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  Abstract 

 We study traffi c dynamics in growing scale-free networks. Both the scale-free 

structure of the network and the adaptive nature of the dynamics which controls 

traffi c in the network are considered in the model. The model is investigated 

with computer simulations and analytically for the case of a scale-free tree. For 

the scale-free tree, an exact formula and its power law approximation of the 

complementary cumulative distribution function of link load (edge betweenness) 

is presented. We examine whether the scaling properties of the network affect 

the performance of the transport mechanism and estimate the average number 

of competing transport mechanisms at bottlenecks. We fi nd that bottlenecks 

tend to appear on the periphery of the network as the performance increases. 

Various bandwidth allocation strategies are compared. We show that the best 

performance is achieved when capacity is distributed proportionally to the ex-

pected load of links. We demonstrate that it is necessary to study both the to-

pology and the dynamics of the transport mechanism to understand the whole 

system. 
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 Simplexus 

 We live in a networked world. The 
world’s ecosystems consist of species 
linked together within intricate food webs, 
just as our communities are complex webs 
of social ties. The Internet is a vast network 
of computers linked by transmission lines, 
and the living cell depends for its function 
on a staggeringly complex web of interac-
tions among a great number of genes, pro-
teins and other small molecules. Within 
the past decade, researchers have learned 
that the architecture of these networks has 
a surprisingly universal character, in that 
many are ‘scale free’ – the distribution of 
network nodes according to their ‘degree’ 
(number of links) follows a power-law  
P ( k )   ~  k  – �  , where  k  is the number of links 
and  �  is a constant, typically between 2 
and 3. The term ‘scale free’ refers to the fact 
that a power-law function has no inherent 
scale to it, so there is no ‘typical’ number of 
links for a node, but great heterogeneity 
within the network. The scale-free charac-
ter of such networks also tends to be re-
fl ected in other properties such as the ‘be-
tweenness’ – a measure, for each network 
link, of how often it lies on the shortest path 
between other nodes in the network. 

 Given the scale-free character of these 
features, it is natural to wonder how net-
work topology might infl uence the dynam-
ics of processes that occur in such net-
works. In the Internet, for example, the 
fl ow of information across the network can 
be smooth and effi cient, or it can be affl ict-
ed with frequent traffi c jams and bottle-
necks. Roughly speaking, the betweenness 
of a link refl ects how crucial it is as a con-
necting artery within a network. Hence, it 
seems plausible that variations in the pre-
cise nature of the scale-free structure of the 
network might strongly infl uence its per-
formance. Such understanding would 
clearly be of value to engineers who might 
try to alter network structure in search of 
better performance. 

 Following this line of inquiry, Fekete et 
al. here examine the dynamics of informa-
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 1 Introduction 

 The statistical properties of complex 
networks have been investigated exten-
sively in the physics community in recent 
years  [1–4] . With the increasing comput-
ing power of modern computers, analysis 
of large-scale networks and databases has 
become possible. It has been shown that 
the degree statistics of many natural and 
artifi cial networks follows power law. Ex-
amples for such networks vary from social 
interconnections and scientifi c collabora-
tions  [5, 6]  to the World Wide Web  [7]  and 
the Internet  [8, 9] . These networks are usu-
ally referred to as  scale-free  networks. 

 The fi rst mathematical model of com-
plex networks, the random graph theory 
was developed by Erdo ́´s and Rényi (ER) 
 [10] . In this model, the number of nodes is 
fi xed and connections are established ran-
domly. Although the ER model leads to rich 
theory, it fails to predict the power law dis-
tributions observed in scale-free networks. 
Barabási and Albert (BA) proposed a more 
suitable model of these networks  [11, 12] . 
The BA model is also based on the random 
graph theory, but, in addition, it involves 
two key principles: (1)  growth , that is the 
size of the network increases during devel-
opment, and (2)  preferential attachment , 
that is new network elements are connect-
ed to higher degree nodes with higher 
probability. 

 The concepts of graph theory are used 
throughout this paper. A graph consists of 
vertices (nodes) and edges (links). Edges 
are ordered or un-ordered pairs of vertices, 
depending on whether an ordered or un-
ordered graph is considered, respectively. 
The order of a graph is the number of ver-
tices it holds, while the degree of a vertex 
counts the number of edges adjacent to it. 
A path is also defi ned by the most natural 
way: it is a vertex sequence, where any two 
consecutive elements form an edge. The 
graph is called connected, if for any vertex 
pair there exists a path which starts from 
one vertex and ends at the other. 

tion fl ow on a set of simple Internet-like 
networks, with the aim of deriving some 
basic insights regarding the infl uence of 
topology on dynamical performance. Un-
fortunately, the detailed structure of the 
real Internet is still far too intricate to be 
modelled with complete accuracy. Conse-
quently, they study a well-known class of 
much simpler scale-free networks for 
which they can work out important char-
acteristics analytically. Using these analyt-
ical results, and exploiting a judicious sim-
plifi cation in modelling the fl ow of infor-
mation over these networks – using a ‘fl uid’ 
model based on a coarse-grained approxi-
mation of the fi ne-grained ‘TCP’ dynamics 
of real Internet traffi c – they fi nd several 
interesting results that might, with further 
development, be useful in suggesting strat-
egies for improving the real Internet. 

