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This paper reviews and improves a recently proposed model of road network dynamics. The model is also
adapted and generalised to represent the patterns of battery consumption of electric vehicles traveling in the
road network. Simulations from the mobility simulator SUMO are given to support and to illustrate the efficacy
of the proposed approach. Applications relevant in the field of electric vehicles, like optimal routing and traffic
load control, are provided to illustrate how the proposed model can be used to address typical problems arising
in contemporary road network planning and electric vehicle mobility.
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1 Motivation

Urban traffic is a major contributor to pollution induced health problems in cities, and to CO2

emissions globally. Recent reports (Qian et al. 2011) estimate that road transportation accounts
for 25% of carbon emissions in the European Union. The damage to human health caused
by road transportation is now recognised by both regulatory bodies, and by industry; see for
example the IBM smart city initiative (Dirks et al. 2010) and Cisco’s smart and connected
communities initiative (Villa and Mitchell 2009). Roughly speaking, the strategy to reduce the
effect of road transportation rests on three pillars: avoid; shift and improve 1. The first part of
this strategy involves inducing change in the public to encourage alternative forms of transport;
the second part of the strategy involves shifting our mobility patterns to make better use of
resources; and the third involves using technology to improve existing ICE (internal combustion
engine) based modes of transport.

One of the main barriers to behavioural change and to adopting new technology is the
perception that the user experience will somehow suffer. For example, despite significant
financial incentives, the take-up of electric vehicles in the UK is disappointing; in the first half
of 2011, only 170 electric vehicles were purchased by private customers 2. One of the main
problems with the adoption of such vehicles is the perception that the range of such vehicles
is limited, and that charging times are prohibitively long. Given this background, a key issue
for control engineers, is the development of tools that both facilitate more efficient use of our
road networks, and enhance the user experience - especially when it comes to adopting new
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technology. Thus, tools that enable planners to avoid traffic delays, avoid pollution peaks,
and allow efficient route selection (so as to maximise driving range), are seen as key enabling
technologies in the area of city planning. A major component in developing such traffic manage-
ment strategies are accurate traffic models that can be easily used for both prediction and control.

Recently, one such traffic model was proposed in Crisostomi et al. (2011). This model
is based on the theory of Markov chains and differs considerably from conventional traffic
models. In the past, it was almost impossible to obtain real time data about the state of
traffic networks and many traffic models (Piccoli and Garavello 2006) were based on partial
differential equations that are necessarily very complex in order to achieve a high degree of
accuracy. However, recent developments and advances in vehicular technology (Hartenstein
and Laberteaux 2010), as for example the wide deployment of GPS communication devices
in cars, make it possible to collect a huge amount of data close to real time (Biem et al.
2010), and consequently such data can be used to develop statistical and probabilistic models
of road network dynamics. Such developments are the principal motivation for the work in
Crisostomi et al. (2011) where knowledge of the road network topology is combined with traffic
measurements to realistically describe the road network dynamics. An advantage of this model
is that it is suitable for control and is multi-variate (gathers under the same framework ap-
parently different phenomena such as car congestion, CO2 emissions and other pollution agents).

The objectives and the contributions of this paper are

• to improve the mathematical consistency of the model in Crisostomi et al. (2011) and of some
of its properties;

• to relax the flow conservation assumptions in Crisostomi et al. (2011), and replace these with
more realistic ones;

• to extend the original framework to make it suitable for modelling road networks in a manner
that is useful for electric and hybrid electric vehicles. This objective is particularly challenging,
as the battery charge can both increase and decrease when electric vehicles travel in the road
network, thus requiring the model to be able to handle both positive and negative values;

• to present and solve a number of applications that are particularly appealing in the context
of electric vehicles (e.g., optimal routing, traffic load control).

This article is organised as follows. First we give a general overview of the Markov chain based
road network model, and we give a mathematical proof of its consistency. In Section 3 we derive
a similar model in terms of energy consumption, and we show how some negative quantities can
be handled within a probabilistic framework. In Section 4 we illustrate the utility of the model
by giving a number of applications that are relevant in the context of electric vehicles. Finally
in the last section we summarise the paper and outline current and future work.

2 The Markov Chain Model of Urban Traffic

In this section we briefly review the model given in Crisostomi et al. (2011). In addition we
further motivate the usage of this model, highlight some of its limitations, and extend the model
to remove some of these.

2.1 A Primer on Markov Chains

First we recall the following discussion from Crisostomi et al. (2011). A Markov chain is a
discrete time stochastic process, where the transition probabilities depend only on the state of
the chain at the previous time step and not on the past history of the process. Throughout this
paper we consider only time homogeneous Markov chains. We denote by Pij the probability
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of going from state i to state j in one time step and if the number of states is finite, then
the matrix P of elements Pij , together with the initial distribution vector, fully describes the
evolution of the Markov chain. A graph is a set of states (or nodes) that can be connected
by edges (or arcs). We will only consider directed edges here. An edge from state i to state j
indicates that it is possible to make a transition from state i to state j. It is possible to give a
weight to each edge that corresponds to the cost of using that edge. If the aggregate cost of all
outgoing edges of each node is normed to 1 then the costs can be interpreted as the probabilities
of using the corresponding edges.

There is a strong link between Markov chains with finite state space and graphs. States
of the chain can be associated with nodes in the graph and non-zero probabilities of transition
between two states in the chain can be associated with directed edges between the corresponding
nodes with the given probability as a weight. Graphs can thus be analysed using methods for
Markov chains. The graph is called strongly connected if starting from any node it is possible
to reach any other node by following the edges. The graph is strongly connected if and only
if the transition matrix of the corresponding Markov chain is irreducible. Throughout this
paper we will assume that all the Markov chain transition matrices we regard are irreducible.
We can apply the Perron-Frobenius theorem, see for example Horn and Johnson (1990,
Theorem 8.8.4), to ensure the existence of an invariant measure π with π⊤P = π⊤. In this situa-
tion, π is entry-wise positive and its entries sum to 1; we call π the chain’s stationary distribution.

An important notion in the study of irreducible Markov chains is the mean first passage time
mij , which gives the expected number of steps of a random walk starting from vertex i and
finishing in vertex j governed by the weights of the graph’s edges (Kemeny and Snell 1960). A
related concept to the mean first passage times is given by the Kemeny constant, which is the
expected cost of a random trip on the graph where the destination is chosen according to the
stationary distribution. For node i this value can be computed as

Ki =
∑

j 6=i

mijπj . (1)

It is well known that Ki is independent of the starting node i, and thus is a global parameter
for the Markov chain (Kemeny and Snell 1960). We would like to point out that the Kemeny
constant is closely related to other important notions that arise in the study of Markov chains,
as Ki + 1 is identical to the expected time to mixing, as defined in Hunter (2006).

2.2 Basic Markovian Model of Road Network Dynamics

Graphs and Markov chains can be used quite naturally to model urban traffic networks. This
was first proposed in Crisostomi et al. (2011) and further developed in Crisostomi et al. (2011a)
and Crisostomi et al. (2011b). The most simple version of our chain describes the transitions
between road segments, i.e., the probability that a car driving along road x will drive on road y
next.
The directed graph associated with the Markov chain is constructed in the following way.

