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Abstract—Peer-to-peer (P2P) file sharing systems generate a
major portion of the Internet traffic, and this portion is expected
to increase in the future. We explore the potential of deploying
proxy caches in different Autonomous Systems (ASes) with the
goal of reducing the cost incurred by Internet service providers
and alleviating the load on the Internet backbone. We conduct an
eight-month measurement study to analyze the P2P traffic char-
acteristics that are relevant to caching, such as object popularity,
popularity dynamics, and object size. Our study shows that the
popularity of P2P objects can be modeled by a Mandelbrot–Zipf
distribution, and that several workloads exist in P2P traffic.
Guided by our findings, we develop a novel caching algorithm
for P2P traffic that is based on object segmentation, and propor-
tional partial admission and eviction of objects. Our trace-based
simulations show that with a relatively small cache size, a byte
hit rate of up to 35% can be achieved by our algorithm, which is
close to the byte hit rate achieved by an off-line optimal algorithm
with complete knowledge of future requests. Our results also show
that our algorithm achieves a byte hit rate that is at least 40%
more, and at most triple, the byte hit rate of the common web
caching algorithms. Furthermore, our algorithm is robust in face
of aborted downloads, which is a common case in P2P systems.

Index Terms—Internet measurement, network protocols,
peer-to-peer systems, traffic modeling, traffic analysis.

I. INTRODUCTION

P EER-TO-PEER (P2P) file-sharing systems have gained
tremendous popularity in the past few years. More users

are continually joining such systems and more objects are being
made available, enticing even more users to join. Currently,
traffic generated by P2P systems accounts for a major fraction
of the Internet traffic [1], and it is expected to increase [2]. The
sheer volume and expected high growth of P2P traffic have neg-
ative consequences, including: (i) significantly increased load
on the Internet backbone, hence, higher chances of congestion;
and (ii) increased cost on Internet Service Providers (ISPs) [3],
hence, higher service charges for all Internet users. A poten-
tial solution for alleviating those negative impacts is to cache
a fraction of the P2P traffic such that future requests for the
same objects could be served from a cache in the requester’s
autonomous system (AS).
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Caching in the Internet has mainly been considered for web
and video streaming traffic, with little attention to the P2P
traffic. Many caching algorithms for web traffic [4] and for
video streaming systems [5] have been proposed and analyzed.
Directly applying such algorithms to cache P2P traffic may not
yield the best cache performance, because of the different traffic
characteristics and caching objectives. For instance, reducing
user-perceived access latency is a key objective for web caches.
Consequently, web caching algorithms often incorporate infor-
mation about the cost (latency) of a cache miss when deciding
which object to cache/evict. Although latency is important to
P2P users, the goal of a P2P cache is often focused on the ISP’s
primary concern; namely, the amount of bandwidth consumed
by large P2P transfers. Consequently, the byte hit rate, i.e., the
number of bytes served from the cache to the total number of
transferred bytes, is more important than latency. Moreover,
P2P objects tend to be larger than web objects [1] reducing the
number of complete objects that can be held in a cache.

Furthermore, although objects in P2P and video streaming
systems share some characteristics, e.g., immutability and large
size, streaming systems impose stringent timing requirements.
These requirements limit the flexibility of caching algorithms in
choosing which segments to store in the cache. Therefore, new
caching algorithms that consider the new traffic characteristics
and system objectives need to be designed and evaluated.

In this paper, we first develop a deeper understanding of the
P2P traffic characteristics that are relevant to caching, such
as object popularity, popularity dynamics and object size. We
do that via an eight-month measurement study on a popular
file-sharing system. Then, we design and evaluate a novel P2P
caching algorithm for object admission, segmentation and re-
placement. Similar to web proxy caching, our algorithm would
be used by caches deployed at the gateway routers of ASes or
ISP networks that opt to use caching to reduce the burden of
P2P traffic. No cooperation among caches is assumed in this
paper.

Specifically, our contributions can be summarized as follows.
First, we develop new models for P2P traffic based on our mea-
surement study. We show that the popularity of P2P objects can
be modeled by a Mandelbrot–Zipf distribution, which is a gen-
eralized form of Zipf-like distributions with an extra parameter.
This extra parameter captures the flattened head nature of the
popularity distribution observed near the lowest ranked objects
in our traces. The flattened head nature has also been observed
by a previous study [1], but no specific distribution was given.
We also quantify the degree of popularity dynamics and the
multi-workload nature of P2P traffic. Second, we analyze the
impact of the Mandelbrot–Zipf popularity model on caching and
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show that relying on object popularity alone may not yield high
hit rates/byte hit rates. Third, we design a new caching algorithm
for P2P traffic that is based on segmentation, partial admission
and eviction of objects.

We perform trace-based simulations to evaluate the perfor-
mance of our algorithm and compare it against common web
caching algorithms, such as LRU, LFU and GDSP [6], [7], and
a recent caching algorithm proposed for P2P systems [8]. Our
results show that with a relatively small cache size, a byte hit rate
of up to 35% can be achieved by our algorithm, which is close to
the byte hit rate achieved by an off-line optimal algorithm with
complete knowledge of future requests. Our results also show
that our algorithm achieves a byte hit rate that is at least 40%
more, and at most triple, the byte hit rate of the common web
caching algorithms.

The rest of this paper is organized as follows. In Section II,
we summarize the related work. Section III describes our mea-
surement study, presents a new model for object popularity, and
analyzes the effect of this model on cache performance. Our P2P
caching algorithm is described in Section IV. We evaluate the
performance of our algorithm using trace-based simulation in
Section V. Section VI concludes the paper.

II. RELATED WORK

We first summarize previous P2P measurement studies, jus-
tifying the need for a new study. Then, we contrast our caching
algorithm with other P2P, web, and multimedia caching algo-
rithms.

Several measurement studies have analyzed various aspects
of P2P systems. Gummadi et al. [1] study the object characteris-
tics of P2P traffic in Kazaa and show that P2P objects are mainly
immutable, multimedia, large objects that are downloaded at
most once. The study demonstrates that the popularity of P2P
objects does not follow Zipf distribution, which is usually used
to model the popularity of web objects [9]. The study provides a
simulation method for generating P2P traffic that mimics the ob-
served popularity curve, but it does not provide any closed-form
models for it. Sen and Wang [10] study the aggregate properties
of P2P traffic in a large-scale ISP, and confirm that P2P traffic
does not obey Zipf distribution. Their observations also show
that few clients are responsible for most of the traffic. Klemm
et al. [11] use two Zipf-like distributions to model query popu-
larity in Gnutella. Because the authors are mainly interested in
query popularity, they do not measure object popularity as de-
fined by actual object transfers.

