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Improving the driving safety of mountainous highway tunnels has become an urgent problem in China, while the existing
literature pays more attention to the safety of urban tunnels. From the perspective of visual load, this paper built a GA-SVRmodel
to analyze the influences of speed, design brightness, measured brightness, and position in the Gaogu long tunnel. )e results
show the following: firstly, the changes ofMTPA in the longmountainous highway tunnels can be divided into five stages, which is
different from the three-stage division of urban tunnels; secondly, the influencing degree of factors was varied in different stages:
the position factor mattered most in stages 1, 2, 4, and 5, while the design brightness had the greatest impact in stage 3; thirdly, the
driver’s psychological pressure was greatest on the entrance and exit section of the tunnel; lastly, the increased length of
mountainous highway tunnels and the long-term enclosed driving environment made the psychological load of drivers in-
tensified. )erefore, it was necessary for the mountainous highway tunnels to consider more accurate gradual lighting design in
the 200-m sections after the entrance and before the exit, meanwhile enhancing traffic safety management and protections in the
middle of the tunnel.

1. Introduction

In compliance with the national strategy for west China
development, more and more highways are being con-
structed and completed in the western mountainous and
hilly areas. Despite such advantages of saving land and
shortened travel distance, more accidents with major con-
sequences occur on the mountainous highway. For example,
a traffic accident that occurred in the Yanhou tunnel in 2014
caused the death of 40 people and injured12 people, and
another tunnel accident that occurred in Hachihonmatsu
tunnel in Japan in 2016 caused the death of 2 people and the
injured 70 people. )e mountainous highway tunnel is an
especially accident-prone section. In Norwegian, the acci-
dent rate at the entrance section of the tunnel is 63.7%. In
China, the accident rate at the entrance section of the
mountainous highway tunnel is more than 50%. According
to the Ministry of Transport statistics bulletin, by the year
2020 China had 21,316 road tunnels in total length of 21.993

million meters, which is the largest number in the world [1].
)erefore, how to improve the driving safety of moun-
tainous road tunnels becomes an urgent problem to be
solved.

Existing literature have aimed at the urban tunnels with a
focus on the influence on driver’s safety caused by measured
brightness change.)e sharp change of measured brightness
at portals makes it difficult for the drivers to adapt them-
selves to the alternation between daylight and shade, which
is the main cause of accidents at tunnel portals. However,
few existing recorded researches have ever studied the safety
of long tunnels on mountain highways. In fact, the long
mountain highway tunnel has the following particularity:
first, compared with plain highways, mountainous highways
have lower speed limits. Due to the small radius and steep
slope, the lower value of the horizontal and vertical align-
ment index of mountain highways and small radius and
steep slope often appear. Second, compared with urban
tunnels, mountainous highway tunnels are quite different in
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cross-sectional form, lighting, ventilation, speed limit, traffic
composition, which indicate higher speed, more trucks, and
weaker lighting. )ird, compared with medium and short
tunnels, long tunnels have quite different in lighting, viewing
distance, and viewing zone. So, the driver’s visual load is
more significant, and the viewing distance is shorter [2].
When driving in a long tunnel on a mountain highway, the
driver will experience the alteration of “black hole” and
“white hole” effects after driving longer and in more ex-
tended space. )e cumulative superposition effect would
cause an excessive visual load on the driver, leading to
uncontrolled operation. )erefore, traffic safety in the long
tunnel of mountain highway is endangered.

)e contributions of this paper are as follows: First, the
GA-SVR model simulating the influence of speed, design
brightness, measured brightness and position on MTPA
(Maximum Transient velocity of Pupil Area) is constructed,
and the influences on driving safety in long tunnels of
mountain highways are discussed. Compared with the
traditional cross-search method and network search
method, GA can optimize the parameters in the SVR model
and increase the accuracy rate from 89% to 96%. Second,
according to the changing characteristics of MTPA, this
article divides the mountainous highway long tunnel into
five stages for discussion. )is division method is different
from the traditional three-stage division of urban tunnels.
)ird, the four influencing factors of speed, design bright-
ness, measured brightness, and position in different stages
are compared. )e results show that the position has the
most significant influence in stage 1, stage 2, stage 4, and
stage 5, and the design brightness has the greatest influence
in stage 3. Fourth, this study found that the driver’s greatest
psychological stress stages are stage 2, from the entrance to
200m after the entrance, and stage 4, from 200m before the
exit to the exit. It is pointed out that it is necessary to
consider a more refined gradual lighting design in stage 2
and stage 4. )e starting position and set length of the
gradual lighting section should be considered in stage 4.

)e paper continues as follows: Section 2 provides the
literature review; Section 3 describes the experiment
method; Section 4 shows the results; Section 5 describes the
discussion, and Section 6 concludes the part.