 The authors introduce their simplifi ed 
networks in their section 2; see their fi gure 
1 for a diagram. As they describe, a well-
known prescription for ‘growing’ scale-
free networks works through a mechanism 
of so-called ‘preferential attachment’. The 
prescription works as follows. Start with a 
small ‘seed’ network, having only a handful 
of nodes and links among them. Next, add 
new nodes to the network, one by one. At 
each step, attach each new node to several 
of the already existing nodes, choosing 
these at random, but with one bias: links to 
existing nodes should be established with 
probability proportional to their degree. As 
originally shown by Albert and Barabasi in 
1999, a network grown in this way will, 
when it becomes large, have a scale-free 
character. 

 The models used by Fekete et al. follow 
the Barabási-Albert prescription very 
closely, but differ very slightly. In particu-
lar, the authors take the likelihood of link-
ing to an already existing node to be pro-
portional to  a  +  q , where  q  is a node’s de-
gree and  a  a variable parameter whose 
value infl uences the scaling properties of 
the network. (Note that  a  can also be given 
conveniently in terms of another parame-

 The study of complex networks usually 
deals with the structural properties of net-
works, like degree distribution, shortest 
path distribution, degree-degree correla-
tions, or clustering. Furthermore, some 
complex networks also involve a dynami-
cal system which governs traffi c in the net-
work. The matter of importance in such 
systems is the performance of the dynam-
ics. Therefore, exploring the infl uence of 
network structure upon traffi c dynamics is 
essential. Moreover, one should be inter-
ested in distributing the available resourc-
es to obtain the best performance for a giv-
en network structure. 

 From this point of view ‘betweenness’ is 
the most important attribute. Betweenness 
measures the number of shortest paths 
passing through a certain network ele-
ment.  Node betweenness  has been studied 
recently by Goh et al.  [13] , who argued that 
it follows power law in scale-free networks, 
and the exponent   �    ;  2.2 is independent 
from, in a certain range, the degree distri-
bution. Szabó et al.  [14]  used rooted deter-
ministic trees to model scale-free BA trees, 
and found scaling exponent   �   t  = 2. 

 The study of complex networks usually 
deals with the structural properties of net-
works, like degree distribution, shortest 
path distribution, degree-degree correla-
tions, or clustering. Furthermore, a com-
plex network may also involve a dynamical 
system which governs traffi c in the net-
work. In this paper we study scale-free net-
works with embedded fl ow dynamics. The 
dominant algorithm which controls the 
data traffi c in the Internet is the Transmis-
sion Control Protocol (TCP)  [15] . For the 
detailed analysis of TCP mechanism we re-
fer to Jacobson  [16] . Since TCP perfor-
mance affects overall network perfor-
mance, TCP modelling is an important is-
sue that has attracted research interests 
during the last years. Traditional approach-
es to performance evaluation packet net-
works have normally relied on attempts to 
describe as closely as possible the dynam-
ics of network elements over a discrete 
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ter,   α  = 1/(1 +  a ).) For small values of  a , 
this rule is essentially equivalent to the BA 
algorithm. For  a  very large, however, it in-
stead gives a random graph with a well-de-
fi ned number of links per node; that is, a 
graph lacking scale-free structure. This is 
a useful variation, as later in the paper, by 
varying the value of the parameter  a , 
the authors can conveniently compare the 
performance of both scale-free and non-
scale-free networks. After introducing 
their basic model, the authors go on in sec-
tion 2 to derive some further mathematical 
results (useful in later calculations) for the 
networks generated by these models. In 
particular, they derive an analytical result 
for the probability distribution (and ex-
pected value) of the betweenness of the 
network links. 

 Having defi ned their basic model for 
network topology, the authors next intro-
duce their ‘fl uid approximation’ for the dy-
namics of information fl ow in the network. 
Real information traffi c in the Internet is, 
of course, discrete and carried by individ-
ual packets according to the well-known 
‘TCP’ protocol – a scheme that manages 
the fl ow of information back and forth 
between two Internet hosts. The basic TCP 
traffi c mechanics are fairly simple: when a 
packet goes from one computer to another, 
the receiver sends an ‘acknowledgement’ 
packet back to the sender. The TCP algo-
rithm uses this acknowledgement to con-
trol traffi c by increasing the total ‘through-
put’ for the sender, if the acknowledgement 
is received, and decreasing the throughput 
if not, as this indicates congestion. One fur-
ther possibility complicates the dynamics: 
as fl ows originating in different parts of the 
network compete for bandwidth, it will oc-
casionally happen that the buffer of router 
gets full and has to drop some packets. 