Each intersection in the road network is a vertex in our graph and there is an edge between
two vertices if there is a road segment that connects the two corresponding intersections. An
example of such a graph can be found in Figure 1, where junctions A,B,. . . ,G are connected by
road segments. For instance, the road segment AB is the road that allows a car to go from A to
B, and is different from BA which goes from B to A. We will call this our primal graph and we
now describe the dual graph. In the dual graph the nodes are the edges from the primal graph,
(i.e., the road segments of the traffic network), and there is an edge between two nodes if it is
possible to make a direct transition between the corresponding road segments. The dual graph
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Figure 1. Example of a primal graph of an urban traffic network.

Figure 2. The dual graph corresponding to the graph shown in Figure 1.

corresponding to Figure 1 can be found in Figure 2. It can be noted that dual graphs carry
more information than the corresponding primal graphs. For instance, we can see from Figure 2
that cars are not allowed to perform u-turns at junction D, while the same information can not
be recovered from the primal graph in Figure 1. The weights for the edges in the dual graph are
given by the turning probabilities. In the following, we are interested in the Markov chain that
corresponds to the dual graph.

Comment : As there are no self-loops in this basic model, the diagonal elements of the
transition matrix P are all zero.

Comment : The application of a Markov chain to model road networks is well motivated.
First, note that Markov chains have a large history of being used as high level approximations
for complex dynamic systems. For example, the planar restricted circular three-body problem,
involving a planet, a moon orbiting on a circle around the planet, and an asteroid lying on
the same plane of the moon orbit, can be solved by using advanced methods from dynamic
systems theory; see Koon et al. (2000, 2002). Is was shown in Dellnitz et al. (2005) that similar
results can be obtained by using Markov chains. Similarly, to obtain a good macroscopic
description of a complicated dynamic system, the Frobenius-Perron operator can be used. The
Frobenius-Perron operator describes the evolution of probability measures in time, and can be
conveniently approximated using Markov chain techniques (Dellnitz and Junge 1999). Successful
applications of this idea have been obtained in the modelling of complex bio molecules (Huisinga
2001, Schütte and Huisinga 2003). Finally, a comprehensive introduction to modelling complex
dynamic systems as Markov chains can be found in Froyland (2001).
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In our special situation the following argument can be used to motivate our study. It is clear
that cars entering a road segment have to leave it again eventually. Consequently, we have
asymptotic flow conservation (i.e., the long-run fraction of cars entering the road has to equal
the fraction of cars leaving again). If we use π ∈ Rn

+ to denote the long-run distribution of cars
within the road network, and pij ≥ 0 to denote the probability of going from road i to road j,
then

n∑

j=1

πjpji

︸ ︷︷ ︸
fraction of cars entering road i

=

n∑

k=1

πipik

︸ ︷︷ ︸
fraction of cars leaving road i

= πi

n∑

k=1

pik = πi︸︷︷︸
fraction of cars in road i

, (2)

where we consider the cars remaining in road i after one time step as cars leaving and re-
entering road i. In matrix form Equation (2) translates into π⊤P = π⊤, where P = (pij). This
is exactly the relation describing the stationary distribution that we also get from the Markov
chain as described above. While this is an elementary argument, the approach is justified exper-
imentally using SUMO1 in Crisostomi et al. (2011). A potential problem with the approach, not
discussed in Crisostomi et al. (2011), stems from the road segment conservation assumptions. In
realistic situations, significant quantities of cars may park along certain routes, thereby render-
ing our flow assumptions invalid. As we shall see, such behaviour can be incorporated into our
model, and we will relax the assumption of local flow conservation later in Section 2.4.

2.3 Multi-variate and Derivative Models

The basic Markov chain describes the probability of making a transition from one road segment
to another in one step. It contains no concept of time that is required to travel or pollutants
that are released. To derive the desired other models from this basic model we now modify the
basic chain to describe the probability of transition per unit of time (giving a congestion chain),
per unit of pollution (giving a pollution chain), and per unit of energy consumption (giving an
energy consumption chain). As was first proposed in Crisostomi et al. (2011), we modify the basic
chain by inserting diagonal entries to the transition matrix P introduced in the previous section,
and by scaling the off-diagonal entries. The diagonal entries are used in our model to account
for several factors such as the length of the road, speed limits, road inclination, priority rules,
traffic lights, traffic congestion and other non-trivial factors. We use some or all of the factors
to compute a cost that has to be paid in order to traverse each road segment. In particular, if a
cost of wi > 0 is required on average to pass through state i, then the corresponding diagonal
entry is chosen as

w̃i =
wi − α

wi
, (3)

where we choose 0 < α ≤ miniwi. The parameter α corresponds to the cost associated with
one step of the Markov chain; we call α our step size. See for instance Crisostomi et al. (2011,
Appendix) to see how this was derived. We will discuss the influence of the choice of step size
on the model later in this section and in Section 2.4. Let us denote with W and D the diagonal
matrices W = diag (w1, . . . , wn) and D = diag (w̃1, . . . , w̃n) respectively. A new Markov chain

1SUMO is an open source road traffic simulation package that was developed at the Institute of Transportation Systems
at the German Aerospace Center, and is licensed under the GPL. Specifically, SUMO is used to generate data to build our
Markov chain, to validate the outcomes of our modelling approach, and to illustrate other merits of the Markovian approach.
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transition matrix Q is then obtained by

Q = (I−D)P+D (4)

where I is the identity matrix of appropriate dimensions. It can be easily noted that Q is again
row-stochastic, and the expected number of steps before leaving the state i is proportional to
wi and the ratios between the off-diagonal terms in each row are the same as in the initial
transition matrix P. The following lemma presents an alternative way of computing the left Per-
ron eigenvector of Q. It is a rigorous presentation of an observation from Crisostomi et al. (2011).

Lemma 2.1: Let P be irreducible and let π⊤ be the left Perron eigenvector of P, then (Wπ)⊤

is the left Perron eigenvector of Q.

Proof Q has a left Perron eigenvector as it is non-negative and has the same sign structure as P
off the diagonal and is thus irreducible. The claim is then proved by noting that D = I−αW−1,
Q = I+ αW−1(P− I) and the following.

(Wπ)⊤Q = (Wπ)⊤(I+ αW−1(P− I))

= π⊤W⊤ + απ⊤W⊤W−1P− απ⊤W⊤W−1

= (Wπ)⊤.

�

The next Lemma shows that all generalised eigenvectors of Q are independent of the step size
α, but the corresponding eigenvalues are not. We give α as an argument whenever a quantity
depends on α.

