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Abstract: The prediction of traffic flow is of great significance in the traffic field. However, because of
the high uncertainty and complexity of traffic data, it is challenging that doing traffic flow prediction.
Most of the existing methods have achieved good results in traffic flow prediction, but are not
accurate enough to capture the dynamic temporal and spatial relationship of data by using the
structural information of traffic flow. In this study, we propose a traffic flow prediction method with
temporal attention mechanism and spatial attention mechanism based on neural architecture search
(TS-NAS). Firstly, based on temporal and spatial attention mechanisms, we design a new attention
mechanism. Secondly, we define a novel model to learn temporal flow and space flow in traffic
network. Finally, the proposed method uses different modules about time, space and convolution
and neural architecture search to be used for optimizing the model. We use two datasets to test the
method. Experimental results show that the performance of the method is better than that of the
existing method.

Keywords: prediction of traffic flow; temporal attention mechanism; TS-NAS; spatial attention mechanism

1. Introduction

In recent years, traffic forecasting has become a hot topic. It is necessary to improve
the intelligence of road traffic management and public travel services, so that the hiding
function of existing traffic flow data can play a role in data mining [1,2]. However, in terms
of prediction, the utilization of spatial structure information is insufficient [3].

For traffic flow, it is one of the main parameters reflecting traffic. Traffic flow data
has accumulated mass of traffic time series with geographical location information. How
to use these data effectively is a problem actively explored in the field of transportation.
Under the above background, if people can effectively use the massive traffic data collected
and give full play to its value, the prediction of traffic flow will be more accurate and the
operational capacity and efficiency of the whole road network will be improved. Many
methods have been applied to traffic flow prediction. HA algorithm uses the mean value
of the last time slice to predict the future value. ARIMA [4] is a regression method, which
is applied to the prediction of traffic flow. The VAR [5] model captures the relationship
between traffic flow sequence nodes. In addition, there are other sequence models, such as
GRU [6–9]. In particular, both temporal and spatial attention mechanisms are considered
in [10]. However, these models are insufficient in considering the spatial and temporal
properties and model structure.

Graph neural network can pay attention to the interaction of node information in the
process of network optimization, to learn better feature representation, and is applied to
man fields [9,11]. LSTM network [6] has a good effect on the learning of sequence infor-
mation. Attention mechanism [12,13] has shown good performance in many fields, such
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as image classification [14], image caption [15] and so on. Neural architecture search [16]
can optimize the network structure, so we can optimize our traffic flow network structure
through neural architecture search in our custom space to achieve the best effect.

We propose a new structure for traffic flow prediction, which is called TS-NAS. Firstly,
we represent the features of spatial nodes, and then put the features and graphs into our
search convolution space. Secondly, to better learn the spatial characteristics of traffic
flow data, we define the search space for spatial attention. After learning the spatial
information of traffic flow data through the network, we pool the spatial features. Similarly,
to learn the temporal characteristics of traffic flow data, we define the search space for
temporal attention. To better study the space and time of traffic flow network, the whole
network structure defines the neural architecture search space. The main contributions are
summarized as follows:

1 A novel spatio-temporal attention mechanism is designed based on the spatio-temporal
attention mechanism;

2 The residual network is added between the spatio-temporal blocks to avoid the
shortcomings of excessive smoothing and feature weakening caused by the increase
of the number of spatio-temporal blocks ;

3 Combining GCN and LSTM, a new module is proposed to learn the information of
spatio-temporal flows in transportation network;

4 In this paper, a neural network search mechanism is added to select the appropriate
spatial convolution module, and the selection standard is to make the prediction
model optimal.

The tips of this article are summarized as follows. The Related work section introduces
the related work of graph convolution and traffic flow. The Proposed method section
introduces the prediction framework of the traffic flow model and detailed sub-task de-
scriptions, including the separate graph convolution module, attention space mechanism,
and neural network search mechanism. The Experimental Analysis section introduces the
main experimental process and results of this research. The Conclusion section concludes
the paper.