 To produce a convenient approximation 
of these dynamics, Fekete et al. introduce 
what they term the AIMD model. The idea 
is to seek a rough description of the dy-
namics that ignores the granularity of the 
packets. As the authors note in their equa-

state space. A new class of semi-analytical 
models has recently been introduced in the 
networking arena, and today appears to be 
the most promising approach for scalable 
and accurate performance analysis of large 
IP networks. This new approach, that is of-
ten called ‘fl uid models’, adopts an abstract 
deterministic description of the average 
network dynamics through a set of ordi-
nary differential equations, thus neglect-
ing the short-term, packet-by-packet de-
scription of the stochastic network dy-
namics. We will present a simple model, 
which considers both the scale-free struc-
ture of the Internet and the adaptive nature 
of the underlying dynamics using fl uid 
models. We stress that the main goal of this 
paper is to study the TCP-like (adaptive) 
dynamics on growing scale-free networks, 
not to model the Internet. 

 2 The Network Model 

 It has been shown that the structure of 
the autonomous systems in the Internet is 
a scale-free tree  [17] . An autonomous sys-
tem is a large segment of the Internet, 
which usually belongs to one organization, 
for example to a university, a large compa-
ny, or a national offi ce. In order to keep our 
model analytically tractable, we model the 
whole Internet with a simple scale-free 
rooted BA tree, extended with initial at-
tractiveness  [18] . Shortcuts, correlations 
with the geographical distribution of the 
population  [19] , and other details are ne-
glected in our model. 

 2.A The BA Model 

 The construction of the network pro-
ceeds in discrete time steps according to 
the BA model. Let us denote time with   
�   D �. Initially, at   �   = 0, the graph consists 
only of a single vertex without any edges. 
Then, in every time step, a new vertex is 
connected to the network with a single,  di-
rected  edge. Note that the initial vertex is 
distinguished from all the other ones, since 
it has only incoming connections; we refer 
to it as  root vertex . The target of the new 

edge is selected randomly from the present 
vertices of the graph. The probability that 
a new vertex connects to an old one is pro-
portional to the attractiveness of the old 
vertex  v . Attractiveness is defi ned as 

  A ( v ) =  a  +  q , 

 where parameter  a   1  0 denotes the initial 
attractiveness and  q  is the in-degree of ver-
tex  v . The scaling properties of the net-
work can be smoothly controlled by pa-
rameter  a : it has been shown that the prob-
ability distribution of in-degrees is  P ( q )  ~  
( q  +  a ) –(2 +   a  )   [18] . Note that the special 
case  a  = 1 practically repeats the original 
BA model. Indeed, except for the root node, 
the attractiveness of every vertex becomes 
equal to its degree if  a  = 1; this is exactly 
the defi nition of the attractiveness in the 
BA model  [11] . On the other hand, the 
model tends to Poisson-type ER graph if  
a   ]  G, since preferential attachment dis-
appears in the limit, and  P ( q )   ~  e  –  q . 

 We refer to a connected subgraph as a 
 cluster  in this paper ( fi g. 1 ). To calculate the 
number of shortest paths passing through 
a given edge, it is suffi cient to know the size 
of the cluster attached to the given edge  n . 
If the size of the network is  N , then from 
elementary combinatorics it follows that 
the number of shortest paths, that is the 
betweenness, or shortly the load of the par-
ticular edge is 

  L  = ( n  + 1) ( N  –  n  – 1).       (1) 

 The probability distribution of cluster 
size for any fi nite  N  can be given exactly: 

PN (n) =
N − α

N − 1

1 − α

(n + 1 − α) (n + 2 − α)
,  

         (2)

 where 0  ̂    n   !   N  – 1, and  �  = 1/(1 +  a ). 
The details of the calculations are pub-
lished in [20]. 

 For 1  O   N  and 1  O   n   O   N  equation 2 can 
be approximated with 

PN (n) ≈ (1 − α)
1

n2
,
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 where the scaling exponent  υ  = 2 is inde-
pendent of  � ; therefore it is universal in the 
class of evolving scale-free trees. 

 2.B Betweenness 

 The probability distribution of be-
tweenness  L  can be given by the following 
transformation formula of random vari-
ables: 

PN (L) =
N−2
∑

n=0

δL,(n+1)(N−n−1)PN (n). 

 However, this expression is diffi cult to han-
dle. An alternative description of a random 
variable is the complementary cumulative 
distribution function (CDF), defi ned as 
 F  c ( x ) = �( L   6   x ), that is the probability 
that the value of the random variable ex-
ceeds  x . 

tion 4, the throughput increases or de-
creases according to the measured round-
trip time between two nodes. In the ab-
sence of any congestion, these times should 
be effectively constant. Hence, the TCP al-
gorithm should tend to increase the 
throughput linearly with time, as in their 
equation 5. But packets will be lost, at some 
point, whenever the capacity of some link 
in the network is surpassed, as defi ned in 
equation 6. At this point, a different dy-
namics comes into play. The authors stipu-
late, by defi nition, that when a link be-
comes congested, one of the TCP connec-
tions running through it (there will 
normally be many) will lose a packet. The 
loser is chosen at random, and this TCP 
then reduces its throughput by a factor of 
two. 

