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Abstract - In this paper, we present a synthetic traffic model 
for the Universal Mobile Telecommunication Systems (UMTS) 
based on measured trace data. The analysis and scaling process 
of the measured trace data with respect to different bandwidth 
classes constitutes the basic concept of the UMTS traffic 
characterization. Furthermore, we introduce an aggregated 
traffic model for UMTS networks that is analytically tractable. 
The key idea of this aggregated traffic model lies in customizing 
the batch Markovian arrival process (BMAP) such that different 
packet sizes of IP packets are represented by rewards (i.e., batch 
sizes of arrivals) of the BMAP. The effectiveness of the 
customized BMAP for modeling UMTS traffic is illustrated 
using the synthetic traffic model previously presented. 

I. INTRODUCTION 

Traffic modeling and characterization constitute important 
steps towards understanding and solving performance-related 
problems in future wireless and wireline IP networks. The 
central idea of traffic modeling lies in constructing models 
that capture the important statistical properties of the 
underlying measured trace data. Third generation (3G) 
mobile communication systems like the Universal Mobile 
Telecommunications System (UMTS, [1], [5]) are 
characterized by a migration from voice-only to integrated 
services IP networks with data rates up to 2 Mbps. Recently, 
the global wireless industry has created a global partnership 
project, the 3rd Generation Partnership Project (3GPP) [1], 
for standardization of UMTS. Besides the QoS concept and 
architecture for UMTS networks, several approaches for 
traffic modeling and characterization have been outlined by 
the 3GPP. However, a detailed technical understanding how 
traffic modeling should effectively be performed for UMTS 
networks is subject to current industrial and academic 
research [4]. 

Traffic models for wireless and wireline IP networks have 
been addressed in several recent papers. Anderlind and 
Zander proposed a simple model for future data traffic in 
wireless radio networks [2]. Anagnostou, Sanchez 
Papaspiliou, and Venieris proposed a traffic model for multi-
service IP networks taking into account individual user 
descriptions [3]. In the UMTS standard [5] recommendations 
for traffic models are given, which include parameterized 
distributions for real-time and non real-time services, but 
detailed characteristics are presented for WWW traffic only. 
In [10] the Mobile Wireless Internet Forum (MWIF) 
proposes, how IP can be applied in Radio Access Networks 
within 3rd Generation mobile systems. Furthermore, the 

recommendations of [5] are adopted without further 
enhancements and extensions. However, these traffic models 
are not derived from real measurements and are not 
analytically tractable.  

The lack of deriving traffic from existing UMTS networks 
motivates a characterization of future UMTS traffic based on 
network environments comprising of comparable 
characteristics. Kilpi and Norros [7] showed that IP traffic of 
current Internet Service Providers (ISP) inhibits many 
characteristics of future UMTS traffic. These common 
properties include different access speeds, influence of the 
user behavior due to different tariff limits, and asymmetric 
up- and downlink traffic. Using a similar approach, Staehle, 
Leibnitz and Tran-Gia introduced the single user traffic 
model for modeling IP traffic in wireless networks [11]. The 
main difference between the measured IP traffic at a dial-in 
modem/ISDN link and UMTS traffic constitutes of the 
different bandwidth classes of individual users. Färber, 
Bodamer, and Charzinski used measured trace data to derive 
a traffic model for Internet dial-in traffic [6]. They focused on 
the dial-in behavior of modem and ISDN users by fitting 
general distributions (e.g., Weibull and Lognormal) to the 
session interarrival-times and the holding times. 

