
Traffic Light Mapping and Detection

Nathaniel Fairfield Chris Urmson

{nfairfield, curmson}@google.com

Google, Inc.

Abstract— The outdoor perception problem is a major chal-
lenge for driver-assistance and autonomous vehicle systems.
While these systems can often employ active sensors such as
sonar, radar, and lidar to perceive their surroundings, the state
of standard traffic lights can only be perceived visually. By using
a prior map, a perception system can anticipate and predict
the locations of traffic lights and improve detection of the light
state. The prior map also encodes the control semantics of the
individual lights. This paper presents methods for automatically
mapping the three dimensional positions of traffic lights and
robustly detecting traffic light state onboard cars with cameras.
We have used these methods to map more than four thousand
traffic lights, and to perform onboard traffic light detection for
thousands of drives through intersections.

I. INTRODUCTION

More than 50 million new cars are manufactured each year

[Plunkett Research, Ltd., 2009]. Advanced onboard sensors,

such as sonar, radar, and cameras, are becoming common-

place as part of commercial driver-assistance systems. With

power steering, power brakes, standardized feedback from

the CAN bus, cars are basically robots – they only need a

brain. A key component of these augmented vehicles is the

perception system, which allows the vehicle to perceive and

interpret its surroundings.

Humans have engineered the driving problem to make it

easier. For example, lanes are delineated by lines painted on

the road, traffic lights indicate precedence at intersections,

brake lights show when other vehicles are decelerating, and

turn signals indicate the driver’s intentions; all these cues are

intended to simplify the perception task. Perception systems

can use these driving aids, but in many cases they are able

to use alternative sensing modalities, such as radar or lidar,

instead of vision. In addition to these other sensing modali-

ties, vehicles can often leverage prior maps to simplify online

perception. Using a prior map that includes stop signs, speed

limits, lanes, etc., a vehicle can largely simplify its onboard

perception requirements to the problem of estimating its

position with respect to the map (localization), and dealing

with dynamic obstacles, such as other vehicles. In this paper,

we used a localization system that provides robust onboard

localization accuracy of <15 cm, and focus on the problem

of perceiving traffic lights.

Traffic lights are a special perception problem. Efforts

have been made to broadcast traffic light state over radio

[Audi MediaInfo, 2008], [Huang and Miller, 2003], but this

requires a significant investment in infrastructure. A prior

map can be used to indicate when and where a vehicle

should be able to see a traffic light, but vision is the only

Fig. 1. General traffic light types that are detected by our system.

way to detect the state of the light, which may include

detecting which sub-elements of the light are illuminated

(Figure 1). Although any vision task may be challenging due

to the variety of outdoor conditions, traffic lights have been

engineered to be highly visible, emissive light sources that

eliminate or greatly reduce illumination-based appearance

variations: a camera with fixed gain, exposure, and aperture

can be directly calibrated to traffic light color levels.

Safety is of paramount importance in the automotive field.

The most common failure conditions in a traffic light detec-

tion system are either visual obstructions or false positives

such as those induced by the brake lights of other vehicles.

Happily, both of these are fail-safe conditions. By using a

map of traffic lights the vehicle can predict when it should

see traffic lights and take conservative action, such as braking

gradually to a stop while alerting the driver, when it is unable

to observe any lights. False positives from brake lights are

also safe, since the vehicle should already be braking for

the obstructing object. Rarer false positives, including false

greens, may arise from particular patterns of light on a tree,

or from brightly lit billboards. However, for the car to take an

incorrect action, it must both fail to see all the red lights in

an intersection (several false negatives), and falsely detect a

green light (a false positive). Using a prior map, the vehicle

can also predict a precise window where the light should

appear in the camera image. Tight priors on the prediction

window, strict classifiers, temporal filtering, and interaction

with the driver can help to reduce these false positives. When

there are multiple equivalent lights visible at an intersection,

the chance of multiple simultaneous failures is geometrically

reduced. Thus, detecting traffic lights using a prior map

usually fails safely, when it fails.

In this paper we describe methods for building maps of

traffic lights, and methods for using these maps to perform

online traffic light detection. We present results from large-

scale mapping, and analyze the performance of the detector.

