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Traffic signal optimization 
on a square lattice with quantum 
annealing
Daisuke Inoue1*, Akihisa Okada1, Tadayoshi Matsumori1, Kazuyuki Aihara2,3 & 
Hiroaki Yoshida1

The spread of intelligent transportation systems in urban cities has caused heavy computational 
loads, requiring a novel architecture for managing large-scale traffic. In this study, we develop a 
method for globally controlling traffic signals arranged on a square lattice by means of a quantum 
annealing machine, namely the D-Wave quantum annealer. We first formulate a signal optimization 
problem that minimizes the imbalance of traffic flows in two orthogonal directions. Then we 
reformulate this problem as an Ising Hamiltonian, which is compatible with quantum annealers. The 
new control method is compared with a conventional local control method for a large 50-by-50 city, 
and the results exhibit the superiority of our global control method in suppressing traffic imbalance 
over wide parameter ranges. Furthermore, the solutions to the global control method obtained 
with the quantum annealing machine are better than those obtained with conventional simulated 
annealing. In addition, we prove analytically that the local and the global control methods converge at 
the limit where cars have equal probabilities for turning and going straight. These results are verified 
with numerical experiments.

For the last two decades, intelligent and e�cient transportation systems have been developing, and therefore, 
control methods for cooperative management of such systems have become increasingly  important1–3. In par-
ticular, the adaptive tra�c signal operation re�ecting the tra�c conditions is crucial for avoiding stagnation of 
tra�c  �ows4,5. Various methods, which employ techniques such as genetic  algorithm6, swarm  intelligence7, neural 
 networks8, and reinforcement  learning9,10, have been proposed for such adaptive  control11–16. In these studies, 
local control, where the state of each signal is determined from neighboring information, is considered, which 
hardly achieves a global optimum for managing the tra�c conditions of the entire city. Solving a large-scale 
combinatorial optimization, however, is necessary in order to achieve such a global optimum. �e di�culty of 
�nding an optimal solution of the latter scales exponentially with the size of the city, because of the computational 
complexity of the combinatorial optimization.

Similar computational di�culty frequently appears in other �elds. Accordingly, in recent years, various 
dedicated algorithms and hardware have been developed for solving this  issue17–19. �eir main strategy is to 
focus on solving particular combinatorial optimization problems, which can be transformed into an Ising model. 
Examples of the specialized hardware include the Coherent Ising Machine provided by NTT  Corporation20,21, the 
Simulated Bifurcation Machine by Toshiba  Corporation22, and the Digital Annealer by Fujitsu  Corporation23,24. 
Among them, the Quantum Annealer 2000Q from D-Wave Systems Inc. has been attracting much attention for 
its being the world’s �rst hardware implementation of quantum annealing25 using a quantum processor unit. In 
the quantum annealing, a phenomenon called quantum �uctuation is used to simultaneously search candidate 
solutions of the given problem, which is expected to enable fast and accurate solution search compared with other 
heuristic search  methods25,26. In this paper, we refer to the method using the 2000Q as the quantum annealing. 
Although the quantum annealing is expected to be an e�ective prescription for the large-scale combinatorial 
optimization problems, it is not a panacea because the advantage over the classical simulated annealing methods 
is reduced depending on types of the transformed Ising model. Besides the hardware constraints hinder the 
number of available variables and the class of solvable  problems27. Hence, the search for compatible applications 
which exploit the quantum annealing power is becoming an active research  area28–34.

In this paper, we propose a method for globally controlling tra�c signals in an urban city using the quantum 
annealing. We consider a situation in which many cars moving on a lattice network are controlled via tra�c 
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signals installed at each intersection. To analytically handle this network, we consider a simpli�ed situation 
in which two states are assumed for each signal: tra�c is allowed in either the north–south direction or the 
east–west direction. �e cars moving on the lattice are assumed to choose whether to make a turn or to go straight 
at an intersection with a given probability. We then formulate the signal operation problem as a combinatorial 
optimization problem. �e objective function of the formulated problem is shown to be formally consistent 
with the Hamiltonian of the Ising model. �e Ising model is a statistical ferromagnetism physics model that 
represents the behavior of a spin system, and it captures the relation between the microscopic state of spins 
and the macroscopic phenomena of magnetic phase  transitions35–38. Importantly, the problem reformulated by 
means of the Ising model, with the aid of a graph embedding technique, is compatible with the class of problems 
that the 2000Q accepts; hence, one can apply the quantum annealing to solve the signal optimization problem.

