximity are equivalent or not. Location coordinates can
be obtained by GPS or other location systems when operators plan
and deploy their infrastructure. Transmission range of a BS may
vary from 200m to 1km in cities and from 1km to 5km in rural
areas [22]. It can be different among BSes due to antenna configu-
ration and placement, transmit power and environment.

Specifically, let the distance between two BSes i and j be d(i, j),
then BSes i and j are equivalent if

ri + d(i, j) ≤ Rj , rj + d(i, j) ≤ Ri,

where ri and rj are the normal communication ranges, and Ri and
Rj are the maximum possible communication range of i and j, re-
spectively. Note that the above procedure can handle the parameter
diversity across BSes. Moreover, deployment density can also vary,
reflected by changing distance di,j between any pair of nodes i, j.
In the example of Figure 12, BS 1 is equivalent to BSes 2 and 3,
but is not equivalent to BS 4.

A virtual grid cell is formed when all BSes in it are equivalent.
Once a BS is not equivalent to every BS in the current grid, we
create a new grid cell. Since grid formation can be nonunique, we
use a simple heuristic "northwest rule" to decide our grid construc-
tion. We start from the northwest corner in the BS deployment map
(i.e., top-left corner), cluster all equivalent BSes from top to down
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and from left to right, and generate a new grid-cell when a BS is
found to not be equivalent to at least one BS in the current cell.
We repeat the process until we reach the southeast corner and ex-
haust all the BSes in the 3G network. In the illustrative example of
Figure 12, three grid cells are thus formed following this rule. We
note that formation along other directions may generate different
virtual grids, but would not much affect energy savings. No matter
what formation is created, it does not change the inherent prox-
imity. Close nodes belong to the same grid with high probability.
For example, if we form the grid in “northeast” rule (i.e., top-right
first), we will get three grids: 6 and 5, 4 and 3, 2 and 1. Each virtual
grid still has similar redundancy (the average density is 2 here) and
offers local capacity at slightly different spots.
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Figure 12: Example of virtual grid. Left: geo location. Right:

virtual grids.

Location-dependent traffic profiling We now devise a profil-
ing scheme that estimates the envelope of aggregate traffic demand
in a local grid.

We divide each day into 24 hourly intervals, compute the statis-
tics of each hourly interval, and derive the traffic envelope for the
given hour5. We differentiate a weekday from a weekend day, but
treat all weekdays or weekend-days similarly. Specifically, for the
i-th hour of k-th day that we stack together consecutive weeks6,
we compute the moving average S̄(i, k) and standard deviation
D̄(i, k) as follows:

S̄(i, k) = (1− α) · S̄(i, k − 1) + α · S(i, k),

D̄(i, k) = (1− β) · D̄(i, k − 1) + β · |S(i, k)− S̄(i, k)|,

where S(i, k) is the hourly sample value of the aggregate traf-
fic in the grid for i-th hour during the k-th day, and α, β are the
smoothing parameters, chosen as α = 1

8
and β = 1

4
in our pro-

totype. Consequently, we estimate the hourly traffic envelope as
EV (i, k) = S̄(i, k) + γ · D̄(i, k) where γ is a design parameter
that offers a tuning knob to balance between tight estimate and miss
ratio. We evaluate its impact on the performance in Section 6.2.

An alternative approach is to first profile each individual BS and
then sum up all as the grid profile. It estimates each individual
traffic envelope first without extracting the multiplexing effect of
traffic among local BSes. In contrast, our group-based profiling
can improve energy efficiency when traffic load is heavy. Figure 13
shows an example of 15 BSes in one grid with several micro grids.
The peak hours in two micro grids (marked by “+” and “x”) vary
slightly and exhibit different patterns even within the same grid.
As a result, it leads to about 5-8% energy-saving gain at peak hours
when using the group profiling scheme (see Section 6.1 for details).

5.2 Graceful Selection of Active BSes
Given the traffic profile in each grid, we next select the right set

of active BSes and power off under-utilized BSes. The design has to
reach two goals of minimizing the number of on/off operations and

5In fact, all < 2-hour intervals have similar and good performance,
shown in Section 4.1.
6We treat holidays as weekend days, as confirmed by our trace
analysis.

satisfying both coverage and capacity requirements. To this end,
our solution has three components: (1) selection of active BSes for
the peak hour(s), (2) selection of active BSes for the idle hour(s),
and (3) smooth transition between the idle and the peak.

Selection of active BSes for peak hour Given the 24-hour
traffic profile at a given grid, we first find the hour(s) with heav-
iest traffic. For this peak duration, we need to select the set of ac-
tive BSes in the grid, denoted by Smax. Based on the fact that the
residual energy (Pmisc+Pβ) of Section 3.2 contributes a large per-
centage, we reduce the number of active BSes to save energy. On
the opposite side, the local, aggregate capacity of all active BSes
has to be large enough to accommodate local traffic. Our algorithm
thus prefers the BSes with larger capacity. We rank all the BSes in
the grid in decreasing order of their capacity values C(BSi), say,
C(BS1) ≥ C(BS2), . . . ,≥ C(BSn). Then we select the largest
number m of active BSes so that

∑m

k=1
C(BSk) ≥ EVmax.

