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Introduction

Urbanization and increased building density of cities are essential features of modern 

society. Not only does such a way of life bring economic benefits, but it also poses a 

new set of problems for city authorities. One of these problems is efficient traffic man-

agement and analysis. High population density leads to the tremendous number of per-

sonal cars, an increased number of freight vehicles for transportation of commodities 

and goods, tight pedestrian traffic. Transportation tasks can no longer be addressed by 

sub-optimal heuristics, based on the small amount of the manually gathered statistics. 

To make efficient decisions, forecast and assess their consequences, authorities require 

an automated system for analyzing traffic flow throughout the city.

Nowadays, many cities have low-cost video surveillance systems, also known as 

closed-circuit television (CCTV). They exhibit rapid growth nowadays and usually 

include heterogeneous cameras with various resolution, mounting points, and frame 

rates [43]. CCTV works 24 h a day, 7 days a week and generates a massive amount of 

information, called Big Data. Among other applications, this data can serve as a founda-

tion for the automated traffic surveillance system.
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There are several well-known problems when working with Big Data. For instance, 

to build a traffic surveillance system, one has to develop efficient algorithms for 

moving, storing, intelligent processing and analyzing data from surveillance cam-

eras. In this work, we focus on the last two aspects.

Despite obvious benefits, there is a limited number of researches that aim to ana-

lyze real-world data from the CCTV systems. Some of the representative works are 

the studies [42] and [24], which utilize low-resolution heterogeneous CCTV data 

and deep neural networks to count vehicles on the road and estimate traffic den-

sity. The examples of using conventional computer vision techniques are the systems 

developed in works [25, 34]. They address the problems of freight traffic monitoring 

[34] and illegal traffic behaviour recognition [25], respectively.

In comparison, great efforts were made to improve results in more specific tasks. 

For vehicle detection, the majority of modern works focuses on adapting and 

improving state-of-the-art object detection frameworks such as Faster R-CNN [28], 

YOLO [26], and SSD [21]. This includes architectural novelties [10, 12, 15, 32, 36, 

44], exploiting temporal information to perform joint detection and tracking [14, 

16, 22], improving detection speed [1]. Another example of the well-studied task in 

intelligent transportation is fine-grained vehicle classification [31, 33].

In this work, we aim to address a gap between recent researches and them real-

world applications. As a case study, we focused on one of the busiest crossroads in 

Chelyabinsk city, Russia. We started from a widely adopted Faster R-CNN model 

and sequentially improved baseline performance via additional mask branch [9], 

anchors shape optimization, focal loss [37] and adaptive feature pooling [20]. The 

proposed model, together with simple and efficient SORT tracker [2], forms a back-

bone of the modern traffic analysis solution. Our system is capable of counting and 

analyzing vehicles movement direction with a maximum relative error that is lower 

than 10%. The results of this research will be used by city authorities to improve the 

overall throughput of the crossroad.

The contribution of the paper can be summarized as follows:

• We have constructed a new challenging dataset, which includes 982 highly 

crowded frames with more than 60,000 instances in total.

• We have proposed and implemented a novel traffic flow estimation system, 

which is based on the recent advances in vehicle detection and tracking tasks.

• We thoroughly evaluated our system and provided empirical evidence that the 

proposed solution has sufficient precision and might be further used as a back-

bone for other high-level models.

The paper has the following structure. A review of relevant studies is presented in 

“Related works” section. “Methodology” section describes our approach to the traffic 

flow estimation problem, discusses design choices, and collected dataset. Evaluation 

protocol and experiment implementation details are presented in the “Experiments” 

section. In “Results and discussions” section, we provide analysis and summary of 

the obtained results. Finally, “Conclusions” section concludes the paper and outlines 

directions for further research.
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Related works

There are a very limited number of researches in the area of analyzing data from video 

surveillance systems. The most representative works are briefly summarized in the intro-

duction. However, the targets and goals of these studies are different from the scope of 

this paper.

For the lack of alternatives, here we provide an overview of the recent advances in the 

research topics on which our work is based on, i.e. objects detection and multi-object 

tracking (MOT) problems. When possible, we additionally highlight advances in special-

ized works for vehicle detection and tracking.