2. Related Research

2.1. Traffic Safety of the Tunnel. )e literature on tunnel
traffic safety mainly focuses on the influence of new
equipment on vehicle traffic safety and tunnel safety design.
Vashitz evaluated the effect of on-board display on highway
tunnel traffic safety, and the results show that the vehicular
display on the degree of distracted drivers is relatively small
and does not affect driving safety [3]. Wu analyzed the
hydrogen fuel cars that may occur in the highway tunnel fire
scenario and fire hazard, and on this basis, discussed the
existing tunnel fire safety measures and the improving
method of the ventilation system [4]. Chatzimichailidou
introduced risk situational awareness methods into the
highway tunnel safety field to test the RiskSOAP rationality
and applicability of infrastructure and found that the road

tunnel design andmaintenance are still needed to strengthen
the safety of the space [5]. Hou established China’s relevant
random parameters of highway tunnel negative binomial
model, and the results showed that the proportion of traffic
volume, length of the tunnel, heavy trucks, curvature, and
pavement rutting are associated with a higher traffic accident
frequency , and the distance from the tunnel wall, the
distance of adjacent tunnel distance, distress, the interna-
tional roughness index, coefficient of friction are associated
with lower collision frequency [6]. Zhao showed that setting
the tunnel retro-reflective arch spacing to 300m in a curved
segment and in the tunnel overall is the best option. In the
middle segment, the ideal setting spacing should be 400m
[7].

Existing literature focuses on the use of new commu-
nication means and technology to improve tunnel safety
design, but from the psychological perspective of drivers, the
discussion of tunnel traffic safety is rarely mentioned. In fact,
mountain highway tunnels have serious traffic safety risks.
)erefore, it is necessary to study the physiological changes
of long tunnels on drivers and its impact on traffic safety
based on the driver’s eye movement characteristics.

2.2. Driving Safety of the Tunnel Based on the Driver’s Visual
Load. Considering drivers are responsible for over 90% of
road traffic crashes [8], it is necessary to study the effects of
driver behaviors on road safety. Based on the cognitive load
theory [9], the road signs would increase the number and
length of off-road glances, thereby creating external dis-
turbances and hindering driver performance [10]. Unlike the
billboard on which information was not deeply processed by
the driver, traffic signs required the driver’s more cognitive
load and caused greater distraction [11]. When the road
environment was complicated, the driver’s cognitive load
has a significant impact on road safety [12].

Visual load is an important component of cognitive load.
Since the magnitude of the visual load was closely related to
the level of driving safety, appropriate reduction of the visual
load was a necessary guarantee for driving safety [13, 14]and
the eye movement is widely used to analyze the magnitude of
visual load [15–17]. By counting the fixation duration and
the number of saccades, the eye movement and brain waves
were used to compare the effect of multi- and single-board
directional road signs on expressways safety, and the result
showed that the multi-board signs are more risky [18]. In
terms of influencing factors, the visual load had a strong
correlation with pupil, blink rate, saccade range, fixation
duration, and field size [19, 20].

)e relevant literature concerning drivers’ visual load
and tunnel driving safety shows that the visual load of
drivers varies greatly in different areas of tunnel entrances
and exits and under different weather conditions including
daytime, dusk, and night [21, 22]. Meng introduced a new
concept of exposure to traffic conflicts in urban road tunnel
as the mean sojourn time in a given period that vehicles are
exposed to dangerous scenarios and established a negative
binomial regression model to reflect the relationship be-
tween the proposed exposure to traffic conflicts and crash
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count [23]. Kinateder studied the influence of information
with or without additional virtual reality behavior training
on self-evacuation in the case of a simulated highway tunnel
emergency [24]. At entrances and exits of the highway
tunnel, visual oscillation was introduced to analyze the
phenomenon of driver’s transient blind period [13]. Win-
sum found that the visual tunnel effect would increase by the
task time in the process of driving [25]. For very long road
tunnels, Mehri investigated the disability glare problem and
proposed the improvement path of the tunnel lighting
system from visibility level, overall uniformity, and longi-
tudinal uniformity perspectives [26].

For tunnels in high-altitude areas, there were special
environmental and tunnel design parameters different from
tunnels in plain areas. Comparing drivers’ eye movement
characteristics and psycho-physiological reactions at tunnel
entrances in plain and high-altitude areas respectively, Yan
found that the pupil size is mainly related to the ambient
illuminance and showed a greater change of rate in pupil
diameter in illuminance at tunnel entrances to fewer lights in
high-altitude areas [27]. Shang compared the drivers’ eye
gaze behavior in the tunnel group with the single tunnel
based on the Markov chain and, the result showed that the
design and management of tunnel groups were more
complex than that of a single tunnel. )e longer the tunnel,
the greater the difference [28, 29].

Existing literature mainly focuses on the impact of
driver’s bad driving behavior on driving risks and the
analysis of traffic safety in urban tunnels. However, there are
few studies about long tunnels in mountain highways, and
studies on the evaluation of tunnel driving risks from the
perspective of eye movement load are extremely rare. In fact,
tunnels in the mountain highways have serious traffic safety
risks. It is necessary to study the physiological and psy-
chological changes of drivers in long tunnels and their in-
fluence on traffic safety based on eye movement
characteristics.

2.3. Application of the Support Vector Machine Model in
Transportation Field. Support Vector Machine (SVM)
classification models are often used in traffic monitoring.
Based on the global positioning system, SVM was used to
identify stop and forward behavior of vehicle trajectory [30].
According to the city’s road network adequacy, traffic flow,
speed, and occupancy data, SVM was used to identify five
types of urban traffic states, which included smooth, basi-
cally smooth, slight congestion, moderate congestion, and
severe congestion [31]. Based on the cellular event data, the
candidate feature set could be extracted by cell switching and
position updating.)en the feature set was corresponding to
the traffic state, position, and time interval, and the SVM
classifier could be used to detect the traffic state of the main
road [32]. )rough the image data collected by UAV at
urban intersections, the SVM classifier could extract vehicle
type, position, speed, and trajectory characteristics, thus
realizing the detection of safe space between vehicles [33].

