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Abstract: Nowadays, many cities have problems with traffic congestion at certain peak hours, which
produces more pollution, noise and stress for citizens. Neural networks (NN) and machine-learning
(ML) approaches are increasingly used to solve real-world problems, overcoming analytical and
statistical methods, due to their ability to deal with dynamic behavior over time and with a large
number of parameters in massive data. In this paper, machine-learning (ML) and deep-learning (DL)
algorithms are proposed for predicting traffic flow at an intersection, thus laying the groundwork
for adaptive traffic control, either by remote control of traffic lights or by applying an algorithm that
adjusts the timing according to the predicted flow. Therefore, this work only focuses on traffic flow
prediction. Two public datasets are used to train, validate and test the proposed ML and DL models.
The first one contains the number of vehicles sampled every five minutes at six intersections for
56 days using different sensors. For this research, four of the six intersections are used to train the
ML and DL models. The Multilayer Perceptron Neural Network (MLP-NN) obtained better results
(R-Squared and EV score of 0.93) and took less training time, followed closely by Gradient Boosting
then Recurrent Neural Networks (RNNs), with good metrics results but the longer training time,
and finally Random Forest, Linear Regression and Stochastic Gradient. All ML and DL algorithms
scored good performance metrics, indicating that they are feasible for implementation on smart traffic
light controllers.

Keywords: intelligent transportation system; smart city; traffic flow prediction; traffic light; machine-
learning; deep-learning; recurrent neural network; artificial intelligence; regression algorithms; ITS

1. Introduction

Nowadays, the accelerated growth of the population and, consequently, the number
of vehicles in the cities added to the technological limitations of traffic control signs have
made vehicular traffic one of the problems of modern life. This problem has negative
consequences for the environment, health and the economy.

Here is where the concept of Intelligent Transportation System (ITS) comes in, as
a critical component of smart city infrastructure [1]. Using big data information and
communication technology [2], ITS can provide real-time road infrastructure analysis and
more efficient traffic control [3,4]. This system relies on traffic predictions as a critical
component [5,6]. The purpose of traffic forecasting is to predict future traffic conditions on
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a transportation network based on historical observations [7]. This data can be helpful in
ITS applications such as traffic congestion control and traffic light control [8]. For example,
it can calculate the likelihood of congestion on the corresponding road segment and prepare
for it in advance [9].

Traffic prediction can be divided into two types of techniques: parametric, including
stochastic and temporal methods, and non-parametric, such as machine-learning (ML)
models [10], recently used to solve complex traffic problems. The review made in [11]
found that non-parametric algorithms outperform parametric algorithms due to their ability
to deal with a large number of parameters in massive data. In [12] five ML algorithms
are evaluated to forecast the total volume of the traffic flow in Porto city; the algorithms
are: Linear Regression, Sequential Minimal Optimization (SMO) Regression, Multilayer
Perceptron (MLP), M5P model tree and Random Forest (RF). The experimental results show
that the M5P regression tree outperforms the other regression models. The authors in [13]
reported some multi-model ML methods for traffic flow estimation from floating car data.
In particular, they evaluated the capacity of Gaussian Process Regressor (GPR) to address
this issue. Deep learning (DL) as a subset of ML uses multilayered neural networks exposed
to many data to train themselves. This capability of DL models to extract knowledge from
complex systems has made them a robust and viable solution in the field of ITS [14].

A Multilayer Perceptron Neural Network (MLP-NN) is presented in [15,16], this last
with a mutual information technique to forecast traffic flow. The simulations showed a
decrease in forecast error in comparison to the results of the mean and Autoregressive
Integrated Moving Average (ARIMA) models that used traffic data from previous periods.
Back-Propagation Neural Network (BPNN) is one of the most typical architectures of
Neural Networks and is widely used in many prediction and classification tasks. In [17] an
urban traffic signal control system based on traffic flow prediction using BPNN is proposed.
Also [18] used BPNN to predict future traffic volumes in the design of a traffic light control
system along with a genetic algorithm for timing optimization. With this method the
average waiting rate is reduced by almost 30 percent compared with the fixed-time traffic
light control system. Following this method, the combination of a genetic algorithm and
neural network in [19] leads to a named Genetic Neural Network. Ref. [20] presents a deep
learning neural network method for optimizing traffic flow and reducing congestion at key
intersections by using historical data from all the movements of an intended intersection,
with time series and environmental variables as the input features. The output is fed into
a delay equation that generates the best green times to manage traffic delay. In [21] a
short-term traffic flow prediction based on an improved wavelet neural network (WNN)
is proposed. They use an improved particle swarm optimization (IPSO) to avoid being
trapped in a local extremum. The outputs of the IPSO are the corresponding wavelet neural
network parameters, and experimental results show that this algorithm is more efficient
than the WNN and PSO–WNN algorithms alone. The prediction results are more stable
and more accurate. Compared with the traditional wavelet neural network, the error is
reduced by almost 15 percent.