 These equations provide a rough de-
scription of network fl ow, following 
throughput rates, rather than the detailed 
movement of specifi c packets. In this sense, 
these equations defi ne a fl uid approxima-
tion, even though they remain faithful to 
the underlying principles of network rout-
ing. In addition to this defi nition of the 
traffi c fl ow dynamics, the authors also have 
to make a plausible model for the number 
and placement of such TCP connections 
within the network. For this they follow 
a very simple prescription: every pair of 
nodes in the network has a chance  
p  = 1/( N  – 1) of having an established TCP 
connection. This means that, on average, 
there will be roughly the same number of 
connections as there are nodes in the net-
work. 

 The authors are leading up to a series of 
simulations of fl ow over these TCP connec-
tions that represent the real ‘payoff ’ of the 
paper. In preparation for such simulations, 
they now introduce some further defi ni-
tions. In particular, they defi ne the ‘perfor-
mance’ Q (  i  )  of the i   

 th  TCP connection as the 
long-term average of its throughout. Refer-
ring to earlier studies, they then derive an 
expression for the expected value of this 
quantity, and note that the performance of 

 From equation 1 it is obvious that the 
load of an edge exceeds  L  if and only if  n  L  
 ̂    n   !   N  – ( n  L  + 1), where 

nL =

⌈

N − 2

2
−

N

2

√

1−
4L

N2

⌉

,

 and |
–
�

–|
         denotes the ceil function. It im-

mediately follows that the complementary 
CDF of the load is 

F
c

N
(L) =

N−nL+2
∑

n=nL

PN (n) =

N − α

N − 1

(1− α) (N − 2nL − 1)

(nL + 1− α) (N − nl − α)
.         (3)

 If  N   O   L   O  N 2 /4 then the complemen-
tary CDF can be approximated by the fol-
lowing power law 

F
c

N
(L) ≈ (1 − α)N

1

L
.

  Fig. 1.  Schematic illustration of the evolving network at time  � . Vertex  v , connected to 
the network at  �  e , denotes the root of cluster  C . Variable n =  |  C  |  – 1 denotes the number 
of nodes in  C , except  v  (marked by  y ). 
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the network as a whole should depend on 
the distribution of the edge ‘capacity’,  C  e , 
which gives the total information-transfer 
capacity of each link in the network. 

 At this point, however, the authors have 
not included any mention of the capacity 
 C  e  of an edge in their defi nition of their 
scale-free networks. So far, all network 
links have equal weight and equal capac-
ity. As capacity fi gures so importantly in 
their analysis, however, the authors now 
have to give this some attention. In the real 
world, of course, capacity tends to be se-
lected by local forces as they respond to 
shifting demands, by buying better fi bre-
optic cables or faster satellite links, for ex-
ample. Following this natural idea, the au-
thors assume that the capacity of any edge 
will simply be proportional to its between-
ness. This makes intuitive sense, as links 
of higher betweenness should tend to car-
ry more traffi c (because more TCP con-
nections should pass through this link). In 
their fi gure 3, the authors show the results 
of numerical simulations (backing up 
their earlier analytical results) indicating 
how the betweenness (and hence capaci-
ty) is distributed through the network. Us-
ing this distribution leads the authors, fi -
nally, to their equation 9 for the expected 
‘performance’ Q (  i  )  and its dependence on 
the scaling parameter  a  and the average 
capacity C̄. 

 Finally, the authors turn to their simula-
tions. The results, in their fi gure 4, show the 
distribution of TCP performance in the 
network. Each curve shows – for a particu-
lar network architecture – the probability 
that a TCP link in the network has through-
put Q (  i  )  greater than some value Q. The fi g-
ure shows results for four specifi c kinds of 
networks: for a series of scale-free net-
works, with values of   α = 1/3,1/2,2/3, and 
also for  α  = 0 (not a scale-free network). 
The general conclusion is, as illustrated in 
table 1, that performance is improved for 
higher values of the scaling parameter  α . 

 The authors fi nally explore how the per-
formance of the traffi c dynamics might be 

 Finally, the expectation value of the 
edge betweenness is calculated: 

EN [L] =

∞∑

L=0

LPN (L) =

N−2∑

n=0

(n + 1) (N − n − 1) PN (n)

= (1 − α)
(N − α) (N + 1 − 2α)

N + 1
[Ψ(N − α) − Ψ(1 − α)] − (1 − α) (2N + 1 − 2α) ,

 where  � ( z ) =  d  [ln � ( z )]/dz is the digam-
ma function  [21] . Since  � ( z )  ~  ln  z  as 
 z   ]  G, therefore 

 � N  [ L ] = (1 –  � )  N  ln  N  +  O ( N ), 

 if  N   ]  G. 