Objects detection

As of today, most of the object detectors are based on the convolutional neural networks 

(CNN) and can be roughly divided into two classes: single-stage detectors and two-stage 

detectors. The single-stage detectors are generally fast and predict objects bounding 

boxes together with classes within a single network pass. Classical examples of the sin-

gle-stage detectors are YOLO [26] and SSD [21]. These architectures work particularly 

well in cases when target objects occupy a considerable amount of image. An example of 

such data is the popular UA-DETRAC vehicle detection dataset [39]. Based on this data, 

Dmitriy Anisimov and Tatiana Khanova [1] have shown that a thoroughly constructed 

SSD-like detector can run faster than 40 frames per second on the modern CPU while 

maintaining favourable precision. Another example of good speed-precision trade-off is 

YOLO v2 architecture [30], which was specialized for vehicle detection via anchors clus-

tering, additional loss normalization, and multi-layer feature fusion strategy.

The most representative example of two-stage detectors is the R-CNN family of detec-

tors [7–9, 28] that currently occupy leading places in the COCO [19] and Cityscapes 

[5] benchmark datasets. In comparison to single-stage detectors, two-stage detectors 

first predict regions and then refine and classify each of them during the second stage. 

Early R-CNN [8] work utilized a straightforward approach: regions were generated via 

a selective search algorithm and then fed to the classification CNN. The overall speed 

of the R-CNN is low due to the selective search compute time and requirement to run 

heavy classifier per each region. To overcame this limitation, Fast R-CNN was proposed 

[7]. Instead of running CNN per each region, Ross Girshick fed the whole image to the 

CNN and pooled regions of interest (ROI) from the last feature map. Replacing selective 

search in the Faster R-CNN [28] with tiny CNN, called region proposal network, further 

boosted precision and speed of the detector.

A thorough review of the main advantages and drawbacks of single and two-stage 

detectors is presented in the work [11].

Many vehicle detection works adopted variants of the Faster R-CNN architecture. Li 

[16] proposed to process multiple adjacent frames to better handle blurring and short-

term occlusions. Wang et al. [37] studied the application of the focal loss [18] for vehicle 

surveillance. They showed that being a relatively simple technique, focal loss provides 

substantial performance improvements. Hu et  al. [10] focused on the improving scale 

robustness of the Faster R-CNN and suggested context-aware RoI (CARoI) pooling 

that utilizes deconvolution with bilinear kernels to represent features for small objects 
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accurately. CARoI pooling works on top of the multiple layers and fuses high and low-

level semantic information to improve performance.

Multi‑object tracking

The progress in the precision of the object detectors mentioned above made tracking-

by-detection paradigm the leading one in a multi-object tracking (MOT) task. In this 

paradigm, tracking is formulated as a data association (DA) problem where the aim is to 

merge fuzzy detections across multiple frames into long tracklets.

Classical tracking-by-detection methods rely solely on motion clues from the detec-

tor and solve the DA problem via optimization techniques. Well known examples are 

Multiple Hypothesis Tracking (MHT) [13] and Joint Probalistic Data Association Filter 

(JPDAF) [29]. These methods tackle the association problem on a frame-by-frame basis, 

yet their combinatorial complexity is exponential in the number of tracked objects, which 

makes them unsuitable for real-time tracking. On the contrary, recent SORT tracker [2] 

showed that a simple Hungarian algorithm with Kalman filtering for movement forecast-

ing could achieve real-time processing speed while maintaining favourable performance.

Most of the recent improvements in the MOT task involve fusing motion features 

with appearance one to better distinguish highly occluded objects and reidentify lost 

instances. The appearance clues usually come from convolutional neural networks [4, 

40]. However, Tang et  al. [35] showed that hand-crafted features, like the histogram 

of oriented gradients and colour histograms, might also be used if no training data is 

provided. From the practical point of view, computing visual features for each tracked 

object leads to a highly increased computational burden, especially if the number of 

objects is high. Together with detector processing time, cumulative performance usually 

is far from being near real-time.

It is worthwhile to mention that simultaneous vehicle detection and tracking is an 

area of active research [14, 22]. The coupling of these tasks might solve the performance 

problem mentioned above. Detectors already incorporate appearance features, detection 

precision will also benefit from the temporal image context.