By reformulating the problem using Ising minimization, this study makes three contributions to signal opti-
mization. First, by performing numerical experiments, we con�rm the engineering e�ectiveness of the proposed 
method using quantum annealing. Results of experiments using a large city consisting of 50 × 50 intersections 
show that the proposed method achieves high quality signal operation, compared with the results of a conven-
tional local control  method39. �e reformulated optimization problem is also solved using a classical simulated 
annealing method, but the quantum annealing method is found to give a better solution in a speci�c parameter 
domain. Second, a theoretical correspondence between the local and global control methods is found. We ana-
lytically show that the conventional local control is consistent with the solution of the global signal optimization 
problem at the limit where the probability of cars going straight is equal to the probability of them turning. �is 
result provides a theoretical basis for the numerical prediction of the previous  study39, where the local control 
is found to cause phase transitions similar to those of the Ising model. �e last contribution is the knowledge 
gained for the cooperative operation of tra�c signals. Our numerical experiments show a strong correlation 
between a signal and its neighboring signals. In addition, a strong temporal correlation of signals emerges, that 
is, the signal display at a certain time is correlated with the displays in the previous several steps. �is spatio-
temporal correlation becomes stronger as the straight driving probability of cars increases. Our results suggest 
the necessity of signal cooperation for smooth tra�c �ow, with variation of cooperation strength depending on 
the rate at which vehicles drive straight.

Results
Traffic signal optimization problem. Consider L × L (L ∈ N) roads arranged in east–west and north–
south directions with a periodic boundary condition. Each road consists of two lanes, one in each direction. 
Tra�c signals are located at each intersection to control the �ow of vehicles traveling on the roads. �e signal 
at each node i has one of two states: σi = +1 , which allows vehicle �ow only in the north–south direction, and 
σi = −1 , which allows vehicle �ow only in the east–west direction. Each car goes straight through each inter-
section at �xed probability a ∈ [0, 1] and otherwise turns to the le� or right with equal probabilities, that is, 
(1 − a)/2 for each direction. Figure 1 illustrates this situation.

Reference39 shows that the number of vehicles qij ∈ R+ in the tra�c lane from intersection j to i evolves 
according to the following di�erence equation:

where α := 2a − 1 , and sij ∈ {±1} is the direction of the lane from node j to i; here, sij = +1 denotes north–south 
and sij = −1 denotes east–west. We note here that qij is normalized by the numbers of cars passing per unit of 
time. Precisely, in terms of the mean �ux of moving cars Qav and the dimensional time unit �t , t = t

∗/�t and 

(1)qij(t + 1) = qij(t) +
sij

2
(−σi + ασj),

(a) (b)

Figure 1.  Tra�c signal model. (a) Grid pattern of roads. (b) �e two states of tra�c signals at each intersection. 
In the case of σ = +1 , the vehicles coming from the horizontal direction stop, and the vehicles coming from 
the vertical direction go straight at the rate of a, turn right at the rate of (1 − a)/2 , and turn le� at the rate of 
(1 − a)/2 . �e rate 1 − a shown for the horizontal direction is the sum of the vehicles from the two vertical 
directions. In the case of σ = −1 , the roles of the vertical and horizontal directions are reversed. �is problem 
setting is basically following Ref.39.
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qij = q∗

ij/(Qav�t) , where t∗ is the dimensional time and q∗

ij is the number of vehicles in a lane. See “Methods” for 
the detailed derivation of Eq. (1). We de�ne a quantity that represents the deviation of the north-south �ow and 
the east–west �ow at each intersection i as

where N (i) represents the index of the four intersections adjacent to intersection i. Equation (2) transforms 
Eq. (1) into a time evolution equation for the �ow bias x(t) as follows:

where the flow bias vector is defined as x := [x1, . . . , xL2 ]
⊤ and the signal state vector is defined as 

σσσ := [σ1, . . . , σL2 ]
⊤ . �e matrix A ∈ R

L
2
×L

2

 is the adjacent matrix of the periodic lattice graph.
Next, we de�ne the following objective function to evaluate tra�c conditions at each time step:

where the �rst term on the right-hand side suppresses the �ow bias during the next time step at each intersection, 
the second term prevents the tra�c signal state at each intersection from switching too frequently, and η ∈ R+ 
is a weight parameter for determining the ratio of the two terms. �e tra�c signal state σi(t) at each time step is 
determined so that the objective function (4) is minimized; that is, we want to �nd the value of σ̄̄σ̄σ (t) that satis�es