Support Vector Regression (SVR) is often used in traffic
flow prediction and traffic safety analysis. Based on the real-
time detection data of Yan’an highway in Shanghai, China,
SVR can be combined with wavelet analysis to build a short-
term traffic speed prediction mode, which can be used to
explore the relationship between traffic flow, traffic speed,
and average occupancy rate [34]. Based on the data of flow,
speed, the standard deviation of speed, density, density
change, and proportion of vehicles of each type, SVR could
be combined with logistic regression to establish a highway
accident detection model [35]. According to the time var-
iation characteristics of physiological signal, driver control
input, vehicle kinematics, and weather, SVR can be com-
bined with Bayesian learning to predict traffic collision
accidents in real time [36].

In recent years, literature have begun to discuss traffic
safety issues from the perspective of driver behavior. Chai
selected steering wheel steering ratio, the proportion of
steering wheel stationary time, times of steering wheel
maintaining stability, and the percentage of steering wheel
angular speed to represent driver status and used the driving
simulator to collect data and establish a multi-level ordered
evaluation model based on Support Vector Machine [37].
Rahman discussed the safety behavior of drivers at signalized
intersections [38]. According to the collected vehicle attri-
bute data such as speed, position, and arrival time, combined
linear support vector machine, polynomial support vector
machine, and artificial neural network are used to predict
driver behavior under the dilemma of the time change and
speed change, thereby improving signal operation at in-
tersections. However, the analysis of driver behavior in
mountain tunnels in the existing literature is rare.

In summary, scholars focus on the characteristics of
drivers’ visual load and traffic safety in tunnels, but few
literature have analyzed the traffic safety in tunnels from the
perspective of visual load, and traffic safety in mountain
highway tunnels was ignored. )erefore, this paper takes the
Gaogu length tunnel in the mountain highway as the re-
search object, the driver’s pupil area change rate as the
research parameter, and the maximum instantaneous speed
value of the pupil area and the duration of visual shock as the
evaluation index to quantitatively study the visual load.)en
the GA-SVR model of MTPA influencing factor evaluation
was constructed to analyze the influences of speed, design
brightness, measured brightness, and position in five stages
to find out ways to improve driving safety in the long tunnel
of mountain highway.

3. Methods

3.1. Test Tunnel and Drivers. Gaogu Long Tunnel on the
mountainous highway was selected as the actual vehicle test
section where the total length was 1,270m. )e appearance
of Gaogu Long Tunnel seen from the car is shown in Fig-
ure 1. )e speed limit of the tunnel was 80 km/h, which was
one-way and two-lane with double holes, and an average
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longitudinal slope of less than 2%. Sevenmales aged between
25 and 56 years were selected as test drivers. )ey have
corrected visual acuity above 5.0 and C1 driving license.
)ey got enough sleep the night before the test, avoided
strenuous exercise, and avoided smoking and drinking al-
cohol, tea, coffee, and drugs that may affect the test results.

3.2. Test Equipment. A seven-seater commercial vehicle was
selected as the test vehicle. In the experiment, the eye-
tracking data acquisition equipment was the SMI2.1 spec-
tacle-type eye tracker from SMI, Germany. )e eye tracker
had a sampling frequency of 60Hz and a tracking accuracy
of 0.1°. )e speed of the vehicle was collected by a non-
contact multifunctional speed meter and the measurement
range was 0–300 km/h. )e measured brightness data ac-
quisition equipment LX-9621 illuminance meter, the mea-
surement range was 0–50000 Lux. )e device of the
experiment is shown in Figure 2.

3.3. Experimental Procedures andData Collection. To reduce
the interference of traffic volume on the test, the test time
was from 10 : 00 to 16 : 00 from Tuesday to )ursday when
the traffic volume was less, and the test was carried out when
the weather was fine. )e drivers were informed to drive
according to their driving habits and pay attention to driving
safety before the test. )e collected pupil data was extracted
using BeGaze3.5 data analysis software.

3.4. Characterization of MTPA Visual Load. )e change in
pupil area is an ideal indicator to measure the psychological
and physiological load of the driver. )e larger pupil area
often means a larger eye movement load. )e pupil area of
the driver changes rapidly with the sudden change of the
light environment at the entrance and exit of the tunnel in a
short period of time. )e weighted acceleration root mean
square can be used to evaluate the instantaneous vibration of
the human body [39], then, the continuous weighted speed
average of the pupil area root value can be used to evaluate
the size of visual load:

Vek t0(  �
1
f


t0

t0

V
2
wdt 

1/2

. (1)

In formula (1), Vek(t) is the pupil area change speed, f is
the continuous average integration time, integral variable t is
the time, t0 is the instantaneous investigation time, and Vw is
the pupil area change speed.

Considering the discrete time points of the pupil di-
ameter index collected in the driving visual load test in
seconds, the maximum transient speed value of pupil area
can be defined as

VeMTPA � max Vek t0(  . (2)

)e unit of MTPA is mm2/s. When measuring the
MTPA in the entrance and exit of the tunnel, f is usually
equal to 1 s.

