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Abstract. A traffic matrix represents the load from each ingress point to each

egress point in an IP network. Although networks are engineered to tolerate some

variation in the traffic matrix, large changes can lead to congested links and poor

performance. The variations in the traffic matrix are caused by statistical fluc-

tuations in the traffic entering the network and shifts in where the traffic leaves

the network. For an accurate view of how the traffic matrix evolves over time,

we combine fine-grained traffic measurements with a continuous view of rout-

ing, including changes in the egress points. Our approach is in sharp contrast to

previous work that either inferred the traffic matrix from link-load statistics or

computed it using periodic snapshots of routing tables. Analyzing seven months

of data from eight vantage points in a large Internet Service Provider (ISP) net-

work, we show that routing changes are responsible for the majority of the large

traffic variations. In addition, we identify the shifts caused by internal routing

changes and show that these events are responsible for the largest traffic shifts.

We discuss the implications of our findings on the accuracy of previous work on

traffic matrix estimation and analysis.

1 Introduction

The design and operation of IP networks depends on a good understanding of the of-

fered traffic. Internet Service Providers (ISPs) usually represent the traffic as a matrix

of load from each ingress point to each egress point over a particular time interval. Al-

though well-provisioned networks are designed to tolerate some fluctuation in the traffic

matrix, large variations break the assumptions used in most designs. In this paper, we

investigate the causes of the traffic matrix variations. Identifying the reasons for these

disruptions is an essential step toward predicting and planning for their occurrence,

reacting to them more effectively, or avoiding them entirely.

The traffic matrix is the composition of the traffic demands and the egress point se-

lection. We represent the traffic demands during a time interval t as a matrix V (·, ·, t),
where each element V (i, p, t) represents the volume of traffic entering at ingress router

i and headed toward a destination prefix p. Each ingress router selects the egress point

for each destination prefix using the Border Gateway Protocol (BGP). We represent the



BGP routing choice as a mapping ε from a prefix to an egress point, where ε(i, p, t) rep-

resents the egress router chosen by ingress router i for sending traffic toward destination

p. At time t each element of the traffic matrix T M is defined as:

T M(i, e, t) =
∑

p∈P :ε(i,p,t)=e

V (i, p, t). (1)

where P is the set of all destination prefixes.

Figure 1 presents a simple network with one ingress router i, two egress routers e
and e′, and two external destination prefixes p1 and p2. Given traffic demands V (i, p1, t)
and V (i, p2, t) and a prefix-to-egress mapping ε(i, p1, t) = ε(i, p2, t) = e, the traffic

matrix for this network is T M(i, e, t) = V (i, p1, t)+V (i, p2, t) and T M(i, e′, t) = 0.

e

i

e’

p1

V(i,p2,t)V(i,p1,t)

p2

V(i,p1,t) + V(i,p2,t)

TM(i,e,t) =

Fig. 1. Example of traffic matrix.

Fluctuations in the traffic demands and changes in the prefix-to-egress mapping cause

the traffic matrix to vary. This paper considers the natural question: what are the causes

of large variations in the traffic matrix?

Most previous work on measuring [1–4] and analyzing traffic matrices [5, 6] has

assumed that the prefix-to-egress mapping ε is stable. However, relying on periodic

snapshots of routing data runs the risk of associating some traffic measurements with

the wrong elements in the traffic matrix, obscuring real variations in the traffic. In this

paper, we study how changes in ε impact the traffic matrix. A previous analysis of five

traces of 6–22 hours in duration on the Sprint network [7] shows that most BGP routing

changes do not lead to large traffic shifts. However, given that large traffic variations are

infrequent (yet significant) events, we believe that longer traces are necessary to draw

meaningful conclusions. Our previous work [10] shows that internal routing can cause

ε to change for a large number of prefixes at the same time, which can potentially cause

a large traffic shift. Neither [7] nor [10] study the significance of traffic shifts caused by

routing relative to regular traffic fluctuations, which is the topic of this paper.



