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Collecting the information of tra	c load, especially heavy trucks, is crucial for bridge statistical analysis, safety evaluation, and
maintenance strategies. �is paper presents a tra	c sensing methodology that combines a deep learning based computer vision
technique with the in
uence line theory. �eoretical background and derivations are introduced from both aspects of structural
analysis and computer vision techniques. In addition, to evaluate the e�ectiveness and accuracy of the proposed tra	c sensing
method through �eld tests, a systematic analysis is performed on a continuous box-girder bridge. �e obtained results show that
the proposed method can automatically identify the vehicle load and speed with promising e	ciency and accuracy and most
importantly cost-e�ectiveness. All these features make the proposed methodology a desirable bridge weigh-in-motion system,
especially for bridges already equipped with structural health monitoring system.

1. Introduction

Modern bridges are mainly constructed for tra	c purposes.
Accordingly, collecting the information of tra	c including
vehicle weight, velocity, quantity, type, and spatiotemporal
distribution, is crucial for bridge design re�nement, safety
evaluation, and maintenance strategies [1–3]. To this end, a
number of studies on tra	c information identi�cation have
been conducted. Among these methods, the bridge-weigh-
in-motion (BWIM) technique is highlighted [4, 5].

�e concepts behind BWIM techniques were initially
proposed by Moses [6], who used an instrumented bridge
as the weighing scale to estimate vehicle weights. Compared
with other weigh-in-motion (WIM) techniques, such as the
pavement-based WIM systems [7, 8], BWIM techniques are
cost-e	cient, durable, and unbiased as they are not impacted
by repeated axle loads and do not require interrupting the
tra	c to cut the pavement. All these advantages have made
BWIM a preferable tool to weigh vehicles, especially heavy
trucks, attracting many follow-up research and engineering
applications. Up to date, this research topic has progressed
signi�cantly in aspects as diverse as the identi�cation results,

such as time-history moving load identi�cation [9–11], or the
types of sensors, such as portable accelerometers [12].

One of the most simple and practical BWIM techniques
veri�ed by �eld tests is the gross vehicle weight (GVW).
�is identi�cation method is based on the static in
uence
line/surface theory, which is already applied by Moses in
his earliest research [13]. However, key problems arise in
obtaining accurate results when multiple vehicles cross the
bridge deck simultaneously or move transversely [14]. In this
scenario, combining supplemental vehicles position infor-
mation and the in
uence surface instead of in
uence line
might help to mitigate the problem. To position the vehicles
on the bridge, tra	c sensors such as radar, road tubes, and
embedded axle detectors are recommended by Snyder et al.
[15]. Lamentably, these sensors are too costly for its massive
installation in actual structures. Alternatively, Xiao et al. [16]
and Yamaguchi et al. [17] innovatively utilized the longitu-
dinal ribs strains of an orthotropic steel bridge to detect the
transverse position of vehicle axles. Unfortunately, concrete
bridges without ribs are insensitive to single axle loads,
making this method ine�ective for this kind of structures.
Yu et al. [18] proposed a novel BWIM algorithm that was
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able to identify the lateral position of a single vehicle on a
bridge by using only seven strain gauges installed transversely
at the bottom of the beams. �at paper, however, admitted
that identifying the presence of multiple-vehicle is still one of
the main challenges faced by BWIM technology.

To address the multiple-vehicle presence challenge, using
visual information is an innovative and feasible solution
on the basis that a large number of bridges have been
equipped with surveillance cameras for tra	c monitoring of
late years. In fact, the rich visual information recorded by the
surveillance cameras enables obtaining the exact position of
the vehicles on the bridge deck with nothing but a common
webcam. Chen et al. [19] proposed an identi�cation approach
for the spatiotemporal distribution of tra	c loads on bridges
using the information from the pavement-based WIM and
background subtraction technique. �is approach relies on
high quality video image, which limits its range of application.
Another disadvantage of this method is the fact that it is
nonsemantic, which means deep information contained in
the video image, such as type and axle number of vehicles,
is di	cult to obtain. Similar problems also exist in studies
aiming to detect vehicle axles using traditional computer
vision techniques [1, 20].