2. Related Work
2.1. Convolutional Modules

The methods of graph convolution neural network include spatial methods and
spectral methods. Based on spatial methods, a linear method [17] has been proposed
and achieved good results. A method [18] has been proposed in action recognition and
achieved good results. Based on septal methods, the general graph convolution neural
network method is proposed [11], and the gating method is proposed [9], and this method
is applied to traffic prediction. This paper focuses on the prediction of traffic flow between
urban roads. Since the traffic flow data does not meet the conditions of Convolutional
Neural Networ (CNN), so the Graph Convolutional Network (GCN) is used in this paper.
The difficulty of GCN architecture is the definition of convolution kernel as shown in the
Figure 1.

The convolution operation is extended to the graph structure data by using the spec-
trogram method, and the data are regarded as the signal on the graph, and then the graph
signal is processed directly on the graph. In this model, the role of the GCN layer is to
extract spatial characteristics of traffic flow through convolutional networks.

The traditional long short-term memory (LSTM) [6] relies on a feed-forward neural
network to calculate the internal correlation. However, for spatial and temporal data, this
will bring redundancy, because spatial data has strong local characteristics. In addition, the
LSTM cannot obtain the previous information from the back during the process.
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Figure 1. Network Structure and Graph Structure ((A) CNN architecture; (B) GCN architecture).

2.2. Structural Optimization and Traffic Flow Prediction

Attention mechanism enables the model to learn important features. Therefore, at-
tention mechanism is used in various scenes and develops rapidly. Attention was first
introduced [12,13] to help the model learn important information. In [19], the attention
mechanism is applied to the image caption task. Recently, various interesting attention
mechanism models have been proposed [14,15]. The attention mechanism has also been
applied to the target detection task. Neural architecture search is one of the research hot
topics in recent years. It is mainly used to solve the parameter optimization problem of
neural network learning model. Neural architecture search (NAS) was first proposed in [16].
NAS optimizes the network by optimizing the neural structure. Reinforcement learning
was first applied to NAS search method, which produced different optimization learning
algorithms for different search strategies. In addition, there are evolutionary algorithm
and Bayesian optimization algorithm to optimize the neural architecture search. In recent
years, the research on traffic prediction has achieved important results. For example, tra-
ditional methods are often insufficient in capturing spatial information [20–23], so they
can not obtain satisfactory results in performance. With the extensive application of deep
learning in various fields, such as speech recognition, image processing [24], and action
recognition [25], data exploration of spatial structure has also achieved remarkable results.
With the emergence of deep learning, more and more researchers have designed relevant
models to explore structured data, such as [26–29].

3. Proposed Method

In this section, this study proposes a temporal attention mechanism and a spatial
attention mechanism traffic flow prediction method based on neural architecture search
(TS-NAS). Firstly, spatial features are extracted by GCN, and temporal features are extracted
by BiLSTM, so that the network has a more special “two-way memory” function; then,
a spatial attention mechanism is established to increase the latitude of time slice feature
aggregation and define and propose a temporal attention mechanism; A residual network
is added between the spatio-temporal blocks to avoid the shortcomings of over-smoothing
and feature weakening caused by the increase of the space-time block features as the
number of blocks increases. Finally, Nas is used to search for the optimal solution, and the
TS-NAS model is established. See the following subsections for details.

3.1. Notations

We spilt the dataset into days. At a certain point in time , X represents the feature
of all nodes, X ∈ RN×F, N is the number of nodes and F is the dimension of nodes. Xt
represents the features of all nodes at time t. Xi is used to represent the feature of the i th
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node. Because the traffic flow prediction is the problem of sequence prediction, and the
sequence information of the future is mainly predicted by the historical information so that
the predicted information is represented as Y, Y ∈ RN×P, P is the dimension of prediction
node. The traffic network can be represented as G (V,E). V represents space of the nodes
and E represents the relationship between the nodes. At time t, the xi represents feature of i
th node. By calculating the Euclidean distance, we construct a new graph matrix A, which
is described as:

Ai =
e||xi−xj||2

∑j e||xi−xj||2
(1)

where Ai,j is the value from graph matrix A. It can be used to represent the relationship
between nodes in graph space so that can be applied to graph convolution network and
graph attention convolution network in our convolution spaces.

3.2. Search Space about Attention

The attention can be expressed about xi as a dot product attention model. Spatial and
temporal attention models are shown in Figures 2 and 3. We define that the attention in the
search space can be expressed as:

P1(xi, xj) = xixT
j (2)

p1 (xi,xj) is a dot product attention model.