The contribution of this paper is two-fold: First, we 
characterize an IP traffic trace measured at the ISP dial-in 
modem/ISDN link of the University of Dortmund. Based on 
the measured traffic data, we present a synthetic traffic model 
for UMTS networks applying the idea of the single user 
traffic model [11]. Second, using this synthetic UMTS traffic 
model, we introduce an aggregated traffic model that is 
analytically tractable. The key insight of this modeling 
approach lies in an appropriate scaling procedure of the 
measured trace data towards UMTS bandwidth requirements. 
We brake down the measured IP traffic into session-level 
traffic, connection-level traffic, and packet-level traffic. 
Subsequently, we fit the characteristics of these three levels 
to general distributions trying to closely represent the 
statistical properties. We characterize trends in current ISP 
measurements with respect to increasing bandwidth classes. 
Based on these trends, we scale the bandwidth of the dial-in 
modem/ISDN links to different bandwidth classes available 
in UMTS and derive a synthetic traffic load for UMTS 
networks. As a consequence of adopting statistics through 
general distributions this traffic model is not analytically 
tractable. 

The key idea of the aggregated traffic model for UMTS 
networks lies in customizing the batch Markovian arrival 



 

process (BMAP, see e.g., [9]) where different packet sizes of 
IP packets are represented by rewards (i.e., batch sizes of 
arrivals). This analytically tractable traffic model employs an 
efficient and numerical robust parameter estimation 
procedure presented in [8]. The effectiveness of the 
analytically tractable model based on the BMAP is illustrated 
using the synthetic UMTS traffic model previously presented. 

The paper is organized as follows. To make the paper self-
contained, Section II describes the concept of the single user 
traffic model and the aggregated IP traffic model using the 
BMAP. Section III presents the analysis and characterization 
of the measured IP traffic. In Section IV, we introduce a 
scaling procedure that adopts the statistical properties of the 
measured trace data with respect to higher UMTS bandwidth 
classes. We present the detailed synthetic UMTS traffic 
model comprising of parameters of general distributions for 
session-level, connection-level and packet-level and the 
aggregated traffic model for UMTS networks. Finally, 
concluding remarks are given. 

II. TRAFFIC MODELING APPROACHES 

A. Traffic Modeling using the Single User Traffic Model 

The single user traffic model [11] utilizes the notion that a 
user, who runs non real-time applications (e.g. HTTP, 
Napster, e-mail, etc.), follows a characteristic usage pattern. 
Considering this model, a single user can run different 
applications that may be concurrently active, e.g. WWW 
browsing while downloading Napster music files. Each 
application is completely described by its statistical 
properties. These statistical properties comprise of an 
alternating process of ON- and OFF-periods with some 
application specific length or data volume distribution, 
respectively. Moreover, within each ON-period the packet 
arrival process is completely captured by the packet 
interarrival-times and the corresponding packet sizes. Thus, 
the single user traffic model characterizes the traffic that an 
individual user generates. In UMTS, we have to distinguish 
between real-time users and non real-time users. Considering 
just non real-time users, the single user traffic model is 
employed on three different levels: 

(1) The session-level describes the dial-in behavior of the 
individual users, characterized by the session 
interarrival-time distribution and the session data-volume 
distribution. 

(2) The connection-level describes for each individual 
application the corresponding distribution of connection 
interarrival-times and connection data volume, 
respectively. 

(3) The packet-level characterizes the packet interarrival-
time distribution and the packet size distribution within 
the application specific connections. 

A non real-time user runs applications like HTTP, Napster, 
e-mail, and various other applications that can be 
concurrently enabled. During an ON-period, i.e. an 
application specific connection, the user applies the 
appropriate application in an active fashion. The interarrival-

time between two successive connection starting points of the 
same application-type and the data volume of each 
connection are drawn from general distributions, respectively. 

The packet interarrival-times within each connection and 
the corresponding packet sizes are also drawn according to an 
application dependent distribution. The overall traffic stream 
of a user constitutes of the superposition of the packet arrival 
process of all application connections within the user’s 
session. New users enter the considered system environment 
according to a session interarrival-time distribution and leave 
the system after transferring a specific data-volume drawn 
according to a session volume distribution. While this 
modeling approach is efficient and authentic towards 
simulation studies, the nature of the generally distributed 
sources of the single user traffic model does not result in an 
analytically tractable model that can be integrated as a traffic 
generating component within analytical models. This 
motivates a different modeling approach using a stochastic 
process that matches the crucial properties of the considered 
IP traffic, e.g. traffic burstiness over a wide range of different 
time scales [12], while being analytically tractable.  