Recurrent neural networks (RNNs) have an internal state that can represent context
information; they hold information about past inputs for a period of time and are typically
used to capture dynamic sequences of data. RNNs based DL methods Long Short-Term
Memory (LSTM) [22], short-term flow prediction [23,24] and Gated Recurrent Units (GRU)
in [25] outperform the ARIMA model; additionally, the authors report that this is the first
use of GRU in traffic flow prediction. Currently, GRU models continue to be used for the
development of intelligent traffic flow prediction [26].

On the other hand, stacked autoencoders (SAEs) are an unsupervised learning method
that extracts features from unlabeled data and uses them to train the model. SAEs pre-
sented in [27] proved to be more accurate than the Back Propagation Neural Network
(BP NN) model, the Random Walk (RW), the Support Vector Machine (SVM), and the
Radial Basis Function (RBF) NN model for the short-term prediction of the traffic volume.
Other works recently have concentrated on hybrid methods [28]. Ref. [3] reported a new
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hybrid DL model by using Graph Convolutional Network (GCN) and the deep aggregation
structure of GRU; for data preprocessing Moving Average is used along with Data Normal-
ization using MinMax Scaler. A Hybrid Least Square Support Vector Machine (LSSVM)
is presented in [29]. To search the optimal parameters of LSSVM, this paper proposes a
hybrid optimization algorithm that combines particle swarm optimization (PSO) with a
genetic algorithm.

In this paper, five ML models: MLP-NN, Gradient Boosting Regressor, Random Forest
Regressor, Linear Regressor and Stochastic Gradient Regressor, and two DL models based
on RNNs: GRU and LSTM; are compared in the task of traffic flow prediction of each lane
of an intersection, with the purpose of applying them in the modernization of traffic light
controllers, allowing a better traffic flow without the need to completely change the traffic
light system, making its implementation more feasible. The experiments demonstrate that
all models have good capability in predicting vehicular flow and can be used in a smart
traffic light controller.

The rest of the paper is organized as follows: Section 2 describes the materials and
methods to train the machine-learning models. Section 3 presents the results of several
metrics used to evaluate the performance and compare the ML and DL models. Section 4
describes the proposed usage scenario in the real-world. Conclusions and future work are
described in Section 5.

2. Materials and Methods

In this paper, a Road Traffic Prediction Dataset from Huawei Munich Research Center
is used, which is a public dataset for traffic prediction derived from a variety of traffic
sensors, i.e., induction loops [30], it is important to note that, at present, there are a few
public datasets [31]. The data can be used to forecast traffic patterns and modify stop-light
control parameters. The dataset contains recorded data from six crosses in the urban area
for 56 days, in the form of flow time series, depicting the number of vehicles passing every
five minutes for a whole day, which is recommended for short-term predictions [32]. For
this research, four of the six intersections are used to simulate four lanes of an intersection.

2.1. Data Preprocessing

It is common to find missing values in databases represented by zeros, probably
due to sensor failures. The article [25] impute the missing data points using the historical
average value, and [20] reports substituting these values with the mean of the entire column
containing the missing value. Although these substituted data are not realistic values, the
researchers determined that they are better than no data. However, when performing
the predictions, this procedure generates spikes in the real values, increasing the error
because, on some occasions, the trend shows that the zero values were real. These spikes
are highlighted in red rectangles as shown in Figure 1a; this is why a moving average is
applied using the 12 previous readings. Figure 1b shows how abrupt changes caused by
the general average are avoided. Next, the database is split into 75% of the data (42 days)
for training and 25% (14 days) for testing.

The data are scaled in a range from 0 to 1, following the standard normal distribution
using MinMaxScaler from scikit-learn library [33]. For this experiment, the previous hour’s
traffic flow is used, which is a time sequence of 12 data points, to predict the traffic flow
coming in the next five minutes. To do this, lists are created grouped into 13 readings; these
lists are used for training and testing purposes. The generated lists are then converted into
arrays and the training sequence is shuffled. Once this is done, the last column of the arrays
is taken as the output ‘Y’, and the remaining columns as the inputs ‘X’.
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(a) (b)

Figure 1. Differences between the substitution of zeros applying a general average and a moving
average. (a) General Average; (b) Moving Average.

2.2. Recurrent Neural Networks
2.2.1. RNNs Design

Two recurrent neural networks are designed: GRU and LSTM. Keras library [34] is
used to create the models. The architecture is the same for both as shown in Figure 2 and
explained below: The input layer with shape equal to the number of time steps per the
number of lanes. Then two recurrent layers with 64 neurons, 20% dropout, and finally, an
output layer with neurons equal to the number of lanes and sigmoid activation function.