In recent years, deep learning methods have dramatically
improved the state of the art in visual object detection and
recognition with amazing e	ciency and robustness [21].
Inspired by the tremendous advance of computer vision tech-
niques, this paper presents a tra	c information identi�cation
methodology in combination with in
uence line theory and
deep learning based computer vision techniques.

�is paper is organized as follows. Firstly, the theo-
retical background of both aspects of structural analysis
and computer vision techniques is presented. Next, �eld
tests on a box-girder bridge were conducted to evaluate the
proposed methodology in various aspects. Finally, both the
advantages and the potential engineering applications of the
methodology are discussed.

2. Structural Analysis

2.1. Bridge Response Analysis. One of the most concerning
tra	c information is vehicle weight. To estimate the vehi-
cle weight, BWIM technology traditionally uses the bridge
strains.�erefore, bridge structural strain analysis is essential
in the process of vehicle weight identi�cation.

Most BWIM systems are applied on girder bridges with
small or medium span due to its structural simplicity.
Compared with long-span bridges, middle-small span girder
bridges perform linear elasticity under normal operation,
making them ideal weighing scales to estimate vehicle
weights. Moreover, load e�ects on such bridges are relatively
simple, which can be expressed as follows:

������� = ���V��	�
��� + �
V�ℎ��� (1)

�
V�ℎ��� = �����
� + ������ (2)

where ������� is the directly measured bridge strain; ���V��	�
���
is the bridge strain caused by environmental factors, such as
temperature, wind, slight earth pulse, and creep of concrete;

�
V�ℎ��� is the bridge strain induced by vehicles, which includes
dynamic �����
� and static ������ components.

According to the in
uence theory, the static component
������ is to be extracted from ������� by �ltering ���V��	�
���
and �����
� for the purpose of tra	c load identi�cation. In
this paper, the �ltering process is divided into two steps: (i)
the ������� time-history curve is robustly smoothed to get
���V��	�
��� and subtract ���V��	�
��� from ������� to get �

V�ℎ���,
and (ii) the �

V�ℎ��� time-history curve is smoothed to get the
desired ������. �e whole procedure is shown in Figure 1 for
intuitive illustration.

To achieve the �ltering process in time domain, a local
regression algorithm named locally weighted scatterplot
smoothing (LOWESS) is used. Chief attractions of this
algorithm are the accuracy and convenience. It is not required
to specify a global function of any form to �t a model to the
data, only to �t segments of the data so that satisfactory local
accuracy is achieved. According to Cleveland and Devlin
[22], the basic principle of the LOWESS is expressed as
follows.

First of all, the LOWESS belongs to the regression analy-
sis, which aims to �t the mathematical relationship between
two sequences �� and ��. In this paper, �� is considered as the
time sequence ��, while �� is the bridge strain data sequence
��.

�e LOWESS adopts the polynomial regression model,
expression of which is [23]

�� = �0 + �1�� + �2�2� + ⋅ ⋅ ⋅ + ����� + �� =
�
∑
�=0

����� + 	�
(
 = 1, 2, . . . , �)

(3)

where �� is the coe	cient of the polynomial regression
model,� is the order of the polynomial, 	� is the randomerror,
and � is the length of local sequence segment. For LOWESS,
taking � = 2 should almost always provide adequate smooth
and computational e	ciency.

To get appropriate coe	cient �̂�(��) of the polynomial, the
LOWESS chooses weighted least squares estimate method,

whichmeans �̂�(��) are the values that minimize the following
function:

� =
�
∑
�=1

�� (��) (�� − �0 − �1�� − ⋅ ⋅ ⋅ − �����)2 (4)

where ��(��) are weights de�ned for all ��(� = 1, . . . , �).
�e tri-cube weight function is adopted to provide adequate
smooth results.

�us �̂�(��) can be obtained by

��
�� = 0 (5)

Finally, smoothing results are

�̂� ==
�
∑
�=0

�̂� (��) ��� (
 = 1, 2, . . . , �) (6)

where �̂� is the smoothed strain sequence.
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Figure 1: Procedure of the vehicle induced static strain extraction.