Lemma 2.2: Let α1, α2 be positive step sizes. Then any right (or left) (generalised) eigenvector
x of Q(α1) is also a right (or left) (generalised) eigenvector of Q(α2), and vice versa. Further,
for a common right (or left) (generalised) eigenvector the corresponding eigenvalues, λ(Q(α1))
and λ(Q(α2)), are related as

λ(Q(α1))− 1

α1
=

λ(Q(α2))− 1

α2
. (5)

Proof The proof is based on the special form of Q(α),namely Q(α) = αW−1(P− I)+ I. Each of
Q(α),Q(α)− I and 1

α(Q(α)− I) has a common (right or left) Jordan basis. As 1
α(Q(α)− I) =

W−1(P − I) is independent of α, we see that any right or left Jordan basis for Q(α1) is also a
right or left Jordan basis for Q(α2). This proves the claim on the eigenvectors. Further, note that
if x is a right eigenvector for Q(α1) with eigenvalue λ(Q(α1)), then x is also a right eigenvector

for 1
α1
(Q(α1)− I) with eigenvalue λ(Q(α1))−1

α1
; it now follows that x is also a right eigenvector for

1
α2
(Q(α2)− I) with eigenvalue λ(Q(α2))−1

α2
, and hence that λ(Q(α1))−1

α1
= λ(Q(α2))−1

α2
. �

As further explained in the remainder of this section, W represents a diagonal matrix of
appropriate weights that accounts for the average time, or the average quantity of emissions
that is spent or released along each road segment. We use W to transform the basic Markov
chain described by the transition matrix P to a new chain with transition matrix Q; doing so
we now describe two known application areas for the Markov chain model before extending the
model to a new area in the next section.

The Congestion Chain: The congestion chain describes vehicular traffic in the urban
network and is governed by a unit of time (i.e., vehicles change a state after a certain amount
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Table 1. Interpretation of some Markov chain quantities of interest in the congestion application

Quantity / Markov chain Congestion chain
Perron Eigenvector (dual) Vehicular density in the network
Mean First Passage Times Average travel times for a pair of origin/destination
Kemeny constant Average travel time for a random trip
Perron Eigenvector (primal) Congested junctions in the network
Second Eigenvector (dual) Associates nodes to traffic sub-communities

Table 2. Interpretation of some Markov chain quantities of interest in the pollution

application

Quantity / Markov chain Pollution chain
Perron Eigenvector (dual) Pollutant density in the network
Mean First Passage Times Average pollution for a pair origin/destination
Kemeny constant Average pollution for a random trip
Perron Eigenvector (primal) Polluted junctions in the network
Second Eigenvector (dual) Associates nodes to pollutant sub-communities

of time). Thus, the weight matrix W accounts for the average time required to traverse a
road segment. This congestion chain was widely discussed and validated in Crisostomi et al.
(2011), where it was shown that results similar to those obtained by using conventional mobility
simulators (e.g., SUMO (Krajzewicz et al. 2006)) can be found in a much more efficient manner
with the Markov chain approach. In addition, the chain gives much faster predictions, and
yields other predictions not readily obtained from conventional simulators, such as expected
travel times, network efficiency, etc.

The Pollution Chain: The main difference between the previous congestion chain and the
pollution chain is that now the state is changed as soon as a unit of pollutant is emitted. There-
fore the diagonal matrix of weights W accounts for the different quantities of pollutants that are
emitted along each road segment, as described with more details in Crisostomi et al. (2011b).
Our chain is constructed from an emission model that relates fuel consumption or pollutant
emission to the vehicle average speed (plus other determinant factors such as the type of vehicle).

As can be seen from the previous two examples, the same basic Markov chain containing
only turning probabilities can be used as a starting point for different applications, where the
diagonal matrix W is used to differentiate final results. Perhaps the most attractive feature of
the proposed paradigm is that typical Markov chain quantities of interest have a straightforward
interpretation in the applications. This is summarised in Tables 1 and 2.

2.4 Alternative Flow Conservation Assumptions

As we have already mentioned, a basic problem in the model (Crisostomi et al. 2011) is that the
flow conservation assumptions made to derive the model are not realistic. While it is relatively
straightforward to overcome the limitations imposed by these assumptions, it is an oversight in
the work described in Crisostomi et al. (2011), that these limitations are neither discussed nor
resolved there. We would like to point out however that this assumption is widely used in traffic
modelling. This is especially true for flow based methods and these assumptions underlie many
fluid models (Hartenstein and Laberteaux 2010). It should be noted that this assumption is
realistic in highway networks (Baskar et al. 2011) or single junctions (Piccoli and Garavello 2006,
Moya and Poznyak 2009), but can not be generalised to an urban network level. We now rec-
tify this matter by describing a basic modification to our Markov chain that resolves these issues.

Clearly, the assumption of local flow conservation is not correct in real traffic networks.
Other conservation assumptions are more reasonable. For example, it is reasonable to consider
the total amount of cars in a city as being constant, or to assume that as one car enters a
parking state, another car (”somewhere”) starts a journey. Consequently, there are at least two
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methods of overcoming the limitations of the model in Crisostomi et al. (2011). We now present
these two modifications. Afterwards, somewhat surprisingly, we show that both approaches give
equivalent results in terms of the stationary distribution.

Motivated by the work underpinning the PageRank (Langville and Meyer 2006) algorithm,
for the first approach we require that when a car reaches its destination, somewhere else a
new car starts its journey. This gives our model two additional degrees of freedom. For each
road segment we have a probability that a car will leave or enter the road network at this
segment. This allows to model a large number of scenarios. We will refer to this approach as
the teleportation approach.

The second approach is inspired by the theory of semi-open Jackson networks (Chen and Yao
2001). To keep the total number of users in such a network of queues at a constant level, an
extra state is added to the model. This extra state represents users that have departed to the
outside world. While the number of customers in the extended network is constant, the number
of customers which is in the original network is variable but bounded. We do the same thing
for our road network. We add an extra state that is connected to all other road segments, so a
car can finish its journey in a “parked” state. With the probabilities of going to the extra state
from each road segment and of going to each road segment from the extra state we have here
the same parameters as in the teleportation approach, but at the cost of having an extra state
we gain the possibility of influencing the time cars spend outside the network. Note that we can
also include cars physically leaving the regarded road network (for example by leaving the city)
into this framework.

We now present the technical details of how transition matrices for our Markov chain
corresponding to the two approaches can be obtained. We will then show that the respective
stationary distributions are equivalent and independent of the weight of the self-loop of the
extra state.

Let Q = [qij ] ∈ Rn×n be the matrix counting transitions between streets, p ∈ Rn the vector
that counts the number of times each road segment is the origin of a route, and q ∈ Rn the
vector that counts the number of times each road segment is the destination of a route. We
will throughout this section assume that neither p nor q is the zero vector and that Q is an
irreducible matrix. Let p̃ = p

‖p‖
1

.

For the teleportation approach let

Ũ = Q+ qp̃⊤. (6)

We now make this matrix row stochastic by scaling it in the following way

U = F Ũ, (7)

where F = diag (f1, . . . , fn) with

fi =




n∑

j=1

qij + qi




n∑

j=1

p̃j






−1

=




n∑

j=1

qij + qi




−1

. (8)

U is now row stochastic and describes the transitions in the chain without the extra state.
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Now we describe the transition matrix for the extra state Markov chain. Let c be a positive
number that we may later use to influence the dwell time in the extra state and let

Ṽ =

[
Q q
p⊤ c

]
. (9)

We now make this row stochastic by

V = GṼ, (10)

where G = diag (g1, . . . , gn+1) with

gi =




n∑

j=1

qij + qi




−1

(11)

for i = 1, . . . , n and gn+1 = (c+
∑n

j=1 pj)
−1 and thus

G =

[
F 0
0 (
∑n

j=1 pj)
−1

]
. (12)

V is now row stochastic and describes the transitions in our chain with the extra node. The
following lemma explains in which sense the two approaches yield equivalent stationary distri-
butions; it is a consequence of a well known result presented in Meyer (1989).