In this paper, we study the impact of routing changes on the traffic matrix over a

seven-month period in a tier-1 ISP network. Using Cisco’s Sampled Netflow feature [8]

and feeds of internal BGP (iBGP) messages, we compute the traffic demands V and the

prefix-to-egress mapping ε for eight ingress routers. Joining these two datasets allows

us to construct a detailed view of the variation of the traffic matrix over time. We also

collect measurements of the intradomain routing protocol [9] in order to identify the

changes in ε that were caused by internal network events, using the algorithm described

in [10]. Our analysis shows that:

1. Although the likelihood of large traffic fluctuations is small, big changes do

sometimes occur. In any given ten-minute time interval, less than 0.02% of the

traffic matrix elements studied have a traffic variation of more than 4 times the

normal traffic variations. However, some elements vary by more than 4 times the

normal variations several times a week.

2. Most routing changes do not cause much variation in the traffic matrix. Pre-

vious studies [7, 11] have shown that routing changes typically do not cause large

traffic shifts; most BGP routing changes affect destination prefixes that receive very

little traffic.

3. Routing changes are responsible for many of the large traffic shifts: 58.6%
of instances where a traffic matrix element fluctuated by more than 10 times the

normal variation for that element could be explained by a BGP routing change.

Although routing changes usually do not affect much of the traffic, many of the

large traffic shifts are triggered by routing changes. Large traffic shifts caused by rout-

ing are rare, but important events. After introducing our measurement methodology in

Section 2, we identify the causes of the big variations in Section 3. Section 4 discusses

the implications of our results on other studies of traffic matrices. Section 5 concludes

the paper.

2 Measuring Traffi c Matrix Variation

Studying the variation of traffic matrix elements over time requires collecting fine-

grained measurements of traffic and routing. We analyze data collected from a tier-1

ISP network for 173 days from March to September 2004. We collect data from eight

aggregation routers that receive traffic from customers destined to peers and other cus-

tomers. The eight routers are located in major Points of Presence (PoPs) that are spread

throughout the United States.

We compute eight rows of the traffic matrix, considering all traffic from these eight

ingress aggregation routers to all of the egress PoPs. This section describes how we

compute the prefix-to-egress mapping ε(i, p, t) from the BGP data and the traffic de-

mands V (i, p, t) from the Netflow data. Once we have computed ε and V , we use Equa-

tion 1 to compute the elements of the traffic matrix TM(i, e, t). The BGP monitor and

the Netflow collection servers are NTP-synchronized, allowing us to use the timestamps

to join the two datasets.



2.1 Prefix-to-Egress Mapping

A BGP monitor collects internal BGP update messages directly from each vantage

point. Configured as a route-reflector client of each vantage point, the BGP monitor

receives updates reporting any change in the best BGP route at each router for each

destination prefix. The monitor records each BGP update with a timestamp at the one-

second granularity.

A single network event, such as a failure or policy change, can lead to a burst of

BGP updates messages as the routers explore alternate paths. Rather than studying the

details of routing convergence, our analysis focuses on the changes from one stable

route to another. Similar to previous studies [10, 11], we group the BGP updates for the

same destination prefix that have an interarrival time of 70 seconds or less. Our analysis

considers the stable route that existed before the flurry of updates and the new stable

route that exists at the end.

Based on an initial BGP table dump and a sequence of BGP updates, we generate

the prefix-to-egress mapping ε(i, p, t) for any given time. The egress point corresponds

to a PoP rather than a specific router. We associate each egress router with a PoP based

on the router name and configuration data.

2.2 Traffic Demands

Every vantage point has the Cisco’s Sampled Netflow feature [8] enabled on all links

that connect to access routers and exports flow records to a collection server at the same

location. The collection server samples the flow records using the technique presented

in [12] in order to reduce processing overhead, and computes 10-minute aggregated

traffic volumes for each destination prefix. We use these aggregated reports to extract

V (i, p, t) for each vantage point i and destination prefix p at every 10-minute interval.