Ising formulation and optimization. Substituting Eq. (3) into Eq. (4) gives the following representation:

where c(t) is a constant term that does not include σσσ(t) . By de�ning the variables

we can represent the objective function (6) as follows:

Equation (10) is a quadratic form with variables {±1} , which matches the Hamiltonian form of the Ising  model35. 
Hence, solving the signal optimization problem of the objective function (4) is regarded as equivalent to the 
problem of �nding the spin direction σi ∈ {±1} that minimizes the Ising Hamiltonian of Eq. (10). Because the 
Ising Hamiltonian is compatible with the class of problems that the 2000Q accepts, the quantum annealing can 
be applied to solve the signal optimization problem.

We use a city consisting of 50 × 50 intersections to consider the signal operation problem, and we compare 
the results of numerical experiments on the following three methods for tra�c control:

• Local control, which determines the signal display at each time step with the following local rules: 

 Equation (11) switches the display of the tra�c signals to reduce the �ow bias when the magnitude of the 
bias becomes larger than the threshold value θ ∈ R+ at each intersection. To compare the local control with 
the optimal control, the value of the switching parameter θ is determined such that the common objective 
function (4) is minimized. For details, refer to “Methods” section.

• Optimal control with simulated annealing, which reduces Eq. (10) at each time step using the simulated 
annealing. �e simulated annealing is an algorithm for �nding a solution by examining the vicinity of the 
current solution at each step and probabilistically determining whether it should stay in the current state or 

(2)xi(t) :=

∑

j∈N (i)

sijqij(t)

2
,

(3)x(t + 1) = x(t) +

(

−I +
α

4
A

)

σσσ(t),

(4)H(σσσ(t)) := x(t + 1)⊤x(t + 1) + η(σσσ(t) − σσσ(t − 1))⊤(σσσ(t) − σσσ(t − 1)),

(5)
σ̄̄σ̄σ (t) = argmin

σσσ∈{±1}L
2

H(σσσ(t)).

(6)
H(σσσ(t)) =

(

x(t) +

(

−I +
α

4
A

)

σσσ(t)

)⊤(

x(t) +

(

−I +
α

4
A

)

σσσ(t)

)

+ η(σσσ(t) − σσσ(t − 1))⊤(σσσ(t) − σσσ(t − 1))

(7)
= σσσ(t)⊤

(

(

−I +
α

4
A

)⊤(

−I +
α

4
A

)

+ ηI

)

σσσ(t)

+

(

2x(t)⊤
(

−I +
α

4
A

)

− 2ησσσ(t − 1)⊤
)

σσσ(t) + c(t),

(8)J :=

(

−I +
α

4
A

)⊤(

−I +
α

4
A

)

+ ηI ,

(9)h := 2x(t)⊤
(

−I +
α

4
A

)

− 2ησσσ(t − 1)⊤,

(10)H(σσσ(t)) = σσσ(t)⊤Jσσσ(t) + hσσσ(t) + c(t).

(11)

{

σi(t) ← +1 if xi(t) ≥ +θ ,

σi(t) ← −1 if xi(t) ≤ −θ .
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switch to a vicinity state. See Ref.40 for details of the simulated annealing. We used the neal library provided 
by D-Wave for executing this algorithm.

• Optimal control with quantum annealing, which reduces Eq. (10) by using the quantum annealing with the 
D-Wave 2000Q. Because the problem size exceeds the size of problems that 2000Q can solve, it is subdivided 
by the graph partitioning technique. We used the ocean library provided by D-Wave for executing this algo-
rithm. See “Methods” for the detailed procedure.

Figure 2 shows snapshots of the signal display at time t = 100 for α = 0.8 and η = 1.0 , where α is the param-
eter related to vehicle’s straight driving probability and η is the weight parameter in the objective function (4). �e 
�ow bias distribution at the initial time x(0) is generated as random numbers following a uniform distribution in 
[−5.0, 5.0] , and the signal states at the initial time σσσ(0) are generated as random numbers following a binomial 
distribution of {±1} . In Fig. 2, blue dots mean that the cars are allowed to pass in the east–west direction, and 
red dots mean that the cars are allowed to pass in the north–south direction. We observe the synchronization 
of proximity signals under optimal control (see Fig. 2b,c), while the two direction states are distributed rather 
uniformly under local control (see Fig. 2a). �e correlation of proximity signal states is quantitatively analyzed 
in “Discussion”.