Then, the set of active BSes for the peak hour Smax is given by
Smax = {BS1, . . . , BSm}. This heuristic ensures the minimum
number of active BSes in the grid. Assume that all local BSes use
same power models, we can easily prove that the algorithm is op-
timal to ensuring minimum total energy in the grid. When BSes
have heterogeneous power models (i.e., different Pα, Pβ, Pmisc),
we will select the high-energy-efficiency BSes with high priority if
their capacity exceeds the traffic demand.

We repeat the above algorithmic procedure for each grid in the
network, thus obtaining the active BSes for each grid during its
peak hour. Note that the peak hours in different grids may be dif-
ferent. Once active BSes are selected for each grid, our algorithm
can meet requirements for both coverage and capacity. Note that
two nodes in adjacent grids may cover each other. This offers new
opportunity to further save power by merging active BSes in adja-
cent grids. However, our study shows that this option would add
much higher complexity to the design; we trade marginal power
savings for design simplicity in this work.

Comparing with the optimization scheme We decide to
choose the above grid-based scheme, rather than the popular
optimization-based scheme in active BS selection. For compari-
son purpose, we consider an unrealistic, exhaustive search based
optimization scheme. It selects the active BS set that consumes
minimal energy, while satisfying capacity and coverage constraints.

We first use a simple example to gain insights on why the
optimization-based scheme may outperform ours in some scenar-
ios. Figure 16(a) plots the deployment map of nine Region-1 BSes,
which are divided into four virtual grids: {1, 6, 8}, {2, 5}, {3, 4, 7}
and {9}, following our “northeast” rule. Figure 16(b) marks the ac-
tive BSes for each hour ( the blue ‘+’ for our grid algorithm and the
red circle for the optimal one). We make two observations. First,
our algorithm requires at least one active BS for each grid, which
may not be necessary in the optimal scheme if the grid can be cov-
ered by BSes in neighboring grids. For example, the grid scheme
has to turn on BS 5 (at midnight) because BSes 2 and 5 belong to
one grid and at least one should be on, whereas the optimal one can
leverage BSes 6 and 8 to cover BS 5, and BSes 3 and 4 to cover BS
2. Therefore, there is no need to turn on BSes 2 and 5 under light
traffic. Second, capacity may not be fully utilized due to lack of co-
ordinations among neighboring grids. For example, due to heavy
traffic at noon, grid {3, 4, 7} has to turn on two BSes (4 and 7), and
grid {1, 6, 8} turns on two BSes (1 and 8). In contrast, the opti-

mal scheme can leverage the extra capacity from neighboring grid
{6, 8}, thus powering off BS 4, as shown in Figure 16(b). In this
case, the performance gap is mainly caused by the unused capacity
of BSes, which is not coordinated among grids.

126



00:00 06:00 12:00 18:00 24:00
0

200

400

600

800

1000
lo

a
d

 

 

Group, γ = 3

Single, γ = 3

Real−All

Real−micro1

Real−micro2

Figure 13: Profiling Examples.

00:00 06:00 12:00 18:00 24:00
0

100

200

300

400

500

600

700

800

900

1000

T
ra

ffi
c 

lo
a

d

Smax [#11]

{1,2...11}

Smin [#3]

{1,2,3}

S(6AM)[#5]{1,2...5}

Turn on 4/5

S(7AM)[#9]{1,2...9}

Turn on 6/7/8/9

S(8AM)[#10]{1,2...10}

Turn on 10

S(17AM)[#11]-> Smax

Turn on 11

OFF 11

OFF 10

OFF 7/8/9

OFF 5/6

OFF 4

OFF

ON

Figure 14: Illustration of BS graceful

selection.

RNC

Original 

BS

UE

Target 

BS

(1) Handoff 

request 

(2) Handoff 

ACK

(3-a) Handoff 

ACK

(3) Handoff 

command 

(3-b) Handoff 

commenced

(4-a) Handoff 

complete

Power on/off

Neighbor BSes

UE list

Information

(4) Handoff 

complete

Input

Figure 15: Handoff procedure for user

migration in a 3G network.

0 1 2 3 4 (km)
0

1

2

3

4 (km)

1

2
3

4

5

67
8

9

(a) An 9-BSes Example

00:00 06:00 12:00 18:00 00:00

2

4

6

8

O
n
 I
D

 

 

Grid

Optimal

(b) Active BSes Map

Figure 16: Grid-based vs. optimization-based schemes

Given the traffic load, and deployment and capacity of each BS,
we can formulate the problem as selecting an optimal set of ac-
tive BSes to minimize energy consumption, similar to the user-cell
association problem [11, 16]. We can readily show that this opti-
mization problem is NP hard. Hence, no practical algorithm can
reach the optimality. Moreover, in the case where each BS has
the same capacity, we can show that the performance gap of these
two schemes is upper bounded, as stated by the following theorem,
which proof is given in the technical report [25]. We further com-
pare their performance via simulations in Section 6.2.