 3 The Model of Network 

Dynamics in the Internet 

 Data is transferred between source and 
target computers through intermediate 
 routers . Before transmission data is cut into 
smaller units, called  packets . This way, if 
some part of the fi le is lost or gets corrupt-
ed, then only the damaged or lost parts 
should be retransmitted, not the whole fi le. 
The TCP algorithm administers the depar-
ture, arrival and retransmission of pack-
ets. 

 Interactions of different TCP fl ows in-
evitably cause congestion in the network. 
Packets are temporarily queued in buffers, 
but when a buffer is full, incoming packets 
are dropped by routers. When a packet suc-
cessfully reaches its destination, the receiv-
er sends an acknowledgement (ACK) 
packet back to the source. The elapsed time 
between packet departure and ACK arrival 
is called  round-trip time ,  T  RTT . 

 An important feature of the TCP algo-
rithm is that it can adapt its throughput to 
the changing network conditions. The 
throughput, that is the amount of bits 
transferred per unit time, is increased 
when arriving ACK indicates successful 
transmission, and decreased when miss-
ing ACK implies congestion. 

 In this section the fl uid approximation 
of the TCP algorithm, the additive increase-
multiplicative decrease (AIMD) model is 
discussed, supposing that the topology of 
the network does not change. Modelling 

dynamics on a fi xed topology is legitimate 
when the time scales describing the devel-
opment of the network topology and the 
dynamical process superposed to the net-
work differ widely. A good example is In-
ternet traffi c, whose modelling requires 
time resolutions from milliseconds up to a 
day  [22–24] , compared with the months 
required for signifi cant topological chang-
es  [25] . 

 Detailed description of the AIMD mod-
el can be found in Baccelli and Hong  [26] . 
The TCP standard is given in Postel  [15] . 

 3.A The AIMD Model 

 Let us suppose that  N  TCP  number of 
TCPs are operating in the network and 
their throughput is denoted by  X  (1) (t), 
X  (2) ( t ),..., X  (  N  TCP  (t)) . A heuristic, but reason-
able assumption of the AIMD model is that 
between consecutive packet loss events the 
development of throughput  X  (i) , 0  !   i   ̂    N  
can be approximated by the following dif-
ferential equation  [27] : 

dX(i)(t)

dt
=

P

T
(i)
RTT(t)2

,       (4)

 where  

T
(i)
RTT(t)

 denotes the round-trip time of the  i -th TCP 
connection at time  t , and  P  is the packet 
size. In fi xed topology, round-trip times 
may vary due to queuing delays. If queuing 
delays are negligible, however, then round-
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altered with different bandwidth alloca-
tion strategies. Specifi cally, they explore 
four alternatives to the assumption that ca-
pacity is allocated in proportion to the be-
tweenness of a link. As their table 2 indi-
cates, however, none of the most obvious 
alternatives delivers superior performance. 
This offers satisfying confi rmation of what 
would seem intuitively likely – that the net-
work as a whole should perform more ef-
fi ciently if those links that play a most cen-
tral role in the network (those of high be-
tweenness) are also given the highest 
capacities. 

 These studies may not be applicable di-
rectly to the Internet, but they demonstrate 
a promising route for the simulation of dy-
namics on networks of plausible topology 
that can be used to help inform Internet 
managements. Further work will be re-
quired, of course, to judge the implications 
for the real Internet, especially as the ‘AB’ 
networks used here are known not to rep-
licate all of the key topological properties 
of the real Internet. Future work will, of 
course, have to explore how the results 
found here generalize to other scale-free 
networks, especially those that resemble 
the real Internet more closely. 

  Mark Buchanan  

trip times are constants  T (i)
RTT(t) ≡ T

(i)
RTT, 

 and (4) can be solved: 

X(i)(t) = X(i)(0) +
P

T
(i)
RTT

2 t.    (5)

 Note that equation 4 is applicable only if 
the packet loss ratio is modest ( ! 1–2%) 
 [28] . 

 Equations 4 and 5 are valid only be-
tween packet loss events  t  n , which occur 
when the total throughput on edge  e  fi rst 
reaches capacity  C  e  of that particular 
edge: 

∑

i∈Ie

(

X(i)
n

+
P

T
(i)
RTT

2 ∆tn+1

)

= Ce,
      

(6)

 where  I  e  denotes the set of TCPs which 
share edge  e ,  X

(i)
n = X

(i)(tn)  is the 
throughput of the  i- th TCP at  t  n , and  �  t  n  = 
 t  n  –  t  n  –1  is the elapsed time between the  
n- th and the previous congestion events. 
The fi rst moment when (6) holds is 

∆tn+1 = min
e





Ce −

∑

i∈Ie
X

(i)
n

∑

i∈Ie
P/T

(i)
RTT

2



 .

        
(7)

 At congestion events, some TCPs that 
share the congested link lose packets. The 
AIMD model makes sure that the packet 
losses can be modelled by a stationary sto-
chastic process; the owners of the lost 
packets are selected randomly and inde-
pendently. The probability  p  s  that a TCP 
fl ow experiences packet loss is called  syn-
chronization parameter . 