Lemma 2.3: Let xT be the stationary distribution of V, with x =

(
x̃

xn+1

)
. Then 1

1−xn+1
x̃T

is the stationary distribution of U.

Proof We have x⊤ = x⊤V and from this we obtain the two equations

xn+1 = x̃⊤Fq +
cxn+1

c+
∑n

j=1 pj
(13)

and

x̃⊤ = x̃⊤FQ+ xn+1
p⊤

c+
∑n

j=1 pj
. (14)

Solving Equation (13) for xn+1 and substituting in Equation (14) yields

x̃⊤ = x̃⊤FQ+

(
x̃⊤Fq

1− c
c+

∑
n

j=1
pj

)
p⊤

c+
∑n

j=1 pj
= x̃⊤

(
FQ+ Fqp̃⊤

)
= x̃⊤U.

Normalising with respect to the one-norm we obtain that 1
1−xn+1

x̃⊤ is the left Perron vector

of U.
�
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Comment : The Markov chain with transition matrix U is useful for modelling mobility
patterns in the network. In particular, the vectors p and q can be used to model time-dependent
directionality. For example, in the morning more cars leave the network in the city center
whereas in the evening the opposite is true.

Comment : The Markov chain with transition matrix V is useful when in addition one wishes
to regulate the number of cars in the parked state. Encouraging people to use their cars instead
of other modes of transportation could be sensible in the following two situations for example.
Either when the public transportation network is operating above its capacity, or - if a significant
part of the vehicles are electric vehicles or plug-in hybrid electric vehicles - the load on the public
power grid is too high.

2.5 Consistency of Approach

We have thus far analysed how eigenvalues and eigenvectors behave as we change the chain’s
step size α > 0. A natural question to ask is whether the Markov chain itself is well behaved
when the step size approaches 0 as a limit. By this we mean that one step at a given step size
or two steps at half the step size and so on should yield the same result. For completeness we
now end this section of the paper by giving a result that answers this question. To this end let
A = W−1(P− (I)), then we obtain Q(α) = I+αA. In the following theorem we denote by exp(·)
the matrix exponential function.

Theorem 2.4 : The limit limk→∞Q(αk )
k, where k ∈ N, exists and is equal to exp(αA).

Proof We know from Lemma 2.2 that the generalised eigenvectors of Q(α) are independent of
α > 0. Thus all matrices Q(α) and A are simultaneously similar to their respective Jordan
canonical forms. Let J = S−1AS be the Jordan form of A. Then

(
Q

(α
k

))k
=
(
I+

α

k
A
)k

=
(
I+

α

k
SJS−1

)k
= S

(
I+

α

k
J
)k

S−1 (15)

By regarding each individual Jordan block, it can be seen that

lim
k→∞

(
I+

α

k
J
)k

= exp(αJ). (16)

And hence limk→∞

(
Q
(
α
k

))k
= S exp(αJ)S−1 = exp(αA). �

Comment : This result is important to show consistency of our approach. We now also have
a way of deriving a continuous time Markov process. Further its density matrix is αA, which is
readily computable from the turning probabilities and the weight matrix W .

3 Electric Vehicles

In this section we show how energy consumption in electric vehicles can be integrated into the
framework described above. By energy consumption we mean the charge removed from the
battery when traversing a road segment. Roughly speaking, following a model presented in
MacKay (2008), in Section 3.1 we calculate this charge using basic formulae from physics and
assuming constant losses within the car. These internal losses are to the most part due to the
transmission, the motor, and the battery.
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Figure 3. Comparison of distribution of cars (line) and the average amount of energy used or gained on each road segment
(dots). The energy consumption distribution is positive on road segments where on average energy is expended and negative
where energy is gained.

Electric vehicles differ from combustion driven vehicles in a number of aspects. Energy is
scarce in such vehicles, and significant dissipation is related to road topology, to on-board
systems (air conditioning, heating), and to other factors considered not important in ICE
based vehicles. A very important feature is regenerative braking. Electric vehicles can recover
some kinetic energy back to battery charge during the braking process. This gives rise to the
possibility of negative costs on some road segments (energy transferred from the road to the
vehicle). However, as we will see in Section 3.2, we can still use the base Markov chain, and from
this deduce the expected energy consumption along all roads. In this sense a stationary set of
expected energy consumptions may still be calculated (even though, counter-intuitively, some
of these have negative values). In particular, Lemma 2.1 still holds in the sense that (Wx)⊤ is
still an eigenvector of Q corresponding to the eigenvalue 1.

Consider again the network depicted in Figure 1. Simulating with SUMO and using the Markov
chain model, where we use the expected energy consumption as weights, we obtain Figure 3. It
depicts the vehicular density as measured from SUMO (solid line) and (Wx)⊤ (red dots), the
extended notion of the stationary distribution of battery charge consumption/gain, as described
above. For the simulation we lift junction B to be at the top of a small hill. Note that energy
consumption increases drastically on the upward slopes.

3.1 Electric Consumption Model

We now present an elementary model of energy consumption in electric vehicles. Before
proceeding, it is important to note that the details of this model are not important; any more
accurate model can be embedded in our Markovian framework.

A first approach to modelling the energy consumption is to calculate an expected power
needed for a vehicle per unit time, and to multiply this by the expected travel time. The
average power (constant speed model) can be obtained as a function of: (1) average speed of
the car and (2) the slope of the road. An improvement on such a basic model is to also con-
sider the vehicle acceleration, as suggested in MacKay (2008). This is the approach followed here.

We will assume a driving pattern, where cars are stationary at the beginning of each road
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segment and accelerate at a constant rate a1 until they reach the cruising speed, vcruise, and
then decelerate at a constant rate a2 to reach the end of the road segment with zero velocity.
The energy can be calculated as the sum of the energies in the acceleration phase, the cruising
phase and the deceleration phase.

The following forces affect the vehicle:

• Facc = ma is the force needed to accelerate/decelerate the car

• Frol = µrolmg is the force needed to overcome the rolling resistance

• Fad = 1
2ρACdv

2 is the aerodynamic drag force

• Fslope = mg sin(φ) is the hill climbing force,

where a is the vehicle’s acceleration, A is its frontal area, m its mass and v its speed, µrol, ρ, Cd

and g are constants and φ is the inclination of the road segment. For our calculations we
assume a car weight of 1235 kg, gravitational acceleration of g = 9.81 m/s2. Further reasonable
parameter choices for a medium size electric vehicle are: ρ = 1.2 kg m3, µrol = 0.01, Cd = 0.35,
A = 1.6 m2 (MacKay 2008).