While these measurement studies provide useful insights on
P2P systems, they were not explicitly designed to study caching
P2P traffic. Therefore, they did not focus on analyzing the im-
pact of P2P traffic characteristics on caching. The study in [1]
highlighted the potential of caching and briefly studied the im-
pact of traffic characteristics on caching. But the study was per-
formed in only one network domain.

The importance and feasibility of caching P2P traffic have
been shown in [12] and [3]. The study in [12] indicates that
P2P traffic is highly repetitive and responds well to caching.
Whereas the authors of [3] show that current P2P protocols are

not ISP-friendly, because they impose unnecessary traffic on
ISPs. The authors suggest deploying caches or making P2P pro-
tocols locality-aware. Neither [12] nor [3] provide any algorithm
for caching.

The closest work to ours is [8], where two cache replace-
ment policies for P2P traffic are proposed. These two policies
are: MINRS (Minimum Relative Size), which evicts the object
with the least cached fraction, and LSB (Least Sent Byte), which
evicts the object that has served the least number of bytes from
the cache. Our simulation results show that our algorithm out-
performs LSB, which is better than MINRS according to the re-
sults in [8]. In addition, a few commercial P2P caching products
have already made it to the market, such as CacheLogic [13],
PeerCache [14], and Sandvine [15]. This highlights the impor-
tance and timeliness of the problem addressed in this paper. It is
not possible, however, to compare our work against these com-
mercial products, because we have no access to their algorithms
or implementations.

Partial and popularity-based caching schemes for web
caching, e.g., [6], and video streaming, e.g., [16], [17] have
been proposed before. [6] proposes a popularity-aware Greedy-
Dual-Size algorithm for caching web traffic. Because the
algorithm focuses on web objects, it does not consider partial
caching, which is critical for P2P caching due to large sizes of
objects. Jin et al. [16] consider partial caching based on object
popularity, encoding bit rate, and available bandwidth between
clients and servers. Their objectives are to minimize average
start-up delays and to enhance stream quality. In contrast,
our partial caching approach is based on the number of bytes
served from each object normalized by its cached size. This
achieves our objective of maximizing the byte hit rate without
paying much attention to latency. A partial caching algorithm
for video-on-demand systems is proposed in [17], where the
cached fraction of a stream is proportional to the number of
bytes played back by all clients from that stream in a time
slot. Unlike our algorithm, the algorithm in [17] periodically
updates the fractions of all cached streams, which adds signif-
icant overhead on the cache. The algorithms in [16], [17] are
not usable in caching P2P traffic because they require several
inputs that are not available in P2P systems.

Finally, our caching algorithm is designed for P2P systems,
which contain multiple workloads corresponding to various
types of objects. This is in contrast to the previous web and
streaming caching algorithms which are typically optimized for
only one workload.

III. MODELING P2P TRAFFIC

We are interested in deploying caches in different au-
tonomous systems (ASes) to reduce the WAN traffic imposed
by P2P systems. Thus, our measurement study focuses on
measuring the characteristics of P2P traffic that would be
observed by these individual caches, and would impact their
performance. Such characteristics include object popularity,
popularity dynamics and object size. We measure these char-
acteristics in several ASes of various sizes. In this section,
we describe our measurement methodology and present our
findings.
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A. Measurement Methodology

We conduct a passive measurement study of the Gnutella
file-sharing network [18]. For the purposes of our measurement,
we modify a popular Gnutella client called Limewire [19]. We
choose to conduct our measurement on Gnutella because: (i) it
has gained a lot of popularity in recent years and is considered
to be one of the top-three most popular P2P systems [20], (ii) it
supports the super-peer architecture which facilitates non-intru-
sive passive measurements by observing traffic passing through
super peers, and (iii) it is easier to modify since it is an open
source protocol.

Previous studies show that Gnutella is similar to other P2P
systems. For example, early studies on the fully-distributed
Gnutella and the index-based Napster systems found that clients
and objects in both systems exhibit very similar characteristics
such as the number of files shared, session duration, availability
and host uptime [21]. Another study on BitTorrent [22] made
similar observations regarding object characteristics and host
uptime. Also the non-Zipf behavior of object popularity in
Gnutella (as we show later) has been observed before in Kazaa
[1]. Therefore, we believe that the Gnutella traffic observed and
analyzed in our study is representative of P2P traffic in general.

According to the Gnutella protocol specifications peers
exchange several types of messages including PING, PONG,
QUERY and QUERYHIT. A QUERY message contains search
keywords, a TTL field and the address of the immediate
neighbor which forwarded the message to the current peer.
Query messages are propagated to all neighbors in the overlay
for a hop distance specified by the TTL field. A typical value for
TTL is seven hops. If a peer has one or more of the requested
files, it replies with a QUERYHIT message. A QUERYHIT
message is routed on the reverse path of the QUERY message
it is responding to, and it contains the name and the URN (uni-
form resource name) of the file, the IP address of the responding
peer, and file size. Upon receiving replies from several peers,
the querying peer chooses a set of peers and establishes direct
connections with them to retrieve the requested file.

Gnutella has two kinds of peers: ultra peers, characterized
by high bandwidth and long connection periods, and leaf peers
which are ordinary peers that only connect to ultra peers. We
run our measurement node in ultra-peer mode. It passively
records the contents of all QUERY and QUERYHIT messages
passing through it without injecting any traffic into the network.
Although we deploy only one ultra peer, we configure it to
reach most of the Gnutella network as follows. We increase the
number of concurrent connections that it can maintain to be up
to 500. A regular ultra peer allows up to 16 connections to other
ultra peers and up to 30 to leaf peers. Effectively, our peer is
worth more than 20–30 regular ultra peers. In many times, our
peer was connected to more than 350 other ultra peers. Let us
assume that each of these 350 ultra peers connect to other 10
ultra peers on average, each of them connect to other 10, and so
on. Given that queries in Gnutella are forwarded up to 7 hops
among ultra peers, our peer was able to capture traffic from a
huge number of peers. In addition, our peer ran continuously
for eight months, while other peers joined and left the network.
This means that the 200–300 other peers connected to our peer

TABLE I
SUMMARY STATISTICS OF THE MEASUREMENT STUDY

were continuously changing, which allowed our peer to reach
different and larger portions of the Gnutella network.

The measurement study was conducted between 16 January
2006 and 16 September 2006. Our measurement peer was
located at Simon Fraser University, Canada. But since the
Gnutella protocol does not favor nodes based on their geo-
graphic locations [11], we were able to observe peers from
thousands of ASes across the globe. During the eight months of
the measurement, we recorded more than 288 million QUERY
messages and 134 million QUERYHIT messages issued from
approximately 38 million peers distributed over more than 17
thousand different ASes. Table I summarizes relevant mea-
surement statistics. The large scale of our measurement study
enables us to draw solid conclusions about P2P traffic. The
measurement data is stored in several trace files with a total
size of approximately 20 gigabytes. The trace files are available
to the research community at [23].

