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ABSTRACT

Accurate traffic sensor data is essential for traffic opera-

tion management systems and acquisition of real-time traf-

fic surveillance data depends heavily on the reliability of the

traffic sensors (e.g., wide range detector, automatic traffic

recorder). Therefore, detecting the health status of the sen-

sors in a traffic sensor network is critical for the departments

of transportation as well as other public and private entities,

especially in the circumstances where real-time decision is re-

quired. With the purpose of efficiently determining the sensor

health status and identifying the failed sensor(s) in a timely

manner, this paper proposes a graphical modeling approach

called spatiotemporal pattern network (STPN). Traffic speed

and volume measurement sensors are used in this paper to

formulate and analyze the proposed sensor health monitoring

system and historical time-series data from a network of traffic

sensors on the Interstate 35 (I-35) within the state of Iowa

is used for validation. Based on the validation results, we

demonstrate that the proposed approach can: (i) extract spa-

tiotemporal dependencies among the different sensors which

leads to an efficient graphical representation of the sensor net-

work in the information space, and (ii) distinguish and quantify

a sensor issue by leveraging the extracted spatiotemporal rela-

tionship of the candidate sensor(s) to the other sensors in the

network.

1. INTRODUCTION

Due to the increasing dependencies on relatively cheaper sen-

sors for condition monitoring, diagnostics, and decision mak-
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ing in large infrastructure systems (Wenjie, Lifeng, Zhanglong,

& Shiliang, 2005) (Wang, Zhang, Sun, Gong, & Cui, 2011),

the reliability of the sensors themselves is critical in terms of

collecting accurate information from the system of interest.

Most of the previous studies tend to use sensor redundancy

approaches by considering one data source as the ground truth

to validate another data source (Sallans, Bruckner, & Russ,

2005). Such systems typically have multiple collocated sen-

sors to monitor the critical points (Jeong, Kim, Lee, & Dorn-

feld, 2006) (Harris et al., 1995), which may be reasonable

for expensive, safety-critical systems or small systems where

only limited monitoring points are needed (Bhuiyan, Wang,

& Wu, 2009). However, such an approach may not be fea-

sible in large distributed systems such as large commercial

buildings (Krishnamurthy, Sarkar, & Tewari, October 2014;

Bengea et al., 2015) and transportation network (Liu et al.,

December 2016), which may not have multiple data sources

to cross-validate the data they obtained or have limited budget

for sensor implementation.

In a typical road transportation network, traffic sensors are

deployed on freeways primarily to collect real-time data for

traffic adaptive signal control and mitigating recurring or non-

recurring congestion(Klein, Mills, & Gibson, 2006). Accord-

ing to the U.S. Department of Transportation (the U.S. DOT),

the sensors are typically installed about every 2 miles and

facilitating sensor redundancy is not feasible due to the sheer

length of roadways that requires monitoring in each state and

the cost of sensors deployed (e.g., microwave radar sensor that

covers multiple lanes costs at least $6200 without the installa-

tion fee based on the costs database of the U.S. DOT in 2002

(Klein et al., 2006)). Therefore, a robust and feasible approach

to monitor the health status of the traffic sensors is required

that does not rely on redundancy of collocated sensors.
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Among the existing techniques that are used to monitor the

health status of the traffic sensors, a method based on the

traffic flow theory has been widely adopted (Wells, Smaglik,

& Bullock, 2008) (Dailey, 1999) to identify the erroneous

data and anomalous sensors. In this approach, the average

effective vehicle length (AEVL) is computed by defining a

function F (v, c, o), where v,c and o denote the traffic speed,

traffic volume and the sensor occupancy respectively. An

assessment criteria can be formulated to report the error rate

of the sensor by evaluating whether the AEVL value meets

the criteria or not (“Federal size regulations for commercial

motor vehicles”, 2016). Although it is fast and can be used

for online monitoring, the method is built upon single lane

road assumption and the accuracy is seriously affected when

applied to roads with multiple lanes (e.g., 2 lanes when only 1

lane has vehicle passing at the recording time).

In this paper, we consider the fact that the traffic sensors in

the same freeway and direction form a sensor network in

the information space. Therefore, under nominal conditions,

the data collected by these sensors should follow a stable

spatiotemporal relationship among themselves that can be

captured by an efficient learning technique using historical

data. Such a stable relationship will be affected when one

or more sensors degrade in performance. Hence, discovering

the relationships among the sensors during operation with

respect to the (historical) nominal conditions can provide us

indications whether a sensor is healthy or not. In this context,

this work applies a recently proposed spatiotemporal graphical

modeling approach, called the spatiotemporal pattern network

(STPN, built on the concepts of symbolic dynamics filtering,

SDF) (Sarkar, Sarkar, Virani, Ray, & Yasar, 2014; Liu, Ghosal,

Jiang, & Sarkar, 2017; Jiang & Sarkar, 2015), to build a novel

sensor health monitoring framework for traffic sensors.