Figure 3a plots the time evolution of the Hamiltonian of Eq. (10) for each method in the case of α = 0.8 and 
η = 1.0 . In all three methods, the signals change rapidly over time to reduce the Hamiltonian. �e value of the 
Hamiltonian in the steady state is the smallest in the quantum annealing method, followed by the simulated 
annealing method, and it is the largest under local control. �at is, the optimal control using the quantum anneal-
ing exhibits the best performance among the these methods. An attempt to compare with the exact solution has 
also been made for the same simulation using Gurobi package. Although the full exact solution for the entire 
time interval was not feasible in a reasonable time because of the large number of variables (2500 variables), 
the Hamiltonian averaged over �rst three steps showed the same order of accuracy. In Fig. 3, the response of 

Figure 2.  Snapshots of tra�c signals under di�erent control methods. (a) Local controller using Eq. (11), 
(b) Global controller optimizing Eq. (10) with the simulated annealing, and (c) Global controller optimizing 
Eq. (10) with the D-Wave 2000Q. Red and blue dots represent vertical and horizontal directions allowed at each 
crossing, respectively. Parameters α, η , and L are �xed as α = 0.8, η = 1.0 , and L = 50 , respectively. For the 
D-Wave method, the Hamiltonian is divided into 42 groups and the optimization problem is solved in parallel. 
See “Methods” for details. (�e data are plotted with so�ware Python/matplotlib).
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Figure 3.  Hamiltonian of Eq. (10) under di�erent control methods. (a) Time evolution of the Hamiltonian, 
where the parameters α, η , and L are �xed as α = 0.8, η = 1.0 , and L = 50 , respectively. (b) Time average of 
Hamiltonian as functions of α , where the parameters η and L are the same as those in (a).
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the quantum annealing and the simulated annealing is more oscillatory than that of the local control. �is is 
because the objective function of Eq. (4) only contains states up to one step ahead. An optimal value at one 
time is not necessarily consistent with the optimal values for long time behavior, resulting in more oscillatory 
response. If we use an objective function including more than two steps ahead, the oscillatory phenomenon 
should be suppressed, although the latter makes the formulation more complex, hindering the direct use of 
the quantum annealing.

We examine the e�ect of changing the parameter α , the vehicle’s straight driving probability, on the Ham-
iltonian of Eq. (10). �e time average of the Hamiltonian of Eq. (10), denoted as H̄ , is plotted in Fig. 3b. As α 
approaches zero, the values of the Hamiltonian for the local and optimal control methods converge to a common 
value. �is suggests that the local control gives the solution to the signal optimization problem at the limit of 
α → 0 . �e validity of this conjecture is explored in “Discussion”. In the interval of α ∈ [0.2, 0.8] , the Hamilto-
nian under optimal control is smaller than that under local control, showing that the optimum control method 
exhibits performance better than that of the local control in this range. However, in the simulated annealing 
method at α > 0.8 , the value of the Hamiltonian is larger than that under the local control method, suggesting 
that the simulated annealing does not reach the global optimal solution. Conversely, under the quantum anneal-
ing method, the value of the Hamiltonian is smaller than those under the other two methods, which means that 
the solution is closer to the global optimum. Here, we brie�y discuss the slightly better value of H̄ for the simu-
lated annealing in a parameter domain of α ∈ [0.2, 0.8] , than that for the quantum annealing. In the range of 
large values of α , obtaining an exact solution of Eq. (4) is hard because of the high impact of the quadratic term. 
Actually in this parameter range, the quantum annealing gives better optimization results than the simulated 
annealing. On the other hand, regardless of problem to be solved, the quantum annealing generally contains 
stochastic �uctuations in the  solutions28,32. When the parameter α is in the intermediate range where the di�culty 
inherent in the optimization problem is moderate, both the simulated annealing and the quantum annealing give 
high quality solutions, but the simulated annealing gives slightly better solutions than the quantum annealing 
because the relative strength of stochastic �uctuations is large.