Consequently, a reference to a time t indicates the end of a 10-minute interval.

Because of sampling, the volumes V (i, p, t) are random quantities that depend on

the sampling outcomes. Through a renormalization applied to the bytes reported in

sampled flow records, the quantities V (i, p, t) are actually unbiased estimators of the

volumes of the original traffic from which they were sampled, i.e., their average over all

possible sampling outcomes is the original volume. The standard error associated with

an aggregate of size V is bounded above by
√

k/V for some constant k that depends

on the sampling parameters [12]. For the parameters employed in the current case,

k < 21MB. Note that the standard error bound decreases as the size of the aggregate

increases. This property aligns well with our focus on the largest changes in traffic

rates: these are the most reliably estimated. As an example, for a 10-minute aggregate

of traffic at a rate of 10 MB per second, the standard error due to sampling is no more

than 6%.

Even though the traffic data is divided into 10-minute intervals, our 70-second

grouping of BGP updates is important for cases when path exploration crosses the

boundary between two ten-minute intervals. This ensures that we focus our analysis

on stable changes of ε. If the mapping ε(i, p, t) changes more than once in a 10-minute

interval, then we cannot distinguish the volume of traffic affected by each of them in-

dividually. Therefore, we exclude those cases from our analysis by ignoring intervals



with prefixes that have more than one stable routing changes in that bin; this excludes

0.05% of the (i, e, t) tuples from our study. We also exclude all traffic for the small

number of flows that had no matching destination prefix in the BGP routing tables or

update messages; we verified that these flows corresponded to an infinitesimal fraction

of the traffic.

3 Causes of Large Traffi c Variations

In this section, we explore the contributions of changes in the traffic demands V and

prefix-to-egress mapping ε to the variations in the traffic matrix elements TM. Our

analysis shows that, although most changes in ε have a small effect on the traffic matrix,

many of the large variations in the traffic matrix are caused by changes in ε. Also, we

show that, while most changes in ε are caused by external routing events, the small

number of internal routing events are more likely to cause larger shifts in traffic.

3.1 Definition of Traffic Variations

Figure 2 shows an example of how two traffic matrix elements (with the same ingress

point i) change over the course of a day. The total traffic entering at the ingress point

varies throughout the day, following a typical diurnal cycle. For the most part, the traf-

fic TM(i, e1, t) has the same pattern, keeping the proportion of traffic destined to e1

relatively constant. For most of the day, no traffic travels from ingress i to egress point

e2. The most significant change in the two traffic matrix elements occurs near the end

of the graph. The traffic leaving via egress point e1 suddenly decreases and, at the same

time, traffic leaving via egress point e2 increases. This shift occurred because a routing

change caused most of the traffic with egress point e1 to shift to egress point e2. The

egress point e2 also starts receiving traffic that had previously used other egress points

(not shown in the graph), resulting in an increase for e2 that exceeds the decrease for

e1. In the meantime, the total traffic entering the network at ingress i remained nearly

constant.

The traffic experiences other relatively large downward spikes (labeled as load vari-

ation). These spikes may very well be associated with a routing change in another AS

in the Internet that caused traffic to enter at a different PoP (this kind of traffic variation

was called an “ingress-shift anomaly” in [6]). In this paper, we analyze traffic shifts

caused by routing changes experienced by our network. Finding a signature of routing-

induced traffic variations for one network is an important first step to infer other traffic

variations that are caused by routing changes in other networks.

To analyze these kinds of traffic fluctuations, we define the variation of a traffic

matrix element at an interval t as:

∆TM(i, e, t) = TM(i, e, t) − TM(i, e, t − 1).