Figure 2. The search space of network model about spatial attention.

P2(xi, xj) =
xixT

j√
d

(3)

p2 (xi,xj) is a scaled dot product attention model. The d takes a fixed value. In our
search model, we use it as a learning parameter.

P3(xi, xj) = xiWxT
j (4)

Figure 3. The search space of network model about temporal attention.

p3 (xi,xj) is a bilinear attention model, W is a learnable weight matrix, and W ∈ RF×F.



Sustainability 2022, 14, 12232 5 of 12

P4(xi, xj) = sigmoid(xjW + xjUvT) (5)

p4 (xi,xj) is an additive model. Both W and U are learnable weight matrixs, W ∈ RF×F,
U ∈ RF×F.

P5(xi, xj) = xiW(xjU)T (6)

p5 (xi,xj) is a key value pair attention mechanism model.

P6(xi, xj) = αtanh(xiW(xiU)T + (1− α)tanh(xiW(xjU)vT (7)

p6 (xi,xj) is designed by ourselves. At the same time, the temporal attention mechanism
is expressed as:

q6( fi, f j) = αtanh( fiW( fiU)T + (1− α)tanh( fiW( f jU)vT (8)

3.3. Model about TS-NAS

The model architecture as shown in Figure 4 and the data of the model is represented as
xi. By calculating the relationship between them, the representation of graph structure can
be obtained as A. Then, we input the features and graphs into the convolution space, which
is similar to the attention search space. We use the neural architecture search mechanism
to finally select the appropriate convolution module to make the model optimal. Then,
the output result of convolution space is input into the search space about pooling, and
the pooled module is composed of max (·), min (·), mean (·) or flatten (·). Therefore, we
can obtain fi. For the prediction of traffic flow, we need to consider not only the spatial
relationship, but also the temporal relationship. Therefore, we define the search space for
temporal attention. Then we use the full connection and softmax operation, and finally
obtain our prediction results.

Figure 4. Network model of TS-NAS.

3.4. Prediction

The TS-NAS model was evaluated by MAE and RMSE as follows:

MAE =
1
n

n

∑
i=1
|ŷi − yi| (9)

RMAE =

√
1
n

n

∑
i=1

(ŷi − yi)2 (10)
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where ŷi is the traffic flow data predicted by the proposed method, yi is the ground truth. n
represents the numbers of samples. In addition, we use Adam optimization algorithm to
update the gradient.

4. Experimental Analysis
4.1. Experimental Data

In this project, PEMSD4 and PEMSD8 were utilized as the benchmark data set to verify
performance of the proposed method in this paper. To be specific, the data were recorded
from the sensor information and the collected time series data, and the collection frequency
was 30s/time. There are various data types recorded in PEMS. In this paper, the traffic flow
is selected as the feature of the data set.

The PEMSD4 data set in this paper is derived from the traffic data of the San Francisco
Bay Area Expressway. The traffic network in this area contains 29 highways and a total of
3848 data collection devices. The collection time range is 59 days from January to February
2018. The experiment selected data from January to February 2018 for implementation,
with the first 50 days as the training set and the last 9 days as the test set. The experiment
was analyzed in detail so that 47 detection points on PEMSD4 were selected as research
objects through the spatial geographical distribution of detection points.

The PEMSD8 data set is derived from traffic data from San Bernardino, with 1979
detectors installed on eight roads. Data from July to August 2016 were selected for the
experiment. In this paper, the data on the first 50 days are used as the training set and the
data on the last 12 days is the test set.

4.2. Settings

The input feature dimension is 47 × 1 × 12, The output prediction dimension is 47
× 12. The graph convolution operation used 64 convolution cores of the same size. The
standard convolution operation of time dimension used 64 convolution kernels of the same
size. These convolution kernels were 1 along the spatial axis and 12 along the time axis. In
the training process, the Adam optimizer was used to optimize the model, and the learning
rate was set as 0. 0001. The number of epoch is 100. In addition, 10% of the training
set as the validation set was selected to adjust other parameters. For fair comparison, all
experiments were conducted on server with 128G memory, 2. 4 GHz GPU and a GeForce
GTX 1080Ti.