II. RELATED WORK

There has been a large amount of research in

the general problem of detecting traffic signs (stop

signs, speed limits, etc) [Fang et al., 2004], [Fleyeh, 2005],

[Prieto and Allen, 2009]. Our work largely avoids the need

to detect traffic signs through the use of an annotated prior

map.

[Hwang et al., 2006] use a visually-derived estimate of

intersection locations to aid the detection of signalling

lights (turn signals, brake lights, etc). [Chung et al., 2002]

perform traffic light detection using videos of intersec-

tions taken from a stationary camera, allowing them to

subtract background images. Others, [Kim et al., 2007],

[de Charette and Nashashibi, 2009], attempt to detect and

classify traffic lights just from onboard images.

In the most closely related work, [Lindner et al., 2004]

describe a system that can use the vehicle’s motion and a

map to aid traffic light detection. Although their detection

system is very similar to ours, they do not discuss how to

build the traffic light map.

Many of these systems struggle to provide the reliability

required to safely pass through intersections.

III. TRAFFIC LIGHT MAPPING

Traffic light mapping is the process of estimating the 3D

position and orientation, or pose, of traffic lights. Precise data

on the pose of traffic lights is not generally available, and

while it is possible to make estimates of traffic light locations

from aerial or satellite imagery, such maps are typically

only registered to within a few meters and do not provide

estimates of the traffic light altitude (although it might be

possible to use the image capture time and ephemeris data

to roughly estimate the altitude from the length of shadows,

if they are present).

However, it is easy to drive a mapping car instrumented

with cameras, GPS, IMU, lasers, etc., through intersections

and collect precisely timestamped camera images. The traffic

light positions can then be estimated by triangulating from

multiple views. All that is needed is a large set of well-

labeled images of the traffic lights. The accuracy of the traffic

light map is coupled to the accuracy of the position estimates

of the mapping car. In our case online position estimates

of the mapping car can be refined by offline optimization

methods [Thrun and Montemerlo, 2005] to yield position

accuracy below 0.15 m, or with a similar accuracy onboard

the car by localizing with a map constructed from the offline

optimization.

A. Camera Configuration

We use a Point Grey Grasshopper 5 mega-pixel camera

facing straight ahead and mounted to the right of the rear-

view mirror, where it minimally obstructs the driver’s field

of view. Using region-of-interest selection, we use only a

2040×1080 pixel region of the camera. We use a fixed lens

with a 30 degree field of view, which we selected with the

goal of sufficient resolution to be able to detect traffic lights

out to 150 m, a reasonable braking distance when traveling

Fig. 2. A diagram of the mapping pipeline as described in the text.

at 55 MPH. Since our detector depends primarily on color

because no structure is visible at night, we also fix the gain

and shutter speeds to avoid saturation of the traffic lights,

particularly bright LED-based green lights.

B. Automatic Labeling

One method for generating labeled images is to use a

team of human labelers. In our experience, a labeler can

label a one-way pass through a typical four-light intersection

in about five minutes, not including verification and quality

control. This rate is acceptable for small maps, but does not

scale well to the high density of lights in a typical urban

environment. Furthermore, even the best human labelers are

not always accurate in their placement of labels – while

they are capable of pixel-level accuracy, the trade-off is a

reduction in overall speed and increase in cognitive fatigue.

An obvious alternative is to use an automatic labeling system.

The input to the automatic mapping system is a log file that

includes camera images and the car’s precise pose (Figure

2 shows the mapping pipeline). Generally, traffic lights will

only occur at intersections, so we use geo-spatial queries

(through the Google Maps API) to discard images taken

when no intersections are likely to be visible. Unfortunately,

Google Maps only includes intersections and not whether

there is a traffic light at the intersection, which would make

this winnowing process even more precise.

C. Classification

After winnowing the set of images to those that were taken

while the car was approaching an intersection, we run a

traffic light classifier over the entire image. The classifier

finds brightly-colored red, yellow, and green blobs with

appropriate size and aspect ratios, and these blobs are then

used as tentative traffic light labels for the position estimation

process.

D. Position Estimation

The output of the labeling step is a large number of labels,

but with no information about which labels belong to which

traffic lights. To estimate the position of an object in 3D

via triangulation, at least two labels in different images are

needed, and the position estimate will generally improve if

more labels are available. Association of labels to objects can

be done between labels in image sequences, or between 3D

objects once position estimation has been performed. We use

an iterative approach that combines both types of association.

