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Traffic jams induced by fluctuation of a leading car

Takashi Nagatani
Division of Thermal Science, Department of Mechanical Engineering, Shizuoka University, Hamamatsu 432-8561, Japan

~Received 8 September 1999; revised manuscript received 1 December 1999!

We present a phase diagram of the different kinds of congested traffic triggered by fluctuation of a leading
car in an open system without sources and sinks. Traffic states and density waves are investigated numerically
by varying the amplitude of fluctuation using a car following model. The phase transitions among the free
traffic, oscillatory congested traffic, and homogeneous congested traffic occur by fluctuation of a leading car.
With increasing the amplitude of fluctuation, the transition between the free traffic and oscillatory traffic occurs
at lower density and the transition between the homogeneous congested traffic and the oscillatory traffic occurs
at higher density. The oscillatory congested traffic corresponds to the coexisting phase. Also, the moving
localized clusters appear just above the transition lines.

PACS number~s!: 05.90.1m, 47.35.1i, 89.40.1k
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I. INTRODUCTION

Recently, traffic problems have attracted the interest o
community of physicists@1–3#. Traffic flow is a kind of
many-body systems of strongly interacting cars. Recent s
ies reveal physical phenomena such as the nonlinear w
and nonequilibrium phase transitions@4–8#. When the car
density increases, the jamming transition occurs and the
fic jams appear. The jamming transitions from the fre
moving traffic to the jammed traffic have been studied
microscopic and macroscopic models@4–6,9–16#. The jam-
ming transitions are very similar to the conventional pha
transitions and critical phenomena: the freely moving tra
and jammed traffic correspond to the gas and liquid pha
respectively@8#. Furthermore, it has been shown that t
metastability occurs near transition point and induces
hysteresis phenomenon@17#. In the coexisting phase wher
both the freely moving traffic and the jammed traffic c
exist, the kink-antikink density wave appears. The den
wave exhibits the typical properties of the nonlinear wav
@18–21#.

In many works, the jamming transitions and the dens
waves have been investigated for the system without
inhomogeneity and fluctuation~except for the randomness o
the initial condition! under the periodic boundary condition
Very recently, using the continuum traffic models, Helbin
Hennecke, and Treiber@22# and Lee, Lee, and Kim@23# have
studied the traffic flow with on-ramp under the open boun
ary condition. They have found that the different kinds
congested traffic are induced by variation of the inflow at
upstream freeway boundary and the ramp. It has been sh
that there are such new additional dynamic phases as
moving localized clusters, pinned localized clusters, tr
gered stop- and-go traffic, and oscillatory congested tra
except for the conventional coexisting phases of the ki
antikink density wave traffic and homogeneous conges
traffic. The inhomogeneity on ramp has the important eff
on the freeway traffic under the open boundary. Nagatani
shown that the jamming transion between the oscillat
traffic and homogeneous congested traffic occurs on the
tral stability line for the traffic flow with a bottleneck unde
the periodic boundary condition@24#.
PRE 611063-651X/2000/61~4!/3534~7!/$15.00
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The traffic flow on a one-lane highway is a unidirectio
ally interacting many particle system since a car intera
with one car ahead. When an downstream car changes
speed or headway, the variation propagate upstream. The
will die out or evolve to the density waves~traffic jams!.
Without fluctuation, the traffic flow is homogeneous ov
space under open boundary condition. However, when
velocity of a leading car fluctuates at a finite amplitude, t
density waves may propagates upstream and the formatio
the density waves will depend on the amplitude of fluctu
tion. The local dynamics of both closed and open system
not different, and all perturbations propagate backward i
reference frame moving with the car velocity. Whenever
leading vehicle leads to local densities in the unstable reg
of the closed system, the traffic flow is also unstable in
open system. Until now, it is unknown whether fluctuation
a leading car induces the jamming transition in an open s
tem without sources and sinks. It is important to know t
phase diagram of this type of source-sinkless open syste

In this paper, we investigate the traffic jams induced
random fluctuation of a leading car under the open bound
condition without sources and sinks. We use the car follo
ing model of the microscopic models. We study the dynam
traffic states triggered by systematical variation of the am
tude of velocity fluctuation of a leading car. We show th
there are the three distinct congested traffic: the moving
calized clusters, the oscillatory congested traffic, and the
mogeneous congested traffic. We present a phase diagra
the different kinds of congested traffic induced by veloc
fluctuation of a leading car in the source-sinkless open s
tem. We compare the phase diagram with that obtained
der the periodic boundary condition.