B. Traffic Modeling using the Batch Markovian Arrival 
Process 

The batch Markovian arrival process (BMAP) belongs to the 
class of Markov renewal processes and is analytically 
tractable [9]. Consider a continuous-time Markov chain 
(CTMC, [9]) with N �1� �  states 0 1, , ,� N� � where the states 

1 2, , ,� N� �  are transient states and 0  is the absorbing state. 

Based on this governing CTMC, the BMAP can be 
constructed as follows: Assume the BMAP is in a transient 
state i  for an exponentially distributed time with rate O i . 
When the sojourn time has elapsed, there are M �1� � possible 

cases for state transitions. With probability Pm i j
� �

,
 the BMAP 

enters the absorbing state 0  and an arrival of batch size m 
occurs. Then, the process is instantaneously restarted in state 
j . Note that the selection of state j (1 d j d N) and batch size 

m (1 d m d M) is uniquely determined by Pm i j
� �

,
. On the other 

hand, with probability P0� �i j,
 the BMAP enters another 

transient state j j i, z , without arrivals. Furthermore, we can 

define D P0 0� � � �
i j i i j, ,
 �O  for j iz , D0� �

i i i,
 �O  and 

D Pm i j i m i j
� � � �

, ,
 �O . 

In recent work, a computational efficient and numerical 
robust EM (expectation maximization) algorithm for the 
parameter estimation process of BMAPs, i.e. estimation of 
the parameter matrices D0  and Dm  (1 d m d M), has become 
available [8]. In Section IV this estimation procedure is 
employed for IP traffic (i.e., the packet interarrival-times and 
the corresponding packet sizes) derived from the single user 
traffic model. Note that the key idea of considering both the 
interarrival-times and packet sizes relies in regarding the 
packet sizes as the rewards (i.e. batch sizes of arrivals) of the 
BMAP. Based on this parameter estimation, such a 
customized BMAP constitutes an aggregated IP traffic model 



 

considering both packet interarrival-times and packet sizes, 
while still being analytically tractable. 

III. CHARACTERIZATION OF MEASURED IP TRAFFIC 

A. Traffic Measurements 

In order to get characteristic trace data of current ISP traffic, 
we conducted detailed traffic measurements at the ISP dial-in 
modem/ISDN link of the University of Dortmund. During the 
measurement over a four-week period in January 2001, 
approximately 110,000 user sessions have been logged. The 
total data volume sums up to 120 GB. All measurements are 
conducted at the Ethernet link between the MaxTNT dial-in 
routers and the router connection to the Internet. We used the 
TCPdump software package running on a Linux client for 
sniffing all IP packet headers sourced or targeted by dial-in 
users. For each IP packet the arrival timestamp, the source 
port, the target port, the packet length, and other TCP header 
information have been recorded. 

B. Traffic Analysis of University of Dortmund ISP Trace 

In this section, we present the analysis of the characteristics, 
which are fundamental for the UMTS traffic modeling 
approach of Section IV. First of all, we consider the usage 
fraction of dial-in users partitioned in the bandwidth classes 
9.6 kbps, 14.4 kbps, 28.8 kbps, 33.6 kbps, 56 kbps and 64 
kbps. The 64 kbps bandwidth class is associated with the 
class of ISDN users. The usage fractions with respect to the 
transferred data volume are as follows: 1% for users with a 
bandwidth less or equal 14.4 kbps, 3% at 28.8 kbps, 10% at 
33.6 kbps, 40% at 56 kbps, and 46% at 64 kbps. Referring to 
the number of dial-in sessions the fractions are 1% at 
bandwidths less or equal 14.4 kbps, 5% at 28.8 kbps, 12% at 
33.6 kbps, 43% at 56 kbps, and 39% at 64 kbps. Obviously 
the data volume of users with fast dial-in access dominates 
the corresponding dial-in fraction, e.g., 39% ISDN users 
produce 47% of the total data volume. 