1) Image-to-Image Association: As a first step, the full

size of the traffic light is inferred by assuming that the light

has the standard vertical red-yellow-green structure, which is

the most common configuration in our area. These full-sized

traffic light labels make it easier to associate labels that come

from traffic lights that have changed color.

There are several possible ways to do label association

between images. In the case of near-affine motion and/or

high frame rates, template trackers can be used to associate

a label in one image with a label in the next image. In our

case, the camera frame rate is low (4 fps), and the object

motion may be fully projective, so we implemented direct

motion compensation.

The precise car pose is known for each image, and the

apparent motion of objects due to changes in roll, pitch,

and yaw are straightforward to correct using the camera

model, but some estimate of the object’s position is necessary

to correct the apparent motion of objects due to the car’s

forward motion. The object’s apparent position in the image

restricts its position to somewhere along a ray, and a rough

estimate of the distance of the object can be made by

assuming that the object is a traffic light element, and

exploiting the fact that most traffic light elements are about

0.3 m in diameter. The distance d to an object with true width

w and apparent width w̃ in an image taken by a camera with

focal length fu is

d ≈
w

2 tan(w̃
2fu

)
,

the direction vector x = [u, v]⊤ can be computed by using

the camera model to correct for radial distortion, and the

rough 3D position of the object in the camera coordinate

frame is
y = sin(arctan(−u))d,
z = sin(arctan(−v))d,

x =
√

d2 − y2 − z2.

If T1 and T2 are the 4 × 4 transformation matrices for two

different times from the car’s frame to a locally smooth

coordinate frame, we can correct for the relative motion of

the object from one image to another as

x̂2 = CT2T
−1

1
C−1x1,

where C is the transform from the vehicle frame to the

camera coordinate frame, and then compute the distorted

image coordinates by using the camera’s intrinsic model.

Two labels are associated if they fall within an association

distance of each other: we use the sum of the object radii. In

this way, long sequences of labels are associated, meaning

that they are inferred to arise from a single traffic light object

in the real world.

If, in fact, the label corresponds to some other type of

object, then the rough distance estimate and the subsequent

motion compensation will be incorrect. This has the effect of

reducing the likelihood of label associations between objects

incorrectly classified as traffic lights and helps filter out

spurious labels. On the other hand, if the motion-corrected

label overlaps another label, then it is likely that they

correspond to the same object. The 3D position of the object

can then be estimated from a sequence of such corresponding

labels.

2) Least Squares Triangulation: Using a set of object

labels in two or more camera images, we estimate the pose

of the 3D object using linear triangulation and the Direct

Linear Transform [Hartley and Zisserman, 2004], a least-

squares method. There is an optimal triangulation method

described by [Hartley, 1997], but the optimal method can

only be applied to up to three labels (or views), while there

are often many labels for the same traffic light.

For each provisionally classified image label, we have the

image coordinates x̄. These image coordinates are converted

into a direction vector x using the camera’s intrinsic model

to correct for radial distortion, etc.

We estimate the 3D point X such that for each label

direction vector xi and the camera projection matrix Pi,

xi = PiX.

These equations can be combined into the form

AX = 0,

which is a linear equation in X. In order to eliminate the

homogeneous scale factor inherent in projective geometry,

we assemble the 3n× 4 matrix A from the cross product of

each of the image labels {x1,x2, . . . } for a particular object.

A =





[x1]×HP1

[x2]×HP2

. . .



 ,

where cross-product matrix

[x]× =





0 −1 −u
1 0 −v
u v 0



 , and H =





1 0 0 0
0 1 0 0
0 0 1 0



 .

We then perform SVD on A, where A = UΣV ⊤, and the

solution for X is the de-homogenized singular vector that

corresponds to the smallest singular value of A, or the right-

most column vector of V . This vector is the least squares

estimate of the 3D object position.

The orientation of the traffic light is estimated as the

reciprocal heading of the mean car heading over all the image

labels that were used to estimate the light position.