THEOREM 1. In the homogeneous capacity setting, our solu-

tion has at most q more active BSes than the optimum, where q is

the number of grids in the network.

Selection of active BSes for idle hour When deciding the set
of active BSes for the idle hour that has the smallest amount of
hourly traffic in the 24-hour profile, we devise a different scheme.
Rather than select active BSes from all candidates in the grid, we
select the active set only from the superset Smax, which we have
calculated for the peak hour. We can use similar selection policy to
find the BS set for the idle hour, denoted by Smin. It is guaranteed
to be a subset of Smax for the peak hour.

We use the above scheme to minimize the on/off switching of
BSes by sticking to the same set of BSes as much as possible.
A possible downside is that the computed set may not be optimal
since it does not select from all candidates but only those in Smax.
The alternative is to independently derive the set of active BSes for
the idle hour. However, the computed set may not be a subset of
Smax, thus incurring more on/off switches during idle-peak migra-
tion.

Smooth transition between idle and peak hours To mini-
mize on/off switching and reduce energy inefficiency, we devise
continuous selection for the rest of the day. It turns out that we
need to switch on and switch off each BS at most once during each
24-hour duration. Figure 14 illustrates how our algorithm works
for the grid example of Figure 13, where Smax has 11 BSes and
Smin contains 3 BSes.

During the ramp-up transition from the idle hour with smallest
traffic volume to the peak hour with heaviest traffic, we use an ac-

tive node set St at hour t, which is always a subset of Smax but
a superset of the previous hour St−1. That is, we find a series
of active sets S{t} that satisfying Smin = S(ti) ⊆ S(t1) ⊆
S(t2) · · · ⊆ S(tp) = Smax, where ti < t1 < t2 < · · · < tp
denotes the hourly sequence from the idle hour to the peak hour.
The algorithmic procedure is similar to that used for the idle hour.
When migrating from hour t − 1 to t, we only need to power on
those BSes not in St−1, but retain all active BSes in St−1. If St−1

is sufficient, we do not need to power on new BSes. Once a BS
appears in St−1, it remains power-on at t and continues to appear
in St. In our example, BSes 4-10 will switch on sequentially based
on the prediction of next hourly traffic.

Our solution may incur suboptimal operations for energy savings
when the traffic volume experiences a sudden surge (e.g., 11AM -
2PM in the example) at time t or after, before reaching its peak tp.
It keeps all current BSes on, though it may be unnecessary. We
allow for this sub-optimality to minimize on/off switching. More-
over, our traces show that traffic almost follows diurnal patterns,
monotonically increasing during day-time and monotonically de-
creasing at night. Therefore, the smooth selection works in real-
ity by minimizing on/off switching. Our evaluation in Section 6.2
shows that the power-saving impact is no more than 1% when en-
abling and disabling smooth selections.

5.3 Working within 3G Standards
The above profile-based approach shuts down under-utilized

BSes during light-traffic period to save energy. To make it work,
we have to be standard compliant and address practical issues: (1)
How to let active BSes cover the communication area of those sleep
ones; (2) How to effectively migrate existing user clients from the
about-to-sleep BSes to other active BSes; (3) How to leverage the
3G infrastructure to share traffic information among local BSes in
a grid; (4) How to coordinate the operations of cooling subsystems
and Node B communication subsystems during the energy-saving
process; (5) How to handle unexpected traffic surge. We now elab-
orate on these details.

Adjusting the BS coverage via cell breathing In our scheme,
some BSs need to extend their coverage to serve clients originally
covered by neighboring BSs that will power off. To this end, we
leverage the well-known “cell breathing” technique that adjusts cell
boundaries in today’s 3G networks [2, 4]. Cell breathing is tradi-
tionally used to adjust the cell size based on the number of client
requests to achieve load balancing or capacity increase through
micro-cell splitting. We use it for the alternative purpose of power
savings. Specifically, the effective service area expands and con-
tracts according to the energy-saving requirement. By increasing
the cell radius, an active BS can effectively extend the coverage
area to neighboring BSs. Note that most Node B vendors offer
products operating over a wide communication range (say, 200m
to a few kilometers).
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Alternative solution to BS coverage via duplicate components

An alternative solution to cell breathing is to use dual BBU/RRU
subsystems at a BS and switch between these two systems when
adjusting the coverage area at peak and idle hours. For example,
for a BS in a city area, besides the current subsystem, we install
another transmission subsystem that works for rural areas and sup-
ports large communication coverage. We then adjust coverage by
switching between these two during peak/idle periods that require
different transmission ranges. Another alternative is to use lower
frequency bands at a given BS and extend its communication range.