Methodology

This paper aims to develop a system for traffic flow estimation, i.e. for counting and 

classifying vehicles by their movement directions. To achieve that goal, we divide the 

problem into three sub-tasks: vehicle detection, vehicle tracking, and vehicle direction 

estimation. It naturally leads to a modular and easy to test architecture composed of the 

detection and tracking modules, respectively. In the following sections, we describe each 

module in detail alongside data collected for training and evaluation.

Dataset

There are more than 40 surveillance cameras in Chelyabinsk, the majority of each is 

mounted high above the main crossroads to provide a general overview of the traffic 

situation. In comparison to the low-end CCTV [43] systems, these cameras provide 

stable 25 frames per second, maintaining 1920 × 1080 resolution. However, the video 

stream is not perfect due to compression artefacts, blurring, and hardware faults. As 

shown in Fig. 1, images from these cameras are different from data in the public datasets, 
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like KITTI [6] or UA-DETRAC [39]. The difference comes from many aspects: viewing 

angle, number of instances on a single frame, occlusions level, high variations in scale. 

Our data is more challenging. Even a trained human eye is not capable of labelling every 

instance on the image from the first time.

For this work, we focused on a single camera that monitors one of the most prob-

lematic crossroads in Chelyabinsk city. It is a deliberate choice to maximize detection 

precision and obtain a minimum viable product. We annotated with polygons more than 

60,000 instances across 982 frames from the selected camera. All annotation relevant 

tasks were performed in the COCO Annotator tool [3]. In comparison to the existent 

vehicle detection datasets [6, 39], we did not annotate video sequences, as it would be 

extremely time-consuming for such crowded scenes. Instead, we focused on covering 

a wide range of traffic situations, time of day, weather conditions. We also annotated 

every vehicle that can be distinguished with high confidence, especially in crowded traf-

fic jams, as an approximate number of vehicles in a jam might be useful for real-world 

tasks in the future. The overall statistic about the gathered data is summarized in the 

Table 1. Despite the specificity of the proposed dataset, our data might be used in other 

studies as a supplementary data source or challenging test set.

Fig. 1 Example of an image from our dataset. Blue, yellow, green, red, violet, pink and black polygons stands 
for the “car”, “tram”, “van”, “bus”, “trolleybus”, “truck” and “unlabeled” objects respectively

Table 1 Data distribution in the collected dataset

Vehicle type Total instances Mean 
instances 
per image

Car 53083 54.06

Van 2783 2.83

Truck 2415 2.46

Tram 1298 1.32

Bus 1234 1.26

Trolleybus 611 0.62
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To thoroughly validate the proposed system in the traffic flow estimation problem we 

collected statistics about passing vehicles from 8:00 to 12:00 and from 17:00 to 19:00 for 

four of the most popular movement directions. We have deliberately focused on morn-

ing and evening hours during the weekday when traffic flow is very dense, and tracking 

vehicles is a hard task even for humans.

Detection module

The foundation of our detection module is a widely adopted two-stage Faster R-CNN 

[28] detector. This choice was made for two reasons. First, two-stage detectors are cur-

rent state-of-the-art in many detection benchmarks [5, 19, 39] and provide a solid start 

point in any detection task. Second, our future research may include complex multi-task 

learning. Extending Faster R-CNN architecture for multiple tasks is as simple as adding 

a new prediction branch.

We further improved Faster R-CNN baseline performance with a feature pyramid net-

work (FPN) backbone [17], an additional mask branch [9], anchors shape optimization, 

focal loss [37] and adaptive feature pooling [20].

Mask branch

As was shown in the Mask R-CNN work [9], additional regression of the per-instance 

masks leads to better precision in the relevant bounding box regression task. Conse-

quently, the first optimization that we applied was a complementary mask branch. This 

branch runs in parallel with the existing Faster R-CNN branches and aims to regress a 

binary mask for each region of interest. For simplicity, we followed [9] and approximated 

precise pixel-wise instance masks via coarse polygon masks from the collected dataset.