Discussion
Performance analysis of quantum annealing. �e performance of the D-Wave 2000Q is known to 
vary depending on the structure of the problem. In particular, when the matrix J in Eq. (8) has a sparse structure, 
the accuracy of the solution is  improved21. To check the sparseness of our formulated problem, we examine the 
value of all components of J in Eq. (8). First, expanding J yields the following expression:

where the number of non-zero elements in each column of A is 4, because it is equal to the number of degrees 
of each node in the lattice graph (see the green nodes in Fig. 4a). Also, the number of non-zero elements in each 
column of A⊤

A is 9 because it coincides with the number of nodes which are connected with the reference node 
via two edges in the lattice graph (see the orange nodes in Fig. 4a). �us, the number of all non-zero elements in 
J is expressed as 13L2 . From this, we calculate SJ (L) , the sparseness of matrix J, de�ned as the ratio of the number 
of 0-valued elements and the number of all elements in the matrix:

where we con�rm that SJ (L) → 1 as L → ∞ . In Fig. 4b, we plot SJ (L) given in Eq. (13), to show that the sparse-
ness of matrix J increases as increasing city size. �is allows us to expect that the performance of the D-Wave 

(12)J = (1 + η)I −
α

2
A +

α2

16
A⊤A,

(13)SJ (L) =

L4 − 13L2
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,

(a) (b)

0 10 20 30 40 50

L

0.0

0.2

0.4

0.6

0.8

1.0

sp
a
rs

en
es

s

Figure 4.  Sparseness of the matrix J in Eq. (8). (a) Nodes neighboring the reference node (green) and two 
nodes away from the reference node (orange) in a lattice graph. (b) Sparseness SJ (L) of Eq. (13) for di�erent 
numbers of intersections L.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3303  | https://doi.org/10.1038/s41598-021-82740-0

www.nature.com/scientificreports/

2000Q is enhanced in the case of the signal optimization problem for rather large cities, such as L = 50 , the one 
considered in the present paper.

Local and optimal control correspondence. As shown in Fig. 5, when the parameter α of Eq. (1) is suf-
�ciently small, the local control of Eq. (11) approaches the optimal control that is the solution of Eq. (5). When 
α ≈ 0 is valid, the term associated with α in Eq. (10) can be ignored, yielding

Because J in Eq. (14) is a diagonal matrix, the �rst term σσσ(t)⊤Jσσσ(t) on the right-hand side of Eq. (10) is a con-
stant that does not depend on σσσ . �erefore, the minimizer of H(σσσ(t)) is determined depending only on the sign 
of h in Eq. (15), that is,

for all i = 1, . . . , L2 . By transforming Eq. (16), we obtain

for all i = 1, . . . , L2 . �e control method of Eq. (17) is equivalent to the local control (11) in Ref.39.
Because α = 0 ⇔ a = 0.5 holds, this optimality means that an appropriate vehicle turning rate autonomously 

eases the �ow bias in the local control laws. In addition, the occurrence of this magnetic transition for the signal 
display, stated in Ref.39, is consistent with the fact that the local control in Eq. (11) actually minimizes the Ising 
Hamiltonian in Eq. (10). However, note that the optimality of the local control is valid only when α ≈ 0 , but not 
when α → 1 , where the phase transition occurs.

Signal synchronization analysis. To analyze the signal correlation observed in Fig. 2, we calculate the 
magnetization, which is regarded as an important quantity in the Ising model:

In the Ising model, this value represents the spin bias of the entire system, and it is an indicator of ferromagnetic 
transitions in the system. Figure 5a shows the time variation of magnetization m(t) . �e value of magnetization 
remains small under local control, whereas it becomes signi�cantly larger under both optimal control methods 
(simulated annealing and quantum annealing). For each method, at α = 0.8 , the response of the magnetiza-
tion oscillates or �uctuates around zero. To con�rm this observation, the time average of the magnetization of 
Eq. (18), denoted as m̄ , is plotted in Fig. 5b. Here, the ferromagnetic transition at α → 1 , that is, the �nite value 
of m̄ , is observed for the magnetization under local control, which was originally reported in Ref.39. Also, under 
optimal control, the time average of the magnetization m̄ takes a large value when α → 1 , which shows that a 
ferromagnetic transition similar to that under local control occurs under optimal control.

In addition to the ferromagnetic transition, the large amplitudes observed under optimal control are indeed 
a quanti�cation of the synchronization of proximity signals observed in Fig. 2. For further analysis of this 

(14)J ≈ (1 + η)I ,

(15)h ≈ −2x(t)⊤ − 2ησσσ(t − 1)⊤.