3.2 Changes in Traffic Demands vs. Egress Points

The variation of a traffic matrix element (∆TM ) is composed of the load variation

(∆L), which represents volume fluctuations on the traffic demands V , and the routing



0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

M
B

 p
e
r 

s
e
c
o
n
d

minutes

routing change

load variation

total
(i,e1)
(i,e2)

Fig. 2. Sample traffic volume from one ingress to two egresses.

shifts (∆R), which accounts for changes in the prefix-to-egress mapping ε:

∆TM (i, e, t) = ∆L(i, e, t) + ∆R(i, e, t)

∆L(i, e, t) represents the change in the volume of traffic for all destination prefixes

that did not change their egress point from the previous time interval (i.e., ε(i, p, t) =
ε(i, p, t − 1) = e):

∆L(i, e, t) =
∑

p ∈ P :
ε(i, p, t) = e

ε(i, p, t − 1) = e

V (i, p, t) − V (i, p, t − 1)

Fluctuations in the traffic demands may occur for a variety of reasons, such as changes

in user or application behavior, adaptations caused by end-to-end congestion control, or

even routing changes in other domains.

The routing variation ∆R(i, e, t) considers the destination prefixes that shifted to

egress point e during time interval t or shifted from e to another egress point in t:

∆R(i, e, t) =
∑

p ∈ P :
ε(i, p, t) = e

ε(i, p, t − 1) 6= e

V (i, p, t) −
∑

p ∈ P :
ε(i, p, t) 6= e

ε(i, p, t − 1) = e

V (i, p, t − 1)

Note that if a routing change occurs within the time interval t, we associate all of the

traffic associated with that prefix in that time interval with the new egress point.

Not all traffic matrix elements carry the same volume of traffic, and the volume of

traffic from an ingress to an egress PoP varies over time. How do we judge if a change in



the traffic is “large”? There is no absolute standard: one approach might be to judge the

size of the change in traffic matrix element relative to the average traffic for that element.

However, this is not useful here, because the traffic process itself is non-stationary. It has

daily and weekly cycles, as well as level shifts resulting from routing changes. The rela-

tive change ∆TM(i, e, t)/TM(i, e, t) (or ∆TM(i, e, t)/ max(TM(i, e, t), TM(i, e, t−
1))) seems appealing. However, this metric places too much emphasis on large relative

changes to small values; for example, a traffic matrix element with 1 kbit/sec might eas-

ily experience a 50% relative change in traffic without having any significant effect on

the network. An alternative metric would be the absolute change ∆TM(i, e, t). How-

ever, a shift of (say) 10 MB/sec may be significant for one ingress point but not for

another. Another option would be to normalize the value of ∆TM (i, e, t) by the total

traffic entering ingress point i at time t, which would capture changes in the fraction

of the incoming traffic that uses a particular egress point. However, this metric depends

on the “current” traffic demand at ingress i (which could be low at certain times) and

may not accurately reflect the strain imposed on the network by the traffic change. An-

other extreme approach would be to consider the capacity of the network, and define

as large any traffic shift that causes a link to be overloaded. Besides being difficult to

compute, this metric is too closely tied to the current design of the network, and is not

useful for most typical applications of the traffic matrix such as capacity planning or

anomaly detection. Instead, we want a metric that captures properties of the traffic ma-

trix itself, such as how large the traffic changes are relative to the normal variations of

traffic matrix elements.

For that, we should consider what type of process we observe, namely, a differ-

ence process. Over short time periods, we can approximate the traffic with a linear

process yt = α + βt + xt, where xt is a zero-mean stochastic process, with vari-

ance σ2. We observe the differences ∆yt = yt − yt−1, which will form a stationary

process, with mean β and variance 2σ2. Thus we can approximate the difference pro-

cess by a stationary process, and measure deviations from the mean, relative to the

standard deviation of this process. We measure 2σ(i, e)2 on the traffic variation pro-

cess ∆L(i, e, ·) (using the standard statistical estimator), and use this to normalize

the traffic variations, i.e. we then observe ∆L̃(i, e, t) = ∆L(i, e, t)/
√

2σ(i, e), and

∆R̃(i, e, t) = ∆R(i, e, t)/
√

2σ(i, e).