We will assume the slope along a road segment is constant. In general (given an accurate
velocity profile) we can calculate the energy expended as the integral of the force over the path.
As discussed above we split this in three parts.

W =

∫ x1

0
(Facc + Frol + Fad + Fslope) dx

︸ ︷︷ ︸
W1

+

∫ x2

x1

(Frol + Fad + Fslope) dx

︸ ︷︷ ︸
W2

(17)

+

∫ x3

x2

(Facc + Frol + Fad + Fslope) dx

︸ ︷︷ ︸
W3

, (18)

where x1 is the distance after which the cruising speed is reached and x2 is the distance after
which the deceleration process is started and x3 marks the end of the road segment. If we regard
speed and distance as functions of time t and denote them v(t) and s(t) respectively, then speed,
time, distance are related by

v(t) = v(0) + at (19)

s(t) = s(0) + v(0)t+
1

2
at2, (20)

where a ∈ R is the constant acceleration rate.

We also assume a constant acceleration and deceleration rate of a1 = −a2 = 3m
s2 . If the length

of the road, x3, is large enough, we obtain

x1 =
1

2
a1tacc =

1

2
a1

(
vcruise
a1

)2

=
1

2

v2cruise
a1

(21)

x2 = x3 +
1

2

v2cruise
a2

, (22)

where tacc is the time it takes to accelerate the vehicle to cruising speed at rate a1 and vcruise
is the cruising speed. Thus
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W1 =

∫ x1

0

(
ma1 + µrolmg +

1

2
ρACdv

2 +mg sin(φ)

)
dx (23)

=
1

2
mv2cruise +

1

2

v2cruise
a1

mg (µrol + sin(φ)) +
1

4
ρACd

v4cruise
a1

.

For the second integral we obtain

W2 =

∫ x2

x1

(
µrolmg +

1

2
ρACdv

2 +mg sin(φ)

)
dx (24)

=

(
x3 +

1

2

v2cruise
a2

−
1

2

v2cruise
a1

)(
mg (µrol + sin(φ)) +

1

2
ρACdv

2
cruise

)

and for the third integral

W3 =

∫ x3

x2

(
ma2 + µrolmg +

1

2
ρACdv

2 +mg sin(φ)

)
dx (25)

= (ma2 +mg (µrol + sin(φ)))

(
−
1

2

v2cruise
a2

)
−

1

4
ρACd

v4cruise
a2

.

We further assume that the losses along the drive train are a constant 15% and during
deceleration 50% of the energy can be saved by regenerative braking. An additional and highly
important factor in the consumption of battery load is on-board equipment such as heating,
light, air-conditioner, radio and many others that draw power at constant rate over time.
Their demand is much harder to model as it depends on the individual driver. However, their
aggregate effect can not be neglected as will be exemplified in Section 4.2.

We now have a way to approximate energy requirements for traversing given road segments.
Because of the regenerative braking it is possible that the energy requirement takes a negative
value, meaning that a vehicle gains energy by traversing that road segment. Next we deal with
the question, as to how our framework extends to the case where we have negative weights on
some road segments.

3.2 Networks with Negative and Positive Weights

In Section 2.3 a diagonal matrix D was used to transform the basic Markov chain P into a new
Markov chain Q, whose step unit can be different from the unit of time (e.g., can be a unit of
energy). This was done in Equation (4), which we recall here for convenience:

Q = (I−D)P+D. (26)

In the case of electric vehicles, the mechanism of regenerative braking can cause non-positive
entries in the diagonal matrix W . In order to apply our previously developed theory, we will
make the assumption that the energy required to travel along a road i can not be exactly zero,
otherwise the corresponding weight wi would be equal to 0 and in turn this would disallow
using Equation (3) to calculate the diagonal matrix D. Negative entries on the diagonal of
W imply that Q is not necessarily a transition matrix of a Markov chain, it might not be
stochastic anymore (since it might not be non-negative and row sums can be different from 1),
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so standard methods to analyse Markov chains do not apply. We note that Lemma 2.1 still
holds in the sense that even if we allow negative entries in the diagonal matrix W then for all
step sizes α > 0, such that D is non-singular, the vector (Wx)⊤ is still a left eigenvector of the
matrix Q as defined in Equation (26) to the eigenvalue 1. However the matrix Q and its eigen-
vectors do not seem to have a straightforward interpretation as in the case of all positive weights.

To be able to use the theory presented in this paper, we define an intermediate Markov
chain whose step unit is a unit of energy exchanged between the vehicle and the road network,
regardless of whether such a unit of energy was spent or gained (thanks to regenerative

braking). To do this we define W̃ to be the diagonal matrix that contains the absolute values

of all weights, W̃ = diag (|w1| , . . . , |wn|). Accordingly we define D̃ = I − αW̃−1, where now
0 < α ≤ mini |wi|. We then obtain the transition matrix of the intermediate chain from

Q̃ = (I− D̃)P+ D̃. (27)

We are interested in storing memory of the sign of energy exchange (i.e., to compute the actual
energy required to travel a given route). We assume that transitions between streets occur at
the end of the energy step, and that the gain or loss of energy while driving along road segment
i is independent of the choice of the next road segment j. With these assumptions in place,
we introduce the notation σi to indicate the sign of the change in energy transferred from the
vehicle to the network. That is, σi = 1 if the vehicle loses energy driving along road i, and
σi = −1 if the vehicle gains energy driving along road i.

As the quantity of interest is energy instead of time, we use the term mean first passage
energy (MFPE) instead of mean first passage time in this context. We use the intermediate
Markov chain to calculate a generalised version of MFPE (generalised to include possible
negative values), following and extending the approach of Grinstead and Snell (2003): For j 6= i,
to calculate mij , the MFPE from i to j, we observe that in going from i to j we make a direct

transition with probability Q̃ij and spend σi units of energy. With probability Q̃ik we make a
transition to k 6= j where we again spend σi units of energy to get to k, in addition the expected
energy required to get from k to j is equal to mkj . Thus for j 6= i

mij = Q̃ijσi +
∑

k 6=j

Q̃ik(mkj + σi)

=
∑

k 6=j

Q̃ikmkj +

n∑

k=1

Q̃ikσi

=
∑

k 6=j

Q̃ikmkj + σi. (28)

For any fixed j = 1 . . . , n we can write this in vector form

m(j) = Q̃(j)m(j) + σ(j), (29)

where m(j) =
(
m1j ,m2j , . . . ,m(j−1)j ,m(j+1)j , . . . ,mnj

)⊤
and equivalently σ(j) is the vector of

all σi for i 6= j and Q̃(j) is the matrix Q̃ where we have eliminated the j−th row and column.
Now we can calculate mij for all i 6= j using the formula

m(j) = (I− Q̃(j))
−1σ(j), (30)
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where we use the fact that (I− Q̃) is a singular, irreducible M-matrix and according to Berman
and Plemmons (1994, Theorem 4.16) each of its proper principal submatrices is invertible.

Comment : Note that Equation (30) is identical to a standard formula for calculating mean
first passage times in the case of positive weights only. As we have shown it still works if we
have negative weights in the chain.