B. Measuring and Modeling Object Popularity

In this section, we explain how we measure object popularity
in different ASes. Then, we present and validate a simple, and
fairly accurate, popularity model for objects in P2P systems.

The popularity of an object is defined as the probability of
requesting that object relative to other objects. Object popularity
is critical for the performance of the cache. Intuitively, storing
the most popular objects in the cache is expected to yield higher
hit rates than storing any other set of objects.

Since we are primarily interested in the performance of indi-
vidual caches, we measure the popularity of objects in each AS.
To measure the popularity of an object in a specific AS, we count
the number of replicas of that object in the AS considered. The
number of replicas indicates the number of downloads that were
completed in the past. This means that if a cache were deployed,
it would have seen a similar number of requests. This assumes
that most of the downloads were supplied by peers from out-
side the AS, which is actually the case because peers in most
current P2P networks have no sense of network proximity and
thus do not favor local peers over non-local peers. In fact, pre-
vious studies [1] have shown that up to 86% of the requested
P2P objects were downloaded from peers outside the local net-
work even though they were locally available.

To count the number of replicas of a given object, we ex-
tract from our trace all QUERYHIT messages which contain the
unique ID (URN) of that object. QUERYHIT messages contain
the IP addresses of the responding nodes that have copies of
the requested object. We can determine the number of replicas
by counting the number of unique IP addresses. Then, we map
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Fig. 1. Object popularity in P2P traffic: in different ASes (a)–(h), and across all ASes (i). The popularity can be modeled by Mandelbrot–Zipf Distribution. Plots
are sorted from left to right based on the � values. (a) AS 223, (b) AS 1782, (c) AS 2120, (d) AS 2161, (e) AS 1859, (f) AS 9406, (g) AS 14832, (h) AS 18538, (i)
All ASes.

these unique IP addresses to their corresponding ASes by using
the GeoIP database [24].

We compute the popularity of each object in each of the top
18 ASes (in terms of sending and receiving messages). These
top ASes contribute around 43% of the total traffic seen by our
measurement node. We also compute the popularity across all
ASes combined. We rank objects based on their popularity, and
we plot popularity versus rank. Fig. 1 shows a sample of our re-
sults. Similar results were obtained for other ASes. As shown in
the figure, there is a flattened head in the popularity curve of P2P
objects. This flattened head indicates that objects at the lowest
ranks are not as popular as Zipf-like distributions would pre-
dict. This flattened head phenomenon could be attributed to two
main characteristics of objects in P2P systems: immutability and
large sizes. The immutability of P2P objects eliminates the need
for a user to download an object more than once. This down-
load at most once behavior has also been observed in previous

studies [1]. The large size of objects, and therefore the long time
to download, may make users download only objects that they
are really interested in. This is in contrast to web objects, which
take much shorter times to download, and therefore, users may
download web objects even if they are of marginal interest to
them. These two characteristics reduce the total number of re-
quests for popular objects.

Fig. 1 also shows that, unlike the case for web objects [9],
using a Zipf-like distribution to model the popularity of P2P
objects would result in a significant error. In log-log scale,
the Zipf-like distribution appears as a straight line, which can
reasonably fit most of the popularity distribution except the
left-most part, i.e., the flattened head. A Zipf-like distribution
would greatly overestimate the popularity of objects at the
lowest ranks. These objects are the most important to caching
mechanisms, because they are the good candidates to be stored
in the cache.
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Fig. 2. Zipf versus Mandelbrot–Zipf for different � (plateau factor) values.

We propose a new model that captures the flattened head of
the popularity distribution of objects in P2P systems. Our model
uses the Mandelbrot–Zipf distribution [25], which is the general
form of Zipf-like distributions. The Mandelbrot–Zipf distribu-
tion defines the probability of accessing an object at rank out
of available objects as

(1)

where is the skewness factor, and
is a parameter which we call the plateau factor. is so

called because it is the reason behind the plateau shape near to
the left-most part of the distribution. Notice that the higher the
value of , the more flattened the head of the distribution will
be. When , Mandelbrot–Zipf distribution degenerates to
a Zipf-like distribution with a skewness factor . Fig. 2 com-
pares Zipf distribution versus Mandelbrot–Zipf distribution for
different values. Notice that, there is about an order of mag-
nitude difference in frequency between the two distributions at
the lowest ranks.

To validate this popularity model, we fit the popularity dis-
tributions of objects in each of the top 18 ASes to Mandel-
brot–Zipf distribution using the Matlab distribution fitting tool.
Our results, some of them are shown in Fig. 1, indicate that Man-
delbrot–Zipf distribution models the popularity of P2P objects
reasonably well. The significance of the plateau factor is that
it controls the left-most part of the distribution; i.e., the frac-
tion of total requests received by objects at the lowest ranks.
As such, serves as an important indication of the feasibility of
caching and the achievable byte hit rate; the larger the value of
the lesser the benefit of caching especially for caching schemes
that store entire objects. We elaborate more on the impact of the
Mandelbrot–Zipf model on caching in the following section.

The finding that object popularity in P2P systems follows a
Mandelbrot–Zipf model is important in its own right, because
it gives a simple formula for modeling the P2P traffic behavior
observed in our traces as well as by other researchers. e.g., [1].
This model can be used for example to: (i) analytically analyze

the performance of P2P systems in general, and (ii) generate
more accurate synthetic traces for P2P traffic.

C. The Effect of Mandelbrot–Zipf Popularity on Caching

In this section, we analyze the impact of the Mandelbrot–Zipf
popularity model on the cache hit rate and byte hit rate using
simple analysis and simulation.

We start with a simple analysis of an LFU (Least Frequently
Used) policy. Under LFU, the most popular objects are stored
in the cache. For simplicity, we assume that all objects have the
same size and the skewness parameter is 1. We are mainly
interested in exploring the impact of the plateau factor on the
hit rate. The hit rate of an LFU cache is given by

(2)

Equation (2) implies that increasing results in a decrease in
hit rate. When , i.e., the head is very flat, the hit rate ap-
proaches zero. In contrast, for a Zipf-like popularity distribution

, the hit rate is . To further illustrate the im-
pact of Mandelbrot–Zipf on the cache performance, we plot in
Fig. 3(a) the relative loss in hit rate between Zipf and Mandel-
brot–Zipf distributions. The relative loss in hit rate is computed
as , where and are the
hit rates achieved by an LFU cache if the popularity follows Zipf
and Mandelbrot–Zipf distributions, respectively. As the figure
shows, significant loss in hit rate could be incurred because of
the flattened-head nature of the Mandelbrot–Zipf popularity dis-
tribution. The loss in hit rate is higher for smaller relative cache
sizes and larger values of .