Furthermore, we analyze the application usage pattern of 
current ISP dial-in users with respect to the overall data 
volume broken down in HTTP, Napster, e-mail, UDP, FTP, 
and other TCP applications. HTTP is the dominating 
application with a fraction of 73%. The popular Napster 
music download application (i.e., 9%), followed by the e-mail 
application (i.e., 6%) and other TCP applications (i.e., 6%) 
constitute further important applications. FTP applications 
with 2% do not contribute a significant amount of today’s 
application because file transfers are increasingly performed 
via HTTP. The small amount of UDP applications of 4% 
demonstrates that dial-in modem/ISDN users, regarding their 
specific bandwidth capabilities, rarely use real-time 
applications, which are predominantly transferred via UDP. 
Indeed, realistic statistical properties of real-time applications 
cannot be derived from the measured trace data. Therefore, 
we focus our investigations on non real-time traffic. The 
identification of the different application types within the 
enormous amount of measured data is conducted by detailed 
investigation of the measured IP packet header fields. 

By aligning the dial-in routers log file with the trace data 
we identify all packet headers of a specific session and 
associate it with the bandwidth class of this session. Thus, we 
derive session interarrival-time and session data volume 
statistics for each bandwidth class. Furthermore, in order to 
perform connection level analysis, for each session the 
associated TCP connections are restored and sorted with 
respect to the protocol number, which specifies the 
application type. Finally, the packet-level statistics within the 
application specific connections are derived. 

We observe that each statistical measure of the three traffic 
levels comprise of a characteristic distribution which is 
independent of the dial-in user’s bandwidth class, e.g. the 
HTTP connection interarrival-times are distributed according 
to a lognormal distribution. Therefore, the distribution of a 
specific statistical measure differs only by the parameter 
values of the characteristic distribution for different 
bandwidth classes. In order to find such a characteristic 
distribution for a specific statistical measure we use a least-
squares regression with respect to the bandwidth classes 9.6 
kbps, 14.4 kbps, 28.8 kbps, 33.6 kbps, 56 kbps, and 64 kbps. 
We consider the following set of probability density functions 
(pdf): Lognormal, Pareto, Weibull, Gamma, and Exponential. 
As shown in Section IV the considered statistical measures 
can be closely matched with these pdfs. 

IV. TRAFFIC MODELING OF UMTS TRAFFIC 

A. Scaling Procedure for Bandwidth Classes of UMTS 

Applying the notion of characteristic distributions introduced 
in the previous section, we use the characteristic distributions 
derived from the ISP measurement to obtain a traffic model 
for UMTS. This is closer to realistic future UMTS traffic than 
just assuming traffic characteristics or obtaining 
characteristics from networks, which comprise of 
significantly different characteristics than future UMTS 
networks. 

To obtain the traffic characteristics of the UMTS traffic 
model we introduce the scaling algorithm outlined in Fig. 1. 
This scaling procedure utilizes the notion of (1) bandwidth-
independent characteristic distributions for the statistical 
measures on the three traffic levels, and (2) bandwidth-
dependent trends in the mean and the variance of each unique 
statistical measure. In the first step the identification of 
bandwidth-dependent trends for each statistical measure 
utilizing a regression method is conducted. The basic idea of 
the underlying regression models constitutes of the notion of 
bandwidth-dependent trends and the evolution of mean and/or 
variance, i.e., bandwidth-dependent changes that are naturally 
described by one of the functions (a) to (d). We consider this 
set of functions because they comprise of different 
asymptotic behavior, e.g., a linear or a logarithmic asymptotic 
behavior. Subsequently, we utilize the parameterized 
function, which comprises of the least squares residual value, 
in order to get the mean and the variance values 
corresponding to the UMTS bandwidth classes 64 kbps, 144 
kbps, and 384 kbps. For each statistical measure, we utilize 



 

Step 1: Find bandwidth-dependent trends in the mean 
and the variance of the considered statistical measures. 
Utilize the least-squares regression method on the 
mean and variance with respect to increasing 
bandwidth for each statistical measure. We use the 
following functions as underlying regression models. 