3.5. GA-SVR Model. Compared with the traditional linear
regressionmodel, the support vector regression (SVR) can in
the case of a small sample and nonlinear data get the global
optimal solution, so that in the short term MTPA prediction
can maximize the mining position, speed, design brightness,
measured brightness the implied information in the ex-
perimental data. In the process of prediction, SVR depends
greatly on the penalty parameters and kernel function of
variance, but the setting of these two parameters is often
subjective or based on the past experience. Genetic algo-
rithm (GA) has the advantages of group search and inherent
heuristic random search, and it is not easy to fall into the
local optimum. In view of this, this paper combines a genetic
algorithm and support vector regression algorithm and uses
the advantages of GA to obtain the key parameters in the
SVR model, and then obtains more accurate short-term
MTPA prediction results.

3.5.1. Support Vector Regression (SVR). )e basic idea of
SVR is to map the value to the high-dimensional feature
space through a nonlinear mapping function and perform
linear regression in this space to form the optimal decision
function. (xi, yi), i � 1, 2, . . . , m  is marked as the training

(a) (b)

Figure 1: Gaogu Long Tunnel.
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set containing m training samples, in which xi �

[x1
i , x2

i , x3
i , x4

i ]T represents the input column vector of the
sample i and yi ∈ R represents the corresponding MTPA
observation value. In particular, x1

i represents the speed, x2
i

represents the design brightness, x3
i represents the measured

brightness, and x4
i represents the position. )e optimal

decision function f(x) is defined as follows:

f(x) � ωφ(x) + b. (3)

In formula (3), ω is the weight vector, φ(x) is the
nonlinear mapping function, and b is the threshold. Further,

the insensitive loss function ε was introduced the to obtain
the loss function:

L xi, yi, fi(  � max yi − f xi( 


 − ε, 0 . (4)

According to formula (4), if the difference between the
observed value yi of xi and the predicted value f(xi) is less
than ε, the loss value is 0. When the condition of ε is satisfied,
ω must be minimized, that is min 1/2‖ω‖. To solve the
problem that ε cannot be estimated, slack variables ξi and ξ∗i
are introduced, and SVR is transformed into the following
minimization problem.

min
1
2
‖ω‖

2
+ C 

m

i�1
ξi + ξ∗i( s.t.

yi − ωφ(x) − b≤ ε + ξi

ωφ(x) + b − yi ≤ ε + ξ∗i

ξi ≥ 0

ξ∗i ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i � 1, 2, 3, . . . , m. (5)

In formula (5), the penalty parameter is denoted as C.
)e larger the C, the greater the penalty for the samples with

training errors greater than ε. Using duality principle to
transform equation (5) as follows:

max
a,a∗

−
1
2



m

i�1


m

j�1
ai − ai

∗
(  aj − aj

∗
 ⎡⎢⎢⎣ ⎤⎥⎥⎦K xi, xj  − 

m

i�1
ai − ai

∗
( ε + 

m

i�1
ai + ai

∗
( yi

⎤⎦. (6)

In formula (6), K(xi, xj) is the radial basis kernel
function:

K xi, xj  � exp
xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠. (7)

In formula (7), σ2 is the kernel function parameter.

)e MTPA value in the experiment is denoted as
a � [a1, a2, a3, . . . , am], and the optimal predicted value is
a∗ � [a1

∗, a2
∗, a3
∗, . . . , am

∗]. )en the optimal linear re-
gression function’s coefficient ω∗ and constant term b∗ can
be find as follows, in which Nnsv is the number of Support
Vectors whose parameters the parameters of (ai − ai

∗) are
not zero.

(a) (b)

Figure 2: Device of experiment.
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⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(8)

3.5.2. Genetic Algorithm in SVR. As a popular evolutionary
algorithm, its basic principle is to imitate the evolutionary
law of “natural selection by nature and survival of the fittest.”
In the process of optimizing the parameters of the SVR
model, the genetic algorithm (GA) encodes the parameters
into chromosomes and then exchanges the chromosome
information in the population in an iterative manner, and
finally generates chromosomes that meet the optimization
goals. )e parameter optimization process is shown in
Figure 3:

According to Figure 3, the optimization process mainly
includes the following steps:

Step 1: Population Initialization. )e penalty parame-
ters C and kernel function of variance parameters σ2 in
the SVR model were encoded.
Step 2: calculate the fitness value. )e fitness value is
used to evaluate the pros and cons of individuals in the
population to facilitate the selection of individuals. )e
absolute value of the deviation between the error
prediction value F(xi) and the actual error value Yi is
used as the fitness value H. )e fitness function as
follows:

H � g 
m

i�1
abs F xi(  − Yi( ⎛⎝ ⎞⎠. (9)

Step 3: Selection Operation. )e individual i was ran-
domly selected from the original population by roulette
method for population recombination operation. )e
probability of individual selection was as follows:

Pi �
Hi


m
i�1 Hi

. (10)

Step 4:Crossover Operation. Select two individuals from
the original population and perform crossover re-
combination operations. )e new generation of indi-
viduals contains the excellent characteristics of the
previous generation. Marked λ as the random number
in [0, 1], the intersection of chromosomes βk and βh at
the position i was as follows:

βki � βki(1 − λ) + βhiλ,

βhi � βhi(1 − λ) + βkiλ.
(11)

Step 5: Mutation Operation. To avoid obtaining the
local optimal solution, individuals carry out random
variations to seek population diversity. βil represented
the mutation of the l-th gene of the i-th individual:

βil �

βil + βil − βmax( ∗ θ 1 −
k

Gmax
 

2

, r> 0.5,

βil + βmin − βil( ∗ θ 1 −
k

Gmax
 

2

, r≤ 0.5.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

In formula (12), βmin and βmax are the upper and lower
limits of the selected gene, k is the current number of it-
erations, r and θ were random number between [0, 1]; Gmax
is the maximum iteration number. When the number of
algorithm iterations reaches the maximum, the penalty
parameters C and kernel function of variance parameters σ2
in the SVR model complete the optimization.