A�er preselecting �, the order of the polynomial, and
��(��), the weight function, the only parameter le� to be
de�ned, is the length of local sequence segment, �. �is
parameter can be chosen on the basis of the data properties.
In this paper, � is selected as 50 when smoothing the �

V�ℎ���
time-history curve. Because the longest vibration period of
girder bridges is less than 1s, and the sampling frequency
of strain sensors in this research is �xed at 50Hz, which
means that 50 data points are recorded perminute. Choosing
the length of the data sequence segment as 50 for locally
smoothing is enough to �lter the �����
� from the �

V�ℎ���
hence. Similarly, � = 500 can be assumed for smoothing the
������� time-history curve when a vehicle crosses a bridge with
small ormedium span. In these cases, the frequency is usually
within 10s.

�e LOWESS algorithm is capable of smoothing the
�
V�ℎ��� time-history curve to get the desired ������. However,
using LOWESS to smoothing �������might not be satisfactory
enough. Compared with �����
�, strain variation caused by
vehicle weight is much more signi�cant. �us, the apparent
peaks will distort the smoothed results as shown in Figure 2.

To prevent seriously deviant data from distorting
the smoothed results, robust locally weighted regression
(RLOWESS) algorithm was proposed on the basis of
LOWESS [24]. Based on the size of the residual �� = �̂� − ��,
a di�erent set of weights, �� ⋅ ��(��), is de�ned for each (��, ��)
as

�� =
{{{
{{{{

[1 − (��6�)
2]
2
, for

!!!!!!!
��
6�
!!!!!!! < 1

0, for
!!!!!!!
��
6�
!!!!!!! ≥ 1

(7)
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Figure 2: Normal strain signal collected from the web of a concrete
box girder bridge.

where �� is the robust factor of weights, �� = �̂� − �� is
the smoothing residual, and � is the median of the |��|. By
introducing ��, large residuals result in small weights and
small residuals result in large weights. In this way, distortion
produced by seriously deviant data points can be e�ectively
mitigated as shown in Figure 2.

2.2. Influence Line Calibration. Bridge in
uence lines can be
used to weigh vehicles and they are vital tools for BWIM
analysis. In fact, obtaining an adequate accuracy of the
in
uence line is critical for the BWIM system to achieve
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Figure 3: Diagram of the kinematic method aiming to obtain the in
uence line of section #1.

convincing results. According to previous studies on BWIM,
there are two methods to obtain the in
uence line of a bridge.
One is the theoretical simulation method [6, 25, 26], and
the other is the calibration method carried out in �eld tests
[8, 27].

Apparently, numerical simulation is unable to fully repro-
duce the mechanical behavior of a real bridge. To �ll this gap,
a method �tting strain in
uence line with measured strain
data from �eld calibration tests is presented in this paper.�e
method includes the following two steps.

Step 1 (theoretically derive the shape of the in
uence line).
In the �rst step, the theoretical shape of the strain in
uence
line of the analyzed girder bridge is obtained. According to
the structural mechanics, one of the most common methods
to obtain the in
uence line of a chosen beam section is the
kinematic one [28].

Normal strain of the chosen bridge cross-section is used
to weigh vehicles in this work. As it is well known, the Euler-
Bernoulli beam theory states that the normal strain of the
chosen cross-section of a beam under vertical loads is pro-
portional to its bending moment. According to Timoshenko
andGere [29], the proportional relationship can be expressed
as

� = $�
�% (8)

where � is the normal strain of a point on the chosen beam
cross-section,$ is the bendingmoment at that cross-section,
� is the distance between the point and the neutral axis of the
cross-section, � is the elastic modulus of the beam material,
and % is the moment of inertia of the cross-section.

Equation (8) indicates that, for a �xed point on the chosen
beam cross-section, the normal strain � of that point is
proportional to the bending moment$ at the cross-section.
�us the shape of strain in
uence line of a �xed point is
similar to that of the bending moment in
uence line at the
chosen cross-section where the �xed point is located. In other
words, it can be said that the two in
uence lines are scaled.

To illustrate the kinematic method a four-span contin-
uous beam presented in Figure 3 with nodes from A to E
is considered. �is method assumes that an element of the
beam at the chosen cross-section, like #1 section in Figure 3,
is replaced with an ideal hinge. It allows relative rotation
between the two portions of the beam and a system with one
degree of freedom is obtained in this manner. If a load & is

applied at any point on themovable system, for equilibrium, a
pair of two equal and opposite bendingmoments$ is needed
at the hinge. Meanwhile, virtual displacement of the movable
system will be produced by the loads. For the le� movable
portion '#1, the displacement curve is linear, and, for the
right structure portion #1-E, the displacement curve is a cubic
[29], as shown in Figure 3.