As in the case of positive weights we are interested in the Kemeny constant as a global
efficiency measure, but if we introduce negative weights in our graph, Equation (1) is no longer
independent of the starting node i. However we can generalise the notion of the Kemeny constant
in the following way. Let π be the Perron eigenvector of Q̃ and let

K =
∑

i=1,...,n

πiKi =
∑

i=1,...,n

πi
∑

j 6=i

πjmij . (31)

Then K coincides with the Kemeny constant as defined in Equation (1) in the case where all
weights are positive.

In the spirit of Lemma 2.2, the following lemma shows that generalised mean first passage
energies and the generalised Kemeny constant scale linearly with the step size.

Lemma 3.1: For given step sizes α1, α2 > 0 and for all i, j = 1, . . . , n we get α1mij(α1) =
α2mij(α2) and α1K(α1) = α2K(α2).

Proof From Equation (30) we have

m(j)(α1) =
(
I− Q̃(j)(α1)

)−1
σ(j) =

(
−α1W̃

−1(P− I)
)−1

(j)
σ(j)

=
α2

α1

(
−α2W̃

−1 (P− I)
)−1

(j)
σ(j) =

α2

α1
m(j)(α2), (32)

where again by (−α1W̃
−1(P − I))(j) we denote the matrix (−α1W̃

−1(P − I)) where we have
eliminated the j-th row and column. The claim about the generalised Kemeny constant now
follows directly from its definition, Equation (31). �

4 Applications

We now give a number of applications to illustrate the utility of our model. The first application
illustrates the effect of relaxing the flow conservation assumptions in Crisostomi et al. (2011).
The second application concerns using the model for routing. This idea is already explored in
the context of conventional vehicles in Crisostomi et al. (2011a) and we now suggest how this
basic idea can be used for routing of electric vehicles. In the third example we investigate how
the Markov chain can be controlled both in an idealised context (using Lemma 2.1), and in a
practical context using decentralised control.

4.1 Realistic Traffic Model: Relaxed Flow Conservation Assumptions

One of the assumptions of Crisostomi et al. (2011) was that of local flow conservation, i.e.,
the number of cars entering a road is equal to the number of cars leaving the road. Clearly
this assumption is not realistic, as people may park their vehicles at their destination (e.g.,
home/workplace) for significant time intervals and resume driving the vehicle again at a later
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Figure 4. Comparison of simulation results with the models with and without teleportation. The simulated traffic was
generated such that the local flow conservation assumption is not valid.

time. Thus, the flow conservation does not hold over reasonable time scales.

We now show that with the extended model, based either on teleportation or the extra state,
the flow conservation assumption can be relaxed. For this purpose, we simulate the traffic network
depicted in Figure 1 using SUMO by randomly choosing pairs of source/destination roads. To
make sure that the local flow conservation assumption is not valid, sources are located mainly in
the left triangle, while destination roads can mainly be found in the right triangle. We let cars
leave the network as soon as they reach their destination; similarly new cars appear in the network
starting from the source road at random times. Figure 4 shows that the teleportation method
(whose stationary vector is, as previously stated, a scalar multiple of the appropriate subvector
of the stationary distribution obtained by the extra state method) is perfectly coherent with the
measurement of the simulations in SUMO. On the other hand, it can be appreciated from the
same figure that the previous method completely fails to describe the stationary distribution, as
in the example flows of cars are not conserved.

4.2 Optimal Routing

Even for a combustion driven vehicle it is usually hard to find an optimal route, as there are
always trade-offs between travel time, travel distance, cost, pollution, etc. Taking the limited
range and special requirements of electric vehicles into acount certainly adds yet another
dimension to this problem. However, contemporary navigational software and path finding
algorithms are not taking this new dimension into account and are thus of limited use for
the coming generation of vehicles. Our Markov chain model has proven a reliable first step
to modelling electric vehicles. In addition, from this model it is possible to derive a number
of routing strategies more tailored to the requirements of electric vehicles. We outline some
of them in this section. We give details to two of the approaches and plan to work out the
other approaches in the near future. These routing strategies may help to promote the cause of
electric and hybrid electric vehicles. All of the following routing strategies address distinct issues
related to electric vehicles and traffic in general. Each strategy is associated with a different
kind of route optimality.

Minimum Energy Routing : A very simple yet important routing strategy for electric
vehicles can be obtained by minimising the distance to the destination not in terms of travel
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Figure 5. There are three possible paths to go from B to C. Different routing strategies based on minimum distance,
minimum energy consumption suggest different paths, also depending on the different environmental conditions (e.g., air
conditioning switched on/off).

Table 3. Required energy (in kWs) to travel from B to C

in the road network depicted in Figure 5

Auxiliary Power Demand 500 W 3500 W

Route (a) 535 924
Route (b) 915 1050
Route (c) 695 884

time or actual distance, but instead in terms of energy charge needed to finish the journey.
Using the weights calculated in Section 3.1 combined with a classic graph search algorithm like
Dijkstra (1959) it is possible to find minimum energy paths for each origin-destination pair.

Let us consider the road network depicted in Figure 5 as a case study for minimum energy
routing. There are three routes connecting B to C. Assume that route (a) is 1.8 km long and
is travelled at an average speed of 50 km/h, route (b) is 1 km long and travelled at 80 km/h
and route (c) is 1.4 km long and travelled at 80 km/h. Further assume that route (b) is not
flat, but rises to a small hill at its center at a constant slope of 5 % in both directions. Table 3
reports the energy required to travel each route calculated with two different powers needed by
auxiliary systems in the vehicle. According to Farrington and Rugh (2000) the power demand
of accessory systems in an electric vehicle is largely affected by the usage. For instance, the
power may vary from a minimum of 500 W to a maximum of 3500 W, for instance in winter,
when the heating is running at full power.

Now in travelling from A to D, the driver has a choice to take one of the three routes (a),(b)
or (c). The shortest route between B and C is route (b) but we can see in Table 3 that both
the longer routes perform better in minimising the required energy for travelling. This is due to
the non-flatness of route (b) and the high energy costs for electric vehicles on upward slopes.
Additionally, we can see that route (a) is more energy efficient then route (c) if the auxiliary
power demand is low, while this relationship is reversed if the auxiliary power demand is high.
This implies that, especially in more complex routing tasks, an estimate of the power demand
and its changes over time is necessary to achieve efficient and close to optimal solutions.

We believe that it is possible to assist users in making energy conscious route choices by
providing energy road maps, i.e. road maps in which the displayed distance corresponds to
energy consumption instead of travel distance.

Minimum Popularity Routing : In order to minimise the risk of traffic accidents and
congestion along the vehicles path, in some situations it may be advisable to avoid the roads
that most people use. Such popular roads could for example be close to shopping areas or
train stations. The base Markov chain presented in Section 2.2 describes how often roads are
taken, while ignoring travel times or energy consumption. Thus, it carries information about
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popularity and its stationary distribution can be used to find the minimum popularity route,
again using conventional graph search algorithms.