(16)σ̄i(t) =

{

1 if xi(t) + ησi(t − 1) ≥ 0,

−1 if xi(t) + ησi(t − 1) < 0,

(17)σ̄i(t) =

{

1 if xi(t) ≥ η,

−1 if xi(t) ≤ −η,

σ(t − 1) otherwise,

(18)m(t) :=

1

L2

L
2∑

i=1

σi(t).
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Figure 5.  Magnetization of Eq. (18) under di�erent control methods. (a) Time evolution of magnetization. 
Parameters α, η , and L are �xed as α = 0.8, η = 1.0 , and L = 50 , respectively. (b) Time average of magnetization 
as a function of α . Parameters η and L are the same as those in (a).
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synchronization, we also evaluate two types of autocorrelation functions. Figure 6a shows the autocorrelation 
function obtained from the time-series data of the signal state σi(t) for t ∈ [0, 200] . Here, the autocorrelation 
function is computed at all intersections, and the average value is displayed in Fig. 6a. Under local control, there 
is a negative correlation peak around t = 3 , which means that the signals switch approximately every 3 time steps. 
In contrast, under optimal control, the negative correlation peak is in the interval of t = [10, 15] steps, and the 
same state is maintained for a time longer than that under local control. In general, excessive signal switching 
is undesirable from a tra�c engineering standpoint, and the optimization-based method overcomes this issue. 
Next, Fig. 6b shows the correlation between the display of signals at one intersection and another intersection, 
with the distance between the intersections as a parameter. Here, the correlation function is calculated for all the 
intersections for �xed time t = 100 , and the average value thereof is plotted. In Fig. 6b, the distance is normalized 
to make the distance of adjacent intersections equal to 1. �ere is almost no correlation between adjacent signals 
under local control, while there is a positive correlation of up to 4–6 adjacent intersections under optimal control.

�en, we extract quantities from these correlation functions to investigate the e�ect of α . First, considering 
that both the temporal and spatial autocorrelations in Fig. 6 decay while oscillating, both functions are �tted 
with the following equation:

where � represents the damping rate coe�cient, ω represents the vibration frequency coe�cient, and z ∈ R+ 
represents di�erent variables, i.e., the time t for the time autocorrelation function and the distance between 
intersections for the spatial autocorrelation function. Figure 7a plots ω values obtained by �tting Eq. (19) to the 
time autocorrelation, as a function of α . Under local control, the vibration frequency is ω ≈ 1 regardless of the 
value of α , while ω decreases as increasing α under optimal control. �is suggests that the frequency of signal 
switching reduces as the vehicle straight driving rate increases in order to guarantee optimality. In view of the 
large di�erence in ω between the local control and the optimization-based controls for large values of α , we 
expect that optimization-based signal controls are particularly e�ective in preventing excessive switching for high 
vehicle straight driving rates. Next, we show in Fig. 7b the value of � obtained by �tting Eq. (19) to the spatial 

(19)R(z) = exp(−�z) cos(ωz),
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Figure 6.  Time and spatial autocorrelation functions for di�erent control methods. (a) Time autocorrelation 
function and (b) Radially averaged spatial autocorrelation function. Parameters α, η , and L are �xed as 
α = 0.8, η = 1.0 , and L = 50 , respectively.
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autocorrelation, as a function of α . Under local control, the correlation decreases with an attenuation factor of 
� ≈ 1.75 , regardless of the value of α . In contrast, under optimal control, � decreases as α increases, which means 
that the signal displays between the more distant intersections remain correlated. �ese observations show that 
the synchronization of proximity signals in time and space becomes important for achieving a balanced tra�c 
�ow as the probability of vehicles going straight increases.

Effect of parameter η. Here we examine the e�ect of parameter η , which controls the priority of the 
smoothness of the entire tra�c �ow to the signal switching frequency in the objective function of Eq. (4). �e 
objective function is designed such that the priority is to smooth the �ow of the car for small value of η , and 
inversely for a large value of η , preventing excessive signal switching is prior. �e time average of the objec-
tive function H̄ is obtained for various values of η ; η ∈ {0.125, 0.25, 0.5, 1, 2, 4, 8} . We show the results in Fig. 8 
for the simulated annealing ( H̄SA ) and the quantum annealing ( H̄QA ), where the ratios H̄QA/H̄SA is plotted; 
H̄QA/H̄SA < 1 means that the quantum annealing is better than the simulated annealing, and vice versa. �e 
quantum annealing method shows better performances for η larger than 0.5, and the simulated annealing is 
better for η smaller than 0.5. �is suggests that the quantum annealing works better when the priority is on 
preventing excessive signal switching.