4. Results

4.1. Experimental Data Description and Stage Division.
Taking the entrance of the long tunnel as the origin, data of
the driver’s pupil, vehicle position, driving speed, design
brightness inside and outside the tunnel, and the measured
brightness of the experimental vehicle in the process of
entering and leaving the tunnel were collected. After re-
moving abnormal data, 2,625 experimental data were ob-
tained.)e experimental data of seven people were averaged,
and a total of 375 samples were obtained. )e relationship
between speed, design brightness, measured brightness,
MTPA, and position is shown in Figure 4.

As can be seen from Figure 4, speed, design brightness,
and measured brightness all have significant stage charac-
teristics. In terms of speed, when driving close to the tunnel
entrance section where the position was from −300m to 0m,
the speed decreased from 100 km/h to 80 km/h. When
driving in the tunnel where the position was from 0m to
1270m, the speed was maintained between 70 and 80 km/h.
After exiting the tunnel, the speed quickly increased to
110 km/h. )e periodic variation of speed can be attributed
to the speed regulation of mountain highway tunnel.
According to China’s “Road Traffic Safety Law,” the speed in
mountain highway tunnels should be below the speed limit
of 80 km/h; in addition, design brightness and measured
brightness decreased from 4,500 cd/m2 before entering the
tunnel to 10 cd/m2 in the tunnel, then increased to 4,500 cd/
m2 after exiting the tunnel.

According the relationship between MTPA and position
in Figure 4(d), at the beginning of the experiment, MTPA
was below 10mm2/s and the driver felt comfortable; from
200m before the tunnel, MTPA began to increase rapidly
until 45mm2/s at 50m after the entrance, and then gradually
fall back; after entering the tunnel 200m, the driver began to
adapt to the tunnel environment and the MTPA value
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�uctuated steadily in the range of 10–20mm2/s; after the exit
of the tunnel was visible to the driver, MTPA increased
rapidly again more than 30mm2/s and peaked at 39mm2/s
in the 30m after the exit. erefore, the driver’s position
perception has a signi�cant impact on MTPA changes.

In previous studies, the research objects were mostly the
short tunnels on urban roads, then the research stage is
usually divided into three parts, which included entrance,
inside the tunnel, and exit. But it is rare to take long tunnels
on mountain highways as the research object. In addition,
the existing research mainly studied the in�uence of single
or double factors on drivers’ eye movement state [40], but
rarely comprehensively analyzed the in�uence of four fac-
tors including position, speed, design brightness, and
measured brightness. e in�uence of factors on the driver’s
psychology. However, the experimental data showed that the
MTPA should be divided into �ve stages in the long tunnels
of mountain highways, including steep increasing, falling
steady, �uctuation, sharp increasing again, and falling again.
erefore, this paper divides the position range into �ve
sections to discuss the in�uencing factors of MTPA, namely
(−300m, 0), (0, 200m), (200m, 1070m), (1070m, 1270m),
and (1270m, 1570m).

4.2. GA-SVR Model. In this paper, a GA-SVR model for
calculating MTPA is established by taking speed, design
brightness, measured brightness, and position as input
variables and MTPA value as the output variable.

In the process of obtaining the penalty parameters and
kernel function of variance parameters in SVR model by
genetic algorithm, evolution times were set to 200, pop-
ulation size was set to 20, crossover probability parameter
was set to 0.7, mutation probability parameter was set to
0.035, and the optimization range was set to [0, 100]. To
minimize the mean square error (MSE), the �tness function
was established to search for the optimal penalty parameters
C and kernel function’s variance parameters σ2 in the SVR
model, and the result is shown in Figure 5.

It can be seen from Figure 5 that MSE achieves con-
vergence after 15 evolutions, and the minimum value is
0.012. At that time, the corresponding penalty parameters C
and kernel function’s variance parameters σ2 are equal to
17.5126 and 13.712, respectively. Further, 281 samples were
randomly selected from 375 valid samples as the training set
and the remaining 94 samples as the test set. After putting
the optimal parameters into the SVR model and calling the
Libsvm toolbox in MATLAB, the optimal model can be
obtained after 300 iterations and the prediction e�ect is
shown in Figure 6. e results showed that the mean square
error between the predicted and the actual value is
0.0064813, and the determination coe�cient was 0.96384. In
other words, the four factors including speed, design
brightness, measured brightness, and position can explain
96.38% variation of MTPA.

4.3. Analysis of In�uencing Factors ofMTPABased on theGA-
SVR Model. e in�uence of speed, design brightness,
measured brightness, and position on MTPA were

compared by analyzing the sensitivity of GA-SVR model,
and the sensitivity analysis results are shown in Table 1.

Comparing the rows in Table 1 shows that the main
factors a�ecting MTPA are not the same in each stage: in
stage 1, the sensitivity of MTPA to position and speed is
higher, 17.31% and 12.08% respectively; in stage 2, MTPA is
relatively sensitive to changes in position and speed, with
sensitivities of 2.96% and 2.92% respectively; in stage 3,
MTPA is relatively sensitive to changes in design brightness,
with a sensitivity of 1.42%; in stage 4, the sensitivity of
MTPA to position and speed is higher, 36.27% and 7.21%
respectively; in stage 5, the sensitivity of MTPA to position
and the design brightness is higher, 47.71% and 12.87%
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respectively. In addition, the sensitivity of MTPA varies with
stages, and the sensitivity of MTPA in stage 1, 4, and 5 is
relatively high.