3) Camera Extrinsic Calibration: The accuracy of the

mapping pipeline is very sensitive to the extrinsic parameters

of the camera: the transform that represents the camera’s

position and orientation relative to the car’s coordinate

frame. Assuming a reasonable initial estimate of the extrin-

sic parameters, we precisely calibrate them by minimizing

the reprojection error of the traffic lights using coordinate

descent:

e∗ = argmin
e

∑

i

(RadialLensDistortion(PXi,e)− xi)
2

where Xe are the traffic light positions estimated by the

mapping pipeline using extrinsic parameters e. A similar

process is used to estimate the timing delay between when

the image is taken by the camera and when it is transmitted

to the computer, although we now also have the capabil-

ity to use precise hardware timestamps. This timing delay

varies depending on the camera frame rate and Firewire bus

scheduling allocation, but is stable to within a few hun-

dredths of a second for a given configuration. The camera’s

intrinsic parameters, which determine the lens distortion, are

calibrated with a standard radial lens model.

E. Traffic Light Semantics

Even human drivers can be confused by the semantics of

new and complex intersections. In particular, drivers need

to know which lights are relevant to their current lane and

to their desired trajectory through the intersection. Since

we have a detailed prior map, this information can be

represented as an association between a traffic light and

the different allowed routes through an intersection. We

use simple heuristics based on the estimated traffic light

orientation and the average intersection width to make an

initial guess as to these associations, but then manually verify

and these guesses. This is particularly necessary for complex

multi-lane intersections.

IV. TRAFFIC LIGHT DETECTION

Traffic lights are detected onboard the car as follows:

a) Prediction: With the car pose and an accurate prior

map of the traffic light locations, we can predict when traffic

lights should be visible, and where they should appear in

the camera image. Our implementation uses a kd tree to find

nearby lights, and a simple visibility model that includes

the car orientation as well as the traffic signal orientation.

We use the car position estimate from our lidar localization

system, which also includes accurate elevation. The predicted

positions are then projected using the camera model into the

image frame as an axis-aligned bounding box. To account

for inaccuracy in the prediction, this bounding box is made

three times larger in each axis than the actual prediction.

b) Classification: The color blob-segmentation classi-

fier used in the mapping process above is used to find

appropriately-sized brightly colored red and green blobs

within each of the predicted bounding boxes. From the prior

map, the type of the expected light elements (round or arrow)

to impose additional constraints on the blob geometry: for

Fig. 3. Negative example neighbors are generated from each human-
labeled positive example. The newly generated examples are discarded if
they overlap with a positive example, as is the case when two traffic lights
are very close together. This figure also shows how the camera settings have
been configured to give a dark image, even during the day.

example, the ratio of bounding box to blob pixels is much

higher for a round light than for an arrow. This generates a

set of one or more classifications for each traffic signal.

c) Geometric Constraints: From the map, we also

know the type of the traffic signal (Figure 1). We can use

the structure of the light to apply geometric constraints on

the low-level blobs and decide which elements are actually

illuminated. For example, for simple 3-stack lights we use

a very simple rule that prefers the geometrically highest

classification within a prediction window. This deals with

the common case of a geometrically low red light detection

arising from orange pedestrian cross-walk lights that are

frequently just below green lights, well within the predicted

bounding box.

d) Temporal Filtering: In the absence of recent mea-

surements of the light state, the light is assumed to be yellow.

Temporal filtering smoothes the output of the detector by

assuming that if there is no new classification then the light

state has not changed. The temporal filtering degrades the

confidence in unobserved lights over time, and defaults to

the prior assumption that the light is yellow within a second.

The vehicle can decide whether a particular path through

an intersection is allowed by applying the rule that out of all

the traffic signals associated with the path no red or yellow

lights may be detected and at least one green light must be

detected.

V. CLASSIFIER OPTIMIZATION

We have assembled a repository of thousands of human-

labeled traffic lights, and we continue to add more labels

as we encounter new situations, such as brightly colored

billboards or inclement weather. We also generate negative

examples using regions around labeled traffic lights (Figure

3). This repository is used to optimize the classifier and to

perform regression tests.

Since the repository may grow indefinitely, we have imple-

mented optimization methods that scale well to large-scale

computing resources. We omit the details of the large-scale

computing architecture, except to mention that when using

large numbers of machines, the optimization architecture

must be robust to temporary faults or complete failure of

any particular machine, not excepting the central control

machine.