User migration by leveraging the handoff process When mi-
grating users from the original BS to the equivalent BS for power
savings, we leverage the network-controlled handoff (NCHO)
mechanism in 3G standards currently used for mobility support.

Figure 15 shows the migration procedure of mobile users to the
other active BS when the serving BS decides to power off. For each
active UE in the original BS (OBS), the following procedure is per-
formed: (1) The OBS sends a handoff request to the neighboring
active BS (ABS) via RNC; (2) The ABS acknowledges the handoff
request and reserves resources for the migrating UE; (3) Upon re-
ceiving the handoff ACK from the ABS, the OBS sends the UE a
handoff command; (4) The UE executes the handoff command via
new association with the ABS. Then this handoff process is done
in NCHO [1]. In case of handoff failures, the OBS may repeat the
above procedure with other active BSes until all UE handoffs suc-
ceed or time out. The OBS will defer its power-off if some UEs are
still associated with it. Note that our handoff triggering event (i.e.,
BS power on/off) does not require additional modification to the
current 3G NCHO operation except adding one more event type.
Thus, the migration process in our power-saving mechanism can
be readily made 3G standard compliant.

Information sharing via RNC In our group profiling scheme,
BSes in the grid should exchange traffic information to compute the
envelope for the aggregate traffic. A natural place to exchange such
information is via the RNCs. In typical cases, BSes belonging to
the same grid also own the same RNC, which is the natural hub for
such information exchange and aggregation. In the extreme case
that BSes in a given grid do not belong to the same RNC, we can
modify the grid construction procedure by imposing the condition
that only equivalent BSes belonging to the same RNC can form
a grid. The downside of this change is that it may increase the
number of grid cells, but with the benefit of reducing inter-RNC
message exchange.

Coordinated operation of cooling and Node B subsystems

Most Node B subsystems require proper operating temperature to
function well. When powering off the entire BS for an extended
period of time, the ambient temperature may change beyond the
desired operating value. Therefore, before powering on the Node
B subsystem, we need to power on the cooling/heating subsystem
in advance. Our measurements done at three real-life BS machine
rooms show that 30 minutes are generally enough for the current
cooling/heating system to bring the room temperature to the de-
sired value.

Emergency BS power-on While our profile-based approach
typically gives a reliable estimate on the traffic envelope, rare-case
traffic surge can also occur. To prepare for such transient surges,
each active BS monitors its traffic volume. Whenever it sees sudden
surge well beyond the envelope specified by the profile, it will no-
tify its RNC. The RNC will subsequently trigger emergency power-
on for the neighboring power-off BSes. The power-on number of
BSes depends on the traffic surge volume the RNC is notified.

6. EVALUATION
We evaluate our power-saving solution using two-month traffic

traces collected from four regional 3G networks. We use the first
five-week data to construct traffic profiles, and use the remaining
three-week traces to assess our solution.

Evaluation setting We first evaluate our solution in default pa-
rameter settings: (i) profiling parameter γ = 3; (ii) heterogeneous
BS capacity being 110% of the maximum traffic load at a given
BS; (iii) power model Ptx = 6L + 600w and Pmisc = 1500w at
normal transmission range; Ptx = 12L+600w when expanding to
the maximum transmission range. This model states that consumed
power still grows linearly with the load but with a larger coefficient,
say, Pa doubles at maximum coverage; (iv) the maximal transmis-
sion range of 1–2 km, consistent with many available products. We
also gauge the effect of various parameters and other power model
alternatives, and compare our solution with the optimization-based
approach later in this section.

Region 1 Region 2 Region 3 Region 4

Eold (Mwh) 9.81 2.63 8.58 9.18

Ebbu(Mwh) 8.3 2.3 7.5 7.9
E Gain 15.7% 13.8% 12.6% 13.9%

Eour(Mwh) 4.64 1.40 5.94 7.03
E Gain(%) 52.7% 46.6% 30.8% 23.4%
(min–max) (34.2–75.9) (20.6–76.1) (16.5–46.6) (9.9–35.4)

#miss/BS 2.83 5.23 4.37 0.12
missRatio(%) 6.7e-4 7.9e-4 8.16e-4 1.86e-5

#BS(weekday) 34–97 8–32 79–122 104–142
#BS(weekend) 34–85 8–19 79–107 103–122

Table 4: Power saving in four regions.

Daytime Midnight A(sparse) B (dense)

Region 1 40.7% 73.7% 28.1% 61.6%

Region 2 31.2% 71.6% 27.7% 55.3%

Region 3 20.9% 45.6% 8.8% 51.3%

Region 4 15.6% 34.7% 7.9% 30.8%

Table 5: Power saving in peak/idle hours and subregions.