Future improvements. Here we discuss three possible improvements of the results obtained in this study. 
First, we expect that the solution is improved by using the most recently released D-Wave’s machine. �e D-Wave 
machine used in this study has 2048 qubits that are connected with the chimera structure, in which closely con-
nected 8-qubit units are  arranged41. Since the chimera structure is sparser than the fully-connected structure, 
the representation of arbitrary Ising problems requires a process called minor-embedding to map logical variables 
to physical qubits. �is process however signi�cantly reduces the number of available qubits, and also deterio-
rates the computational accuracy. Very recently, D-Wave has updated the hardware with a new graph structure 
called the pegasus structure. �e number of qubits has increased from 2048 to 5024, and the maximum number 
of connections in the graph structure has increased from 8 to  1542. �ese improvements allow us to deal with 
much larger problems, and to realize e�cient embedding with sacri�cing less physical qubits, than the previous 
D-Wave machine. For the proposed method, this enhancement will signi�cantly reduce the number of divisions 
of Hamiltonian (see “Methods” for details), which contributes to fast and high-accurate computations.

Next, adjusting the hyper-parameters of the solver could improve the performance of our method. �e 
D-Wave machine contains a few hyper-parameters, such as, number of samplings, chain strength, and post process-
ing. We le� most of the parameters at their default values because we focus on examining ability of the quantum 
annealing to solve the tra�c signal optimization problem. However, as these hyperparameters a�ect the opti-
mized result, more careful tuning of these parameters may achieve faster and more accurate calculations. An 
error mitigation scheme proposed in Ref.43 could enhance the performance. We remark here that the problem 
formulated in this study has the form of Ising model that is solvable by using several dedicated computers other 
than the D-Wave  machine20–23. Since the development of these dedicated machines is expected to further acceler-
ate, the proposed framework for tra�c �ow control will be more generally available in the future.

We �nally discuss a further improvement toward application to a real city. �e parameter α in our model is 
expected to be relatively large in a city with many rational players, because in a grid-like city, each vehicle can 
reach its destination from any starting point with only one right or le� turn. In our experiments, the size of the 
grid L is empirically determined as L = 50 so that it would be comparable to the size of typical grid cities in the 
world (Kyoto, Japan; Barcelona, Spain; La Plata, Argentina, etc.). It is however desirable to identify these param-
eters in advance using real-world data. Since the constant probability of each vehicle driving straight ahead and 
the grid topology of the city are both idealistic assumptions, our tra�c signal control method has to be further 
improved by relaxing these assumptions.

10−1 100

η

1.0

1.2

1.4

1.6

1.8

H̄
Q

A
/H̄

S
A

Figure 8.  �e time averaged values of the Hamiltonian for the simulated annealing ( H̄SA ) and the quantum 
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Methods
Derivation of traffic model. Here we derive the model shown in Eq. (1). Let q∗

ij(t) be the numbers of cars 
that exist between the intersections i and j and �t be the minimum time interval at which a signal is switched. 
We denote by Qav the average �ow rate of cars passing during �t . �en the change in the numbers of cars from 
time t∗ to the next time t∗ + �t is represented as

By normalizing Eq. (20) with t := t
∗/�t and q := q∗/(Qav�t) , we obtain the following equation:

which is essentially identical to Eq. (1). In this paper, we consider the result of solving Eq. (21). �e dimensional 
time and the actual numbers of cars are recovered with inverse transformation of the above normalization.

We remark on the numbers of cars, speed, and minimum signal switching interval on the model. First, a solu-
tion of the model in Eq. (1) is valid for an arbitrary numbers of cars. For example, the solution for q̄∗(0) = γ q∗(0) 
with some γ ∈ R+ , is obtained by setting Q̄av = γQav because the average �ow rate is de�ned by “vehicle density” 
× “average speed”. Second, let us consider the case of the average speed multiplied by γ . �e average �ow rate Qav 
should then be Q̃av = γQav , while q∗(0) remains the same. �erefore, while Eq. (21) normalized by Q̃av does not 
apparently change, the initial value should be appropriately adjusted q̃ij(0) = q∗0

ij /(Q̃av�t) = qij(0)/γ . Similarly, 
for the case of �t̂ := γ�t , the normalized Eq. (21) does not apparently change, but the initial value should be 
q̂ij(0) = q∗0

ij /(Qav�t̂) = qij(0)/γ.

Parameter identification for objective function. As stated in “Discussion”, a direct correspondence 
between the optimal control and local control is established for small values of α , with the apparent relation 
θ = η between the local control switching constant θ in Eq. (11) and the optimal control weight parameter η in 
Eq. (4). To make a systematic comparison for an arbitrary value of α , however, we still need to construct a pro-
tocol to determine the values of θ and η . �e strategy is described as follows. Given a value of η , we select a value 
of θ , denoted by θ̂ , from a candidate set � via the following auxiliary numerical analysis: 

1. For one value of θ in the set � , numerical simulation using local control (11) is performed to obtain time 
series data x(t) and σσσ(t) . �e value of the objective function (4) using the given η is calculated from the 
obtained time series data. �is time average is denoted as H̄(θ).