If the variance of the process xt was time dependent, it might make sense to use a

moving average to estimate the process variance at each point in time, i.e. σ(i, e, t)2,

and use this to normalize the traffic variations. We tried such an approach, but it made

little difference to the results, and so we use the simpler approach described above.

Figure 3 presents a scatter plot of ∆ ˜TM (i, e, t) versus ∆R̃(i, e, t) for all the valid

measurement intervals t. The high density of points close to zero shows that large traf-

fic variations are not very frequent (99.88% of the traffic variations are in the [−4, 4]
range). Points along the horizontal line with ∆R̃(i, e, t) = 0 correspond to traffic vari-

ations that are not caused by routing changes, whereas points along the diagonal line

correspond to variations caused almost exclusively by routing changes. Points in the

middle are caused by a mixture of routing changes and load variation. Figure 3 shows

that both load and routing are responsible for some big variations. Routing changes,



however, are responsible for the largest traffic shifts. Indeed, one egress-point change

made a traffic matrix element vary more than 70 times the standard deviation.

-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40 60 80

∆R
 r

e
la

ti
v
e

 t
o

 n
o

rm
a

l 
v
a

ri
a

ti
o

n
s

∆TM relative to normal variations

Fig. 3. Scatter plot of ∆ ˜TM versus ∆R̃ for all traffic matrix elements over the seven-month

period.

3.3 Internal vs. External Routing Changes

The prefix-to-egress mapping ε may change because of either internal or external rout-

ing events. External routing changes represent any changes in the set of egress points

that an AS uses to reach a destination prefix. For example, in Figure 1, the neighbor

AS might withdraw the route for p2 from the router e, resulting in a change in ε. Ex-

ternal routing changes may be caused by a variety of events, such as an internal routing

change in another domain, a modification to the local BGP routing policy, or a failure

at the edge of the network. In contrast, internal routing changes stem from changes in

the routing inside the AS, due to equipment failures, planned maintenance, or traffic

engineering. These events affect the prefix-to-egress mapping because the intradomain

path costs play a role in the BGP decision process through the common practice of

hot-potato routing.

When selecting a best BGP route, a router first considers BGP attributes such as

local preference, AS path length, origin type, and the multiple exit discriminator. If



multiple “equally good” routes remain, the router selects the route with the “closest”

egress point, based on the intradomain path costs. Since large ISPs typically peer with

each other in multiple locations, the hot-potato tie-breaking step almost always drives

the final routing decision for destinations learned from peers, although this is much

less common for destinations advertised by customers. In the example in Figure 1, an

internal link failure might make router i’s intradomain path cost to e suddenly larger

than the path to e′. This would change the prefix-to-egress mapping for p2, causing a

shift in traffic from egress point e to e′. Using the methodology described in [10], we

identified which changes in ε were caused by internal events.

Figure 4 shows the cumulative distribution functions of ∆R̃ caused by hot-potato

routing and by external BGP changes. For comparison, we also present the cumula-

tive distribution function (CDF) of a normal distribution, which is drawn from ran-

domly generated Gaussian data with standard deviation equal 1, because ∆R̃ has been

normalized to have standard deviation equal 1. Although the routing events are rare

(only 0.66% of non-zero ∆ ˜TM are caused by eBGP changes and 0.1% by hot-potato

changes), this result shows that there are significant cases where these events are big,

to very big. In particular, approximately 5% of traffic shifts caused by hot-potato rout-

ing are at least one order of magnitude bigger than normal variations. A single internal

change is more likely to affect a large number of destination prefixes [10], including the

popular destinations receiving large amounts of traffic.
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We analyzed the source of traffic variation for individual traffic matrix elements,

and saw that the likelihood of changes in the prefix-to-egress mappings can vary signif-

icantly from one ingress router to another. Figures 6 and 5 present the same data as in