Next, we consider an LRU (Least Recently Used) cache. We
use simulation to study the impact of the popularity model on
the hit rate. We generate synthetic traces as follows. We con-
sider 4 000 equal-sized objects and randomly generate requests
for these objects according to the Zipf and Mandelbrot–Zipf dis-
tributions. We run the traces through an LRU cache with a rela-
tive cache size that varies between 0 and 100%. We compute the
hit rate in each case. The results are shown in Fig. 3(b). As the
figure indicates, the situation is even worse under LRU: higher
drops in hit rates are observed.

Finally, we use traces from the first three months of our mea-
surement study and compute the maximum achievable byte hit
rate in two different ASes. We pick two ASes from our traces
with similar values but different values: AS397 with

and AS14832 with (as observed in the first three
months). We use an optimal off-line algorithm which looks at
the trace of each AS and stores in the cache the objects which
will serve the most number of bytes, hence, achieves the highest
byte hit rate. We perform trace-based simulation and compute
the byte hit rate under various cache sizes for both ASes. As can
be seen from Fig. 3(c), with a cache size of 400 GB, a byte hit
rate of 24% is achieved under AS397, while only 9% byte hit
rate is achieved under AS14832 using the same cache size. This
means that the top popular objects which can fit in a cache size
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Fig. 3. Effect of Mandelbrot–Zipf popularity distribution on the cache performance. (a) Hit rate loss under LFU (analytic). (b) Hit rate under LRU (simulation).
(c) Byte hit rate under an offline optimal policy (trace-based).

Fig. 4. Popularity dynamics in P2P systems. The figure shows popularity of the 100 most requested objects in the top two ASes (a)–(b), and in all ASes (c). (a)
Top first AS. (b) Top second AS. (c) All ASes.

of 400 GB receive 24% of the total outgoing requests in AS397,
in comparison to 9% of the total outgoing requests in AS14832.

These observations and experiments imply that caching
schemes that capitalize on object popularity alone may not
yield high hit rates/byte hit rates and may not be very effective
in reducing the ever-growing P2P traffic.

D. Popularity Dynamics

In designing dynamic caching algorithms, it is important
to understand the timescale at which the popularity of objects
changes, so that we can maintain in the cache the most popular
objects. This is particularly important in P2P systems since the
total amount of traffic far exceeds the cache size.

To measure the turnover of popularity in P2P traffic, we per-
form the following experiment. We choose the top 100 most
popular objects during the third month of our measurement as
seen in the top first AS, top second AS and all ASes. We trace
the popularity of those objects by counting the number of re-
quests they receive per week for the entire eight months of our
measurement study. Fig. 4 shows that popular objects gain pop-
ularity in a relatively short timescale reaching their peak in about
5–10 weeks. The popularity of those objects drops dramatically
after that. As the figures show, we observe as much as a sixfold

decrease in popularity in a matter of 5–10 weeks. This means
that if we store objects in the cache based on their frequency
of requests, they will be retained in the cache long after they
lose their popularity. Thus, frequency-based caching policies,
e.g., LFU, may not be very effective in caching P2P traffic. Also
notice that the popularity of objects is not very short-lived. As
shown in the figure, a popular object enjoys about 3 months of
popularity before its request frequency dies out. This indicates
that incremental partial caching of objects is beneficial since
there is enough time for the cache to build popularity profiles,
identifying which objects are truly popular and incrementally
caching them until they are completely available in the cache. If
the time scale were small, i.e., in the order of days, full caching
of objects would be a better approach. We discuss incremental
partial caching versus full caching further in Sections IV and
V-E.

E. Measuring and Modeling Object Size

Many web caching algorithms use object size in their deci-
sion to evict objects. Other algorithms, such as GreedyDual-Size
[6], [7], incorporate size with other characteristics to maximize
cache performance. With the growing amount of P2P traffic and
the large size of exchanged objects, cache size is a very impor-
tant resource, and any effective policy must strive to achieve the
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objective of placing in the limited-size cache the best objects
that will maximize the byte hit rate.

To understand object size distributions, we collect informa-
tion about objects in two popular P2P file-sharing systems: Bit-
Torrent and Gnutella. In BitTorrent, there are a number of web
servers that maintain metadata (torrent) files about objects in
the network. These servers are known as torrent sites. We de-
veloped a script to contact four popular torrent sites and down-
load random torrent files. We downloaded 100 thousand torrent
files, 49.3% of which are unique. Each torrent file contains in-
formation about the shared object including object size, number
of segments in the object and the size of each segment. For
the Gnutella system, we extract from our traces the sizes of all
unique objects seen during our measurement.

The histogram of the size distribution in both systems ex-
hibits several peaks, where each peak corresponds to a different
workload (figures are not shown due to space limitations, they
are available in [26]). For example, a peak around 700 MB cor-
responds to most shared CD movies; another peak around 300
MB corresponds to high quality TV video series and some soft-
ware objects, while a peak around few megabytes corresponds
to video and audio clips. The location of those peaks are almost
identical in both Gnutella and BitTorrent. However, BitTorrent
has two more peaks: one peak around 1.5 GB corresponding
to high quality avi movies, and another smaller peak at 4.5 GB
corresponding to DVD movies. We have checked the validity of
the peak-to-content-type mapping by randomly sampling many
files from the content and checking the type of the sampled files.
The similarity of workloads in Gnutella and BitTorrent leads us
to believe that similar distributions exist for shared content on
other file-sharing P2P systems.

The existence of multiple workloads has several conse-
quences on the cache design. For example, audio files tend to
be requested more often than large video files. Thus, using an
LFU policy would be biased against large objects. On the other
hand, using object size as a replacement criterion, i.e., evicting
objects with the smallest size, would be biased against smaller
objects. Worse yet, this might result in a scenario where we evict
tens of popular mp3 objects to make space for a not-so-popular
large video object that would be requested only once. Therefor,
any P2P caching algorithm will have to consider the intrinsic
properties of each workload and the fact that P2P object size
extends from few kilobytes to few gigabytes.

Understanding object size and the multiple workloads that
exist guided the design of our P2P caching algorithm. We show
in the Section IV how our algorithm leverages the existence
of multiple workloads to divide objects of each workload into
equal-sized segments to improve cache performance.

F. Summary of the Measurement Study

We designed our measurement study to analyze the P2P
traffic that would be observed by individual P2P caches de-
ployed in different ASes. We found that popular P2P objects are
not as highly popular as their web counterparts. The popularity
distribution of P2P objects has a flattened head at the lowest
ranks, and therefore, modeling this popularity as a Zipf-like
distribution yields a significant error. We also found that a gen-
eralized form of the Zipf distribution, called Mandelbrot–Zipf,

captures this flattened head nature and therefore is a better
model for popularity of P2P objects. Furthermore, we found
that the Mandelbrot–Zipf popularity has a negative impact
on hit rates and byte hit rates of caches that use the common
LRU and LFU policies. In addition, our study revealed the
dynamic nature of object popularity in P2P systems, which
should be considered by the caching algorithm. Finally, we
found that objects in P2P systems have much larger sizes than
web objects, and they can be classified into several categories
based on content types.