Contributions: The main contributions of this paper are: (i)

formulation of the traffic sensor health monitoring problem

as an anomaly detection problem by modeling observations

from adjacent traffic sensors using a probabilistic graphical

model called STPN, the anomaly detection formulation en-

ables us to handle the imbalance between nominal sensor data

(widely abundant) and faulty sensor data (low availability),

also this problem is particularly challenging as the sensors

are non-collocated and hence, there is no sensor redundancy,

(ii) proposing two sensor health monitoring approach, off-line

(when large amount of data from the operational stage can

be processed in a batch mode) and on-line (when the deci-

sion needs to be made in real-time with streaming data i.e.,

a large amount of operational data is not available), and (iii)

validation of the proposed framework using both synthetic

and real data, we demonstrate that our proposed methods are

significantly more effective compared to the state-of-the-art

technique based on traffic flow theory (for general sensor

degradation/fault types (Najafi, Gulp, & Langari, 2004)); we

also compare the pros and cons of the on-line and the off-line

techniques. Note that the on-line sensor health monitoring

approach serves as a practical case study for the recently pro-

posed STPN+RBM (RBM: Restricted Boltzmann Machine)

technique (Liu, Ghosal, Jiang, & Sarkar, 2016). The traffic

sensor network studied in this paper is installed on the In-

terstate 35 from Ankeny to Ames in the state of Iowa. The

data set was collected by Wavetronix LLC. in Oct., Nov. and

Dec. 2016, and the ground truth (nominal and anomalous cat-

egorization) has been established manually based on careful

inspection and collected field images.

Including the introduction, this paper is organized into 5 sec-

tions. Section 2 presents the background of STPN, an informa-

tion theoretic metric and an inference based metric leveraged

to build the sensor health monitoring framework. Section 3

describes the three approaches for sensor health monitoring:

(i) the benchmark method (AEVL), (ii) the proposed off-line

method, using the information theoretic metric, and (iii) the

proposed on-line approach, using the inference based metric.

The results obtained with the three different methods are de-

scribed in Section 4 and the paper is summarized in Section 5

along with the directions of future research.

2. BACKGROUND AND PRELIMINARIES

2.1. Spatiotemporal pattern network (STPN)

Symbolic dynamic filtering (SDF) has been recently shown to

be extremely effective for extracting key textures from time-

series data for anomaly detection and pattern classification

(Rao, Ray, Sarkar, & Yasar, 2009; Sarkar, Sarkar, Mukherjee,

Ray, & Srivastav, 2013). The core idea is that a symbol se-

quence (i.e., discretized time-series) emanated from a process

can be approximated as a Markov chain of order D (also called

depth), named as D-Markov machine (Sarkar et al., 2014) that

captures key behavior of the underlying process.

The symbolization process (also called partitioning (Ray, 2004)

(Sarkar, Mukherjee, Sarkar, & Ray, 2013)) is as follows: Let

X represents a set of partitioning functions, X : X(t) → S,

which can transform a general dynamic system (time-series

X(t)) into a symbol sequence S using an alphabet set Σ.

Researchers have proposed different approaches according

to different objective functions, such as uniform partition-

ing (UP), maximum entropy partitioning (MEP), statistically

similar discretization (SSD) (Sarkar & Srivastav, 2016), and

maximally bijective discretization (MBD)(Sarkar, Srivastav, &

Shashanka, 2013). This study uses SSD for univariate model

(when only traffic speed data is used) and SSD combined

with MBD for two dimensional model (when traffic speed and

traffic volume data are used).

The D-Markov machine is represented by a probabilistic finite

state automaton (PFSA) that is constituted by states (represents

different parts of the data space) and probabilistic transitions

among these states that can be captured from time-series data.
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The definition and illustration of a PFSA is shown in Definition

2.1 and Fig. 1. Detailed definitions of D-Markov machine,

xD-Markov machine, and the learning schemes can be found

in (Sarkar et al., 2014; Mukherjee & Ray, 2014).
Definition 2.1. A probabilistic finite state automaton (PFSA)

K is constructed based on 4-tuple, K = (Σ, Q, δ, π) (Adenis,

Wen, & Ray, 2012):

1. Σ is a non-empty finite set, called the symbol alphabet,

with cardinality |Σ|;

2. Q is a non-empty finite set, called the set of states, with

cardinality |Q|;

3. δ : Q× Σ→ Q is the state-transition map, and Σ∗ is the

collection of all finite-length strings with symbols from

Σ including the (zero-length) empty string ε.

4. π : Q × Σ → [0, 1] is the symbol generation function

(probability morph function) that satisfies the condition∑
σ∈Σ π(q, σ) = 1, ∀q ∈ Q, and πij is the probability of

occurrence of a symbol σj ∈ Σ at the state qi ∈ Q.

… 𝛼 γ δ δ γ β γ α β δ …

Symbolization of time series

Symbol sequence

0 1

2 3

𝛼 β 𝛼 β

β δγ𝛼

γ

γ

𝛼
γ

δ

β

δ

δ

Construction of PFSA for SDF

𝛼β
γ

δ

Figure 1. The construction of a PFSA example for SDF, where
{0, 1, 2, 3} are the states.