Figure 3 for two sample traffic matrix elements (Note that the axis are different across

the two graphs.). Some traffic matrix elements have no traffic variation caused by rout-

ing changes (Figure 5), whereas other have few very large egress shifts (Figure 6). We

computed the percent of the traffic matrix elements (i, e) that have large to very large

traffic shifts. We define large as more than 4 times the normal traffic variations for (i, e)
and very large more than 10 times. Approximately 25% of ingress-egress pairs (i, e) in

our study have no large traffic variation, and the vast majority of them (85.7%) have no

very large traffic variation. The differences across the traffic matrix elements have two

main explanations:

– Size of traffic matrix element. Some traffic matrix elements carry little traffic.

Most of the traffic from an ingress router exits the network at few egress PoPs,

because of hot-potato routing. For instance, most of the traffic entering in San Diego

is likely to stay in the west cost. Therefore, the traffic element San Diego to New

York carries very little traffic at any time.

– Impact of internal events. The likelihood of hot-potato routing changes varies

significantly from one ingress point to the other [10], depending on the location in

the network and the proximity to the various egress points. For our eight ingress

points, the fraction of BGP routing changes caused by internal events varies from

1% to 40%. As a result, the likelihood of large traffic shifts caused by hot-potato

routing varies significantly from one traffic matrix element to another.

Out of the traffic matrix elements that do experience large traffic variations 15%
have an average of more than one large traffic variation per week. The small percentage

of elements that experience large traffic variations combined with the low frequency

large shifts per element may lead to the incorrect conclusion that these events are irrel-

evant. However, if we consider the network-wide frequency of large traffic shifts, these

events happen fairly often. To show this, we have counted the number of 10-minute

measurement intervals for which at least one of our eight vantage points experienced

a large traffic variation. On average, the network experiences a large traffic variation

every four and half hours. Large traffic variations caused by routing changes happen

every 2.3 days, and very large routing-induced traffic variations happen every 5.9 days.

If our analysis considered all of the PoPs in the network, the overall frequency of large

traffic variations would be even higher.

4 Implication for Traffi c Matrix Studies

Our analysis on traffic matrix variations has important implications for the results of

previous measurement studies.

Differences across vantage points: The results in Section 3 show that the like-

lihood of changes in the prefix-to-egress mappings can vary significantly from one

ingress router to another. In particular, some ingress points may be much more suscep-

tible to hot-potato routing changes than others [10], making analysis of routing stability
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Fig. 5. Scatter plot of ∆ ˜TM versus ∆R̃ for a traffic matrix element that have no routing-induced

traffic variations over the seven-month period.

very dependent on where the data are collected. For example, the study in [11] showed

that popular destination prefixes do not experience BGP routing changes for days or

weeks at a time. In addition to studying RouteViews and RIPE BGP feeds, the analysis

included iBGP data from two of the eight routers used in our current study. In our anal-

ysis, these two routers did not experience many hot-potato routing changes. Had the

analysis in [11] analyzed a router that experiences several hot-potato routing changes a

day, the conclusions might have been quite different. In fact, hot-potato routing changes

can affect a large number of prefixes [10], both popular and not, so we might reasonably

expect popular destinations to experience changes in their egress points. A preliminary

analysis across all eight vantage points confirms that popular destination prefixes have

more BGP instabilities from vantage points that experience more hot-potato routing

changes.

Choice of metrics in studying unlikely events: The analysis in Section 3 shows

that large changes in the traffic matrix elements occur relatively infrequently. In ad-

dition, most changes in the prefix-to-egress mapping do not lead to large traffic shifts,

consistent with the results in [7]. Yet, these two results do not imply that routing changes

are not a significant contributor to large changes in the traffic matrix elements. In fact,

the opposite is true. A small number of routing changes are indeed responsible for a

relatively large fraction of the (few) large traffic shifts. In addition, long traces are nec-
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Fig. 6. Scatter plot of ∆ ˜TM versus ∆R̃ for a traffic matrix element that has few very large

routing-induced traffic shifts over the seven-month period. One traffic shift was over 70 times

normal traffic variations!

essary to draw conclusions about infrequent (yet significant) events. The study in [7]

draws on five traces of 6–22 hours in duration, outside of the maintenance periods where

operators made planned changes to the internal network, making it difficult to conclude

definitively if large traffic shifts occur and whether routing contributes to them.