Evaluation results Table 4 summarizes the results on the
above default setting. The table presents the total daily energy
consumption of the current 3G network Eold, BBU-standby solu-
tion Ebbu, and our power saving scheme Eour, the average energy-
saving percentage, and the daily miss traffic (due to profiling inac-
curacy or capacity limit) and the active BS count using our scheme.
The BBU solution, proposed by some BS vendors [14], aims to turn
off some sub-carriers and place BBU into the standby mode when
the traffic load is low. We also separate weekday and weekend per-
formances, but they are similar. We only show daily results and
active BS sets on weekdays due to space limit.

We make four observations. First, significant power saving is

feasible. Our profile-based scheme achieves average daily energy
savings about 50% in Regions 1 and 2 (dense areas) and 20–30% in
Regions 3 and 4 (sparse areas). Compared with the BBU-standby
solution, our scheme yields more power savings because the BBU
scheme saves Pβ but cannot eliminate Pmisc. In all cases, 15%–
40% BSes are powered on/off in the regional network, i.e., 20–60
BSes each day. Those BSes switch on/off only once during each 24-
hour period, confirming the operational simplicity of our scheme.

Second, the power-saving gain is mainly attributed to traffic di-

versity and deployment density. Since the wasted energy is unpro-
portionally large under light traffic, our scheme achieves the largest
energy savings during idle period. Table 5 shows that, the power-
saving gain reaches as high as 70% during night time in Regions 1
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(a) Profiling effect on energy save.
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(b) Capacity effect on energy save.
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(c) Tx range effect on energy save.
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(d) Misc. effect on energy save.
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(e) Profiling effect on miss traffic.
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(f) Capacity effect on miss traffic.
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(g) Tx range effect on miss traffic.
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(h) Misc. effect on miss traffic.
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(i) Profiling effect on active BSes.
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(j) Capacity effect on active BSes.
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(k) Tx range effect on active BSes.
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Figure 17: Evaluation results of various effects on energy-saving, miss traffic, and active BS count.

and 2, and the gain at night time is about 2x the value at daytime in
all regions. Deployment density is another crucial factor to power
savings. It determines the degree of redundancy to turn off BSes.
The gain in dense areas can reach 30–60%, almost 2-6x the value
in sparse areas. It also explains why the gain is lower (23.4%) in
Region 4, while reaching 52.7% in Region 1. We also assess the
impact of grid formation. We find that, the gain is similar no matter
what grids are used with different BS sets. The location-dependent
density is the key factor of power savings, and grid formation does
not affect the inherent density.

Third, we can save energy by powering off some BSes even dur-

ing daytime, particularly in dense areas (e.g., Region 1). Our anal-
ysis shows that traffic multiplexing over time and in space is the
main contributing factor to such a gain. The current BS deployment
does not take the broad system view, but seeks to meet the peak
traffic requirement at each location myopically. Consequently, it
is inevitable for the operator to over-provision the capacity too ag-
gressively, as observed in Figures 8 and 9.

Last, our results also reveal the tradeoff between power savings

and performance degradation. Due to occasional unavailability of
spare capacity, some user requests will be denied. In principle, our
profiling scheme may not always capture extreme-case traffic surge
in its profile envelope, thus leading to transient overload beyond the
provisioned capacity. However, our study shows that such cases are
rare. The average miss ratio is kept as low as < 0.1%, i.e., up to 6
requests per BS each day. If needed, we can use more conservative
policies (e.g., use larger profiling margin γ) or leverage the emer-
gency BS power-on mechanism, to further reduce the miss ratio.

6.1 Impact of Various Components
We now study the effect of various components and parameter

settings on our energy-saving performance.

BS power models The transmission power Ptx and the cooling
power Pmisc vary with the sector count and with seasonal changes,
respectively. Different vendor products also introduce diversity into
power models. Table 6 presents six power models to be assessed.
The first five models are homogeneous and the last one assesses the
tradeoff between high capacity and high energy efficiency, where
BSes with larger capacity consume more power. Because results
are similar in other regions, we only show a case in Region 1.

Region 1

# Model Setting Eold Eour E gain

1 Winter P=1000+6L+600 7.7K 3.6K 53.2%
2 Summer P=2000+6L+600 11.9K 5.3K 55.4%

3 Sp/Fall P=1500+6L+600 9.8K 4.6K 53.1%

4 Sp/F-low P = 1500+4L+600 9.5K 4.2K 55.8%

5 Sp/F-high P = 1500+8L+600 10.3K 5.0K 51.4%

6 Hybrid H, P = 2000+8L+800 8.8K 5.00K 43.2%
M, P = 1500+6L+600
L, P = 1000+4L+400

Table 6: Energy saving with different power models.

Our results show that the power model diversity does not much
affect the saving gain. It only leads to visible changes in the abso-
lute energy consumption. The power-saving percentage is almost
invariant in the five homogeneous cases. It drops about 4-8% in
all regions in Model 6, caused by the tradeoff between energy ef-
ficiency and capacity. Power models do not affect the miss rate
and active sets. The stable power-saving gain in different models
indicates that our scheme can work well around the whole year.