Based on the above setup, the spatiotemporal pattern networks

(STPNs) is defined as below (Liu et al., 2016).
Definition 2.2. A PFSA based STPNs is a 4-tuple as

WD ≡ (Qa,Σb,Πab,Λab), (a, b are nodes of the STPN)

1. Qa = {q1, q2, · · · , q|Qa|} is the state set corresponding

to symbol sequences Sa;

2. Σb = {σ0, · · · , σ|Σb|−1} is the alphabet set of symbol

sequence Sb;

3. Πab is a |Qa| × |Σb| symbol generation matrix, the ijth

element of Πab represents the probability of observing the

symbol σj in the symbol list sb while making a transition

from the state qi in the symbol sequence Sa; self-symbol

generation matrices are called atomic patterns (APs) i.e.,

when a = b, cross-symbol generation matrices are called

relational patterns (RPs) i.e., when a 6= b.

4. Λab is a metric that can represent the importance of the

learnt pattern (or degree of causality) for a→ b which is

a function of Πab.

An illustration of STPN is shown in Fig. 2.

2.2. Information theoretic metric for causality

Based on the above definition of STPN, we can use the atomic/

relational patterns to interpret the causal dependencies among

the sensors. In this context, information theoretic criteria have

been widely used, e.g., transfer entropy (Wibral et al., 2011)

and mutual information (Sarkar et al., 2014; Solo, 2008). In

this paper, the concept of mutual information is applied for

representing Λab of the patterns (APs & RPs). The definition

of Λaa and Λab are as follow.

Λaa , Iaa = I(qak+1; q
a
k) = H(qak+1)−H(qak+1|q

a
k) (1)

where, Iaa is the mutual information of atomic pattern (a, a),
H is the conditional entropy defined as follows,

H(qak+1) = −

Qa∑

i=1

P (qak+1 = i) log2 P (qak+1 = i)

H(qak+1|q
a
k) =

Qa∑

i=1

P (qak = i)H(qak+1|q
a
k = i)

H(qak+1|q
a
k = i) = −

Qa∑

j=1

P (qak+1 = j|qak = i)

· log2 P (qak+1 = j|qak = i)

Here, Iaa essentially captures the temporal self-prediction ca-

pability of the sensor node a. Similarly, the mutual information

for the relational pattern (a,b) can be expressed as:

Λab , Iab = I(qbk+1; q
a
k) = H(qbk+1)−H(qbk+1|q

a
k) (2)

where, Iab is the mutual information of pattern (a, b), H is

the conditional entropy defined as follows,

H(qbk+1|q
a
k) =

Qa∑

i=1

P (qak = i)H(qbk+1|q
a
k = i)

H(qbk+1|q
a
k = i) = −

Qb∑

j=1

P (qbk+1 = j|qak = i)

· log2 P (qbk+1 = j|qak = i)

Detailed description of mutual information theoretic causality

metric in the context of APs and RPs can be found in (Sarkar

et al., 2014).

2.3. Inference based metric using STPN

The mutual information theoretic metric introduced in Section

2.2, requires significant amount of data for estimating the state

transition probabilities and hence, may not be ideally suited for

online decision making. Therefore, an alternative inference

based metric is presented here which utilizes a short time

window of data to compute the metric using a Dirchlet prior

3



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

…… ……

…… ……

S1 S2

S5

S3

S1

S2

S7S4

S8

S10

S6

S9

….

….

…
.

Relational pattern

Relational pattern

RP

Atomic pattern Atomic pattern

Symbol Sequence

State Sequence

Time Series Traffic 
Sensor Data

Figure 2. Extraction of atomic and relational patterns (using D-Markov and xD-Markov machines respectively and D = 1,
i.e., states and symbols are equivalent) in sensor network S, where N = (1, 2, .., 10) sensors in the network to characterize
individual sub-system behavior and interaction behavior among different sub-systems.

on the state trasition probabilities. To compute this metric, a

two-step process is needed that includes a modeling and an

inference phase (Liu et al., 2016).

In the modeling phase, the entire time-series in the nominal

condition is considered, where the multivariate time-series

is denoted by X = {XN (t), t ∈ N, N = 1, 2, · · · , 10},
where N is the number of traffic sensors in the network. The

multivariate time-series is symbolized into S = {SN } and

then state sequences are generated with the STPN formulation,

noted by Q = {Qa, a = 1, 2, · · · , 10}.

In the inference phase, a short time-series is analyzed, X̃ =
{X̃N (t), t ∈ N

∗, N = 1, 2, · · · , 10}, where N∗ is a subset of

N. The length of the short time-series depends on the selection

of a window size, which is flexible and can be overlapping.

The symbolic subsequences for the short time-series is noted

as S̃ = {S̃N }, and the state sequences is noted as Q̃. An im-

portance metric Λab is defined for a given short subsequence

(described by short state subsequence Q̃ and short symbol

subsequence S̃). The value of this metric suggests the impor-

tance of the pattern Πab or the degree of causality in a → b

as evidenced by the short subsequence. In this context, we

consider

Λab(Q̃, S̃) ∝ Pr({Q̃a, S̃b}|Πab) (3)

where Pr({Q̃a, S̃b}|Πab) is the conditional probability of the

joint state-symbol subsequence given the pattern Πab.