Errors from ignoring egress changes in traffic matrix analysis: Previous work

on measuring and analyzing traffic matrices has assumed that routing is stable, in part

because fine-grained routing data is sometimes difficult to collect. Most of the work

on traffic matrix estimation [1, 2, 4] assumes that there are no changes in the prefix-to-

egress mapping or the intradomain paths between the ingress and egress points. Even

work on direct measurement of the traffic demands [5, 13] has used only daily routing

snapshots, although the work in [7] is a notable exception. Using out-of-date routing

information runs the risk of associating some traffic measurements with the wrong el-

ements in the traffic matrix. In some cases, the routing changes might lead to second-

order effects on the traffic (e.g., by causing congestion or increasing the round-trip time)

that may appear in the data, but the primary affect of the traffic moving to a different

egress point is obscured—as is the reason for the variation in the traffic. In addition,

changes in the prefix-to-egress mapping may cause large fluctuations in multiple traffic

matrix elements at the same time, which would be obscured if the traffic matrix is com-



puted or analyzed without regard for routing changes. In our ongoing work, we plan to

quantify the errors in the traffic matrix computed using daily snapshots, similar to the

approach in [7] but focusing specifically on routing changes that have a large affect on

multiple traffic matrix elements.

Dependence on network design, traffic, and goals: The results of any traffic ma-

trix analysis, including ours, depend on the details of the network under study. For

example, large ISP networks handle high volumes of aggregated traffic, which may

experience much smaller statistical fluctuations in the traffic. In addition, a large ISP

network connects to its peers and many of its customers in multiple locations in the

network, increasing the likelihood that destination prefixes are reachable via multiple

egress points. This makes an ISP network much more likely to experience changes in

the prefix-to-egress mapping over time. Together, these two factors tend to make rout-

ing changes have a larger relative influence on the traffic matrix in ISP networks than

in other kinds of networks. Even within a single network, the fluctuations in the traffic

matrix may vary from one ingress point to another, due to hot-potato routing changes

or the particular senders and receivers connected to that router. Identifying metrics that

isolate each of these effects would be very helpful in deepening our fundamental under-

standing of what causes fluctuations in traffic matrices.

5 Conclusion

Our study shows that large traffic variations, while unusual, do sometimes happen. Al-

though most routing changes typically do not affect much traffic, routing is usually a

major contributor to large traffic variations. This implies that network operators need to

design the network to tolerate traffic variations that are much larger than typical statis-

tical fluctuations in the incoming traffic. In addition, research on traffic engineering and

anomaly detection should take into account the impact of routing on the traffic matrix.

Since both the traffic demands V and the prefix-to-egress mapping ε are necessary to

compute an accurate traffic matrix, we believe it is more accurate to operate on V and

ε directly, rather than simply on T M.

This work has implications for both the research and network operations communi-

ties. Researchers should consider the impact of changes in the prefix-to-egress mapping

when analyzing the traffic matrix. Ignoring these changes might lead to wrong conclu-

sions about traffic matrix stability. Operators need to provision for traffic variations that

are much larger than normal traffic fluctuations. In addition, operators often need to

diagnose the cause of a large surge in traffic. Our work shows that the routing system is

one important place they should look for explanations.

As future work we plan to quantify the inaccuracies introduced in studies of routing

and traffic stability when changes in ε are ignored. We are also studying the duration

of the traffic shifts. If traffic shifts are short-lived, then network operators should just

over-provision to tolerate them. If they are long-lived, however, adapting the routing

protocol configuration may be a better approach for alleviating congestion.
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