Profiling scheme We assess the profiling parameter γ by vary-
ing γ = 1, 2, . . . , 5. We also compare the grid-group profiling and
the individual BS profiling scheme. Figures 17(a), 17(e), and 17(i)
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plot power-saving gain (with min/max bounds), miss requests per
BS, and the active BS percentage, respectively. The results show
that, when γ grows up from 1 to 5, daily energy-saving gain only
decreases about 5–10%, which offers large freedom to set γ. On the
other hand, the number of miss requests per BS decreases signifi-
cantly. The larger γ tends to over-estimate the traffic load. We also
see that group profiling outperforms the individual one on energy-
saving gain and miss rate. Such a gain can be attributed to the
effect of traffic aggregation in a local proximity and multiplexing
over time, as shown in Figure 8.

BS capacity We vary the BS capacity by multiplying variable
α and the peak traffic load; we set α from 1 to 2 in our study. Fig-
ures 17(b), 17(f), and 17(j) plot power-saving gain, miss requests
per BS, and the active BS percentage, respectively. With a larger
BS capacity, the network reduces the active BS count while serving
the traffic demand, thus reducing power waste. When the BS capac-
ity doubles, energy-saving gain increases by about 10%. However,
as we vary BS capacity, the maximum energy-saving gain (when
traffic is lightest) is almost invariant. It implies that energy saving
under light traffic is constrained by coverage rather than capacity.
We also find that increasing BS capacity can offset the profiling
inaccuracy, while larger capacity may trigger more BSes to power
off, leading to higher miss rate. We note, however, in all cases, the
absolute number of miss requests per BS remains small (<10, with
miss ratio smaller than 0.2%).

BS maximum transmission range We vary the maximum
transmission range of a BS by multiplying variable α and the nor-
mal transmission range; we vary α = 1, 2, 3, 5 in our study. When
α = 1, we set Ri = max(500, ri). We also compare them with
homogeneous settings of R = 1km or 2km based on BS deploy-
ment analysis of [22]. Figures 17(c), 17(g), and 17(k) plot power-
saving gain, miss requests per BS, and the active BS percentage,
respectively. In general, the larger the transmission range, the more
active BSes the network can reduce to cover the entire area. Our
results show that we achieve significant power savings when the
maximum transmission range is three times larger than the opera-
tional range. When it is very small, coverage becomes the limiting
factor.

Other design variants We also evaluate two more design vari-
ants in our scheme. The first is to power on the sleeping BS ahead
of the expected working time. It is to give enough time for the
cooling system to adjust the ambient temperature inside the BS.
The second option is to always reserve a fraction (say, 10%) of the
capacity in a BS to be prepared for the worst-case scenario (e.g., un-
expected or transient traffic surge). Figures 17(d), 17(h), and 17(l)
plot power-saving gain, miss requests per BS, and the active BS
percentage, respectively. The results show that, both design vari-
ants have little impact on energy saving. The first option (ahead of
time) decreases only 1–2% in energy-saving gain, while the 80%
resource reservation only reduces 5-10% energy saving gain. Nei-
ther visibly affects the miss rate.

6.2 Comparing with the Optimization-based
Scheme

We now compare our solution with the optimization-based
scheme. Specifically, we compare each of the three main design
components, i.e., virtual grid, profiling, and graceful selection,
with the corresponding idealized or optimization-based solution.

Virtual grid Our grid-based scheme can decouple the
location-dependent coverage and capacity constraints. The BSes
are divided into virtual grids so that BSes in a grid can cover each
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Figure 18: Comparison with the optimization-based scheme in

different cases: A0−A4 with sparse deployment, B1−B3 with

dense deployment, A1, C1, B1 are 3km×3km areas with vary-

ing density.

A0 A1 A2 A3 A4 C1 B1 B2 B3

#BS 5 9 14 28 54 18 67 54 64

Grid(%) 29.8 30.8 23.5 26.4 26.9 32.5 48.4 49.1 47.0

Opt(%) 30.0 39.1 32.0 33.6 32.5 42.2 56.7 57.6 54.0

∆(%) 0.2 8.3 8.5 6.2 5.6 9.7 8.3 8.5 7

Table 7: Energy consumption using virtual grid and optimiza-

tion scheme in different cases.

other, and each grid then makes decision independently based on
capacity requirement. We now compare our grid scheme with
the optimization-based approach, given the same traffic load. The
optimization-based scheme used in our evaluation, uses brute-force
search to select the BSes that consume minimum energy while sat-
isfying both capacity and coverage constraints. The exhaustive
search offers an upper bound for energy savings, even compared
with other optimization-based solutions in the literature [11, 16].