 According to the TCP congestion con-
trol mechanism, those TCPs which lose 
packets halve their throughput. The sche-
matic time evolution of the total through-
put and the throughput of a chosen TCP is 
shown in  fi gure 2 . 

 3.B The Model of TCP Connections 

 The hosts of the source and the destina-
tion of the TCP connections are located 

Fig. 2. Schematic time evolution of the total throughput (thick line) and the throughput 
of one TCP (thin line) in the AIMD model for constant round-trip time. Packet losses occur 
at  t  1 ,  t  2 ,... moments, when the total throughput reaches the capacity of the bottleneck link 
 C  b . Time intervals between consecutive packet loss events are  �  t  1 ,  �  t  2 , ...
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randomly in the Internet. The actual loca-
tion of the connections might be infl u-
enced by many factors including the im-
portance and the availability of the com-
puters, the user’s language, behaviour and 
preference. 

 We assume in our model that TCP con-
nections are established randomly in the 
network, and the distribution of both the 
source and the destination of the TCPs are 
homogeneous. That is, every pair of nodes 
may establish a directed TCP connection 
with the same, uniform probability, 
p =

1

N−1 .  Therefore, the average number of 
TCP connections is E [ N  TCP ] =  N  in the net-
work. Moreover, data transfers are consid-
ered to be persistent in our model. 

 For a more realistic model, one should 
take fi nite fi le sizes and the heterogeneous 
TCP connections into consideration. 

 4 Discussions 

 The model we outlined in the previous 
sections was studied with extensive nu-
merical simulations. First, we validate the 
analytic results that we obtained in section 
2. Then, the infl uence of the network topol-
ogy on the performance is discussed. 

 4.A Validation of Edge 

Betweenness Distribution 

 The exact formula 3 presented in sec-
tion 2.B shows that possible values of the 
edge betweenness are  L  = ( N  – 1), 2 ( N  – 2), 
3 ( N  – 3),...,[ N /2] ( N  – [ N /2]), that is the 
CDF is constant between the above integer 
values. 

 Simulations confi rm the validity of 
equation 2. With computer simulations  
N  = 10 5  node random networks were gen-
erated with α   = 0 (ER),  α  = 1/3,  α  = 1/2 and 
 α  = 2/3 (BA) parameter values. Empirical 
distributions, obtained from 100 indepen-
dent simulations, formula 3 and power law 
approximations are compared in  fi gure 3 . 

 The expected staircase structure of the 
distribution can be clearly seen. The power 
law approximation fi ts the complementary 
CDF in the range  N   O   L   O   N  2 /4 accurately.

  4.B Infl uence of the Network Struc-

ture on TCP Performance 

 We study in this section how the struc-
ture of the topology ( α ) affects the ‘perfor-
mance’ of the TCPs in the network. Let us 
defi ne performance fi rst: if  N  TCP  number of 
TCPs are operating in the network where 
bandwidths { C  e } have been allocated to the 
links, then the performance of the  i- th TCP, 
 Q  (  i  ) , is defi ned as the time average of its 
throughput  X  (  i  ) ( t ): 

Q(i) = X̄(i)
≡ lim

t→∞

1

t

∫

t

0

X(i)(u) du.

 Let us consider  m  e  number of TCPs, 
which utilize a bottleneck link and let us 
suppose that the competing TCPs share the 
available bandwidth equally. It has been 
shown  [25]  that the expected performance 
of such TCPs is 

E

[

Q(i)
]

=
(

1 −

ps

2

) Ce

me

,

 where  C  e  denotes the capacity of the bot-
tleneck link, and  p  s  is the synchronization 
parameter, introduced in the AIMD model 
above. For the sake of simplicity, let the 
synchronization parameter be so small 
that only one packet is dropped at every 
congestion epoch:  p  s  m  e   ;  1. With this as-
sumption 

        (8)E

[

Q(i)
]

=

(

1−
1

2me

)

Ce

me

.

 The performance of the network is 
obviously infl uenced by the bandwidth 
distribution { C  e }. For the performance of 
different network structures to become 
comparable, the average bandwidth C̄   = 
1/( N  – 1)  �  e   C  e  is fi xed. Furthermore, the 
limited amount of capacity is distributed 
with the same strategy in networks with a 
different scaling parameter  � . 

 In case of homogeneous TCP distribu-
tion, the expected number of TCPs which 
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share a given link is proportional to the be-
tweenness  L  e , that is the number of short-
est paths passing through the particular 
link: 

E [me] =
E [NTCP]Le

N (N − 1)
=

Le

N − 1
,

 where the expected number of TCPs of our 
model, � [ N  TCP ] =  N , is substituted. In this 
section, mean fi eld approximation is ap-
plied for distributing capacity, that is ca-
pacity is allocated proportionally to the 
edge betweenness:  C  e  =  C  0  L  e . The normal-
ization coeffi cient  C  0  can be given by: 

C0 =
C̄

EN [L]
≈

C̄

(1 − α) N lnN
+ O(1/N)

 Using the above equations, the follow-
ing formula can be obtained from equa-
tion 8 for the expected performance of the 
 i- th TCP: 

E

[

Q(i)
]

≈

(

1 −

1

2m

)

C̄

(1 − α) lnN
,

 where  m  is the number of TCPs, including 
the  i- th TCP, which share the bottleneck 
link. 