With this definition of Λab and with proper normalization, the

inference based metric Λab(Q̃, S̃) can be obtained as follows,

Λab(Q̃, S̃) =

K

|Qa|∏

m=1

(Ña
m)!(Na

m + |Σb| − 1)!

(Ña
m +Na

m + |Σb| − 1)!

|Σb|∏

n=1

(Ñab
mn +Nab

mn)!

(Ñab
mn)!(N

ab
mn)!

(4)

where, K is a proportional constant, Nab
mn , |{(Qa(k), Sb(k+

1)) : Sb(k+1) = σb
n | Q

a(k) = qam}|, N
ab
m =

∑|Σb|
n=1(N

ab
mn),

Ñab
mn and Ñab

m are similar to Nab
mn and Nab

m , |Qa| is number

of states in state sequence Q̃, and |Σb| is number of symbols

in symbol sequence S̃.

A detail derivation can be found in (Liu et al., 2016).

Thus, with Eq. 4, inference metrics Λab of APs (i.e., when

a = b) and RPs (i.e., when a 6= b) are obtained with respect to

the short subsequences.

Remark. In above definition and preliminaries, a,b nodes are

the representation of sensors in the traffic sensor network, such

as S1,S2 in Fig. 2.

2.4. Online anomaly detection with STPN+RBM frame-

work

The inference metrics (Λab) shown in the above section can be

further normalized and converted into binary states (0 for low

values and 1 for high values) for APs and RPs, and then are the

inputs of Restricted Boltzmann Machine (RBM). With mul-

tiple short subsequences, a large number of examples can be

formed, whose characteristics represent the systematic behav-

4
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ior. Then, RBM is trained to capture the most likely system-

wide behavior, and detect any anomaly via identifying a low

probability event.

For RBM, weights and biases are learnt so that the feature

configurations observed during nominal operation of the sys-

tem obtain low energy (or high probability). Consider a

system state that is described by a set of visible variables

v = (v1, v2, · · · , vD) and a set of hidden (latent) variables

h = (h1, h2, · · · , hF ). Here, the normalized inference met-

rics (Λab are used as the inputs for the RBM, thus, |v| = |Λab|,
i.e., the number of visible units equal to the number of patterns

learned by the STPN. The variables can be binary or real-

valued depending on the need. Now, each joint configuration

of these variables determines a particular state of the system

and an energy value E(v, h) is associated with it. The energy

values are functions of the weights of the links between the

variables (for RBM, internal links within the visible variables

and the hidden variables are not considered) and bias terms

related to the variables.

With this setup, the probability of a state P (v, h) depends

only on the energy of the configuration (v, h) and follows the

Boltzmann distribution

P (v, h) =
e−E(v,h)

∑
v,h e

−E(v,h)
(5)

Anomaly detection process. During training, weights and

biases are obtained via maximizing likelihood of the training

data. During testing, short testing subsequences are converted

into an N
2-dimensional binary vectors using the same infer-

ence phase of the training process. Multiple testing (possibly

overlapping) subsequences are applied to compute a distribu-

tion of free energy. For the nominal condition, the distribution

of free energy should be close to that of the training data, while

the anomalous data should differ from the nominal condition.

Further details of the STPN+RBM framework can be found

in (Liu et al., 2016).

3. PROBLEM SETUP AND METHODOLOGY

3.1. Problem setup

Consider a sensor network S = {S1,S2, ...,SN} with N
sensors (as illustrated in Fig. 2). Each sensor is represented

by the measurements in our case, which can be univariate

time-series (speed) or multivariate time-series (speed, volume,

and occupancy). The sensor health monitoring task is to find

out the anomalous sensor(s) based on a certain performance

metricM. Therefore, the sensor health monitoring problem

can be formulated as:

Finding Sano ⊂ S (6)

where Sano is the subset of the sensor network that are anoma-

lous.

Three performance metrics are illustrated in the following sec-

tions where the first one is based on the traffic flow theory and

used as the benchmark, and the later two are proposed in this

paper for the purposes of off-line and on-line detection. Note

that in this work, sensor health monitoring with univariate

time-series (speed) is noted as the 1D model, and the one with

two time-series (speed, volume) is noted as the 2D model.
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Figure 3. Speed distribution in histogram which shows that
the speed of 10 sensors is mainly in range from 65 mile/hour
to 83 mile/hour, traffic congestion or no vehicle passing leads
to 0 mile/hour.

3.2. Benchmark method based on traffic flow theory

According to the traffic flow theory, there is an inherent rela-

tionship between speed, volume and occupancy (Dailey, 1999)

and hence, such relationship can be applied to assess sensor

data quality. Authors in (Wells et al., 2008) proposed a method

to identify sensor errors via evaluating the relationship among

speed, volume and sensor occupancy. In this framework, the

sum of average effective vehicle length (AEVL) and the de-

tection range (DTR) is estimated by the following empirical

rule:

AEV L+DTR =
5280 ∗ Speed ∗Occupancy

V olume
, (7)

where AEVL is in feet, DTR of the sensor is in feet, speed is

in miles per hour, occupancy is a fractional number between

0 and 1 representing percentage of time when the sensor is

occupied, volume is in vehicles per hour and the scalar 5280

is used for unit standardization.