Mixed Minimum Energy/Popularity Routing : Both minimum energy and minimum
popularity routing may be too focused on one aspect of traveling. To circumvent this it is
possible to use a weighted sum of the above two weights to find an optimal path. In this sum
we have an additional tuning parameter that can be set according to how important energy
and popularity are considered to be. Similarly it is possible to use the derived electric Markov
chain presented in Section 3.2, which contains information about both energy consumption and
popularity and use its stationary distribution as weights for the graph search.

Energy Optimal Risk-Averse Routing : The limited range of electric vehicles can be
managed by choosing appropriate routes, as discussed above, or switching to other modes
of transportation for long distances. However, this might only mitigate but not completely
eliminate “range anxiety” (i.e., the continual concern and fear of becoming stranded with a
discharged battery in a limited range vehicle, Tate et al. (2008)). For instance, unexpected
events might require a longer path than expected, and the depletion of the battery before
arrival. To avoid this, we propose the following scheme. For each road segment we calculate the
impact on the network performance in the case that it is closed (as measured by the Kemeny
constant) and use this as a weight for the graph search in order to obtain a route along which
incidents have the least impact. This way of routing was first proposed in Crisostomi et al.
(2011) in the context of conventional combustion driven vehicles, but its impact on electric
vehicle routing is much more significant.

Socially-Aware Optimal Routing : All conventional routing algorithms and also the ones
described above have a main characteristic in common: they are greedy. That is, they try to
achieve the best result for an individual in a given situation. It is well known that this can
lead to a suboptimal behaviour of the whole system and as exemplified by Braess (1968) and
Braess et al. (2005), this can even cause sub-optimal performance for each individual driver.
This problem can be solved by centralised routing, that is a central server computes routes for
each vehicle and communicates them to the drivers. This approach is of course associated with
a number of problems including the required infrastructure and cooperation of all drivers.
We believe that the ideal approach lies in randomised routing, where drivers with coinciding
origins and destinations may take different routes. One way of achieving this is to affect the
drivers route choices by giving incentives, such as different travel speeds or tax advantages. Our
Markov chain framework is very close to this way of thinking and can thus play an important
role in this routing strategy. We further claim that in our proposed setup the Kemeny constant
can be utilised to measure the global efficiency of a given road network configuration and can
thus be used to rate different routing strategies.

Energy Optimal Minimum-Error Routing : Not only external events such as accidents
can cause unplanned route changes. This can also happen by human error. We propose that
routes can be chosen in order to minimise the impact that a driving mistake can have on energy
demand. We now explore this routing strategies in more detail.

The Markov chain can be used to evaluate possible routes for drivers that are not confident
or unfamiliar with the road network and are thus prone to make errors, for example they might
take a wrong turn. The following application of the Markovian framework was first proposed in
Crisostomi et al. (2011a) and more details can be found there. However, the ideas in Crisostomi
et al. (2011a) assume an even greater importance when applied to electric vehicles because of
their limited range. In such vehicles the cost of a wrong turn may be high (especially if it leads
to a one-way system) as significant battery power may be consumed in correcting the mistake.
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Table 4. Expected required energy (in 100 kWs) to travel from OA to TO in the network in Figure 6; probability

in percent

Error Probability 1 2 3 4 5 6 7 8 9 10
Route 1 1.956 2.036 2.115 2.194 2.273 2.351 2.429 2.506 2.582 2.659
Route 2 2.076 2.117 2.157 2.197 2.237 2.277 2.317 2.357 2.397 2.437

Figure 6. Example of a road network with two possible routes. The route performance depends on the individual driver.

The basic idea, therefore, is to find routing strategies where the cost of making a wrong turn is
low.

To see how this may be achieved, consider the road network depicted in Figure 6. There are
two reasonable routes a vehicle might take from O to T, Route 1: OA-AB-BC-CT and Route 2:
OA-AT. Assume the driver has a probability of making a wrong turn at each junction of ǫ > 0.
The routes are evaluated by constructing an individual transition matrix Q for each route,
where the probability of making the right turn at each junction is set to 1 − ǫ and all other
choices are given the same probability. As a performance indicator we use the MFPE between
origin and destination.

In Table 4 we show the MFPE from road segment OA to road segment TO of both routes
as a function of the error probability. We can clearly see that Route 1 performs better when
the probability of making an error is less than 4%, otherwise Route 2 is superior. For this
example we used a constant cruising speed of 50 km/h on each road segment and travel times
proportional to the length of each road.

As can be observed, the robust routing algorithm is particularly appealing in the case of
electric vehicles, as a driving mistake might lead to a longer path and an unexpected higher
energy consumption. The situation gets even worse if the driver ends up in a zone without
charging stations.

Comment : Note that routing for electric vehicles is particularly challenging. This follows
from the fact that energy is scarce in electric vehicles, and that significant amounts of energy can
be consumed by on-board systems. This means that the time taken for a journey is important if
the energy consumption per unit time is high. For example, in winter when the vehicle is being
heated, or in summer when the air-conditioner is used, the duration of the journey becomes
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Figure 7. An example road network.

very important. In contrast, when the energy consumption is low, optimal routes depend mostly
on road network topology and cruising speed. One fundamental observation about travelling is:
The slower the cruising speed is, the less energy is consumed per unit of distance. Thus, given
a choice between a low speed route and a high speed route of similar length, it is apparently
better to take the low speed route. However, given the time dependence discussed above, this is
not entirely true.

To illustrate this basic point, consider the traffic network depicted in Figure 7. We determine
the stationary distribution of energy dissipation for two scenarios, corresponding to the air-
conditioner being switched on and off. To achieve this, we assume a constant base load of 500 W
in the first scenario and a load of 3500 W in the second scenario (Farrington and Rugh 2000).
There are two routes to travel from A to D: the northern route (AE-ED) and the southern route
(AB-BC-CD). Let speed limits of 50 km/h on the northern route and 30 km/h on the southern
route be given. In this situation one notices two facts:

• In travelling from A to D the minimum energy route with air-conditioner on is the northern
route, while with air-conditioner off it is the southern route. This means that optimal route
calculation is dependent on driver preferences. Issues like the weather have to be taken into
account.

• The stationary distributions corresponding to the two scenarios are given in Figure 8. Note
that the stationary properties of the network are very different in the two cases.

4.3 Traffic Load Control

Being able to control the stationary distribution of a road traffic network opens up a wide
range of possiblities and different applications. For many goals corresponding optimal stationary
distributions can be calculated and the system can then be driven towards them. For example,
using the congestion chain it may be possible to equalise the travelling time on parallel routes
to distribute the load within the network. Alternatively road network designers may be able
to unburden some road segments in order to facilitate maintenance activities. In the context
of the pollution chain, it may be interesting to be able to dissolve pollution peaks or even to
minimise pollution along some roads or sub-networks in critical areas, for example near hospitals
or schools. As we are primarily interested in the modelling of electric vehicles in this present
work, we regard the Perron vector control in this context. While it is not as apparent what
the advantage is of reducing energy consumption along an individual road for example, there
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Figure 8. Stationary distribution of energy dissipation in two cases.