 Network performance can be charac-
terized by the complementary CDF of TCP 
performance:  F  c  ( Q ) = � ( Q  (  i  )   1   Q ). On  fi g-
ure 4  CDF of TCP performance is shown on 
normal-log plot for  N  = 10 4  node networks 
with  α  = 0, 1/3, 1/2, 2/3 parameter values. 
Empirical distributions were obtained 
from simulations running for 100 N  con-
gestion epochs on three realizations of ran-
dom networks of each  α  value. The mean 
of the link capacity was set to C̄ = 10 5  [ b / s ]. 
The inset shows complementary CDF of 
TCP performance on log-log plot. 

 A point of infl ection can be observed in 
 fi gure 4  at every  α  parameter. The behav-
iour of the CDF is markedly different below 
and above the point of infl ection. The sharp 

difference in the CDF implies that TCPs can 
be divided into two categories according to 
whether their performance is over or be-
low the point of infl ection. 

 The tail of the complementary CDF of 
TCP performance, above the point of in-
fl ection (see inset of  fi g. 4 ), consists of TCPs 
whose throughput is much higher than the 
expected performance (equation 9). These 
TCP operate in the core of the network, 
where every link along the path of their 
connection has large bandwidth. More-
over, they either hardly need to compete 
with other TCPs for the available band-
width, or they win the competition at con-
gestion epochs. The relative number of 
such TCPs is approximately 15% if  α  = 0, 
and it is decreasing with the growth of pa-
rameter  α . 

 Below the point of infl ection perfor-
mances of TCPs are limited by low-band-
width links, located on the periphery of the 
network, and by congested bottlenecks in-
side the network. If we suppose that the 
point of infl ection approximately equals 
the expected throughput of TCPs at bottle-
neck links � [ Q  (  i  ) ], then the number of 
TCPs competing at bottlenecks can be es-
timated from equation 9. In  table 1  the lo-
cation of the point of infl ection  Q  I  and the 
estimated number of TCPs at bottleneck 
link is shown for networks with different 
scaling parameter  α . Estimates show that 
as scaling parameter  α  increases bottle-
necks tend to form on the outer links where 
only 1–2 TCP share the links. 

 Overall performance of the networks, 
measured by the average TCP perfor-
mance 

  ,( )
TCP

TCP 0

1
N

i

i

Q Q ,
N

=

=
∑

 is also shown in  table 1 . We found that the 
overall performance  Q  also increases with 
parameter  α . It follows from above that the 
scaling properties of the topology infl u-
ence the TCP performance. It is reasonable 
to suppose that the interaction between the 
topology and the dynamical system is mu-
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tual, that is the evolution of the network 
can by infl uenced by the dynamical system 
to reach optimum TCP performance as 
well. 

 4.C Performance of Other 

Bandwidth Distribution Strategies 

 In this section different bandwidth dis-
tribution scenarios are compared. The to-
pology of the network and the average ca-
pacity are kept fi xed, and only link capaci-
ties are changed in simulations. The scaling 
parameter of the topology is chosen to be 
 �  = 1/2 for numerical simulations. Besides 
the mean fi eld bandwidth distribution 
strategy discussed in the previous section, 
the following scenarios are considered: 

  Uniform:  capacity is the same for every 
link:  C  e  = C̄, 

  Minimum:  capacity is proportional to 
the following minimum: min( q  A , q  B ), 

  Maximum:  capacity is proportional to 
the following maximum: max( q  A , q  B ), 

  Product:  capacity is proportional to the 
following product:  q  A     �     q  B , 
 where  q  A  and  q  B  denote the in-degrees of 
the nodes which compose a particular link. 

The uniform scenario is presented as a ref-
erence. It can be considered as the worst 
case scenario, when no information is 
available on the details of the network. 
Minimum, maximum and product strate-
gies take the local structure of the network 
into account, and the more connection the 
link possesses, the more capacity they al-
locate for the particular link. The differ-
ence between the three strategies is wheth-
er they prefer loosely, moderately or highly 
connected links. 

 The complementary CDF of link ca-
pacities, obtained as the result of the 
above bandwidth distribution strategies, 
are compared in  fi gure 5 . CDF of the uni-
form strategy is degenerated, and the 
structure of the network is not taken into 
consideration in this case. The maximum 
strategy prefers the lower bandwidths at 
the cost of a cutoff at about 10 6   b / s  capac-
ity. The minimum strategy also prefers 
lower bandwidths at the cost of high 
bandwidths, but no cutoff exists. The 
complementary CDF of minimum strat-
egy also resembles the mean fi eld distri-
bution with a different scaling exponent. 
The product strategy prefers the mid-
range, and it underestimates both the low 
and the high capacity range, compared to 
the mean fi eld strategy. 