(a) (b)

Figure 2. Architecture of the recurrent neural networks. (a) LSTM-NN; (b) GRU-NN.

2.2.2. RNNs Training

In the compilation of the model, mean squared error (MSE) is used as loss function,
and the optimizer is RMSprop from Keras library [34] with default parameters and mean
absolute error (MAE) is the metric function. For training, a batch size of 128 and 50 epochs
are used, five percent of the training data is used for validation. The experiments are
performed in Google Colaboratory [35] along with Weights & Biases [36] for tracking them.
Figure 3 shows the training performance of the two architectures, where the loss and
evaluation metrics in training and validation can be observed.
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(a) (b)

Figure 3. Training performance of both neural networks. (a) LSTM NN; (b) GRU NN.

2.3. Machine Learning Methods

Five regression models from the scikit-learn library [33] in Python are used: Linear
Regression, Gradient Boosting Regressor, MultiLayer Perceptron Regressor, Stochastic
Gradient Descendent Regressor and Random Forest Regressor, all of them with default
parameters and a random state equal to zero for the reproducibility of the experiment.
A reshape of ‘X’ for both training and testing is made because these models require a 2D
array instead of the 3D used in the RNN’s; after that, the models are fed with the training
split. The methodology summary presented in the form of a flowchart is shown in Figure 4.

Moving Average.

Split the dataset 75%
for training and 25% for

testing.

Scale the data in a range
from 0 to 1.

Create lists for training and
testing with data points equal to

the time sequence + 1.

Train the Machine Learning
model.

End

Test the model.

Begin

Load dataset.

Import libraries and
initialize variables.

Figure 4. Flowchart of proposed method.
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3. Results

To evaluate the performance of ML and DL algorithms, first, an inverse scaler was
applied to the ’y’ test. Then we relied on the metrics of the scikit-learn library [33], the
mean absolute error (MAE) [21,37], root mean square error (RMSE) [7,29], mean absolute
percent error (MAPE) [14,15], R-squared (R2) [3,9] and explained variance (EV) are used.
They are defined as:

MAE(y, ŷ) =
1
n

n−1

∑
i=0
|yi − ŷi| (1)

MAPE(y, ŷ) =
100%

n

n−1

∑
i=0

|yi − ŷi|
yi

(2)

RMSE(y, ŷ) =

[
1
n

n−1

∑
i=0

(yi − ŷi)
2

] 1
2

(3)

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

explained_variance(y, ŷ) = 1− Var[y− ŷ]
Var[y]

(5)

where n is the number of samples, y is the observed traffic flow, ŷ is the predicted traffic
flow and y is the mean.

MAE and RMSE measure absolute prediction errors, and MAPE measures relative
prediction errors. Smaller numbers indicate higher prediction performance for these three
metrics [37]. The values of R2 and EV range from zero to one, and the closer to the value of
one the better the regression model fits.

Table 1 lists the performance metrics of each ML and DL models, Multilayer Perceptron
and Gradient Boosting obtained R-Squared and Explained Variance above 0.93, MAE of
10.8, MAPE of 21% and RMSE of 15.4. In contrast, Random Forest had an R-squared and
Explained Variance slightly below 0.93, MAE of 10.88, MAPE of 21% and RMSE of 15.5.
While GRU and LSTM obtained R-Squared and Explained Variance near 0.92, MAE of 10.88,
MAPE of 22% and RMSE of 15.6, Linear Regression R-Squared and Explained Variance
were 0.926, MAE of 11.2, MAPE of 24% and RMSE of 15.85; finally, Stochastic Gradient had
R-Squared and Explained Variance of 0.9, MAE of 12.8, MAPE of 29% and RMSE of 18.

For the results shown, RNNs are iteratively trained ten times, and the average of each
metric is calculated; in the case of the ML models (scikit-learn), the random state allows us
to have the same results each time.

Table 1. Comparison of performance metrics using the first dataset [30].

ML/DL Model MAE MAPE RMSE R2 EV Score

MLP-NN 10.8281 21.1593% 15.4202 0.9304 0.9307

Gradient Boosting 10.8508 21.9493% 15.4121 0.9305 0.9306

Random Forest 10.8827 21.8392% 15.5481 0.9296 0.9297

GRU 10.8843 22.8492% 15.6191 0.9278 0.9295

LSTM 10.8806 22.3244% 15.6771 0.9267 0.9287

Linear Regression 11.2010 24.3238% 15.8545 0.9263 0.9264

Stochastic Gradient 12.8230 29.0075% 18.3727 0.9003 0.9004
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Additionally, robustness testing was performed using a different dataset [25] than
the one initially used for training and validation. These new data are collected from the
PeMS dataset, which has over 15,000 sensors deployed throughout the state of California,
specifically the fourth district, which lies in the Bay Area, Alameda, Oakland of the U.S. For
robustness, R2 and EV score are good parameters because these metrics are dimensionless,
work for different datasets of different scales and are normalized. The metrics obtained with
the external dataset are listed in Table 2. Comparing the results of R2 and EV score listed in
Tables 1 and 2, it can be observed that in both cases R2 and EV score are between the values
of 0.9 and 0.95. Therefore, since R2 and EV remain within the same range regardless of the
dataset, we can confirm that the proposed models are robust for traffic flow prediction.