Comparing the columns of Table 1, it can be found that
the sensitivity of each influencing factor at different stages is
not the same: the speed sensitivity is higher in stage 1 and
stage 4, 12.08% and 7.21% respectively; the design brightness
sensitivity is higher in stage 1 and stage 5, 4.0% and 12.87%
respectively; the measured brightness sensitivity is higher in
t stage 1 and stage 5, 1.85% and 12.87% respectively; the
position sensitivity is higher in stage 1, stage 4, and stage 5 is,
respectively 17.31%, 36.27%, and 47.71%.

)erefore, the following conclusions can be drawn from
Table 1: First, the sensitivity of the designed brightness and
the measured brightness at the entrance and exit of the
tunnel is relatively high, which is consistent with existing
studies [41]. Second, the speed is highly sensitive before
entering and exiting the tunnel, which can be attributed to
the speed monitoring method of the highway tunnel. In fact,
the mountain highway tunnel adopts the speed monitoring
method of interval speed measurement and the speed limit
of 60–80 km/h is mandatory by law. )erefore, the driver
will consciously control the driving speed before entering
and exiting the tunnel. Last but not least, position is a major
factor in MTPA during the three stages before entering the
tunnel, before exiting the tunnel, and after exiting the tunnel.
)is can be explained by the complex terrain conditions and
changeable climate conditions of the long tunnel in the
mountain highway, so the abrupt change of the tunnel
entrance section has a great influence.

5. Discussion

Unlike MPTA in urban tunnels, which is mainly affected by
design brightness and measured brightness，the position is
a key factor affecting MTPA in mountain highway tunnels,
which are long in length and located in more complex
terrain conditions. )erefore, it is necessary to combine
position factors to further explore the influence of speed,
design brightness, and measured brightness on MTPA at
different stages.

5.1. Ae Effect of Speed and Position on MTPA. In this ex-
periment, the speed range of stage 1 is 76 –106 km/h, stage 2,
stage 3, and stage 4 speed range is 65 km/h–80 km/h, and
stage 5 speed range is 67 km/h–115 km/h. )e average of the
design brightness and the measured brightness and the GA-
SVR model are used to simulate the influence of the speed
and position on the MPTA.

Figure 7 shows the impact of speed and position on
MTPA when a vehicle enters a long tunnel. It can be seen
that the range of MTPA value is (5, 17) in stage 1, and it
abruptly increases to (25, 35) in stage 2, and is (15, 20) in
stage 3. Comparing the height of the MTPA in the three sub-
graphs, it can be found that when the vehicle enters the
tunnel, the MTPA value experienced a significant increase
from stage 1 to stage 2, and then decreased slightly from
stage 2 to stage 3. )is can be explained as the result of the
combined effect of the speed control of the mountain
highway and the black hole effect.

From Figure 7(a), it can be found that the driving speed
in stage 1 is reduced from 110 km/h to 70 km/h, and the
closer to the entrance, the higher the MTPA. )is can be
explained as the speed control mark and black hole effect will
urge the driver to be more vigilant. From the Figure 7(b),
MTPA in stage 2 is higher when the speed is closer to the
speed limit of 80 km/h or closer to the hole. )is can be
explained by the rapid change of the driving environment at
the moment of entering the tunnel, which causes the driver’s
stress to soar. After that, MTPA decreases as the driving
environment in the tunnel adapts and the speed slows down.
From the Figure 7(c), the fluctuation of theMTPA is small in
stage 3. )e closer the speed is to the limit of 80 km/h, the
higher the MTPA value. As the tunnel deepens and the
driver realizes the pressure brought by the long tunnel
environment, the MTPA gradually decreases and stabilizes
in the high-value range, which is still higher than stage 1.

Figure 8 shows the impact of vehicle speed and position
on MTPA during the process of driving out of a long tunnel.
It can be seen that the variation range of the MTPA value is
(15–20) in stage 3, suddenly increases to (25–35) in stage 4,
and decreases to (5–15) in stage 5. Comparing the height of
the MTPA in the three sub-graphs, it can be found that the
MTPA value has experienced a significant increase from
stage 3 to stage 4, and then a drastic decrease from stage 4 to
stage 5 when the vehicle leaves the long tunnel. )is can be
explained as the result of the combined effect of speed
control and the white hole effect on mountain highways.

Figure 8(b) shows the MTPA suddenly increased after
the driver saw the exit in stage 4. Speed and position have a
synergistic effect onMTPA.)e closer the speed is to 80 km/
h or the position is to the exit, the higher theMTPA. It can be
explained as the white hole effect and the driver’s worry
about unknown mountain terrain and climate conditions
after driving out of the tunnel. Figure 8(c) shows the MTPA
gradually decreased as the vehicle move further away from
the exit in stage 5, even if the driving speed increases from 70
to 115 km/h. )is can be explained as the psychological
pressure of the driver was effectively released after driving

Table 1: )e sensitivity analysis of MTPA.