II. MODEL

We consider many cars flowing on a one-lane highw
without passing and inflow. Cars are numbered
1,2,3,...,N,N11,... from the last car upstream. It is suppos
that the velocity of carN fluctuates randomly. Then, th
fluctuation will propagate upstream. In time, it will die out o
evolve to the density waves. We investigate the dynam
states of traffic and the criterion of appearance of den
3534 © 2000 The American Physical Society
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PRE 61 3535TRAFFIC JAMS INDUCED BY FLUCTUATION OF A . . .
waves. Figure 1 shows the schematic illustration of the t
fic model. The dynamics of this system is essentially de
mined by the motion of the leading car, the so-called ah
long distance car. We use the car following model of t
microscopic traffic models since it is difficult to take in
account the fluctuation of a moving car in the continuum
macroscopic traffic models.

For later convenience, we summarize the car follow
models with the optimal velocity@5,8,20,25,26#. Newell @25#
and Whitham@26# have analyzed the traffic model describ
by the following equation of motion of carj:

dxj~ t1t!

dt
5V„Dxj~ t !…, ~1!

where xj (t) is the position of carj at time t, Dxj (t)
5xj 11(t)2xj (t) is the headway of carj at time t, andt is
the delay time. The idea is that a driver adjusts the car
locity dxj (t)/dt according to the observed headwayDxj (t).
The delay timet allows for the time lag that it takes the ca
velocity to reach the optimal velocityV„Dxj (t)… when the
traffic flow is varying.
By Taylor expanding Eq.~1!, one obtains the differentia
equation model@5#

d2xj~ t !

dt2
5aFV„Dxj~ t !…2

dxj~ t !

dt G , ~2!

wherea is the sensitivity of a driver@5# anda51/t. Further-
more, by transforming the time derivative to the difference
Eq. ~1!, one can obtain the difference equation model@20#

xj~ t12t!5xj~ t1t!1tV„Dxj~ t !…. ~3!

Equation~3! is obtained only by assuming a forward diffe
ence approximation for the velocity,dxj (t1t)/dt5xj (t
12t)2xj (t1t). If one uses the symmetrical difference a
proximation dxj (t1t)/dt5xj (t12t)2xj (t), the resulting
difference equation does not exhibit traffic behavior simi
to those of Eqs.~1! and ~2!.

The difference equation model is more suitable for co
putation since the time and space variables are discrete.
three models have been studied under the periodic boun
condition. It has been shown from simulation and analy
that the three models exhibit a similar traffic behavior a
give a similar phase diagram@8,18,20#. The phase diagram
of the difference equation model is shown in Fig. 2. T
solid line indicates the coexisting curve. The dotted line
dicates the spinodal line. The circle indicates the criti
point. In each model, the traffic flow is divided into thre
regions: one is the stable region above the coexisting cu
the second is the metastable region between the spinoda
and the coexisting curve, and the third is the unstable reg
below the spinodal line. In the unstable region, the tra

FIG. 1. Illustration of the traffic model. Cars are numbered
1,2,3,...,N,N11,..., from the last car. The velocity of carN fluctu-
ates randomly.
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jam appears as the kink-antikink density wave. The kink j
has been presented by the solution of the modified K
equation. The densities out of and within the kink-antiki
density wave are consistent with the densities on the co
isting curve under the constant value ofa. Also, it has been
shown that only near the neutral stability line~the spinodal
line!, the soliton density wave appears@27#. The soliton den-
sity wave has been described by the KdV equation.

Generally, it is necessary that the optimal velocity fun
tion has the following properties: it is a monotonically in
creasing function and it has an upper bound~maximal veloc-
ity!. The optimal velocity function has been given by

V~Dxj !5
nmax

2
$tanh~Dxj2hc!1tanh~hc!%, ~4!

wherehc is the safety distance andnmax is the maximal ve-
locity @5,8#. Equation ~4! has the turning point~inflection
point! at Dxj5hc :

V9~hc!5
d2V~Dxj !

dDxj
2 U

Dxj 5hc

50.