Anchors shape optimization

The next improvement comes from the simple observation that Faster R-CNN anchors 

parameterization was explicitly designed for the COCO dataset [9], but our target data 

is different. There is an effective way [27] to choose anchors by K-Means clustering with 

a distance measure that is based on the intersection over union (IOU). However, this 

procedure yields a heterogeneous set of anchors, which is not suitable for Faster R-CNN 

architecture, specifically for the region proposal network (RPN). RPN regresses offsets 

for anchors which are conventionally defined as a Cartesian product of scale and aspect 

ratio sets. Each anchor is assigned to the specific FPN level, based on its area. RPN is 

shared across multiple feature pyramid levels and therefore, for each level RPN predicts 

offsets for anchors that have the same scale but different aspect ratios.

We have found that in the case of using transfer learning any naive strategy of incor-

porating heterogeneous anchors into the described framework leads to unstable train-

ing and bad performance. For our setup, it holds even if separating region proposal 

network for each pyramid level. To adjust anchors to our data and keep benefits of the 

pre-trained weights, we employed a grid search. The objective of the search was to find 

a set of aspects and scales that maximizes IOU between objects in the training set and 

anchors that are matched to them during training. We followed initial Faster R-CNN 

design and limited the scope of the search for anchor scales exclusively to sequences of 

powers of two.
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Focal loss

To address extreme foreground-background class imbalance encountered during the 

RPN training we used novel focal loss, originally proposed for single-stage detec-

tors [18]. The focal loss (FL) serves as a drop-in replacement for conventional cross 

entropy and can be defined as:

Here y ∈ ±1 specifies the target class and p ∈ [0, 1] is the estimated probability for the 

class with label y = 1 , also known as objectness. The parameter γ is used to down-weight 

easy negatives, αt ∈ [0, 1] is additional balancing factor and defined as α for class 1 and 

1 − α for class − 1.

It was shown in [18] that such formulation naturally emphasizes hard samples and 

prevents a vast number of easy negatives from dominating the loss. In this paper, we 

used γ = 2 and α = 0.25 , because this configuration demonstrated superior results in 

works [18, 37].

Adaptive feature pooling

At last, we further pushed the performance of the model by pooling and fusing ROI 

features from each FPN level. It allows each proposal to access both rich context 

information from deep pyramid levels and low-level features with high localization 

accuracy from the early levels. Here we did not follow CARoI pooling procedure 

[10], because concatenating already deep features and its further processing is too 

time-consuming. Instead, we have adopted adaptive feature pooling described in the 

reference [20] and directly fuse features from multiple levels via the max function. 

In comparison to the work [20], we did not include any additional layers before max 

fusion to keep inference performance near real time.

Our final detection model is schematically shown on the Fig. 2.

Tracking module

The tracking module of the proposed system answers two questions: Where did each 

vehicle come from, and where did it go? To answer these questions, we first track each 

detected vehicle across multiple frames and then classify its movement direction.

For vehicle tracking, we adopted SORT tracker [2] as it has a good speed-preci-

sion trade-off. We did not consider more recent works that fuse motion and appear-

ance clues. Even providing a better performance, computing visual features for our 

crowded scenes is computationally expensive.

SORT provides the required functionality to track objects across multiple frames. 

On the next step, given the complete or incomplete trajectory of the car, we need to 

classify its general movement direction. To do so, one might train a shallow classifier 

pt =

{

p if y = 1
1 − p otherwise,

FL(pt) = − αt(1 − pt)
γ

∗ log(pt)
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similar to the work [38]. However, we found that even a straightforward, heuristic-

based approach works sufficiently well for us.

Our method includes several steps. First, we divide the crossroad into several non-

overlapping regions. Each region defines either an adjacent road or the center of the 

crossing. Assuming that we already have tracking results for the whole video sequence, 

we approximate the vehicle position in each frame by the center of the bottom edge of 

the bounding box. Now, given a complete trajectory of each vehicle in the image coor-

dinates, one can assign each path point to one of the crossroad sections (or void if noth-

ing). It transforms the movement trajectories into a sequence of the visited regions.

Despite possible deviations, this sequence should generally be dividable into three 

major parts: source road, crossing, and target road. A couple of source and target roads 

uniquely describes the vehicle movement direction. We also need a way to deal with 

unfinished trajectories. It is a bit trickier, as they are usually the result of the detector 

fault or object disappearance due to the long-term occlusions. To address this problem, 

we merge all unfinished trajectories, i.e. one that ends or starts on the crossing center, 

within a short temporal and spatial window.