Stage Interval Speed (%) Design brightness (%) Measured brightness (%) Position (%)
1 (−300, 0) 12.08 4.0 1.85 17.31
2 (0, 200] 2.92 <0.01 0.01 2.96
3 (200, 1070] 0.20 1.42 0.11 0.80
4 (1070, 1270] 7.21 <0.01 <0.01 36.27
5 (1270, 1570] 1.50 12.87 5.12 47.71
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out of the tunnel. It can be inferred that position has a
greater e�ect on MTPA than speed.

Existing research shows that the speed should be pro-
portional to MTPA in the ordinary tunnel [42]. However,
this classical assumption is not valid in stage 1 and stage 5 of
the long tunnel on the mountain highways because position
has a greater e�ect on MTPA than speed in these two stages.
erefore, when setting the speed limit or warning signs for
long tunnels of mountain highways, it is necessary to
carefully consider the starting position of signs.

5.2. �e E ect of Design Brightness and Position on MTPA.
For the long tunnel in the mountain highway, the design
brightness in stage 1 is reduced from 4500 to 4000 cd/m2,
further down from 160 to 8 cd/m2 in the stage 2. In stage 3
where the tunnel was deep, the design brightness �uctuated
between 3 and 8c d/m2. In the stage 4, where the driver can

see the tunnel exit, the design brightness range is
3 ∼ 15 cd/m2. After exiting the tunnel, the design brightness
in stage 5 increases from 4000 cd/m2 to 4500 cd/m2. Take the
average speed and the measured brightness, and the GA-
SVR model is used to simulate the in�uence of the design
brightness and position on the MPTA.

Figure 9 shows the in�uence of the design brightness and
position on the MTPA when the vehicle driving in the long
tunnel. e range of MTPA value is (4, 13) in stage 1, then
abruptly increases to (20, 40) in stage 2, and decreases to (18,
23) in stage 3. Comparing subgraphs, it can be found that
when the vehicle enters the tunnel, the MTPA value has
experienced a signi�cant increase from stage 1 to stage 2, and
then rapidly drops from stage 2 to stage 3 but remains high.
e dramatic changes in MTPA can be explained by the
black hole e�ect, which can be attributed to a sharp drop in
the design brightness from 4000 cd/m2 outside the tunnel to
160 cd/m2 inside the tunnel. Although the MTPA of the
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Figure 7: e in�uence of speed and position on MTPA in stages 1–3. (a) Stage 1. (b) Stage 2. (c). Stage 3.
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third stage fell, it was still larger than that of the �rst stage.
is phenomenon can be explained as the long-time closed
driving environment brought by the long tunnel would
increase the psychological load of drivers.

Figure 9(a) shows that MTPA is mainly a�ected by the
position in stage 1. Figure 9(b) shows that MTPA reached
the peak value at the moment when entering the tunnel, and
then showed a trend of �rst decreasing and then increasing
in stage 2. is phenomenon can be explained as the gradual
lighting design of the entrance section can e�ectively alle-
viate the visual discomfort of the driver when entering the
tunnel. Figure 9(c) shows that MTPA �uctuates steadily in
stage 3 and is still directly proportional to the design
brightness.

Figure 10 shows the in�uence of design brightness and
position on MTPA in the process of the vehicle leaving a
long tunnel. e range of the MTPA is (18, 23) in stage 3,
suddenly increases to (20, 35) in stage 4, and decreases to (10,
15) in stage 5. Comparing three sub-graphs, it can be found
that during the process of vehicles leaving the tunnel, the
MTPA value has experienced a signi�cant increase from
stage 3 to stage 4, then a sharp drop from stage 4 to stage 5. It
can be attributed to the stage jump of the design brightness
from 15 cd/m2 at the exit of the tunnel to 4000 cd/m2 outside
the tunnel.

Besides, Figure 10(b) shows that the e�ect of position on
MTPA is greater than the design brightness in stage 4.
Although the design brightness just increases from 3 to
15 cd/m2, the MTPA increases sharply at this time and
reaches the peak when it approaches the tunnel entrance.
Figure 10(c) shows that MTPA �uctuated steadily in stage 5.
e design brightness and position have no signi�cant in-
�uence on MTPA after exiting the tunnel.

e changes inMTPA indicate that the design brightness
should be inversely proportional to the MTPA, which is
consistent with existing research [43]. However, it is in-
teresting that this conclusion is not true in stage 2 and stage 4
for the long tunnel of mountain highway. e reason is that

the design of the gradual lighting section in stage 2 can
e�ectively alleviate the visual discomfort when the driver just
enters the tunnel, and the in�uence of the position in stage 4
played a decisive role. Di�erent from plain areas, mountain
highways may face a more complex driving environment
after exiting the long tunnel, such as re-entering the tunnel,
more complex terrain structure, rainy and foggy climate, and
so on. e unknown driving environment after the long
tunnel leads to an increase of psychological pressure.
erefore, it is necessary to consider a more re�ned gradual
lighting design in stage 2 and stage 4. Moreover, it is par-
ticularly important to consider the starting position and
setting the length of the gradual lighting section in stage 4.

5.3.�e E ect of Measured Brightness and Position onMTPA.
Di�erent from other literature, the measured brightness is
specially added as the in�uencing factor of MTPA in this
paper. For the long tunnel of the mountain highway, the
measured brightness in stage 1 decreased from 4152 to
3408 cd/m2, further down from 152 to 15 cd/m2 in the stage
2. In the stage 3, where the tunnel is deep, the measured
brightness �uctuated between 5 and 18c d/m2. In stage 4, the
range of the measured brightness is 6 ∼ 87 cd/m2. After
exiting the tunnel, the measured brightness in stage 5 in-
creases from 3522 cd/m2 to 4298 cd/m2. Take the average of
speed and the design brightness, and the GA-SVR model is
used to simulate the in�uence of the measured brightness
and position on the MPTA.