Since each image is 2040×1080 pixels, loading and

decompressing the sequence of images from disk is more

time-intensive than evaluating the classifier itself. Instead,

we distribute the images across a set of machines such

that each machine loads a small set of images into RAM

and then repeatedly evaluates the classifier according to the

current optimizer state on those cached images. A particular

classifier configuration can be evaluated over a set of over

10000 images (with several lights per image) by a few

hundred computers in under a second. This allows us to

use iterative hill-climbing approaches, such as coordinate

ascent, to optimize the classifier in under an hour. Further

parallelization is possible by batching up all the states to be

evaluated in a single optimizer step. Since we have many

more negative examples than positive examples, we weight

the positive examples to prevent convergence to the local

minima of no detections.

VI. RESULTS

The true metric for success for the traffic light map-

ping and detection system is whether it provides reliable

and timely information about the state of the intersection.

Intersections are usually engineered with redundant traffic

lights, and it is almost always safe to simply slow down and

continue looking, so the actual performance of the system

is difficult to characterize with static plots such as Figure

5. For example, when the traffic lights are obscured, they

are assumed to be yellow and the system signals to reduce

speed. As the car approaches the intersection, the probability

of detection of at least one of the usual set of three or four

traffic lights increases, and the system outputs the correct

state.

The mapping pipeline automatically generates large-scale

maps (Figure 4) of traffic light positions and orientations with

low reprojection error, as verified by multiple passes with

different cars (with different camera calibrations). Depending

on the area and traffic conditions, the mapping pipeline

misses between 1 and 5 % of the traffic lights. Although

there is a significant amount of human effort involved in

verifying and tweaking the traffic light positions, shapes, and

lane associations, the automatic pipeline does the bulk of the

most tedious work: placing the traffic lights in the world.

Figure 5 shows the intersection state (go/stop) detection

rate for a drive down El Camino Real and various side routes.

The drive as 52 miles long, with about 220 intersections

controlled by traffic lights. We controlled for obstructions,

curves, etc. by only counting intersections that a human could

classify from the camera images. Note that while there are

almost always multiple semantically identical traffic lights

in an intersection, it is only necessary for the system to see

one of these lights to determine the intersection state. The

sharp knee in the detection rate above 190 m is likely due

to sampling effects: at ∼15 m/s, the vehicle travels several

meters in between the 4 Hz camera frames. Since the system

only starts to predict traffic lights at 200 m, this means that

Fig. 4. This map shows some of the traffic lights we have mapped in the
San Francisco - San Jose area, in total we have mapped about a thousand
intersections and over 4000 lights (though not necessarily all the lights in
a given intersection).

Fig. 5. Plot of detection range of the state of the intersection (red = stop,
green = go) for a 52 mile drive on El Camino Real at three different times
of day. The traffic light detector begins to predict that it should see traffic
lights at 200 m. The illumination at different times of day most heavily
impacts the detection of green lights, with the best performance at night.

Fig. 6. Traffic light confusion matrix for a typical drive. The ground
truth includes negative examples generated from the eight neighbors of each
positive example, except when these negative examples overlap positive
examples. Yellow light examples were not included, since the detector
assumes all lights are yellow by default.

missing just a frame or two drops the detection range to

around 190 m.

The confusion matrix for the training dataset is shown in

Figure 6. These scores include detections at all ranges from

0 - 200 m. We can map the confusion matrix into a simple

table containing true positives (tp), true negatives (tn), false

positives (fp), and false negatives (fn):
Detector Positive Detector Negative

Positive 856 (tp) 527 (fn)

Negative 3 (fp) 6938 (tn)
Using this mapping, the detector’s precision was

856/859 = 0.99, while recall was 856/1378 = 0.62. Part

of the reason that the recall is low is that we insist on no

false-positive green lights.

The traffic light detection system has ∼0.2 s latency,

primarily due to the latency for the transmission of the

image from the camera to the computer, which is ∼ 0.12

s. Similarly, camera bandwidth limitations determined the

frame rate of the detection pipeline, which was 4 Hz. The

processor load is less than 25% of a single CPU, primarily

due to the high resolution of the images rather than any

complexity in the algorithm.

While the system works well at night and with moderate

rain (the camera is mounted behind an area swept by the

windshield wipers), glare from the sun or heavy rain obscure

the camera’s view and degrade performance. There are also

especially dim traffic lights, particularly green lights with

fish-eye lenses, that are difficult for the system to detect.