It is important that the optimal velocity function has th
turning point. Otherwise, one cannot have the kink-antik
density wave solution representing the traffic jam.

The spinodal line has been obtained from the neutral
bility condition @8,20#. It is given by

a51/t53V8~Dx0!, ~5!

whereDx0 is the average value of the headway andV8(Dx0)
is the derivative of the optimal velocity function atDx0 . The
coexisting curve has been obtained from the solution of
modified KdV equation@8,20#. It is given by

Dx05hc6A3S ac

a
21D with ac53nmax/2. ~6!

s

FIG. 2. Phase diagram of the difference equation model
tained from the linear and nonlinear analysis. The solid and do
lines indicate, respectively, the coexisting and spinodal lines.
circle indicates the critical point.
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3536 PRE 61TAKASHI NAGATANI
The spinodal line and coexisting curve in Eqs.~5! and~6! are
shown in Fig. 2 wherenmax52.0. The critical point is given
by (hc ,ac).

It is useful to rewrite Eq.~3! in terms of the headway. On
obtains the following difference equation:

Dxj~ t12t!2Dxj~ t1t!2t$V„Dxj 11~ t !…2V„Dxj~ t !…%50.
~7!

The boundary condition in this model is given by

DxN21~ t1t!5DxN21~ t !1t$nN~ t !2V@DxN21~ t2t!#%,

with

nN~ t !5nb1d@2R~ t !21.0# ~8!

whereR(t) is the random number between zero and un
and nb is the average velocity of carN. The correlation is
given by ^R(t1m)R(t)&5d t1m,t where d t,t51 for m50
and d t1m,t50 for mÞ0. d j ,m denotes the Kronecker delta
We note that the Kronecker delta is different from the a

FIG. 3. Typical traffic patterns of headway.~a! The space-time
evolution of headway without fluctuation at boundary forDx0

54.0 andnb51.7. ~b! The space-time evolution of headway wi
fluctuation fromt510 020 tot510 300 at intervals of 20 time step
for nb51.7 andd50.4. ~c! The space-time evolution of headwa
with fluctuation fromt510 020 tot510 300 at intervals of 20 time
steps fornb51.7 andd50.8. The density waves appear and prop
gate upstream.
y

-

plituded of fluctuation. Thus, the velocity of carN fluctuates
randomly about the constant valuenb with the amplituded.

III. SIMULATION

We carry out a computer simulation for the traffic flo
described by Eqs.~7! and ~8!. We solve Eq.~7! by iteration
under the boundary condition~8!. We study the space-time
evolution of headway for various values of amplituded.
First, we study the case ofd50 without fluctuation. We
suppose that the headway is initially homogeneous over
cars:Dxj (0)5Dx0 and all cars move at the constant veloc
given by n05V(Dx0). In the steady state of the optima
velocity model, the velocity is uniquely related with th
headway. The boundary condition isnN(t)5nb . In time, the
traffic flow changes to the homogeneous state ofDxj (t)
5V21(nb), whereV21 is the inverse function of the optima
velocity. Figure 3~a! shows the space-time evolution of hea
way at intervals of 80 time steps forDx054.0 andnb51.7
wherea52.0,hc55.0, andN5200. Without fluctuation, the
velocity of all upstream cars is a constant value ofnb51.7
uniquely determined by the boundary condition of carN. The
headway of the homogeneous state is given byDxj (t)
5V21(1.7)5for j 51,2,...,N21.

Secondly, we study the traffic flow in the metastable
gion with a finite amplitude of fluctuation. When the amp
tude of fluctuation is small, the traffic flow is stable an
nearly homogeneous over space except for fluctuation n
the downstream boundary. Figure 3~b! shows the space-time
evolution of headway fromt510020 tot510300 at intervals
of 20 time steps fornb51.7 andd50.4 wherea52.0, hc
55.0, andN5200. When the amplitude is larger than th
critical value, the density waves appear and propagate
stream. Figure 3~c! shows the space-time evolution of hea