We use this relationship based on our radar sensor as the bench-

mark method for sensor health monitoring. Note, DTR is the

length of a loop detector (Chen, Petty, Skabardonis, Varaiya,

& Jia, 2001), a typical sensor used in this type of applications.

As the data from Wavetronix HD sensors uses a virtual line

5
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to represent the detector(“Wavetronix Smartsensor HD user

guide”, 2016), DTR equals to 0. According to (“Federal size

regulations for commercial motor vehicles”, 2016; Minge, Pe-

terson, Weinblatt, Coifman, & Hoekman, 2012), the possible

distance between vehicles should fall within the range of 10

ft to 75 ft, which provides a method to monitor the health of

the sensor by using the AEVL equation. A sensor reading is

identified as erroneous when the output falls outside this range

and the ratio of error counts to the total number of data points

is called the error rate Er.

3.3. Off-line sensor fault detection using STPN

Among the proposed STPN-based sensor monitoring solutions,

we first present the off-line method that uses the information

theoretic metric defined in Section 2.2. We begin the discus-

sion with the symbolization procedures which is critical for

the success of the proposed schemes.

3.3.1. 1D data and 2D data symbolization

In 1D STPN model, we use traffic speed as the univariate

input. The speed distribution from historical data shown in

Fig. 3 demonstrates that speed mainly falls in the range of 65

miles per hour to 83 miles per hour and is normally distributed.

In this case, we found that compared with UP and MEP dis-

cretization, SSD discretization that aims to preserve the nature

of the continuous data distribution in the discrete domain, is

much more effective.

While detail formulation of the SSD scheme can be found

in (Sarkar & Srivastav, 2016), we provide a brief description

here in Algorithm 1 for completeness. Let X(t) ∈ Ω1 be a

Algorithm 1 Statistical Similarity-based Discretization (SSD)

1: Input variable X(t)
2: Input tolerance ξ on d for univariate discretization of X(t)
3: Compute empirical Fn(x) of x as the set

{(xk, pk)|Prob(x < xk) = pk, k =
0, 1, 2, 3, ...,K} and pK = 1

4: fit a line segment L1 through the endpoints (x0, p0) and

(xK , pK)
5: Initialization of the line segments L = {L1}
6: Find a split point ks to maximize the distance between L1

and cumulative density function Fn(x)
7: while d≥ ξ do
8: for i in k do
9: Generate two new line segments Ll and Lr corre-

sponding to the split point ks for Li

10: Update L = L ∪ {Ll, Lr}\Li

11: end for
12: Find the ks for segments L and Fn(x) have the maxi-

mum distance, where the bin boundary a is determined.
13: end while

one dimensional time-series data, speed, where interval Ω1 is a

compact subset of R. Let a={a1, a2,...,ak}, ai ∈ Ω1, ai < aj
for i < j be an ordered set with discrete levels that have to be

determined to discretize Ω1. There exists a function F (X(t))
which represents the true underlying cumulative density func-

tion (CDF) of X(t). In the discrete domain, we define the den-

sity F̃a(X(t)) that aims to preserve the statistical properties

of X(t) in the sense of minimizing the distance d with respect

to F , where F̃a(X(t)) is a piece-wise linear and continuous

function. In this paper, we use the Kolmogorov-Smirnov statis-

tic d to compute the distance, where d = sup
x(t)

|F̃a − F |. Note,

generally, the true density F (X(t)) is not available, here we

propose to use the empirical density Fn(X(t))(observated),

where n is the number of data points. With the SSD technique,

partitioning of the speed data is implemented and the symbol

sequences for the speed sensors in the network are generated.

In this paper, we also construct STPN model for 2D data,

where traffic speed and volume are used (data are in 20s and

from the same data source as the 1 dimensional model), the

correlation between speed and volume can be viewed in the

plot presented in Fig. 4, The distribution of volume is shown

in Fig. 5. To implement the joint (2D) symbolization of the

correlated variables speed and volume, we adopt a two-step

technique, SSD followed by MBD.

The main idea of MBD is as follows. Let u(t) denote the

volume and y(t) denote the speed and let L=(L1,...,Lg) denote

the set of discrete bins for volume u after implementing the

SSD discretization. The main objective of the MBD scheme

is to find the bins for the speed variable y(t) which is denoted

by a=(a1,...,ak), k is the number of bins, such that there is a

maximum possible one-to-one correspondence (hence, maxi-

mally bijective) between the bins for y and those for u. In this

Algorithm 2 Maximally Bijective Discretization(MBD)

1: c1=min(y)
2: rj is a dummy variable that scans through the range of the

variable y
3: k=1
4: while rj < max y(t) do

5: Select Li such that P (Li|aj)⇒ P (aj)
6: Select Lm such that P (Lm|aj + dy)⇒ P (aj + dy)
7: Li,Lm represent the existing ith,mth bins for u(t)
8: if i 6= m then
9: ck = rj

10: k← k+1
11: end if
12: rj ← rj+dy
13: end while
14: bin boundaries for MBD, c=(c1,...,ck−1) is obtained

context, we call bin Li corresponds to bin aj , i.e., Li ⇒ aj if

i = argmaxh P (Lh|aj ∈ a), h ∈ (1, .., g), where P (·) is a

probability function, Li is the ith bin for volume and aj is the

jth bin for speed. Then, a reward function is defined for the dis-

cretization as follows: R(aj) = P (Li|aj ∈ a) s.t. Li ⇒ aj .