According to the principle of virtual work, the sum of
corresponding virtual work of load & and the couple $
equates zero, that is

$ ⋅ �	 − & ⋅ � = 0 *→
$ = & ⋅ ��	

(9)

where �	 is the total angular displacement between the two
parts of the beam and � is the vertical displacement of
the point where load P is applied. �us �/�	 refers to the
in
uence coe	cients for bending moment at the chosen
section #1 , and the diagramof structural displacement has the
shape of the in
uence line.

Step 2 (calibrating the derived in
uence line with �eld tests
data). In the second step, numerical values of the strain
in
uence line are calibrated from �eld test data. Figure 3
illustrates how the in
uence line can be numerically �tted
a�er introducing the realmeasurements (I) obtained in a �eld
test at points #1, #2, #3, and #4 (that is to say %�1, %�2, %�3, and%�4).

�e calibration approach begins with arranging a cali-
bration truck with known weight to cross the instrumented
bridge for several times, as Figure 4(a) shows.

Since bridges are usually long relative to the spacing
of vehicle axles, gross vehicle weight is more important
than individual axle load [30]. Besides, for the linear elastic
structures, the mechanics principle of superposition works.
Considering this, the vehicle load can be simpli�ed as a
concentrated load &, which is written as

& = 3 ⋅ g (10)

where 3 is the vehicle weight, and g is the gravitational
acceleration.

According to the in
uence line theory, there will be
an extreme on the strain time history curve recorded by
a �xed strain sensor when a moving load passes a bridge
span. For a four-span continuous girder bridge passed by the
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calibration truck, the ������ time-history curve of a �xed point
on bridge has four extremes, as shown in Figure 4(b). �e
de
ections %�1, %�2, %�3, and %�4 occur when the calibration
truck passes cross-section #1, #2, #3, and #4.�en it is feasible
to numerically �t the strain in
uence line of a desired point
on the chosen section with nine points, A∼E and #1 ∼ #4 in
Figure 3, of which the coordinates are determined.

Finally, the strain in
uence line is normalized to obtain
the direct relationship between vehicle weight and bridge for
BWIM application convenience. �e normalization equation
is as follows:

%� = %�
3 (11)

where %� is the static strain caused by per unit vehicle
weight, and %� is the obtained value of the strain in
uence
line. An example of calibrated strain in
uence line is shown
in Figure 4(c). In this �gure, four static strain values per
unit vehicle weight (%�1, %�2, %�3, and %�4) are considered.
As discussed previously, the polynomial order for �tting
purposes depends on the order of the displacement curve.

�is calibration procedure of in
uence lines has a number
of advantages, such as low calculation, operation simplicity,
and no need to close tra	c, enabling convenient recalibration
if the mechanical performances of the instrumented bridge
change [31]. However, it is noteworthy that the usage of in
u-
ence line, instead of in
uence surface [32], is a simpli�cation
for real bridges, because vehicles may move transversely on
bridge. But this simpli�cation is still acceptable under the
assumption that heavy trucks this research focuses on seldom
change the tra	c lane when crossing the bridge.

3. Computer Vision Technique

3.1. Deep Learning Approach. Convolution neural network
(CNN) is one of the most notable deep learning approaches
employed for object detection, classi�cation, and segmenta-
tion tasks [33]. Here, learning means that CNN automatically
learns useful features from the training data and distinguishes
the target object and the others based on these features.
Actually, that is how humans recognize objects. �e CNN is
therefore classi�ed as arti�cial intelligence (AI) method. �e
learning ability is a qualitative leap over traditional manual
feature extraction methods and can thus drastically reduce
the workload of operation. Besides, the intelligent character
also improves the robustness and generalization capacity
because of the invariance to complex background, geometric
distortion, and illumination.