Table 2. Performance metrics using the second dataset (PeMS) [25].

ML/DL Model MAE MAPE RMSE R2 EV Score

MLP-NN 7.2427 18.2176 9.8096 0.9393 0.9395

Gradient Boosting 7.12151 17.6224 9.6648 0.941 0.941

Random Forest 7.05046 17.3788 9.5799 0.9421 0.9421

GRU 7.64266 18.5307 10.2406 0.9338 0.9381

LSTM 7.32852 19.0923 9.8816 0.9384 0.9388

Linear Regression 7.51693 20.3822 10.1914 0.9344 0.9344

Stochastic Gradient 8.39243 23.7443 11.3199 0.9191 0.9194

On the other hand, to analyze the cost-benefit of the implementation of the models,
the average training time was obtained for each one of them, the experiments were carried
out in the Google Colaboratory [35] execution environment, and also [36] was used to
keep track of the times. Figure 5 depicts the training time of the seven ML models tested
in this study. It is important to note that scikit learn models train takes less time than
designed RNN’s. LSTM and GRU models are the ones with the longer training time 321
and 250 seconds, among the scikit learn models Random Forest, Gradient Boosting, Linear
Regression, Stochastic Gradient and MLP-NN 46, 28, 20, 20 and 18 seconds being MLP-NN
the fastest and it is the model that also has better performance metrics, as shown in Table 1.

Figure 5. Comparison of training times.
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Predictions performed over the test split for one day in the four lanes are shown in
Figure 6 and for an entire week are plotted in Figure 7.

(a) (b)

(c) (d)

Figure 6. Comparison of traffic flow prediction models for one test day. (a) Traffic flow prediction of
lane 1; (b) Traffic flow prediction lane 2; (c) Traffic flow prediction lane 3; (d) Traffic flow prediction
lane 4.

(a) (b)

(c) (d)

Figure 7. Comparison of traffic flow prediction models over an entire week. (a) Traffic flow prediction
of lane 1; (b) Traffic flow prediction lane 2; (c) Traffic flow prediction lane 3; (d) Traffic flow prediction
lane 4.

4. Proposed Usage Scenario

These models can be used in a smart traffic light controller, fed by traffic sensors
that count the number of vehicles passing through a lane every certain period; with these
readings, a database similar to the one used in this paper can be created. Once the database
is generated, the ML model can be trained for each intersection. Then the traffic flow for
the next period can be predicted by using a given number of past readings.
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Once the prediction is made, it will allow better programming of the times of each
state, either manually by an operator or automatically using an algorithm to calculate the
optimal times of the traffic light states. The whole process can be carried out by wirelessly
communicating the traffic light with a central station or at the controller itself. Figure 8a
shows a block diagram of the main elements of the proposed system and Figure 8b its
representation in a real-world scenario.

Number Of Vehicles

Wireless Sensor
Network

State Times
Smart Traffic Light

Controller
Machine Learning

Algorithm Traffic Lights

(a)

(b)

Figure 8. Proposed usage. (a) Block diagram; (b) Representation in real-world scenario.

5. Conclusions

In this paper, we proposed several ML and DL models for the traffic flow prediction at
an intersection of vehicular traffic, thus laying the groundwork for adaptive traffic control.
Two public datasets were used to train, validate and test the proposed models. Experimental
results showed that Multilayer Perceptron Regressor has better performance and takes
less processing time to train (18 s). Gradient Boosting Regressor has a similar performance
but takes more processing time (28 s). Both RNNs and Random Forest Regressor have a
similar score. However, RNNs are slow to train (between 250 and 321 s). Finally, Linear
Regression and Stochastic Gradient Regressor have good processing time (20 s) but are the
worst performance between these models. All ML and DL models achieved an explained
variance score (EV Score) and R-squared (R2) greater than 0.90, MAE near to 10; the RMSE
is near 15 and the MAPE is between 20 and 30 percent. Actually, the performance of these
seven algorithms does not differ significantly. In conclusion, the results were satisfactory
for predicting traffic flow in the four lanes of an intersection, demonstrating the feasibility
of being implemented on smart traffic light controllers.
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