Table 5. Speed limits (in km/h) in the uncontrolled case, in the unrealistic optimal solution,

and in the realistic balanced case

Road Segment AB AC BA BC CA CB CD DC
Uncontrolled Case 50 50 50 50 50 50 50 50
Optimal (Unrealistic) Case 15 44 15 29 44 29 117 122
Realistic Solution 30 50 30 40 50 40 100 100

Road Segment DE ED EF EG FE FG GE GF
Uncontrolled Case 50 50 50 50 50 50 50 50
Optimal (Unrealistic) Case 117 117 45 21 42 10 23 8
Realistic Solution 100 100 50 40 50 30 40 30

are many applications which benefit from the ability to control the stationary distribution.
From a network designing point of view it may be interesting to be able to match high energy
consumption with free charging point capacity. This can be used to equalise the demand on each
charging stations. Furthermore a basic concern of road network planners is to make the best
use of available resources. The efficiency (or total energy cost) of a network can be measured
by the Kemeny constant. The Kemeny constant in turn can be viewed as a function that is
dependent on stationary distribution. It may thus be possible to influence the Kemeny constant
by controlling the stationary distribution and we plan to investigate the control of the Kemeny
constant in the near future. We now investigate in more detail how the Perron vector of our
chain can be controlled.

4.3.1 Theoretical Approach

Lemma 1 suggests a simple strategy to regulate the Perron eigenvector of the chain. Note
that the Perron vector is determined by the Perron vector of the basic chain, and the diagonal
scaling. The scaling in turn is determined by a host of factors, some of which can be controlled
by the network designer. One of these is the speed limit (already some cities in Austria have
adaptive speed limits). Recall that if the left Perron vector of P is x⊤ and we wish through
feedback to achieve a target left eigenvector z⊤ of Q for some positive vector z = (z1, . . . , zn)

⊤

we set wi =
zi
xi

according to Lemma 2.1.

A useful application of the Perron vector control is now illustrated through an example which
exploits again the road network of Figure 2. The dashed line in Figure 9 depicts the nominal
density of cars in the case of uniform speed limits set to 50 km/h. Let us assume that the road
engineer is interested in manipulating speed limits in order to achieve a uniform density of cars
along all road segments (traffic balancing). Lemma 1 can be used to compute the “optimal”
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Figure 9. Comparison of traffic density as a function of speed limits. Uniform speed limits lead to the unbalanced solution
shown with a dashed line. A very good balance, in dotted line, is achieved using the unrealistic speed limits reported in
Table 5, second line. A trade-off solution shown with solid line is obtained by using realistic speed limits as shown in Table
5, third line.

weights, and predict the “optimal” speed limits accordingly. New simulations in SUMO show
that the desired objective is indeed obtained, as shown with a dotted line in Figure 9, although
such “optimal” speed limits are unrealistic, as shown in Table 5, second line. A good trade-off
is shown with solid line in Figure 9, where reasonable speed limits are used instead (e.g., they
are all multiples of 10), as reported in the third line of Table 5.

Comment : The proposed application assumes that drivers will not change their routes as a
reaction to the new imposed speed limits; we also varied speed limits under the implicit assump-
tion that this would correspond to proportionally adjust average travel speeds. Despite these
assumptions, Figure 9 shows that the road network traffic, as observed from SUMO simulations,
is in accordance with the theory.

4.3.2 Decentralised Traffic Load Control

In the section above we controlled the Perron vector by choosing appropriate weights in the
graph. This weight is however not necessarily something we can access directly. In a realistic
scenario we may be able to change speed limits or traffic light sequencing to affect the weight,
but the relation to the weight is not explicitly given. We use an algorithm from Stanojević and
Shorten (2009), which presents a decentralised way to reach an implicit consensus. We present
two simulations using this algorithm. In the first example we take a large road network and
one junction with three incoming streets and one outgoing street, as depicted in Figure 10. We
adjust the speed limits on the three incoming streets such that the amount of energy required
to traverse these streets is equalised. In the second example the large road network is regarded
as consisting of two main components that are connected by 4 bridging streets as depicted in
Figure 11. In order for the algorithm to function, each road segment is assumed to be able to
measure the density of cars travelling on the road, and to communicate this information to
neighbouring roads.

As proposed in a different context in Stanojević and Shorten (2009), our objective here is to
determine speed limits that equalise the load across certain road segments. To this end let I be
the set of road segments of interest, let us discretise time in steps k = 1, 2, . . . and let speed
limits vi(0) at time k = 0 be given for all i ∈ I. Let us denote by θi(k) the density of energy
dissipated on each road segment for all k = 1, 2, . . . . Then we use the following iterative equation
to update the speed limits
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Figure 10. Scenario with three streets with a common continuation, where we try to equalise the amount of energy expended
on each street.

vi(k + 1) = vi(k) + η
∑

j

(θj(k)− θi(k)) , (33)

where η is a positive parameter and the sum is taken over all road segments j = 1, . . . , n that
road i can communicate with.

The implicit consensus is conducted by alternating the following two steps:

(1) Determine densities of interest (e.g., energy dissipation) at time k.
(2) Update speed limits according to Equation (33).

For our two examples we used SUMO simulation runs and calculated the stationary distribu-
tion of the energy Markov chain. As the density of each road segment we used the corresponding
entries of the stationary distribution. We performed an update of the speed limits according to
Equation (33) and continued with the next instance of the simulation. In Figures 12 and 13 we
give the relevant entries of the stationary distribution as a function of the number of simulation
runs. Full details of the algorithm are given in Stanojević and Shorten (2009). At this point we
just use the implicit consensus algorithm without proving that it achieves the balancing of the
stationary vector. We intend to do this in our future work.

5 Conclusions

In this paper we have reviewed an approach to modelling road network dynamics using
Markov chains. We improved the original framework proposed in (Crisostomi et al. 2011) by
mathematically proving consistency of the model and the relevant notions of interest, and by
relaxing the flow conservation assumption to allow realistic road network scenarios. The model
was generalised to describe the battery consumption for electric vehicles in the road network,
and as the battery level can locally increase due to regenerative braking effects, this required a
suitable modification of conventional Markov chain theory to handle energy distributions with
possible negative values. Possible applications of the proposed theory, such as optimal routing
and traffic load control, have been illustrated and validated through the support of the mobility
simulator SUMO.

One of the main impediments to a capillary adoption of the electric vehicle technology is
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Figure 11. Scenario of a big city and a suburb with 4 connecting streets, where we try to equalise the amount of energy
expended on each street out of the suburb.
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Figure 12. Convergence results for the single junction scenario. The vertical axis shows the corresponding entries of the
Perron vector. Each time step corresponds to one simulation instance.

believed to lie in the users’ perception that the range of the vehicles is limited and there is
a non-negligible risk of remaining stranded with a discharged battery (also known as “range
anxiety”). The final objective of this work is to provide a theoretical framework that can be
used as a basis for deriving applications (e.g., minimum energy routing) that can mitigate such
a fear and ultimately encourage a behavioural change towards the electric vehicle technology. In
this view, future work will be concerned in both experimentally validating the proposed theory
and algorithms, and in developing further applications, based on the same framework, that can
support an optimal exploitation of electric vehicle and sustainable management of traffic in
general.
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