 Simulation results of the CDF of TCP 
performance is shown in  fi gure 6  for the 
above-mentioned bandwidth distribu-
tions. The performance of mean fi eld strat-
egy is clearly the best. The next two best 
performing strategies, the minimum and 
the product, perform almost the same, al-
though they prefer completely different 
bandwidth ranges. It follows that the whole 
bandwidth range must be taken into con-
sideration in any bandwidth distribution 
strategy to reach the optimum network 
performance. The performance of the 
maximum strategy is considerably worse 
than that of the previous two. Finally, the 
uniform bandwidth distribution is the 
worst of all: its performance is just a few 
percent of the mean fi eld scenario’s perfor-

Table 1. Average TCP performance Q, the 
point of infl ection of the CDF of TCP per-
formance Q

I
 and the estimated number of 

TCPs at bottlenecks for networks with dif-
ferent scaling parameter � are shown

� Q[b/s] QI [b/s] m

0 7,785 9,655 4.52
0.3333 9,259 13,057 2.52
0.3891 9,346 14,456 2.68
0.5 11,184 17,200 2.40
0.6666 13,790 23,118 1.72
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mance. The network where this strategy is 
applied is heavily congested, since the bot-
tlenecks form in the core of the network. 

 Network performances, that is average 
TCP performances, are shown in  table 2  for 
the different bandwidth distribution strat-
egies. The measured network performanc-
es confi rm the qualitative analysis of  fi gure 
6 .  Table 2  shows that mean fi eld bandwidth 

allocation strategy is almost twice more ef-
fective than the second, minimum strate-
gy, and it is more than twice as good as the 
product strategy. The performance of a 
network with maximum bandwidth distri-
bution strategy is just about one fi fth of the 
performance of the same network when 
mean fi eld strategy is used. Moreover, the 
performance of the uniform scenario is 
even less than the third of the second worst, 
maximum strategy. 

 5 Conclusions 

 A complex model of the network em-
bedded with dynamics has been studied in 
this paper. Both the scale-free structure of 
the network and the TCP dynamics, which 
controls traffi c, are considered in the mod-
el. The topology of the network has been 
modelled by a growing scale-free random 
graph model, where the scaling properties 
of the network can be changed with pa-
rameter  α . The TCP dynamics has been ap-

proximated by the fl uid AIMD model. We 
have assumed in the model that TCP con-
nections are distributed homogeneously 
in the network, that is TCP connections are 
established between every pair of nodes 
with the same probability. It follows that 
the expected number of TCPs which utilize 
a link is proportional to the link load (edge 
betweenness), that is the number of short-
est paths passing through the particular 
link. 

 We can summarize the main conclu-
sions of this paper as follows: 
 • For the case of the scale-free tree we an-
alytically computed conditional cluster 
size distribution, total cluster size distribu-
tion, complementary CDF of link load 
(edge betweenness), and the expectation 
value of the link load (edge betweenness; 
see section 2.B). The exact formula and the 
approximation for the complementary 
CDF of link load have been validated by nu-
merical simulations in section 4.A. 
 • The purpose of TCP connections is to 
transfer data in the network. The perfor-
mance of a TCP connection is measured by 
its throughput, that is its average transfer 
rate. We have investigated in section 4.B 
whether TCP performance is infl uenced by 
the scaling properties of the network. For 
the comparison of different networks the 
bandwidth allocation strategy has been 
fi xed to the mean fi eld strategy. It has been 
shown that the TCP performance increases 
as the scaling parameter  �  increases. It fol-
lows that the network topology infl uences 
the performance of the TCP. 
 • From the analysis of the CDF of TCP 
performance we have estimated the num-
ber of TCPs at bottleneck links. We have 
found that the number of TCPs at bottle-
necks decreases as parameter  α  increases. 
It follows that bottlenecks move to the pe-
riphery of the network, when network per-
formance is higher. This is understand-
able, since a bottleneck in the core of the 
network can reduce the performance of 
more TCP than a bottleneck on the periph-
ery of the network. 
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Table 2. Network performance for differ-
ent bandwidth distribution strategies is 
shown

Strategy Q[b/s]

Uniform 740.79
Maximum 2,391.94
Minimum 6,574.69
Product 5,279.5
Mean fi eld 11,284.6
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 • We have investigated TCP performance 
in networks which were built on various 
bandwidth allocation strategies in section 
4.C. We have found that mean fi eld strategy 
performs about twice as well as the mini-
mum and the product strategies, fi ve times 
as well as the maximum, and it is more 
than fi fteen times as good as the uniform 
strategy. These results indicate that the 
mean fi eld bandwidth distribution strate-
gy provides the optimum TCP perfor-
mance. 
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