(a) f x a b c x1
2� �  � � �log ( ) , a double 

logarithmic shape. 

(b) f x a b c x2 � �  � � �log( ), a logarithmic shape. 

(c) f x a b c x d x3� �  � � � � �log( ) , a mixture of 

a logarithmic and linear shape. 

(d) f x a b x4� �  � � , a linear shape. 

Step 2: Get the parameterized function of Step 1, 
which comprises of the least squares residual value. 
Subsequently, use this parameterized function in order 
to derive values for mean and the variance 
corresponding to the UMTS bandwidth classes 64 
kbps, 144 kbps, and 384 kbps. 

Step 3: For each statistical measure, utilize its 
characteristic distribution and the mean and variance, 
calculated in Step 2, to get the parameter values of the 
characteristic distribution. This task can be performed 
by solving a non-linear equation system, comprising 
of the analytical formulas for corresponding mean and 
variance and the values for mean and variance derived 
in Step 2. 

Fig. 1. Algorithm for bandwidth scaling for UMTS networks 

its characteristic distribution and the derived values for mean 
and variance, in order to get the parameter values of the 
characteristic distribution (see Step 3 in Fig. 1).  

B. Single User Traffic Model for UMTS Networks 

In order to get the detailed parameter set of the UMTS single 
user traffic model, we apply the scaling procedure of Fig. 1 
on the statistical measures of the three different traffic levels. 
The following presents characteristic distributions and the 
corresponding parameter values for the statistical measures of 
the session-level, connection-level, and packet-level. Note, 
that the parameterized distributions for interarrival-times are 
second-based, whereas data volume distributions as well as 
packet length distributions are byte-based. The reason for 
restricting the UMTS traffic model to the bandwidth classes 
64 kbps, 144 kbps, and 384 kbps is two-fold. First, the notion 
of trends in the statistical measures and the utilization of a 
scaling procedure by regression methods are based on 
measurements that comprises of bandwidth classes from 9.6 
kbps up to 64 kbps. From this point of view, a trend spotting 
up to the maximum UMTS bandwidth class (i.e., 2048 kbps) 
involves too many unknowns. Second, we think that after the 
commercial launching of UMTS most users will run 
applications on their hand-held devices using the cheaper and, 
thus, lower bandwidth classes. 

The statistics at the session level are mainly influenced by 
user behavior, which is difficult to predict. As the session 
interarrival-time depends to a large extend on the prizing 
policy of the UMTS provider, we assume the overall session 
interarrival-times measured at the ISP as authentic for UMTS 
data networks. For the measured trace, we derive a lognormal 
distribution with P=0.9681 and V²=4.3846 as the distribution 
for session interarrival-times. Furthermore, we assume that 
UMTS users are partitioned in the considered bandwidth 
classes as follows: 50% for 64 kbps, 30% for 144 kbps, and 
20% for 384 kbps. In order to take into account the 
bandwidth-dependent transfer data volumes, we get the 
characteristic distributions and corresponding parameter sets 
as shown in Table I. 

At connection level, the measured data indicates that 
almost all users, who utilize Napster or FTP applications, 
only run a single connection within a dial-in session. 
Therefore, an interarrival-time distribution for connections of 
these application types is misleading. Thus, we take into 
account the fractions for using Napster or FTP measured at 
the ISP. These fractions are derived from measured data of 
ISDN users, i.e., 1.47% for Napster and 3.05% for FTP. We 
focus on this bandwidth class because users of lower 
bandwidth classes hardly utilize these applications. For the 
remaining applications, the interarrival-time distributions for 
connections and the data volume distributions per connection 
are presented in Table II. Recall that UDP applications are 
connection-less and thus, they are omitted in the statistics for 
the connection level. UDP applications are assumed to be 
active during the entire user session and are fully described 
by its packet interarrival-time and packet size distributions. 