IV. P2P CACHING ALGORITHM

With the understanding of the P2P traffic we developed, we
design and evaluate a novel P2P caching scheme based on partial
caching. We start with an overview of the algorithm, then we
discuss various implementation issues.

A. Overview

Our caching algorithm accounts for the Mandelbrot–Zipf
popularity, large object sizes, and multiple workloads charac-
teristics of the P2P traffic revealed by our measurement study.
The flattened head of the Mandelbrot–Zipf popularity (see
Figs. 1 and 2) implies that most of the requests are not directed
towards a small set of highly-popular objects, unlike the case
for web objects which follow the Zipf popularity model. Rather,
the requests are spread out over the relatively larger number
of objects that constitute the flattened head of the popularity
distribution. To achieve high byte hit rate, the cache should
store as many as possible of the objects at the flattened head.
However, as shown by our measurements, object sizes are fairly
large. This means that the cache can only store a few objects
in their entirety. Storing an entire object upon a request may
waste a large cache space, especially if this object is unpopular.
This may reduce the chances of popular objects at the head of
the distribution to get into the cache. Therefore, P2P caching
should take a conservative approach towards admitting new
objects into the cache to reduce the cost of storing unpopular
objects. To achieve this objective, our algorithm divides objects
into small segments and incrementally admits more segments
of an object to the cache as the object receives more requests.

Our algorithm performs partial caching of objects and it in-
crementally increases the stored fraction of each object as the
object becomes more popular. Partial caching is beneficial in
P2P systems for an additional subtle reason: aborted downloads.
According to [1], many download sessions are not completed.
This means that even if there is a hit, the whole object may not
be downloaded. Therefore, having more partial objects is better
than having few full objects, because it increases the chances of
hitting fragments of objects in the cache. Our experimental re-
sults (see Section V-E) verify this intuition.

To account for the multiple workloads nature of P2P traffic,
our algorithm maintains the average object size for each work-
load. Denote the average object size in workload as . Fur-
ther let be the number of bytes served from object nor-
malized by its cached size. That is, can be considered as
the average number of times each byte in this object has been
served from the cache. The cache ranks objects according to
their values, such that for objects ranked from 1 to , we have
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Fig. 5. A Proportional Partial Caching Algorithm for P2P traffic.

. We refer to an object at rank simply
as object . When an object is seen for the first time, only one
segment of it is stored in the cache. If a request arrives for an ob-
ject of which at least one segment is cached, the cache computes
the number of segments to be added to this object’s cached seg-
ments as , where is the mean of the object size in
workload which object belongs to. Notice that this is only
the number of segments the cache could store of object . But
since downloads can be aborted at any point during the session,
the number of segments actually cached upon a request, denoted
by , is given by

(3)

where is the number of requested segments not in the
cache. This means that the cache will stop storing uncached seg-
ments if the client fails or aborts the download, and that the
cache stores at least one segment of an object. Notice that the
segment size is fixed across workloads to facilitate cache man-
agement, while the number of stored segments is proportional
to the object value and the mean object size of the work-
load to which the object under consideration belongs.

The pseudo-code of our P2P caching algorithm appears in
Fig. 5. At a high level, the algorithm works as follows. The cache
intercepts client requests and extracts the object ID and the re-
quested range. If no segments of the requested range are in the
cache, the cache stores at least one segment of the requested
range. If the entire requested range is cached, the cache will
serve it to the client. If the requested range is partially available
in the cache, the cache serves the cached segments to the client,
and decides how many of the missing segments to be cached
using equation (3). In all cases, the cache updates the average
object size of the workload to which the object belongs and the

value of the requested object.
The algorithm uses a priority queue data structure to store

objects according to their values. When performing eviction,
segments are deleted from the least valued objects first. The al-
gorithm needs to perform comparisons with every hit
or miss, where is the number of objects in the cache. Since

objects are large, this is a reasonable cost considering the small
number of objects the cache will contain.

B. Deployment and Implementation Issues

The proposed caching algorithm is to be used by caches
deployed at the gateway routers of ASes or ISP networks that
choose to employ caching to reduce the burden of P2P traffic.
Caches in different ASes work independent from each other.
The algorithm does not require cooperation among caches.
Based on our trace-based simulation results, caches with
storage in the order of several hundreds gigabytes would yield a
byte hit between 20–30% using our algorithm, which amounts
to significant savings in WAN bandwidth given the enormous
amount of P2P traffic. There are several implementation issues
that need to be addressed to develop a cache for P2P traffic. We
briefly discuss some of them in the following in light of our
ongoing work to develop a fully-functioning prototype cache.

In order to take full advantage of a deployed cache while
avoiding modifying the source code of P2P client software, the
P2P cache should be transparent. This is similar to web caching,
where the gateway router detects HTTP requests and forwards
them to a web cache. Detecting P2P traffic, however, is a bit
more involved because many P2P systems use dynamic ports
and some of them even encrypt control packets. Nonetheless,
there have been several works on identifying P2P traffic using
techniques such as application signatures [27] and connection
patterns [28]. The traffic identification method is orthogonal to
the operation of the cache itself. Also to ensure cache trans-
parency, the cache participates in the P2P protocol. This means
that when a cache serves a hit, it acts as if it were a regular
peer in the network sending to the requesting peer. In addi-
tion, when there is a miss and the caching algorithm decides
to store additional segments, the cache requests these segments
using the P2P protocol. Therefore, our algorithm does not re-
quire changing the underlying P2P protocol.

Another important issue in designing the cache is storing and
serving fragments of objects. This is done as follows. Object
IDs are stored in a heap based on their values. Each node
of an object contains information on how many bytes are cur-
rently stored of that object. If the range of bytes is contiguous,
only two fields are needed: start byte and end byte. Otherwise,
a linked list is maintained, where each node in the list repre-
sents a contiguous range of bytes and has a pointer to the next
range. Byte ranges are combined, and their associated nodes are
merged once the missing bytes become available in the cache.
Node merging accelerates serving byte ranges in case of a hit, as
will be described shortly. To enhance contiguity of stored byte
ranges, when the caching algorithm decides to store additional
segments of an object, it prefers to fill the gap right after the first
stored byte range.