Due to such advantages, newCNNbased computer vision
algorithms with better performance have been unceasingly
proposed, and most of them are open source. �is research
applies the most advanced algorithm named YOLO V3 to
ful�ll the vehicle recognition tasks for its multi-scale and
deeper feature extraction capacity as well as the fastest
recognition speed up to date [34]. �e application procedure
has the following three steps.

Step 1 (preparing training data sets). As stated previously,
CNN based computer vision algorithms will not work with-
out e�ective training. �us training data sets need to be
prepared for the YOLOV3 algorithm at �rst.�e preparatory
work includes singling out segment of videos in which
vehicles exist and manually labelling cars, trucks, and wheels
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Figure 6: Vehicle recognition results for di�erent scenarios.

in every video frame, as shown in Figure 5(a). In this paper, a
total of 1000 video images with the same camera visual angle
are selected as the training set and di�erent types of objects
including cars, trucks, and wheels are labelled in each image.

Step 2 (training CNN of YOLO V3). CNN is essentially a set
of weight coe	cients capable of recognize objects using the
pixel data of an image. Errors are inevitable in the process of
recognition, and training CNN intends to obtain the optimal
weight coe	cients that minimizes the errors. To that end,
the gradient descent method [33] is used in this optimization
problem.�is technique states

��
��� ≤ 8 (12)

where � is the recognition error,�� are the CNNweights, and
8 is the convergence threshold.

Numerical iteration is required to achieve (12), and the
iteration process is shown in Figure 5(b). In this research,
iteration times are set to 10000 in the six-hour training
process accelerated by a NVIDIA 1080Ti GPU.

Step 3 (applying YOLO V3). A�er a well-trained CNN is
obtained, the YOLO V3 is used to recognize vehicles in
real time. Recognition results in this research were quite
satisfactory in the di�erent scenarios shown in Figure 6. It
is remarkable that the closely spaced wheels are successfully

recognized as shown in Figure 6(c), proving the splendid
recognition capability of the YOLO V3 algorithm. �e rec-
ognized pixel coordinates of the detection box are collected
for further vehicle positioning tasks.

Vehicle overlap and insu	cient illumination might pro-
duce inevitable recognition errors. Diversifying neural net-
work training sets and utilizing infrared camera at dark night
will help to improve the recognition accuracy.

3.2. Coordinate Transformation. A�er the successful recog-
nition by YOLO V3 algorithm, precise position of vehicles
has to be determined. To address this problem, coordinate
systems are established as illustrated in Figure 7 [35] and a
coordinate transformation method is proposed in this work.
�ere are two coordinate systems in the process of coordinate
transformation, namely, camera pixel coordinate in the video
image as shown in Figure 7(a) and space coordinate in the
real world as shown in Figure 7(b). �e relations between
them are shown in Figures 7(c) and 7(d), respectively, where
the parameters with same marks are equal. Based on the
relations, the spatial coordinate of a point &�(��, ��) on pixel
plane can be transferred into P(x, y, z) as follows:

� = �� ⋅ �
� = �� ⋅ �
9 = : ⋅ �

(13)
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where: is the focal length of the camera and � is the similarity
coe	cient between the two similar triangles.

In the space coordinate, the bridge deck can be considered
as a spatial plane represented by the following equation:

'� + ;� + >9 + ? = 0 (14)

where x, y, z are the spatial coordinates of the observed object
such as a truck, and A, B, C, D are unknown parameters
determining the bridge deck plane equation. If the bridge
slope is negligible, which is the usual case, x and � directly
determine position of vehicles on the bridge deck. �en
vehicle coordinates on the deck are attainable a�er obtaining
A, B, C and D.

Instinctively, both location and orientation of thewebcam
are needed to obtain parameters A, B, C and ?. However, a
number of �eld conditions, such as heavy tra	c 
ow, make
it di	cult to obtain this information. To solve this problem,
this paper proposes a method to obtain A, B, C, D directly
from the video image without knowing the camera location
and/or its orientation. �e proposed method only needs two
lines of equal space length in the image. For example, lines
&1�&2� and &3�&4� in Figure 8 have the equal length of 3.75m.
�e coordinates of their endpoints can be measured directly
from the image.