Thus, we first merge all incomplete trajectories and discard sequences that do not 

satisfy the assumption above. Then we split resulting sequences into two parts: before 

and after the crossroad. The most common source and target regions form a movement 

direction label. All trajectories that are either not logically justified or include void as a 

source or target region are discarded.

Experiments

The developed system was evaluated in two ways. First, we trained and tested the detec-

tion network alongside all proposed improvements on our new dataset. Second, we 

assessed the overall performance in the traffic flow estimation problem. To do this, we 

Fig. 2 Conceptual illustration of our detection network: a backbone with feature pyramid network [17]; b 
adaptive feature pooling [20]; c box branch; d mask branch. Note, that RPN and channel dimension of the 
feature maps are omitted for brevity
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used the system to process surveillance data at peak hours. The results of the number 

of passing vehicles for the 4 busy driving directions were compared to the ground true 

statistics gathered by people.

All experiments was run on Ubuntu 18.04 with Nvidia RTX 2080 Ti GPU, 12 CPU 

cores (Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz) and 32 GB RAM. We built our solu-

tion on top the of the official Facebook Detectron realization [23].

Data processing details

We trained and validated the detection model solely on the collected dataset. Specifi-

cally, we used 786 images for training and 196 for validation, e.g. 80/20 split.

Training and validation images were preprocessed to limit the influence of the irrel-

evant regions. We masked each image in a way to leave only the roadway visible, i.e. 

parking areas that are adjacent to the road, uncategorized objects and distant sections of 

the road were cropped. Due to the limited GPU memory, we also rescaled each image to 

the 1280 × 512 resolution.

To improve robustness we augmented training frames by flipping, contrast and bright-

ness adjustment, simulated occlusion and camera-specific artefacts. Occlusions were 

generated by either simple masking part of the sufficiently large vehicles (i.e. objects that 

occupy at least 40 pixels) or its extreme blurring. To reproduce camera faults, we blurred 

tall random horizontal sections near the image center.

Detection network details

We used ResNet-50 model [43] as a backbone together with the default FPN configura-

tion from the Detection [23], as it provides a good trade-off between speed and detec-

tion quality.

Stochastic gradient descent with momentum was used to train the network. The initial 

learning rate was set to 1e − 3 and reduced by a factor of 10 after 20k and 27k iterations. 

In total, training was terminated after 30k iterations. We fixed a batch size equal to 4 for 

all experiments.

To speed up convergence, we used weights pre-trained on the MS COCO dataset [19]. 

Before training the whole network, we finetuned last layers of the RPN and classifica-

tion/mask branches for 1k iterations with learning rate linearly decaying from 25e − 3 to 

1e − 3.

We refer readers to the source code for more specific implementation details.

Evaluation protocol

To thoroughly validate performance of the detection model and impact of each pro-

posed improvement, we report mean average precision (AP), mean average precision at 

IOU 0.5 ( AP0.5 ) and mean average precision at IOU 0.75 ( AP0.75 ) as they are used in sev-

eral major detection benchmarks [5, 19, 39]. For completeness, besides AP for bounding 

boxes ( APbb ) we also report average precision for instance segmentation ( APsegm).

For the task of the traffic flow estimation, we report mean absolute error and mean 

absolute percentage error. We used statistics gathered by humans as a ground true data.
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Results and discussions

Detection performance

The Table 2 shows the results of the baseline Faster R-CNN model alongside the influ-

ence of each proposed improvement. It is clear that all used techniques provide a solid 

advance relative to the baseline. However, obtained results are worse by approximately 

10 to 20 AP points than results of the similar top-ranked models on a popular UA-

DETRAC and KITTI datasets [6, 39]. It supports the conclusions that our target data is 

more challenging than well-studied counterparts.

We expected more gain from the anchors optimization as Fig.  3 clearly states that 

anchors chosen by grid search procedure provide better coverage of the ground true 

boxes. The reasons might lie in the fact that we used pre-trained weights, i.e. our net-

work is initially biased towards objects whose shape is different from the target one.