Figure 11 shows the in�uence of themeasured brightness
and position on the MTPA when the vehicle enters the long
tunnel. e range of MTPA value is (10, 15) in stage 1, then
abruptly increases to (20, 35) in stage 2, and decreases to (5,
15) in stage 3. Comparing subgraphs, it can be found that
when the vehicle enters the tunnel, the MTPA value has
experienced a signi�cant increase from stage 1 to stage 2, and
then a rapid decline from stage 2 to stage 3. is can be
explained as the result of the combined e�ect of the light
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environment change and the position of the mountain
highway.

Figure 11(a) shows that MTPA is mainly a�ected by the
position in stage 1. e lower the measured brightness and
the closer the vehicle is to the hole, the higher the driver’s
MTPA. Figure 11(b) shows that MTPA reached the peak
value at the moment when entering the tunnel, then showed
a trend of �rst decreasing and then stabilizing in stage 2.is
phenomenon can be explained as the gradual lighting design
of the entrance section can e�ectively enhance the ability to
recognize the environment in the tunnel, so the driver can
adapt to the black hole e�ect quickly. Figure 11(c) shows that
the in�uence of position on MTPA is greater than that of
measured brightness. As the vehicle deepens in the long
tunnel, the MTPA shows a slow upward trend.

Figure 12 shows the in�uence of measured brightness
and position on MTPA in the process of vehicle leaving a
long tunnel. e range of the MTPA is (5, 15) in stage 3,
suddenly increases to (20, 35) in stage 4, and decreases to (5,
15) in stage 5. Comparing three sub-graphs, it can be found
that during the process of vehicles leaving the tunnel, the
MTPA value has experienced a signi�cant increase from
stage 3 to stage 4, and then a sharp drop from stage 4 to stage
5. is can be explained as the in�uence of the white hole
e�ect on the psychological changes of the driver.

Although the measured brightness just increases from 3
to 15 cd/m2, the MTPA increases sharply at this time and
reaches the peak when it approaches the tunnel entrance.
Figure 12(b) shows that MTPA �uctuated steadily in stage 5.
e measured brightness and position have no signi�cant
in�uence on MTPA after exiting the tunnel.

Besides, Figure 12(b) shows that the e�ect of position on
MTPA is greater than the measured brightness in stage 4.
After the driver saw the tunnel exit, the MTPA increased
sharply. e closer to the hole, the lower the measured
brightness, the greater the MTPA. e MTPA is inversely
proportional to the measured brightness change, which is
consistent with the traditional view [44]. Figure 12(c) shows
that the MTPA drops gradually as it moves away from the

tunnel, which means the psychological pressure of the driver
is e�ectively released after exiting the tunnel.

6. Conclusions

With the development of mountainous highways in China in
the past 10 years, the tra�c safety risks in long mountainous
highway tunnels have become a new issue. From the per-
spective of the drivers’ visual load, this paper constructed a
GA-SVR model of the in�uence of speed, design brightness,
measured brightness, and the position on MTPA, and
discussed the factors a�ecting driving safety in tunnels on
mountain highways.

e conclusions showed that: �rstly, the changes of
MTPA in the long mountainous highway tunnels can be
divided into �ve stages, which is di�erent from the three-
stage division of urban tunnels. is stage change is the
result of the combined e�ects of speed, design brightness,
measured brightness, and position; secondly, the in�uence
degree of in�uencing factors is varied in di�erent stages: the
position factor matters most in stages 1, 2, 4, and 5. In stage
3, the design brightness has the greatest impact; thirdly, the
comparison of stages indicated that stage 2 and stage 4 had
the highest MTPA value, which suggested the greatest the
driver’s psychological pressure on the entrance and exit
sections of the tunnel. is phenomenon explained the
driver experienced the creation and disappearance of the
“black hole e�ect” in stage 2, and the “white hole e�ect” and
drastic changes in visual load in stage 4. is was consistent
with the reality that the portals of the long tunnel were
locations highly prone to tra�c accidents. erefore, it was
necessary to consider a more accurate gradual lighting
design in stage 2 and stage 4 and to consider the starting
position and setting length of the gradual lighting section in
stage 4; lastly, the MTPA value of stage 3 was signi�cantly
higher than that of stage 1 and stage 5 outside the tunnel.
is showed that with the increased length of mountainous
highway tunnels, the long-term enclosed driving environ-
ment made the psychological load of drivers intensify.
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)erefore, it was necessary to enhance traffic safety man-
agement and protections in the middle of the tunnel.

)e merit of this paper is the study on the influences of
speed, design brightness, measured brightness, and position
on the driver’s eye movement. )ese factors can reflect the
light setting and visual range characteristics of the long
mountainous highway tunnels. In addition, SVR can analyze
the nonlinear relationship between speed, design brightness,
measured brightness, position, and MTPA with limited
experimental data. Compared with the traditional cross
search method, GA can optimize the parameters of the SVR,
thereby increasing the accuracy rate from 89% to 96%.
)erefore, GA-SVR is suitable for the safety risk assessment
of the long mountainous highway tunnels [45–47].
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