4.3. Baseline Methods

Compare our algorithm by the following baseline methods:

• HA: It is a historical average. As a comparison algorithm, the average of the last
12 time slices is used to predict the next value.

• ARIMA: This is an autoregressive synthetic moving average method. Time series
analysis used to predict future value.

• VAR: In order to capture the pairwise relationship between all traffic flow series, a
more advanced time series model is proposed, which is called vector autoregressive
algorithm.

• LSTM: This is a special RNN model, as a long-term and short-term memory network.
• GRU: This is a gated recurrent unit network, a special RNN model.
• STGCN: In order to extract spatial information, a spatiotemporal convolution model

based on spatial method is proposed.
• GLU-STGCN: In order to forecast traffic, a graph convolution network with gating

mechanism is proposed, and good performance is achieved.
• ASTGCN: A novel attention based spatiotemporal graph convolute.
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4.4. Experimental Evaluation

To evaluate the performance of the proposed model, we used PEMD4 and PEMD8
datasets. In addition, we use eight baseline methods to compare with our model through
MAE and RMSE metrics. The results are shown in Figures 5–8.

Compared with other benchmark methods, the proposed method in this paper achieves
the best performance in two evaluation metrics. The RMSE and MAE of TS-NAS improved
by 1.67% and 4.31%, respectively, compared to the optimal prediction on PEMSD4 in
Figures 5 and 6 from the benchmark method. We compare the same models with the 8
baseline methods on PEMSD8 in Figures 7 and 8. With the reference method, RMSE and
MAE increased by 9.39% and 11.83%, respectively. It can also be observed that the tradi-
tional time series prediction methods, such as HA, ARIMA and VAR, which are not ideal
because of their limited modeling ability. The method based on TS-NAS achieves better
prediction results than traditional methods. Due to the consideration of spatio-temporal
dependence of data, the prediction results of the models including spatio-temporal graph
convolution mechanisms ST-GCN, GU-STGCN, MSTGCN and ASTGCN are superior to
the general deep learning models. The performance of the proposed method is much better
than other models.

Figure 5. Comparison MAE of Baseline Method for PEMSD4.

Figure 6. Comparison RMSE of Baseline Method for PEMSD4.

Figure 7. Comparison of Accuracy of Baseline Method for PEMSD8.
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Figure 8. Comparison of Accuracy of Baseline Method for PEMSD8.

4.5. Our Analysis

In this paper, 47 representatives and evenly distributed detection points will be selected
within the research scope. The checkpoints were spread over five streets, located in the
downtown area of Oakland in western California. The longitude ranges from 122.20 W to
122.30 W, while the latitude ranges from 37.85 N to 37.75 N. The distribution is marked
with red, yellow, blue, green, and black checkpoints on Streets 1, 2, 3, 4, and 5, to record the
change in demand for its traffic flow over time as shown in Figure 9.

Figure 9. Spatial Geographic Map of the Research Area.

Through the prediction of our model, we draw the flow size diagram of traffic flow, as
shown in Figure 10. In addition, we predict the different locations of street 3 and street 4.
Street 3 predicts the 21st to 30th detection points as shown in Figure 11, Street 4 predicts
the 31st to 40th detection points as shown in Figure 12. Obviously, TS-NAS model shows
excellent performance.
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Figure 10. Flow size of traffic flow.

Figure 11. Comparison Curve of the Actual and Predicted Traffic Flow at the Aetection Point 3
of Street.
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Figure 12. Comparison Curve of the Actual and Predicted Traffic Flow at the Aetection Point 4
of Street.

5. Conclusions

In this paper, we propose a novel method, which is called TS-NAS. We use different
network convolution modules and neural architecture to search space by redefining tempo-
ral attention mechanism and spatial attention mechanism. Firstly, based on the existing
attention, we design a new temporal attention mechanism and spatial attention mechanism
according to the temporal and spatial characteristics. Secondly, we design a new model to
learn the temporal and spatial characteristics of traffic flow. Finally, the proposed model
uses different temporal attention, spatial attention, convolution modules and utilizes neu-
ral structure search to optimize the model. TS-NAS can capture the temporal and spatial
characteristics of traffic flow and improve the prediction ability of traffic flow at different
detection points. The experimental results are on two standard data sets. Compared with
the baseline method, it shows that our model has better prediction ability.
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