Depending on the specific case, we may annotate the map

with a ”dim” tag, in which case our system assumes that the

light is green (as opposed to the standard case, in which our

system assumes that the light is yellow).

VII. CONCLUSIONS

Cars must deal with traffic lights. The two main tasks are

detecting the traffic lights and understanding their control

semantics. Our approach to solving these two tasks has been

to automatically construct maps of the traffic light positions

and orientations, and then to manually add control semantics

to each light. We then use this map to allow an onboard

perception system to anticipate when it should see and react

to a traffic light, to improve the performance of the traffic

light detector by predicting the precise location of the traffic

light in the camera image, and to then determine whether

a particular route through an intersection is allowed. Our

system has been deployed on multiple cars, and has provided

reliable and timely information about the state of the traffic

lights during thousands of drives through intersections.

We are now experimenting with a secondary camera with

a wider field of view but a shorter detection range, that

allows the car to detect nearby lights when it is very close to

the intersection. We are also experimenting with the robust

detection of flashing lights: we can annotate the map with

lights that always flash or lights that flash at certain times

of day, but during construction or an emergency lights may

unpredictably be switched to flash. Finally, there are cases

where the lights, frequently arrows, are so dim, it appears

that the only way to detect the state is to watch for relative

changes in intensity of the light elements.

Thanks to Anna Osepayshvili for her analysis of the

human QC time required to build the traffic light maps.

REFERENCES

[Audi MediaInfo, 2008] Audi MediaInfo (2008). Travolution promotes
eco-friendly driving. Available at http://www.audiusanews.

com/newsrelease.do?id=1016&mid=76.
[Chung et al., 2002] Chung, Y.-C., Wang, J.-M., and Chen, S.-W. (2002).

A vision-based traffic light detection system at intersections. J. Taiwan

Normal University: Mathematics, Science & Technology, 47(1):67–86.
[de Charette and Nashashibi, 2009] de Charette, R. and Nashashibi, F.

(2009). Traffic light recognition using image processing compared to
learning processes. In Proc. IROS 2009, pages 333–338.

[Fang et al., 2004] Fang, C. Y., Fuh, C. S., Yen, P. S., Cherng, S., and
Chen, S. W. (2004). An automatic road sign recognition system based
on a computational model of human recognition processing. Comput.

Vis. Image Underst., 96(2):237–268.
[Fleyeh, 2005] Fleyeh, H. (2005). Road and traffic sign color detection

and segmentation – a fuzzy approach. In IAPR Conference on Machine

Vision Applications.
[Hartley, 1997] Hartley, R. (1997). Lines and points in three views and the

trifocal tensor. IJCV, 22(2):125–140.
[Hartley and Zisserman, 2004] Hartley, R. I. and Zisserman, A. (2004).

Multiple View Geometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition.

[Huang and Miller, 2003] Huang, Q. and Miller, R. (2003). The design
of reliable protocols for wireless traffic signal system. Technical report,
Communications Review.

[Hwang et al., 2006] Hwang, T., Joo, I., and Cho, S. (2006). Detection of
traffic lights for vision-based car navigation system. In PSIVT06, pages
682–691.

[Kim et al., 2007] Kim, Y., Kim, K., and Yang, X. (2007). Real time traffic
light recognition system for color vision deficiencies. In ICMA 2007.,
pages 76 –81.

[Lindner et al., 2004] Lindner, F., Kressel, U., and Kaelberer, S. (2004).
Robust recognition of traffic signals. In Intelligent Vehicles Symposium,

2004 IEEE, pages 49–53.
[Plunkett Research, Ltd., 2009] Plunkett Research, Ltd. (2009).

Automobiles and trucks overview. Available at http:

//www.plunkettresearch.com/Industries/

AutomobilesTrucks/AutomobileTrends/tabid/89/

Default.aspx.
[Prieto and Allen, 2009] Prieto, M. and Allen, A. (2009). Using self-

organising maps in the detection and recognition of road signs. Image

Vision Comput., 27(6):673–683.
[Thrun and Montemerlo, 2005] Thrun, S. and Montemerlo, M. (2005). The

GraphSLAM algorithm with applications to large-scale mapping of urban
structures. IJRR, 25(5/6):403–430.