Requests in P2P systems are typically issued for byte ranges.
Upon receiving a request for an object, one of the following
scenarios will occur. First, if the entire requested byte range is
found in the cache, it is served to the client. This can be checked
easily using the start and end bytes of the requested byte range
and comparing them against stored byte ranges. Second, if the
byte range is not in cache and the caching algorithm decides
that it is not worth storing locally, the cache will forward the
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query to the P2P network, as if it were an intermediate node in
the P2P network. If the requested byte range is found at some
peer(s) in the network, it will be sent directly to the original
requesting peer, not to the cache. Direct transmission of bytes to
the requesting peer reduces the load on the cache. Third, if part
of the requested range is found in the cache, this part is served to
the client. Then, the caching algorithm decides whether to store
more segments of the requested object or not. In the former case,
the cache constructs a query with the missed part of the byte
range—with the cache itself as the source—and sends it to the
P2P network. While receiving the missed part of the requested
byte range, the cache serves it to the client and stores it locally.
In the latter case, the cache constructs a query for the missed
part with the requesting peer as the source and sends that query
to the P2P network.

Finally, an interesting issue that we are currently exploring
is how to utilize a single cache to serve requests from multiple
different P2P protocols. That would further increase the byte
hit rate and save WAN bandwidth. To support cross-systems
caching, several aspects need to be handled, such as different
IDs for the same object in different systems and different object
segmentation strategies.

V. EVALUATION

In this section, we use trace-driven simulation to study the
performance of our P2P caching algorithm under several sce-
narios, and compare it against several common web caching al-
gorithms and a recent caching algorithm proposed for P2P sys-
tems.

A. Experimental Setup

Traces and Performance Metrics. We use traces obtained
from the first three months of our measurement study to conduct
our experiments. Based on our discussion on measuring object
popularity, we count the number of replicas of each object from
QUERYHIT messages returned by peers in a particular AS.
We assume that these replicas were downloaded sometime in
the past, and a cache would have seen a sequence of requests
for these objects if it had been deployed in that AS. Thus, we
construct the sequence of requests from the unique QUERYHIT
messages, i.e., the sequence has one request for each replica
downloaded by a peer. Peers that replied earlier with QUERY-
HITs for an object are assumed to have downloaded the object
earlier. Notice that, from the cache perspective, the exact time
when the object was downloaded is not important. It is the
relative popularity of objects and the distance between similar
requests in the trace that matter. These two issues are captured
by our sequences. In addition, in some of our simulations
(Section V-D), we explicitly study the effect of various degrees
of temporal locality using synthetic traces. We do this by
controlling the temporal correlations between objects using the
LRU stack model in [29]. Thus we complement our collected
traces with synthetic traces to evaluate all aspects of caching.

Our objective is to study the effectiveness of deploying caches
in several ASes. Thus, we measure the byte hit rate that could be
achieved if a cache were to be deployed in that AS. We use the
byte hit rate as the performance metric because we are mainly

interested in reducing the WAN traffic. In all experiments, we
use the ASes which have the most amount of traffic seen by
our measurement node. This ensures that we have enough traffic
from an AS to evaluate the effectiveness of deploying a cache
for it. In addition, we study the impact of the plateau factor and
the skewness parameter of the Mandelbrot–Zipf distribution
on the performance of our P2P caching algorithm.

Algorithms Implemented. We run several AS traces through
the cache and compare the byte hit rate achieved using several
caching algorithms. We implemented six algorithms in total. In
addition to our algorithm (P2P), we implemented the Least Re-
cently Used (LRU), Least Frequently Used (LFU), popularity-
aware GreedyDual-Size (GDSP) [6] and Least Sent Bytes (LSB)
[8] algorithms. We also implemented the off-line optimal (OPT)
algorithm to use it as a benchmark for comparison. LRU cap-
italizes on the temporal correlation in requests, and thus re-
places the oldest object in the cache. LFU sorts objects based
on their access frequency and evicts the object with the least fre-
quency first. We compared against LRU and LFU because they
are simple and widely used for web caching. Thus our compar-
ison will answer the natural question of what if we were to use
the currently deployed web caches for P2P traffic. GDSP, an
enhancement on the GreedyDual-Size algorithm [7], is an elab-
orate algorithm designed for web caching, which accounts for
several aspects including: size, recency, and popularity [6], [7].
We used object size as the cost function in GDSP to maximize
byte hit rate as indicated by [6], [7]. LSB is designed for P2P
traffic caching and it uses the number of transmitted bytes of
an object as a sorting key. The object which has transmitted the
least amount of bytes will be evicted next. LSB is the only other
algorithm designed for P2P caching that we are aware of. OPT
looks at the entire stream of requests off-line and caches the ob-
jects that will serve the most number of bytes from the cache.

Evaluation Scenarios. We evaluate the algorithms under
several scenarios. First, we consider the case where objects
requested by peers are downloaded entirely, that is, there are
no aborted transactions. Then, we consider the case where
the downloading peers prematurely terminate the downloads
during the session, which is not uncommon in P2P systems [1].

We also analyze the effect of temporal locality on caching
algorithms. Recall that temporal locality is defined as the like-
lihood of requesting an object in the near future [6], [30]. Tem-
poral locality has two components: popularity and temporal cor-
relations [30]. Popularity of an object is the number of requests
it receives relative to other objects. Temporal correlation means
that requests to the same object tend to be clustered or corre-
lated together in time. Temporal correlation is usually measured
in the number of intervening requests between two consecutive
requests to the same object. A shorter sequence of intervening
requests implies higher temporal correlations. We study the ef-
fect of each component of temporal locality in isolation from the
other. We also study the combined effect of the two components.
To isolate the popularity component, we randomly shuffle our
traces to eliminate the effect of temporal correlations. For the
temporal correlations component, we generate synthetic traces
with various degrees of temporal correlations (and fixed popu-
larity), and run the synthetic traces through a cache running our
algorithm. For the combined effect of the two components, we
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Fig. 6. Byte hit rate for different caching algorithms. No aborted downloads. (a) AS397, 48% of traffic is cacheable. (b) AS95, 54% of traffic is cacheable.
(c) Top ten ASes.

use the original traces with preserved popularity and temporal
correlations.

Finally, we vary the cache size between 0 and 1000 GB.

B. Caching Without Aborted Downloads

Fig. 6 shows the byte hit rate for two representative ASes with
different characteristics. These two ASes have different max-
imum achievable byte hit rates, which is defined as the fraction
of traffic downloaded more than once, i.e., cacheable traffic,
over the total amount of traffic. As shown in the figure, our
policy outperforms other policies by as much as 200%. For in-
stance, in AS397 (Fig. 6(a)) with a cache of 600 GB, our policy
achieves a byte hit rate of 24%, which is almost double the rate
achieved by LRU, LFU, GDSP, and LSB policies. Moreover,
the byte hit rate achieved by our algorithm is about 3% less than
that of the offline optimal algorithm. Our traces indicate that
the amount of traffic seen in AS397 is around 24.9 terabytes.
This means that a reasonable cache of size 600 GB would have
served about 6 terabytes locally using our algorithm; a signifi-
cant saving in the WAN bandwidth.