Our network runs at 15 frames per second and can process video sequences in real-

time by operating on each second frame. Figure 4 shows some visual results of the model 

on the validation dataset. One might further improve the quality by replacing ResNet-50 

backbone with massive ResNeXt-101 model [41] or by constructing a heavier feature 

Table 2 Influence of  the  proposed architectural decisions on  the  detection network 

efficiency

Italic values indicate the performance gain relative to the Faster R-CNN baseline when applying all the proposed 

improvements

Baseline Overall gain

Mask branch ✗ ✓ ✓ ✓ ✓

Anchors optimization ✗ ✗ ✓ ✓ ✓

Focal loss ✗ ✗ ✗ ✓ ✓

Adaptive feature pooling ✗ ✗ ✗ ✗ ✓

AP
bb 57.3 58.2 58.4 58.9 59.2 +1.9

AP
bb
50

79.0 79.7 79.7 79.7 80.3 +1.3

AP
bb
75

67.5 68.8 68.9 69.4 70.0 +2.5

APsegm – 56.1 56.4 56.7 57.2 +1.1

AP
segm
50

– 78.9 79.4 79.5 80.2 +1.3

AP
segm
75

– 68.0 69.2 68.8 69.1 +1.1

Fig. 3 Distribution of the IOU between ground true bounding boxes and matched anchors: a before anchors 
optimization, b after optimization
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pyramid network. However, it would make the network completely inappropriate for 

near real-time video processing.

System performance

Evaluation results for the traffic flow estimation task are presented in Fig.  5. Table  3 

shows mean absolute and mean absolute percentage error compared to the human 

results. Given the overall performance, we can conclude that the developed system, 

although showing promising results, is still behind the human level. However, our solu-

tion already has applied value. For instance, it can and will be used to optimize traffic 

light timings or detect anomalies in crossroad throughput.

Additional investigation of the typical errors suggests that most of them are the result 

of strong and long-lasting occlusions between vehicles in a dense traffic stream. For 

Fig. 4 Results of the proposed detection network. Driving directions are shown in the upper right corner. 
Better viewed with zoom
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example, during the movement, trams partially overlay from one to two lanes for the 

west-east movement direction. Many cars overlap while turning, waiting in the center 

of the intersection for a free window. This problem can be addressed by improving 

the tracking module with special techniques for instances re-identification based on 

Fig. 5 Bar plots for vehicles that were counted by humans and automatically by our system. Each bin 
includes statistic for a single hour, four separate driving directions are reported

Table 3 Mean absolute error and mean absolute percentage error per hour for the traffic 

flow estimation task

Metrics are detailed for four movement directions

Direction Mean absolute error Mean absolute 
percentage error

North–East 34.17 8.49

West–East 129.0 9.85

East–West 34.5 3.14

South–West 22.67 7.53

Average 55.08 7.25
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appearance clues. However, as mentioned earlier, existing approaches have a high com-

putational burden and are not applicable to real systems. Designing efficient algorithms 

for vehicle re-identification remains an open question.

Conclusions

In this work, we focused on the problem of traffic flow estimation with data from a video 

surveillance camera. As a case study, we considered one of the busiest crossroads in 

Chelyabinsk, Russia. Being practically important, this subject area is still in early devel-

opment. Up to date, there are just a few works that aim to automatically process surveil-

lance video data for traffic analysis.

To address the posed problem, we used SORT tracker and enhanced state-of-the-art 

Faster R-CNN detector. The proposed system can count and classify vehicles by driving 

directions with a mean percentage error that is less than 10%. Achieved performance 

indicates that there is a room for improvement, yet it is already enough to solve some 

real-world problems. Our solution will be used further by city authorities to optimize 

crossroad throughput. The horizontal scaling would make possible even more fruitful 

optimization of the traffic flows throughout the city.

To the best of our knowledge, there are no publicly available datasets or benchmarks 

that cover conditions similar to ours. To train and evaluate the detector, we gathered 

982 video frames with more than 60,000 labelled vehicles in total. Collected data covers 

only a single crossroad and is not applicable as a general purpose benchmark. However, 

other studies might use it as an additional training data or challenging test set. Our data 

is diverse in terms of the presented weather conditions, traffic situation, vehicle shapes, 

scales, and classes.

Despite achieved results, there are still many problems to face. Here we did not cover 

problems of vehicle re-identification and fine-grained classification, possible optimi-

zations of convolutional neural networks for efficient and cheap inference. Separately, 

there are tasks related to the efficient surveillance data movement and storage. We con-

sider these problems as possible directions for future researches.
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