-

FIG. 4. Phase diagram of different kinds of the congested tra
triggered by fluctuation in (nb ,d) space wherea52.0, hc55.0.
Displayed are the free traffic~FT!, the moving localized clusters
~MLC!, the oscillatory traffic~OCT!, and the homogeneous con
gested traffic~HCT!.
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FIG. 5. Space-time evolutions of headway for the systematical variation ofnb from t510 020 tot510 300 at intervals of 20 time step
for a52.0,hc55.0,d50.5.~a! The free traffic fornb51.7.~b! The moving localized clusters of the compression wave fornb51.65.~c!–~f!
The oscillatory traffic fornb51.5,1.3,1.0,0.5.~g! The moving localized clusters of the expansion wave fornb50.35.~h! The homogeneous
congested traffic fornb50.3.
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way from t510020 to t510300 at intervals of 20 time
steps fornb51.7 andd50.8 wherea52.0, hc55.0, and
N5200. The traffic flow is independent of the initial cond
tions for nonvanishing fluctuations. We use the initial con
tion of the homogeneous state withDxj (0)5Dx05const.

We carry out the simulation by varying the amplituded
and the velocitynb of the leading car. We obtain the pha
diagram in (nb ,d) space wherea52.0,hc55.0. Figure 4
shows the phase diagram fora52.0,hc55.0. The circles in-
dicate the transition point between the homogeneous tra
and the traffic with density waves. The solid lines indica
the transition line connecting the transition points. The so
line on the right side represents the transition line betw
the free traffic~FT! and the congested traffic with densi
waves. The solid line on the left side represents the transi
line between the homogeneous congested traffic~HCT! and
the congested traffic with density waves. The two transit
lines are symmetric against the linenb5V21(hc)51.0. The
-

c

d
n

n

n

two dotted lines on the right side ofnb5V21(hc)51.0 indi-
cate the neutral stability point~spinodal point! and the coex-
isting point. These points are given, respectively, by the v
ues nb5V21(5.65)51.58 andnb5V21(6.23)51.84 for a
52.0,hc55.0. Similarly, the two dotted lines on the left sid
of nb5V21(hc)51.0 indicate the neutral stability poin
~spinodal point! and the coexisting point. These points a
given, respectively, by the valuesnb5V21(4.35)50.42 and
nb5V21(3.77)50.16 for a52.0,hc55.0. The values are
calculated by Eqs.~5! and ~6!. WhenDxb is within the un-
stable region between 4.35 and 5.65, the jammed traffic w
density waves appears even if fluctuation is very weak. In
unstable traffic flow, the velocity is betweennb
5V21(5.65)51.58 and nb5V21(4.35)50.42. For weak
fluctuation, the transition points agree with the neutral sta
ity point obtained from the linear stability analysis@8,20#.
With increasing the amplitude of fluctuation, the transiti
point between the free traffic~FT! and the density wave traf
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FIG. 6. Headway profiles att510 500 together with the coexisting points. The profiles~a!–~h! correspond to the space-time evolutio
~a!–~h! in Fig. 5. The dotted lines indicate the coexisting points 3.77 and 6.23.
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fic shifts to a larger value of velocity. Symmetrically, th
transition point between the homogeneous congested tr
and the density wave traffic shifts to a lower value of velo
ity with increasing the amplitude of fluctuation. When th
amplitude of fluctuation is large, the transition point a
fic
-

-

proaches to the coexisting curve.
We study the traffic patterns induced by large amplitud