We believe that traditional policies perform poorly for P2P
traffic due to the effect of unpopular objects. For example, one-
timer objects are stored entirely under traditional policies on
a miss. Under our policy, however, only one segment of each
one-timer will find its way into the cache, thus minimizing their
effect. The same could be said about second timers, third timers
and so on. Thus, our algorithm strives to discover the best ob-
jects to store in the cache by incrementally admitting them. Sim-
ilar results were obtained for the other top ten ASes. Our policy
consistently preforms better than traditional policies. Fig. 6(c)
summarizes the relative improvement in byte hit rate that our
policy achieves over LRU, LFU, GDSP, and LSB for the top ten
ASes, with a cache of size 500 GB. The relative improvement is
computed as the difference between the byte hit rate achieved by
our policy and the byte hit rate achieved by another policy nor-
malized by the byte hit rate of the other policy. For instance the
improvement over LRU would be (P2P-LRU)/LRU. The figure
shows a relative improvement of at least 40% and up to 180%
can be achieved by using our algorithm. That is a significant gain
given the large volume of the P2P traffic. We notice that the rela-
tive gain our policy achieves is larger in ASes with a substantial
fraction of one-timers.

We also observe that the achievable byte hit rate is between
15% and 40% with reasonable cache sizes. This is similar to the
achievable byte hit rate for web caching, which is practically in
the range 20%–35% (CISCO technical paper [31]), or as other
sources indicate 30%–60% [32]. But due to the large size of P2P
objects, a small byte hit rate amounts to savings of terabytes of
data.

As a final comment on Figs. 6(a) and (b), consider the byte
hit rates achieved under our algorithm and the optimal algo-
rithm. Notice that although the percentage of cacheable traffic
in AS397 is less than that of AS95, the byte hit rate is higher in
AS397. This is because popular objects in AS95 do not get as
many requests as their counterparts in AS397. That is, the pop-
ularity distribution of AS95 has a more flattened head than that
of AS397. We computed the skewness factor and the plateau
factor of the Mandelbrot–Zipf distribution that best fits the
popularity distributions of these two ASes. We found that AS95
has and , while AS397 has and .
Smaller values mean less flattened heads, and yield higher byte
hit rates. Section V-F elaborates more on the impact of and
on the byte hit rate.

C. Caching With Aborted Downloads

Due to the nature of P2P systems, peers could fail during a
download, or abort a download. We run experiments to study
the effect of aborted downloads on caching, and how robust our
caching algorithm is. Following observations from [1], we allow
66% of downloads to be aborted anywhere in the session. To
achieve this, we use the same traces used for the previous ex-
periments with the same number of objects plus two aborted
download sessions for each object in the trace. While our policy
is designed to deal with aborted downloads, web replacement
policies usually download the entire object upon a miss, and at
times perform pre-fetching of objects. This is reasonable in the
web since web objects are usually small, which means they take
less cache space. But in P2P systems, objects are larger, and
partial downloads constitute a large number of the total number
of downloads. Fig. 7 compares the byte hit rate with aborted
downloads using several algorithms. Compared to the scenario
of caching under full downloads (Section V-B), the performance
of our algorithm improves slightly while the performance of
other algorithms declines. The improvement in our policy could
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Fig. 7. Byte hit rate for different caching algorithms using traces with aborted downloads. (a) AS397. (b) AS95. (c) Relative byte hit rate improvement.

Fig. 8. Byte hit rate for different caching algorithms using traces with temporal correlations. (a) AS397, (b) AS95, (c) Using model from [29].

be explained by the fact that fewer bytes are missed in case of a
failure.

The performance of LRU, LFU, GDSP, and LSB declines be-
cause they store an object upon a miss regardless of how much
of it the client actually downloads. Hence, under aborted down-
load scenarios, the byte hit rates for traditional policies suffer
even more than under full download scenarios. Similar results
were obtained for the top ten ASes with a cache of size 500
GB. Our policy consistently outperforms LRU, LFU, LSB and
GDSP with a wide margin in all ten ASes. Fig. 7(c) shows that
the relative improvement in byte hit rate is at least 50% and up
to 200%.

D. Sensitivity of the P2P Caching Algorithm to Temporal
Locality

As we discuss in Section V-A, temporal locality is caused by
popularity of objects and temporal correlations of requests. In
the previous experiments we isolated the effect of popularity
from the effect of temporal correlations by shuffling the traces.
In this section, we first study the combined effect of the two
components of temporal locality. Then we isolate temporal cor-
relation and study its effect on caching while fixing popularity.

For the combined effect of popularity and temporal corre-
lations, we use the original unshuffled traces, with preserved
popularity and temporal correlations. Figs. 8(a) and (b) show
the byte hit rate in two ASes: AS95 and AS397, respectively.
LRU and GDSP perform slightly better than LSB and LFU be-
cause they make use of temporal correlation between requests.
However, the achieved byte hit rate under the four algorithms

is still low compared to the byte hit rate achieved by our algo-
rithm. Note that the byte hit rate under our algorithm is slightly
smaller than in the previous experiments, where we only used
popularity. This is because our algorithm does not capitalize on
temporal correlation. However, this reduction is small, less than
3%. The fact that the performance of our algorithm does not
suffer much under temporal correlation and still outperforms
other algorithms (e.g., LRU and GDSP) could be explained as
follows. We believe that object size is the dominant factor in
caching for P2P systems, because the maximum cache size we
used (1000 GB) is still small compared to the total size of ob-
jects, less than 5%–10% in most cases. As a consequence, object
admission strategy is a key element in determining the byte hit
rate, which our algorithm capitalizes on. We obtained similar
results for other ASes.

Now, we fix popularity and study the effect of temporal corre-
lations. Since we cannot control the degree of correlation in our
traces, we generate synthetic traces with various degrees of tem-
poral correlations. This is done by using the LRU Stack Model
[29], which generates correlated requests by using a stack of
depth to keep an ordered list of the last requested objects
such that the subset of objects in the stack have a higher proba-
bility of being accessed again than they would if they were not
in the stack. The stack depth reflects the degree of temporal cor-
relations in the generated traces: higher depths indicate stronger
temporal correlations.

The authors of [29] provide an open-source trace generation
tool called ProWGen. We modify ProWGen to use Mandel-
brot–Zipf distribution and provide object sizes from our traces.
We fix the popularity by using and . To study
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Fig. 9. The importance of partial caching in P2P traffic. The figure shows the byte hit rate achieved using our P2P algorithm with and without partial caching in
AS95 (a), and in top ten ASes (b). (c) shows the byte hit rates achieved by our online heuristic partial caching algorithm (P2P) and by the MKP offline optimal in
top ten ASes. (a) AS95. (b) P2P algorithm. Cache size 500 GB. (c) Top ten ASes. Cache Size 500 GB.

the sensitivity of our algorithm to temporal correlations, we vary
depth of the LRU stack between 0 and 500. Fig. 8(c) shows that
our P2P caching algorithm is not sensitive to the degree of tem-
poral correlations, and the achieved byte hit rate stays fairly con-
stant across wide range of temporal correlations. This shows the
robustness of our algorithm in face of different traffic patterns
with various degrees of temporal correlations.