We compare both schemes in sub-regions of different area size
and different deployment density in Region 1: A0−A4 for sparse
deployment, B1−B3 for dense deployment, and A1, C1, B1 have
the same area size but with different deployment density, as shown
in Figure 18(a). Figure 18(b) plots the energy-saving percentage
using our grid scheme and the optimization-based solution, com-
pared with the All-On option (i.e., all BSes are on). Table 7 also
lists the energy-saving gains by both schemes in each sub-region.
These results show that the energy-saving gap between our scheme
and the optimization scheme is not big, less than 10% in all the
cases. We also make interesting observations. When the area size is
small, the performance gap also tends to be small. This is because
that the optimization-based scheme does not have much room to
improve via joint (cross-grid) coordination. As the area size grad-
ually increases, the optimization scheme has larger space to op-
timize, thus exhibiting larger performance gap. However, when
the area size further grows, the gap saturates since the deployment
density now becomes the limiting factor. The optimization scheme
mainly exploits the local deployment redundancy to improve its
power-saving gain. It may turn off more BSes only if each doze-
off BS can be covered by several active ones. But this redundancy
is ultimately decided by the local deployment density, which is al-
ways bounded in reality. Therefore, the optimization scheme can-
not yield larger gain as the area increases further. The fundamental
reason is that, energy savings are ultimately decided by node de-
ployment density, capacity and coverage. No matter what scheme
we use, the selected BSes only work with their inherent deploy-
ment and coverage proximity. As long as the deployment density
is bounded, the gap between different schemes is also bounded.

Profile We use traffic profiles rather than runtime traffic to
guide our BS activation and deactivation. The traffic profile ap-
proximates the traffic envelope. It is inevitable to overestimate the
runtime traffic, and tends to turn on more BSes occasionally. We
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compare the energy-saving percentage using our scheme (based on
traffic profiles) and the one based on runtime traffic. The results are
plotted in Figure 19(a). Our scheme yields 52.7%, 46.6%, 30.8%,
and 23.4% of energy savings in Regions 1-4, respectively, whereas
the runtime traffic yields 57.1%, 49.8%, 35.3%, and 26.0%, respec-
tively. Their saving-gain difference is between 2.6–4.5%. The re-
duced energy saving due to the profiling scheme is small (<4.5%)
due to two factors. First, our traffic profile estimation offers an
accurate traffic upper bound estimate, thus leaving little room for
capacity waste. Second, not all the overestimate lead to more ac-
tive BSes. Each BS capacity is typically a discrete value and may
have spare room to accommodate the overestimate incurred by the
profiling scheme, thus avoiding more BS activations.
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Figure 19: Comparison of our scheme and other designs on

energy saving: (a) using real-time traffic; (b) disabling smooth

selection.

Graceful selection We also compare the graceful selection
with another solution alternative on energy savings. To reduce the
frequency of ON/OFF switches, our scheme selects the active BSes
from those already active ones. However, our scheme may lead to
retaining unnecessary BSes active or not selecting the most energy-
efficient BSes. We compare the energy savings using our scheme
(via smooth selection) and the option that disables smooth selec-
tion. Figure 19(b) shows the energy-saving percentage of both
schemes in four regions. The scheme without smooth selection
yields energy-saving gains of 52.8%, 47.2%, 31.2%, and 23.4%, in
Regions 1-4, respectively, leading to 0.1–0.7% differences in sav-
ing gains compared with our scheme. The energy-saving reduction
due to smooth selection is thus negligible (<1%). The reason is that,
in rare cases, the traffic envelope is not monotonically increasing.
Therefore, the chance is slim when switching off some BSes that
are already on for a short time and again turning them on later. In
summary, our smooth selection has little negative impact on en-
ergy savings, while ensuring the simplicity of smooth BS ON/OFF
operations.

6.3 Impact on Clients
Our scheme does pay a cost to achieve energy savings on the

infrastructure side. It will increase transmit power at client de-
vices when sending uplink data traffic during idle hours (say, late
evenings or weekends). In our scheme, when the closest BS pow-
ers off, a mobile client will migrate to an active but distant BS, thus
incurring additional energy for uplink transmissions. However, its
impact on the client device is not as severe as it appears. First,
the uplink traffic volume is far less than the downlink, which is
dominant. The uplink-to-downlink traffic ratio is about 1:8 in the
Internet, and 3G networks have similar ratios observed from our
traces. Second, the transmission range-extended BSes are concep-
tually equivalent to the BSes deployed in rural areas, which have
larger coverage. Current client devices do not seem to experience
severe energy penalty in rural areas. Finally, mobile users are more
likely to be uniformly distributed around their serving BSes. There-
fore, only a fraction of users will increase their power for uplink
transmissions, as shown next.

We quantify the change in transmission range due to our power-
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Figure 20: Transmission range change in Regions 1 and 4.

Region 1 Region 2 Region 3 Region 4

70th 90th 70th 90th 70th 90th 70th 90th

4 AM 588 920 728 991 310 823 0 749
10AM 64 329 46 159 0 329 0 281

4 PM 0 297 0 0 0 17 0 0

10PM 92 401 176 486 0 341 0 600

Table 8: Impact on mobile users. The values indicate the BS-

to-client distance (m).

saving scheme. Assume uniform distributions for users in their
original BSes. Users also associate with their closest active BS.
Figure 20 plots the BS-to-client distance change over time in two
regions. We see that during daytime, more BSes are active and the
distance change is negligible. At night, the distance may increase,
e.g., up to 1 Km for 10% clients in Region 1. Table 8 shows the
distance change for n-th user at a specific time in four regions; it
shows that the affected number of clients is still under control.