of fluctuation. We show the space-time evolution of headw
for the systematical variation of boundary valuenb undera
52.0,hc55.0,d50.5. The patterns~a!–~h! in Fig. 5 exhibit
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the space-time evolutions of headway, respectively, fornb
51.7, 1.65, 1.5, 1.3, 1.0, 0.5, 0.35, 0.3 fromt510020 tot
510300 at intervals of 20 time steps. The valuenb51.67
60.02 of the first transition point between the free traffic a
the density wave traffic is obtained, numerically, ford
50.5. The valuenb50.3360.02 of the second transitio
point between the homogeneous congested traffic and
density wave traffic is obtained ford50.5. The pattern~a!
shows the free traffic before the transition. The headway p
file is nearly homogeneous over space except for the ne
borhood of the downstream boundary. The pattern~b! exhib-
its the moving localized clusters~MLC’s! just after the
transition. The traffic is the congested traffic with a single
a few density waves. The density wave is a compress
wave and propagates backward. The traffic correspond
the moving localized clusters found by Helbinget al. @22#.
The patterns~c!–~f! show the oscillatory congested traffi
~OCT!. The number of density waves increases according
nb approaches tonc5V21(hc)51.0. The number reache
the maximum value atnc5V21(hc)51.0. Then, the numbe
of density waves decreases according asnb departs fromnc
51.0. When nb is larger thannc51.0, the compression
waves propagate backward as the density waves. Whennb is
less thannc51.0, the expansion waves propagate backw
as the density waves. The pattern~g! exhibits the moving
localized clusters just before the second transition. The t
fic is the congested traffic with a single or a few dens
waves. The density wave is a expansion wave and propag
backward. The traffic corresponds to the moving localiz
clusters. The density wave of pattern~g! is not a compression
wave but a expansion wave. This distinguishes pattern~g!
from pattern~b!. The MLC in the high density region is
similar to that found in the macroscopic traffic flow mod
@28#. The pattern~h! exhibits the homogeneous congest
traffic ~OCT! after the second transition. The headway p
file is nearly homogeneous over space except for the ne
borhood of the downstream boundary. The pinned locali
clusters are not found in the traffic jams triggered by flu
tuation of a leading car. For comparing the headway with
coexisting points quantitatively, we show the headway p
files at t510500 together with the coexisting points. Th
profiles ~a!–~h! in Fig. 6 exhibit, respectively, the plots o
headway against car numberj for nb51.7, 1.65, 1.5, 1.3, 1.0
0.5, 0.35, 0.3. The profiles correspond to those att510500
in the space-time evolution in Fig. 5. The dotted lines in
cate the coexisting points 3.77 and 6.23 fora52.0,hc55.0.
The headway profile~a! is homogeneous over space exce
for the neighborhood of the downstream boundary. T
value of headway is less than the value 6.23 at the coexis
point. The headway profile~h! is homogeneous over spac
except for the neighborhood of the downstream bound
The value of headway is larger than the value 3.77 at
coexisting point. The compression density wave in the p
file ~b! has a kink-antikink form. The headways out of a
d
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within the density wave agree, respectively, with the valu
6.23 and 3.77 at coexisting points. Similarly, the expans
density wave in the profile~g! has a kink-antikink form. The
headways out of and within the density wave agree with
values 3.77 and 6.23 at coexisting points. The strong den
waves in the profiles~c!–~f! have the kink-antikink form.
The headways out of and within the density wave agree w
those at the coexisting points. Thus, the oscillatory tra
corresponds to the coexisting phase found in the perio
system. However, the jamming transition points induced
fluctuation are definitely different from those of the period
system. The jamming transition depends strongly on the
plitude of fluctuation. The traffic jams induced by fluctuatio
are definitely different from the congested traffic triggered
the inhomogeneity.

We consider what happens if the fluctuation amplituded
of the velocity of the leading car is larger than the avera
velocity nb . Whend.nb , the velocitynN(t) of the leading
car becomes a negative value instantly. This means tha
leading car moves averagely forward but moves instan
backward. This case occurs in Figs. 5~g!, 5~h!, 6~g!, and 6~h!.
The backward moving of the car occurs seldom on a hi
way. However, the backward movement will be allowed
the theoretical model since the traffic models are closely
lated to the information traffic and the granular flow.

IV. SUMMARY

We have investigated the traffic jams triggered by velo
ity fluctuation of a leading car in an open system witho
sources and sinks by the use of the car following model.
have found the jamming transition triggered by the fluctu
tion of the leading car. We have shown that the jamm
transition depends strongly on the amplitude of fluctuati
When the fluctuation is very small, the transition points a
consistent with the neutral stability points predicted by t
linear stability theory. When the amplitude of fluctuation
large, the jamming transition occurs in the metastable reg
We have presented the phase diagram of the different k
of congested traffic induced by fluctuation of the leading c
We have shown that the oscillatory traffic and moving loc
ized clusters similar to those found in the different mod
appear in this model.

To our knowledge, this paper is the first work showin
that fluctuation of a leading car induces the jamming tran
tion in this new type of source-sinkless open system. Th
are at least three qualitatively different types of systems.~1!
closed systems where the density or the average headw
the appropriate control parameter,~2! open systems with
fixed boundaries and with vehicle sources and sinks wh
the traffic flux is the order parameter@29,30#, and~3! source-
sinkless open systems with moving boundaries which
described in this paper, where the velocity is the order
rameter.
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