Table III presents the application dependent packet 
interarrival-time distributions. Note that the packet size 
distributions for HTTP, Napster, e-mail, and FTP follow to a 
large extend a discrete distribution, where packets of the sizes 
40 bytes, 576 bytes, and 1500 bytes constitute the largest 

TABLE I 
DISTRIBUTION OF SESSION VOLUME 

Distribution 64 kbps 144 kbps 384 kbps

Lognormal(P;V�) (11.1170;1.9095) (11.4107;1.9509) (11.6795;1.9781)  

TABLE II 
STATISTICAL PROPERTIES AT CONNECTION-LEVEL 

Distribution 64 kbps 144 kbps 384 kbps

Interarrival time Lognormal(P;V�) (0.5967;2.6314) (0.1580;3.1507) (-0.4760;3.8787)
Data volume Lognormal(P;V�) (7.4343;3.4714) (7.4708;3.7598) (7.5458;3.9745)

Interarrival time Pareto(k;D) (14.4360;2.1345) (15.1334;2.1254) (16.0229;2.1223)
Data volume Lognormal(P;V�) (8.1934;3.3852) (8.2944;3.5288) (8.4124;3.6439)

Interarrival time
Data volume Lognormal(P;V�) (12.3025;1.5385) (12.3677;1.5311) (12.5410;1.5268)

Interarrival time
Data volume Lognormal(P;V�) (8.4944;3.6674) (8.6403;4.1059) (8.8409;4.3343)

not available

not available

HTTP

e-mail

Napster

FTP
 

TABLE III 
PARAMETERS OF PACKET INTERARRIVAL-TIMES 

Distribution 64 kbps 144 kbps 384 kbps

HTTP Lognormal(P;V�) (-3.2441;4.5137) (-3.9124;5.1794) (-4.8507;6.1159)
e-mail Lognormal(P;V�) (-4.4052;4.4970) (-4.8790;4.9687) (-5.4096;5.4978)

Napster Lognormal(P;V�) (-4.2614;3.7790) (-4.0340;3.3242) (-4.4335;3.5226)
FTP Lognormal(P;V�) (-3.6445;4.9564) (-3.9076;5.2186) (-4.1089;5.4194)
UDP Lognormal(P;V�) (-3.2770;5.2887) (-3.7830;5.6710) (-4.3020;6.0997)  



 

TABLE IV 
FRACTIONS OF DIFFERENT PACKET SIZES IN OVERALL TRAFFIC 

Packet size 40 byte Packet size 576 byte Packet size 1500 byte Other packet sizes
HTTP 46.77 % 27.96 % 8,10% 17.17 %

Napster 34.98 % 45.54 % 4.18 % 15.30 %
e-mail 38.25 % 25.98 % 9.51 % 26.26 %
FTP 40.43 % 18,08% 9.33 % 32.16 %  

amount of the overall packet sizes. This phenomenon relies 
on the maximum transfer units (MTU) of Ethernet and SLIP 
(serial line IP) networks. Most TCP transfer protocols like 
HTTP, FTP, and POP3 are used to transfer files as fast as 
possible. Therefore, within a connection the packets are filled 
up to the MTU of the underlying network protocol. This is 
usually 1500 bytes in Ethernet networks and 576 bytes in 
SLIP networks. Packets with a length of 40 bytes are at most 
TCP acknowledgments with missing data field. Recall, that 
the TCP/IP header without any options consists of 40 bytes. 
Table IV displays the fractions of these discrete packet sizes. 
We observe further, that the remaining packet sizes are 
distributed uniformly between 40 bytes and 1500 bytes. In 
contrast to the TCP packets, the UDP datagram sizes follow a 
bandwidth-independent lognormal distribution with 
parameters P=3.9964 and V²=1.1852. 