3.75m

3.75m

P1
(x1

 , y1
)

P3
(x3

 , y3
)

P4
(x4

 , y4
)

P2
(x2

 , y2
)

Figure 8: Diagram for A, B, C, D calculation from two reference
lines &1�-&2� and &3�-&4�.

According to Figure 8, the relations between both lines
can be written as follows:

Δ�1 = �1� − �2�,
Δ�1 = �1� − �2�
Δ�2 = �3� − �4�,
Δ�2 = �3� − �4�

√Δ�12 + Δ�12 ⋅ �1 = √Δ�22 + Δ�22 ⋅ �2 = B

(15)
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where (�1�, �1�), (�2�, �2�), (�3�, �3�), and (�4�, �4�) are the

coordinates of the endpoints &1�, &2�, &3�, and &4�, �1 and �2
are similarity coe	cients of the lines, and L is the line length.
With (15), parameter � of the two lines can be separately
calculated, then spatial coordinates of the four endpoints
are obtained with (13). Substituting coordinates of the four
endpoints of the two equal length lines into (14), the four
unknowns A, B, C and ? can be directly obtained.

�emain advantage of this method is its simplicity, while
the trade-o� is the loss of accuracy assuming that parameter
� is equal for endpoints &1� and &2� as well as &3� and &4�,
which is true when the selected lines are far enough from the
camera and the line length is short. Another noticeable error
source comes from the camera imaging distortion, which is
complicated and will not be discussed in this paper. Figure 9
depicts vehicle trajectory tracked by the aforementioned
method.

4. Field Tests

4.1. Test Setup. In order to verify the applicability of
the proposed tra	c information identi�cation methodol-
ogy in real structures, �eld tests were conducted on a
32m+37m+32m+32m continuous concrete box girder bridge
of Baoding-Duping Highway, China. �ere are three tra	c
lanes on the bridge in total, and each of them is 3.75m wide.
Among these tra	c lines, lane3 is an emergency lane where
vehicles are prohibited to drive under normal conditions. �e
bridge is slightly curved with a bending radius of 2600m and
a central angle of 2.93∘; thus the curvature e�ects are negli-
gible in the analysis. A structural health monitoring system
comprising a pavement-based WIM system, six resistance-
type strain sensors, and a webcam is installed on this bridge.
All the discussed information is shown in Figure 10.

In the �eld tests, the normal strain data were collected
by the six resistance-type strain sensors mounted on the
mid-span section of the �rst span and stored in an online
server. Video recorded by thewebcam is also available on line,

providing a basis for long-term online application. Vehicle
weight and velocity recognized by pavement-based WIM
system are used as contrast to evaluate the accuracy of this
proposed methodology.

4.2. Calibration Tests. First of all, �eld calibration tests as
on the lanes presented in Figure 10(b) were implemented
following the method mentioned in Section 2.2 up front.
To do so, an ordinary truck weighing 14.86t, as shown in
Figure 11, was arranged to drive on the tested bridge for four
times. Detailed test conditions are shown in Table 1. Lane3
was ignored for the calibration because it is an emergency
lane where vehicles are prohibited to drive under normal
conditions.

Figure 12 shows the in
uence line calibration results of the
“S6” strain sensor in Figure 10(b). Di�erences between test1
and test2, as well as test3 and test4, are slight, which veri�es
the feasibility and reliability of the proposed in
uence line
calibrationmethod. It is also observed that the in
uence value
of tra	c lane1 is larger than that of lane2, as strain sensor “S6”
is located closer to lane1.

4.3. Strain Data Processing. Next, strain data collected by six
resistance-type strain sensors, shown in Figure 10, is pro-
cessed with the LOWESS algorithm mentioned in Section 2.1
of this paper. Taking a segment of the processed strain time
history shown in Figure 13(a) as an example, an obvious
linear relationship between data peak values of strain sensors
mounted on the same box web is observed in Figure 13(b).
�e linear relationship con�rms the plane section assumption
of Euler-Bernoulli beam theory mentioned in (8) above and
thus validates the e�ectiveness of the strain data processing
method.

4.4. GVW Calculation. �e gross vehicle weight (GVW) can
be calculated by combining the calibrated strain in
uence
line, the processed bridge strains, and the vehicle position.
Basically, there are only three elementary vehicle distribution
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Figure 10: Bridge for �eld tests.