E. Partial Caching Versus Full Caching

As we show in previous experiments, the performance of tra-
ditional policies suffers when they are used to cache P2P traffic.
This is mainly because they cache entire objects, thus running
the risk of storing in the cache large unpopular objects. Our al-
gorithm takes a conservative approach by incrementally caching
objects in proportion to their request frequency. To study how
much partial caching contributes to the performance of our P2P
caching algorithm, we perform the following experiment. We
run the traces of the top 10 ASes through a 500 GB cache that
runs a modified version of our algorithm without the partial
caching capability. That is, we use a utility function based on the
number of bytes served from an object normalized by its cached
size, and evict the object with the least utility value. Fig. 9(a)
shows the results for a sample AS where the performance of
our algorithm clearly suffers when partial caching is not used.
In Fig. 9(b), we show the byte hit rate achieved using our al-
gorithm with and without partial caching capability for the top
ten ASes using a cache of size 500 GB. As the figure shows, in
some ASes, partial caching contributes as much as 60% of the
byte hit rate achieved by our algorithm.

To further investigate the importance of partial caching for
P2P traffic, we compare our algorithm versus an offline algo-
rithm that looks at the entire trace and fills the cache with the
most popular objects. We call this algorithm the Most -Pop-
ular (MKP) algorithm. MKP is optimal in terms of object popu-
larity, i.e., it achieves the optimal hit rate, not the optimal byte hit
rate. In Fig. 9(c), we plot the byte hit rate of our online heuristic
algorithm versus that of the offline optimal MKP algorithm in
the top ten ASes. The figure shows that the P2P caching al-
gorithm outperforms MKP in six of the top ten ASes. In two
of the remaining four ASes, at ranks 9 and 10, MKP outper-
forms our algorithm with a very small margin % , and by

a small margin % in the other two ASes at ranks 6 and 8.
From further inspection, we found out that these four ASes are
characterized by a small plateau factor (less flattened head)
in their popularity curve, and that their popular objects tend to
have large sizes. The results in Fig. 9 imply that partial caching
contributes significantly toward achieving high byte hit rates in
caching of P2P traffic.

In addition, as shown in Fig. 6 the byte hit rate achieved by
P2P caching algorithm (which does partial caching) is close to
the optimal byte hit rate in most cases. Therefore, based on the
results in Figs. 6 and 9, we believe that partial caching is crucial
in P2P traffic. It remains an open question, though, to prove
whether partial caching is absolutely necessary to achieve high
byte hit rates in P2P traffic.

F. Effect of and on P2P Caching

As we mention in Section III, P2P traffic can be modeled by a
Mandelbrot–Zipf distribution with two parameters: a skewness
parameter and a plateau factor . In this section, we study the
effect of and on the byte hit rate of our algorithm via simu-
lation. We did not use our traces because they may not capture
the performance of our algorithm for all possible values of
and . We randomly pick 100 000 objects from our traces and
generate their frequencies using Mandelbrot–Zipf with various
values for and . We fix the cache size at 1 000 GB and we as-
sume a no-failure model where peers download objects entirely.

To study the effect of different values, we fix and change
between 0.4 and 1. As shown in Fig. 10, the byte hit rate

increases as the skewness factor increases. This is intuitive
since higher values of mean that objects at the lowest ranks
are more popular and caching them yields higher byte hit rate.
Thus ASes whose popularity distribution is characterized with
high values would benefit more from caching than those with
low values.

Another parameter that determines the achievable byte hit
rate is the plateau factor of the popularity distribution. re-
flects the flattened head we observed in Section III. Fig. 11
shows that the byte hit rate decreases as increases. The reason
for this is that a higher value of means popular objects are re-
quested less often. This has a negative impact on a cache that
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Fig. 10. The impact of � on caching.

Fig. 11. The impact of � on caching.

stores those popular objects, because they receive less down-
loads resulting in a decreased byte hit rate. Notice, though, that
we are only exploring how changing the Mandelbrot–Zipf pa-
rameters impacts the caching performance and not suggesting
using specific values for and . This means that there exists
some ASes for which Mandelbrot–Zipf accurately captures the
popularity model by a small value of and a large value of
resulting in popularity being spread out among objects more
evenly, i.e., approaching a uniform distribution. But in such
model all caching algorithms will suffer since the portion of re-
quests received by popular objects decreases drastically.

VI. CONCLUSION

In this paper, we conducted an eight-month measurement
study on the Gnutella P2P system. Using real-world traces,
we studied and modeled characteristics of P2P traffic that
are relevant to caching, such as popularity, object size and
popularity dynamics. We found that the popularity distribution
of P2P objects cannot be captured accurately using Zipf-like
distributions. We proposed a new Mandelbrot–Zipf model for
P2P popularity and showed that it closely models object popu-
larity in several AS domains. The finding that object popularity
in P2P systems follows a Mandelbrot–Zipf model could be of
interest in its own right, since it gives a simple formula for
modeling the P2P traffic behavior observed in our traces as

well as by other researchers, e.g., [1]. This model can be used
for example to: (i) analytically analyze the performance of P2P
systems in general, and (ii) generate more accurate synthetic
traces for P2P traffic. Our measurement study also revealed that
the P2P traffic is a mix of multiple workloads, and that objects
in P2P systems have much larger sizes than web objects.

We used simple analytic analysis and trace-based simulations
to study the impact of the P2P traffic characteristics on caching.
We found that: (i) the Mandelbrot–Zipf popularity has a nega-
tive effect on byte hit rates of caching schemes that store en-
tire objects such as LRU, LFU, and popularity-aware Greedy-
Dual-Size (GDSP) [6], and (ii) object admission strategies in
P2P caching are critical to the performance of P2P caches.

Guided by our findings from the measurement study, we de-
signed and evaluated a new P2P proportional partial caching al-
gorithm that is based on segmentation and incremental admis-
sion of objects according to their popularity. Using trace-driven
simulations, we showed that our algorithm outperforms tradi-
tional algorithms by a significant margin and achieves a byte
hit rate that is up to triple the byte hit rate achieved by other
algorithms. Our results indicate that partial caching is crucial
to the performance of P2P caching algorithms in P2P systems.
We showed that our algorithm is robust against various work-
loads with different degrees of temporal correlations and against
aborted downloads which are common in P2P systems.
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