C. Aggregated Modeling of the UMTS Traffic Stream  

As stated above, the proposed UMTS single user traffic 
model is not analytically tractable. Thus, it can be employed 
for simulation studies only. To overcome this restriction, we 
customize the batch Markovian arrival process such that 
different sizes of IP packets are represented by rewards (i.e., 
batch sizes of arrivals) of the BMAP. In order to get the 
parameter set of this aggregated UMTS traffic model, we 
apply the parameter estimation procedure proposed in [8] 
using a trace file, which represents the aggregated UMTS 
traffic stream. Therefore, this trace file comprises of packet 
interarrival-times and the corresponding packet sizes. 

Applying the UMTS single user traffic model, we generate 
a synthetic trace file comprising of IP packet traffic reflecting 
1 hour of summed interarrival-times representative for a 
“typical” usage of non real-time traffic in UMTS packet data 
systems within a considered base station. Based on this 
synthetic trace file the BMAP parameter estimation procedure 
is applied for a 3-state BMAP ( N  3 ) with a maximum batch 
size of M  3. The choice of M is crucial for the mapping 
process of packet sizes to BMAP rewards (i.e., batch sizes of 
arrivals) and corresponds to but is not restricted by the fact 
that a large amount of packets comprise of three different 
packet sizes (see Table IV). 

Recalling the BMAP definition of Section II, this mapping 
process results in a BMAP parameter set of reasonable size 
M N�1 2� � . We map the packet sizes onto the discrete packet 

sizes sm , for 1 d m d M, where sm  is the average packet size 
of all considered packets comprising of packet sizes between 
500 1� �m M� �  bytes and 500 �m M  bytes. Therefore, 

arrivals with batch size m, 1 d m d M, represent packet 
arrivals with a size of sm  bytes. The considered estimation 
procedure is quite effective and requires less than 200 
seconds of CPU time on a Pentium III PC with 128 MB of 
main memory. 

Fig. 2 plots sample paths of the aggregated UMTS traffic 
stream generated by the single user traffic model (left) and 
sample paths of the aggregated traffic stream applying the 
parameterized BMAP model (right). In order to show the 
effectiveness of our approach these sample paths are plotted 
on four different time scales, i.e. 0.01 sec, 0.1 sec, 1 sec, and 
10 sec. Fig. 2 shows that the customized BMAP captures the 
average transferred data volume per time unit. Furthermore, 
the customized BMAP can represent in the considered 
scenario traffic burstiness over multiple time scales. This 
constitutes a clear advantage of the customized BMAP over 
MMPP and other analytically tractable traffic models. 
Detailed statistical investigations, e.g. R/S statistics [12], 
emphasize these observations. 

CONCLUSIONS 

We presented an approach for modeling UMTS traffic 
based on appropriately scaling measured IP traffic. The 
approach utilizes the notion of bandwidth-independent 
characteristic distributions for statistical traffic measures and 
bandwidth-dependent first and second order statistics, i.e., 
mean and variance. Subsequently, we derived a synthetic 
traffic model for UMTS networks using the single user traffic 
model. We observe that packets of the sizes 40 bytes, 576 
bytes, and 1500 bytes dominate the traffic streams. 
Furthermore, we introduce an aggregated traffic model that is 
analytically tractable and illustrate its effectiveness using the 
previously presented synthetic traffic model for UMTS 
networks. The key idea of this aggregated traffic model lies in 
customizing the batch Markovian arrival process (BMAP) 
such that the three different sizes of IP packets dominating 
the traffic stream are represented by three reward values. 
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Fig. 2. Sample paths of single user traffic model (left) and customized BMAP (right) over multiple time scales 
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