Table 1: Conditions of calibration tests.

Test1 Test2 Test3 Test4

Weight 14.86t 14.86t 14.86t 14.86t

Velocity 60km/h 80km/h 60km/h 80km/h

Lane Lane1 Lane1 Lane2 Lane2

scenarios presented in Figure 14. �ey are single vehicle
in Figure 14(a), one-by-one vehicles on the same lane in
Figure 14(b), and side-by-side vehicles on di�erent lanes in
Figure 14(c).

For the �rst single vehicle scenario, it is simple to calculate
weight of the vehicle through the following equation:

3 = #����
%���� (16)

where #���� is the peak value of vehicle induced static strain

signal, %���� is the peak value of the calibrated strain in
uence
line, and3 is the GVW of the vehicle.

For the second one-by-one vehicles scenario, GVW of the
�rst front vehicle can still be calculated through (16). �en

GVW of the rear vehicles can be calculated a�er subtracting
e�ects of the front vehiclewhoseGVW is already known.�is
process is written as

3���� = #�������� − %��	�� ⋅ 3��	��
%��������

(17)

where #�������� is the peak value of the rear vehicle induced static
strain signal, %��	�� is the strain in
uence value related to the
position of the front vehicle, which can be obtained with the
aid of the aforementioned computer vision technique,3��	��
is the GVW of the front vehicle calculated through (16), %��������
is the peak value of the calibrated strain in
uence line of
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Table 2: Statistics of the relative errors compared with pavement-basedWIM.

Sensor Mean of errors (%) Standard deviation of errors (%)

S1 35.2 37.4

S2 -3.6 18.7

S3 -2.8 20.8

S4 38.6 25.2

S5 -1.8 12.4

S6 -5.2 11.6

3.60 ton

5.5 m

11.26 ton

Figure 11: Calibration truck.

tra	c lane where the rear vehicle drives, and 3���� is the
GVW of the rear vehicle.

It is important to highlight that using (16) to calculate the
weight of the front vehicle in the one-by-one vehicle queue is
not applicable to circumstances when the rear vehicle enters
the bridge before the front vehicle passes the instrumented

bridge cross-section, because #���� in (16) involves the e�ects
of the rear vehicle under such circumstances. Fortunately, this
problem does not exist in this research; for a sizeable safety
margin, no less than 30m, between front and rear vehicles, is
demanded when driving on highways in China. �e distance
between the instrumented cross-section and the start point
of the bridge, however, is only 16m.

Challenge arises when two vehicles driving side by side,
however. In this scenario, one strain signal peak corresponds
to two indistinguishable vehicles, which makes the above
GVW calculation methods ine�ective.

Finally, a segment of 15 minutes’ strain signal and video
when there are no side-by-side trucks is analyzed. Cars are
ignored and weights of a total of 61 trucks are calculated.
Statistics of the relative errors compared with the results
recognized by the pavement-based WIM system are listed in
Table 2. Plots of the GVW results of the six sensors S1∼S6 are
also shown in Figure 15, in which each point corresponds to
a vehicle. In this �gure, the further away the point is from the
baseline, the larger the error is.

According to the GVW calculation results, though errors
of several vehicles are unpleasantly signi�cant, accuracy of
the rest is still acceptable, except results based on strain
sensors named S1 and S4. Close distance to the sectionneutral
axis of S1 and S4 explains their signi�cant errors. Because,
under the plane section assumption, the closer the strain
sensor is to the neutral axis, the smaller its strain value,

making the relative error larger in contrast. To avoid this
problem, BWIM sensors should be installed far from the
section neutral axis for higher accuracy.

4.5. VehicleVelocity Calculation. �eoretically, instantaneous
velocities of vehicles can be calculated through (18) with the
recognized vehicle position in each video frame and �xed
time interval between frames.

V = Δ#
Δ� (18)

where v is the vehicle velocity and Δ# is the vehicle displace-
ment within a period of time Δ�.

However, calculated instantaneous velocities of vehicles
appear to 
uctuate drastically. Average vehicle velocity in
three seconds, which means Δ� = 3s, is calculated instead of
instantaneously, and the calculation results are quite accurate
as shown in Figure 16. �e mean value of errors is -0.8%, the
standard deviation of errors is 9.2%, and the maximum value
of errors is 23.1%.