A higher reward value means that an existing (SSD) bin better

corresponds to a MBD bin. The total expected reward value

6
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can be calculated by: TR(a) =
∫
a
R(aj)P (aj)daj . In the

MBD scheme, the goal is to maximize the total reward TR.

Algorithm 2 aims to achieve the maximally bijective dis-

cretization of y(t), where {c1, c2, · · · , ck−1} denotes the set

of MBD bin boundaries and aj is the bin with boundaries cj
and cj+1:
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Figure 4. Relationship between speed and volume, it reason-
ably explains the high correlations between speed and volume.

3.3.2. Fault detection

After symbolization, a set of symbol sequences S1, S2, ..., S10

(representing training data and testing data respectively, and

corresponding to sensor network shown in Fig. 2) are gen-

erated in time-series based on the training symbols Σ. Thus,

based on section 2.2, the mutual information matrices (10 by

10 matrix) of the training data and testing data in the network

can be obtained as:

Λtrg = (IS1S1, IS1S2, ..., IS10S10)

Λtst = (IS1S1, IS1S2, ..., IS10S10)
Where Λtrg and Λtst are the training and testing mutual infor-

mation matrices of the sensor network respectively.

The difference ∆Λ between Λtrg and Λtst, can be used to de-

tect and isolate the anomalous sensor(s) in the sensor network.

3.4. Online detection with inference based on spatiotem-

poral graphical modeling

With STPN+RBM framework presented in Section 2.4, an

anomaly is detected as a high energy (low probability) event,

and the distribution of free energy in anomalous condition dif-

fers from that in the nominal condition. Then a sequential state

switching method i.e. root cause analysis method (RCA), can

be used to further localize the fault in the sensor network. The

idea for sequential state switching is to find potential pattern(s)

that, if changed, can transition the system from a high to a low

energy state. The probabilities of AP and RP’s existence are

0 2 4 6 8 10 12 20
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Figure 5. Volume distribution in histogram. In 20s timestamp
data, the volume is mainly distributed in range from 0 to 12.

discovered by the STPN, and an anomaly will influence the

causality of specific patterns. Hence, by switching/flipping a

pattern, its contribution on the energy status of the system can

be estimated and attributed to a possible fault.

Based on sections 2.3 & 2.4, with the weights and biases

of RBM using training data, free energy can be computed

(Hinton, 2012):

F (v) = −
∑

i

viai −
∑

j

ln(1 + ebj+
∑

i
viwij )

The free energy in nominal conditions is noted as F̃ . In fault

conditions, a failed pattern will shift the energy from a lower

state to a higher state. Assume that the patterns can be cate-

gorized into two sets, vnom and vano. By flipping the set of

anomalous patterns vano, a new expression for free energy is

obtained:

F s(v) =−
∑

g

vgag −
∑

j

ln(1 + ebj+
∑

g
vgwgj )

−
∑

h

v⋆hah −
∑

j

ln(1 + ebj+
∑

h
v⋆
hwhj ),

{vg} ∈ vnom, {v⋆h} ∈ v⋆,ano

(8)

Here, v⋆ has the opposite state to v and represents that the

probability of the pattern has been significantly changed. In

this work, the probabilities of the patterns are binary (i.e. 0

or 1). Hence, we have that v⋆ = 1 − v. The sequential

state switching is formulated by finding a set of patterns vano

via min(F s(vano, vnom)− F̃ ). Flowchart of sequential state

switching method is shown in Fig. 6.

Note that the sequential state switching method is pattern

based, and the anomalous patterns are associated to the can-

didate nodes (sensors in this case) using a sequential search

7
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method, to find a subset X̂ of X = {XN (t), t ∈ N, N =
1, 2, · · · , 10} that can interpret all of the anomalous patterns

Λ
ano. For example, a pattern Ni → Nj is identified as failed,

and it indicates that the two nodes (Ni, Nj) are potentially

failed. If multiple patterns from or to a node are detected

as anomalous, the node is more reliable to be classified as

anomalous. Thus, the node inference can be carried out via

computing the anomaly score of each node. Also, as the failed

patterns contribute differently to the system (in terms of en-

ergy increase in RBM, weights of failed patterns are defined.

The weights of failed patterns can be formed by the difference

of free energy with and without the failed pattern and then can

be associated to the anomaly scores for the patterns.

With sequential state switching method, the fault sensor(s)

Sano in the sensor network can be identified and the perfor-

mance metricM is formed using the anomaly score(s) AS,

which is a measure of the energy increase (of the candidate

sensor) in the RBM. By defining a threshold ASthres, the on-

line detection approach for the sensor network is formulated

as:

Finding a subset Sano ⊂ S, where AS > ASthres (9)

Note that, as the sequential state switching method is built

upon short sequences, it only needs short time-series and is

suitable for online detection.