6.4 Evaluation Summary
The real trace-based evaluation validates our power-saving solu-

tion and shows that significant energy-saving is feasible. It yields
up to 52.7% savings in a dense area, and 23.4% in a sparse area.
Savings are more significant during night time, e.g., up to 70%, and
1 or 2x larger than those during daytime in all regions. Even dur-
ing daytime, 20–40% savings are possible by exploiting temporal-
spatial multiplexing gains. The traffic miss ratio is also kept lower
than 0.1% in the worst case with having the appropriate number
of BSes (15–40%) switch on/off at most once during each 24-hour
period. Evaluations on various parameters also confirm that our so-
lution is readily applicable to various practical scenarios. For the
tradeoff between power-saving gains and the miss rate, our scheme
can achieve high power savings as well as low miss rate, e.g., less
than 0.1% in our solution. Compared with the optimization-based
exhaustive search, our solution achieves effective power savings in
a simple and practical manner, while keeping the gap less than 10%
in all tested scenarios. On the downside, our scheme may incur in-
creased energy consumption on the client side, but only for uplink
traffic and mostly during light-traffic night time.

7. RELATED WORK
Energy efficiency in cellular networks has been an active re-

search area in recent years. Many existing studies focus on the
client side [6, 7, 27], thus complementing our effort. We focus on
the cellular infrastructure side. The overall solution approaches can
be classified into two categories: improved component technology
and dynamic cell management.

The first approach is to improve energy efficiency of various 3G
components, including more efficient power amplifier [18], BBUs
with standby mode [14], and optimized cooling [12]. These solu-
tions focus on individual component technology and can work with
our scheme. C-RAN [19] proposes to use a cloud-based architec-
ture for energy savings. It deploys RRUs in the field but aggregates
all the BBUs into a data center, which uses centralized cooling and
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traffic management to be more energy efficient. C-RAN saves sys-
tem energy but requires an overhaul of current 3G infrastructure.
Our design is a near-term solution to the deployed 3G network.

The second approach is to adjust the cell size while turning off
idle BSes. Our proposal also conceptually belongs to this category.
Current work mostly focuses on the theoretical side by seeking to
solve various forms of optimizations [9, 11, 16, 21, 28]. Specifi-
cally, [21] studies the optimal time to power off BSes by assuming
that all BSes power off simultaneously. [11] formulates the optimal
user-BS association as a binary integer programming problem. [9]
studies the cell-size optimization given the traffic load. [28] ad-
dresses a cost minimization problem that trades-off between en-
ergy efficiency and flow performance, and [16] formulates it as a
power assignment problem for a specific time interval. Our work
differs from all these studies in several aspects. First, we use real
traces and measurements, taken from operational networks, in the
design and evaluation, without making idealized or simplistic as-
sumptions. Second, we take a novel, grid-based profiling approach,
which is distributed rather than centralized. Third, we exploit mul-
tiplexing gains to improve energy savings while early studies do
not. Finally, we identify and assess various practical factors ig-
nored by early studies in the power-saving operations.

Various energy-efficient techniques have been proposed for other
networks, e.g., data center networks [8, 29], the Internet [17] and
WLANs [20]. We share the same general guideline to power
off idle nodes for maximal power savings. Compared with data
centers and the Internet [8, 17, 29], cellular networks exhibit
location-dependent non-energy-proportionality. Compared with
WLANs [20], cellular networks have different deployment den-
sity, node capacity, traffic patterns and power models. They do not
leveraging multiplexing for power savings. Our grid-based idea is
conceptually similar to GAF [30], which is proposed for energy-
efficient ad-hoc routing. Another recent work [24] also studies
cellular traffic dynamics, whereas our primary goal is to design a
traffic-driven scheme for power savings. The traffic findings are
similar, while our traces are also more recent and last longer.

8. CONCLUSION
Energy-efficient design has long been an active research area in

mobile networks. However, this problem is relatively unaddressed
on the 3G infrastructure side, which consumes 99% of overall
network energy. In this paper, we propose a location-dependent,
profile-based solution, which yields up to 52.7% savings in dense
city network, and 23.4% in a mid-sized city with sparse deploy-
ment. The key insight gained is to leverage traffic diversity and
near-term stability both in time and over space, thus exploiting
temporal-spatial multiplexing to save more energy. In the design
process, we trade performance increments for simplicity, in that
we always retain simple operations rather than squeeze every bit
of possible gains. Instead of taking the popular optimization-based
approach, we seek to design practical schemes that will work in
reality. In a broader scope, our solution explores to build energy-
proportional 3G networks using legacy non-energy-proportional
base stations.
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