4.6. Vehicle Type and Axle Recognition. Identi�cation of
closely spaced axles, including tandem axles, is a key factor
to ensure accurate classi�cation of the passing vehicles. Real-
time tra	c characterization on a bridge is bene�cial for asset
managers and bridge owners because it provides statistical
data about the con�gurations of the passing vehicles. �e
nothing-on-road (NOR) technique is generally utilized to
obtain the information about the axles with sensors located
underneath the bridge girder [36, 37].

As a supplement, this paper obtains information about
vehicle type and number of axles with visual information
provided by only a webcam. Figures 6(a) and 6(c) show that
the well-trained YOLO V3 algorithm is capable of directly
recognizing vehicle types and the number of axles similarly
to humans. �e vehicle type recognition accuracy is 100%
and the axle recognition results of 61 trucks (including 6
trucks with 2 axles) and 50 cars in the �eld tests are shown
in Figure 17, which is still quite satisfactory compared with
the pavement-based WIM. Errors are inevitable because of
vehicle overlap, limited visual angle of the webcam, and
illumination conditions. For instance, if cars are obscured
by trucks with large size or the illumination is rather dim,
wheels of cars will thus not be recognized. For instance, if cars
are obscured by trucks with larger size or the illumination is
rather dim, carswheelswill thus not be recognized.�at is the
reasonwhy the computer visionmademistakes.�is problem
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Figure 12: In
uence line calibration results.
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Figure 14: Scenarios of vehicle distribution on bridge.
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Figure 15: GVW calculation results for the six strain sensors S1∼S6.
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did not appear in the pavement-based WIM as illustrated in
Figure 17.

To prevent these errors, the visual angle of the webcam
can be adjusted to observe the vehicle wheels more clearly.
Another way to improve the quality of the vision is using an
infrared camera to prevent dim illumination.

4.7. Error Analysis. Although the recognition accuracy is
acceptable, error analysis is imperative for further improve-
ment. To the author’s knowledge, the following two reasons
may account for calculation errors illustrated in Figure 18:
(i) vehicle deviation from the tra	c lane and (ii) vehicle
positioning errors of the computer vision technique.

It is noted that vehicles on a bridge do not drive on the
tra	c lane strictly in some cases, but, in this research, only
in
uence lines of tra	c lanes are utilized. �is assumption
leads to signi�cant errors when the vehicle deviates from the

tra	c lane severely as presented in Figure 18(a). To reduce
this kind of error, the in
uence line can be substituted by the
in
uence surface.

Another error source is inaccurate vehicle detection as
shown in Figure 18(b), where multiple vehicles overlap in
the image and leads to positioning errors. Particular labelling
aiming at this phenomenon and diversifying the training sets
for the deep neural network will help tomitigate the problem.

5. Conclusions

A tra	c sensing methodology has been proposed in this
paper in combination with in
uence line theory and com-
puter vision technique. Field tests were conducted to evaluate
the proposed methodology in various aspects. �e main
conclusions of this work might be listed as follows:

(1) �e identi�cation of vehicle positions, especially on
transverse direction when passing a bridge, is quite
critical to solve multiple-vehicle problem for BWIM
systems. �is paper introduces, for the �rst time,
deep learning based computer vision technique to
obtain the exact position of vehicles on bridges and
successfully solves one-by-one vehicles scenario of
multiple-vehicle problems for BWIM research with
an average weighing error within 5%.

(2) �e time series smoothing algorithm, LOWESS, is
an e�ective tool to extract static component from
directly measured bridge responses. �en, in
uence
line or in
uence surface of a real bridge can be easily
calibrated for BWIM purpose.

(3) Veri�ed by �eld tests, the deep learning based com-
puter vision technique is highly stable and e	cient
to recognize vehicles on bridges in real time manner.
�erefore, it is proven to be a promising technique for
tra	c sensing.

(4) �e proposed tra	c sensing methodology is capable
of identifying vehicle weight, velocity, type, axle
number, and time-spatial distribution on small and
medium span girder bridges in a cost-e�ective way,
especially for those bridges already equipped with
structure health monitoring systems and surveillance
cameras.
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