4. RESULTS AND DISCUSSIONS

While we collected real data from Iowa interstate traffic sce-

narios (a network of 10 sensors on Interstate 35 from Ankeny

to Ames in the state of Iowa, the data set was collected by

Wavetronix LLC. in Oct., Nov. and Dec. 2016) to validate

our proposed technique, actual sensor faults are somewhat

rare. Therefore, it becomes difficult to use only that data for

comprehensive validation. However, representative sensor

degradations of different types and severity levels can be arti-

ficially injected in real nominal data and that is how we begin

presenting our results.

4.1. Simulation results

Based on the collected real data, the sensor faults are simulated

in two ways: (i) drift–the measured speeds of the sensor(s) are

artificially modified by adding different levels of bias and (ii)

noise–the measurements of the sensor(s) are contaminated by

a predefined level (variance) of Gaussian noise.

The original data is initially divided into a training, Xtrg(t)
and testing, Xtst(t) data for validating with real data. How-

ever, initially the training set Xtrg(t) is further divided into

X̂trg(t) (80% with 32000 data points) and X̂tst(t) (20% with

8000 data points) sets that are treated as the training and test-

ing sets for a simulation based validation. Then we artificially

inject sensor faults into the testing set as described above.

Simulation cases include: (1) adding drift from 1 mile per

hour to 10 miles per hour to one sensor (sensor 3, S3), two

sensors (S3 & S7), and five sensors (S1, S2, S3, S6, and

S7) respectively; (2) adding Gaussian noise with standard

deviation from 1 to 10 to one sensor (S3), two sensors (S3 &

S7), and five sensors (S1, S2, S3, S6, and S7) respectively.

The cases are tested with AEVL, off-line (STPN) and online

(RCA) approaches as presented in Section 3. Note that we call

the STPN+RBM based online method as RCA as it essentially

uses a root-cause analysis (RCA) approach to solve the sensor

fault detection and isolation problem.

8
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Table 1. Anomaly detection results with one-sensor-fault simulations

Noise Type Data Type Method
Severity

1 2 3 4 5 6 7 8 9 10

Drift(mile/hour)

S
STPN 0/1 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1
RCA 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

S+V
STPN 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
RCA 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

S+V+O AEVL 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/1

Gaussian Noise(mile/hour)

S
STPN 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
RCA 0/1 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

S+V
STPN 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
RCA 0/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

S+V+O AEVL 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 1/1

Table 2. Anomaly detection results with two-sensors-fault simulations

Noise Type Data Type Method
Severity

1 2 3 4 5 6 7 8 9 10

Drift(mile/hour)

S
STPN 0/2 0/2 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
RCA 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

S+V
STPN 0/2 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
RCA 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

S+V+O AEVL 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 2/2

Gaussian Noise(mile/hour)

S
STPN 0/2 0/2 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
RCA 0/2 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

S+V
STPN 0/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
RCA 1/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2

S+V+O AEVL 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 2/2

The results are summarized in Table 1–3 where the drift and

noise variance levels are treated as severity levels. The sim-

ulation results show that 2 dimensional models have higher

sensitivity than 1 dimensional models when using STPN and

RCA and both can isolate the faulty sensors with a higher

sensitivity. The benchmark method AEVL does not perform

as well despite using 3 sensor modalities.

4.2. Sensor fault detection with real data

The real use case involves the original training data and testing

data (Xtrg(t) and Xtst(t)) that are collected for the same

sensor network every 20s by Wavetronix LLC. in 2016. Using

detail manual investigation, we find that sensor 6 is anomalous

during the testing period and hence used as the ground truth.

In the benchmark method, we can compute the AEVL for each

sensor and use this value to compare with the length range

(10 feet to 75 feet as shown in section 3.2) and compute the

number of error occurrences (denoted by e). Then, the AEVL

differential error will be: δEi
r =

eitrg
#Xi

trg

− eitst
#Xi

tst

for the ith

sensor, and #Xi
trg represents the total number of data points

in the training data. Then, δEi
r is the error rate or anomaly

score in this case for each sensor in the network.

For the off-line method (i.e., STPN), the symbol sequences,

S1, S2, ..., S10, are generated by symbolizing X(t) (both

Xtrg(t) and Xtst(t)) via SSD and MBD partitioning tech-

niques. As the depth D = 1, the state sequences Q1, Q2, ...,

Q10 are equivalent to the corresponding symbol sequences that

are the inputs to the STPN model for extracting the features

APs and RPs. Based on these features, the training and testing

mutual information matrices Λtrg and Λtst can be obtained.

To identify the anomalous sensor, deviation in the mutual in-

formation matrix, ∆Λ = Λtrg − Λtst can be computed as

visualized in Figs. 7-8. As shown in Fig. 7, we can conclude

that the faulty sensor 6 can be identified by STPN only using

the speed data. However, there may be ambiguities and false

alarms as evidenced visually by the deviation matrix. On the

other hand, when using both speed and volume, the off-line

STPN method can detect the fault more accurately without

any significant ambiguity as seen in Fig. 8.

Remark. In order to get the testing mutual information matrix

Λtst, a long historic data set is required for computing the

information theoretic metrics, as shows in section 2.2. Thus,

we call it an off-line traffic sensor health monitoring method.

The on-line method adopts short sequences U , where U ⊂
(S1, S2, ..., S10) to form the inference metric Λab(Q̃, S̃) which

is then used to construct the input to the RBM model. Based

on the RBM training and testing procedures, the energy val-

ues for the training and testing time-series are obtained as

Etrg(v, h), Etst(v, h) respectively. Using the free energy method,

we can detect the presence of an anomaly and subsequently

implement root-cause analysis to identify the anomalous sen-

sor(s). Table 4 presents the ranking of the possibly faulty

sensors along with their respective anomaly scores. The on-

9
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Table 3. Anomaly detection results with five-sensors-fault simulations

Noise
Data Type Method

Severity
Type 1 2 3 4 5 6 7 8 9 10

Drift(mile/hour)

S
STPN 0/5 2/5 2/5 2/5 3/5 3/5 3/5 3/5 5/5 5/5
RCA 0/5 2/5 2/5 2/5 3/5 3/5 3/5 3/5 4/5 4/5

S+V
STPN 0/5 2/5 2/5 3/5 3/5 3/5 5/5 5/5 5/5 5/5
RCA 2/5 2/5 3/5 3/5 3/5 3/5 4/5 4/5 4/5 5/5

S+V+O AEVL 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 5/5

Gaussian Noise(mile/hour)

S
STPN 0/5 0/5 0/5 3/5 3/5 4/5 4/5 4/5 5/5 5/5
RCA 2/5 2/5 2/5 2/5 3/5 3/5 3/5 4/5 4/5 4/5

S+V
STPN 1/5 4/5 4/5 4/5 4/5 5/5 5/5 5/5 5/5 5/5
RCA 2/5 3/5 3/5 3/5 3/5 4/5 4/5 4/5 4/5 5/5

S+V+O AEVL 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 5/5

S:speed, V: volume, O: occupancy. The results in above tables (table 1–3) are represented in m/n, where m represents the detected
anomaly sensor(s) and n denotes the sensor(s) are labeled anomaly in the sensor network. The severity levels correspond to the different
levels of bias and noise variance synthetically added to the test data.
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Figure 7. Labeled sensor health monitoring using STPN with vehicle speed data, where sensor 6 has been detected as an anomaly
sensor (matched with the labeled data) and the result is directly reported in image c with some ambiguity.

line approach can correctly isolate the faulty sensor (which

shows the highest anomaly score), while the AEVL method

can not identify the faulty sensor despite using 3 different

sensing modalities.

Remark. Although the proposed online detection technique

is susceptible to false alarms, it plays a critical role in the

entire traffic sensor health monitoring framework. This can be

used for getting early indication of possible sensor anomalies

and failures in traffic systems. They can be manually verified

only if a potentially anomalous sensor is crucial such as being

safety-critical. In this case, a certain level of false alarm can be

acceptable. The online detection technique is complemented

by the off-line method which can verify the alarms from the

online technique using batch processing.

5. CONCLUSION AND FUTURE WORK

By applying the concept of spatiotemporal pattern network,

this work proposes two ways (online and off-line) to moni-

tor sensor health via graphical modeling of sensor network

data. Both approaches are designed to process large-scale

time-series data in sensor networks with advantages in: (1)

extracting spatiotemporal features to discover relationships

among sensors, (2) detecting anomaly in an off-line manner

by computing an information theoretic metric, (3) monitoring

and localizing anomalous sensor in real-time by computing an

inference based metric.

Based on the results, it can be concluded that: (i) compared

with the benchmark AEVL method, off-line and on-line meth-

ods can isolate the anomalous sensor more accurately and can

be very effective for different types of sensor anomalies such

as bias/drift and increased noise variance, (ii) 2D model using

both speed and volume data can distinguish the anomalous

sensor more clearly than the 1D model. The possible reason

is that, regional congestion may affect the 1D result since the

speed is very low at that point, while the relationship among

the sensors remain preserved while using both the speed and

volume information. Also, while the proposed off-line method

is more stable and sensitive, the on-line approach is fast, i.e.,

low time-to-detect (suitable for real-time application) but may

have more false alarms.

This paper validates the two proposed approaches by applying

them in an Iowa interstate segment sensor network with 10
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Figure 8. Labeled sensor health monitoring using STPN with vehicle speed and volume data, where the labeled fault sensor 6
has been detected with less ambiguity as in Fig.7.

Table 4. Results of RCA and AEVL with real data

Methodology Data Type Probability of detected faults (ranked)

RCA
Speed S6=0.512 S1=0.237 S2=0.151

Speed+Volume S6=0.725 S10=0.210
AEVL Speed+Volume+Occupancy S10=0.061 S8=0.051 S7=0.031 S5=0.029

S1 to S10 represents the sensor ID

traffic sensors. The future work will pursue: (1) larger sensor

network monitoring in urban roads and (2) distinguishing

anomalous traffic events (e.g., accidents, congestion) with

sensor anomalies.
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