2. Step 1 is performed for all θ in � to �nd θ̂ that minimizes the time average H̄ , that is, θ̂ = argminθ∈� H̄(θ).

We plot the result of the above procedure in Fig. 9. Figure 9a shows H̄ against θ when η is �xed as η = 1.0 . 
When α = 0 , H̄ is a convex function and indeed θ̂ ≈ η is satis�ed. However, for larger values of α , H̄ becomes 
non-convex, and particularly for α = 0.995 , the relation θ̂ = η no longer holds. Figure 9b shows the value of θ̂ 
that minimizes H versus η for the interval η ∈ [0.0, 3.0] . When α = 0 , the linear relation θ̂ = η approximately 
holds, but when α  = 0 , this relation breaks down and some discontinuities appear. �ese discontinuities cor-
respond to the changes in the local minima observed in Fig. 9a.

Implementation on D-wave 2000Q. All experiments in this study are conducted on a Linux computer 
with 64 GB of memory and a clock speed of 3.70 GHz. All methods are implemented using the programming 
language Python (version 3.7).

(20)q∗

ij(t
∗

+ �t) = q∗

ij(t
∗) +

sij

2
(−σi(t

∗) + ασj(t
∗))Qav�t, q∗

ij(0) = q∗0
ij .

(21)qij(t + 1) = qij(t) +
sij

2
(−σi(t) + ασj(t)), qij(0) = q∗0

ij /(Qav�t),
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We use DW_2000Q_VFYC_5 as a machine solver with the aid of D-Wave’s ocean library for the actual imple-
mentation. Here, the VFYC solver partially emulates some qubits that are temporarily unavailable because of 
hardware  failures44. �e number of samplings is speci�ed through a parameter named num_reads, which we 
set 100 in all experiments. �e validity of this parameter setting is con�rmed by preliminary experiments using 
several candidate parameters.

For embedding the logical variables to the physical qubits on the D-Wave machine, we use a tool called minor-
miner (Apache license 2.0), which is a heuristic embedding method in ocean  library45. We perform embedding 
operation every time when the problem is sent to 2000Q in order to average out the bias of the embedding quality.

For the simulated annealing, neal solver in ocean library is used. �is solver also allows us to specify the 
number of samplings through a parameter called num_reads, which we set 100, i.e., the same value as the one 
in the quantum annealing.

For the chimera structure in the 2000Q, N2/4 physical qubits are necessary for embedding N-variable problem 
for the worst case, which means that the maximum number of variables that the 2000Q is capable of handling 
is as small as 64. �is implies that L2 ≤ 64 ⇔ L ≤ 8 must be satis�ed for the number of roads L in our problem 
setting. A method exists for solving a problem that exceeds the size limitation: to divide the Hamiltonian variable 
of Eq. (10) into several groups and minimize the approximate Hamiltonian for each group. We de�ne the tra�c 
signal state vector of the jth group as σσσ j := [σi1 , σi2 , . . . , σim ]⊤ , where i1, i2, . . . , im are subscripts of variables 
included in the jth group. �en, we de�ne the Hamiltonian of the group j as

where Jjj is a matrix extracting the (j, j) th components of matrix J in Eq. (10). Similarly, hj is a vector obtained 
by extracting the jth component of h. �e index j̄ represents the set of variables not belonging to group j. One 
naive approximation is to regard the variables outside group j as constant. �is allows the annealing machine 
to deal with a Hamiltonian exceeding the limitation, but at the same time this approach degrades the control 
performance. To reduce such errors, the variables having a large interaction should be in the same group, and 
the variable interaction between di�erent groups should be small. Such a problem is called a graph partitioning 
problem, which is known to be an NP-hard problem, but there are some approximation methods with adequate 
accuracy. For the actual implementation, we used the Metis so�ware (Apache license 2.0), which is a widely used 
solver for graph partitioning problems, to break up the large-scale problem into several groups having fewer 
than 64  variables46. Figure 10 shows the result of the graph partitioning of the city of L = 50 into 42 groups using 
Metis, where we certainly see that the adjacent intersections, i.e., the strongly interacting variables, are included 
in the same group.

We evaluate the e�ect of this graph partitioning method. To this end, the simulated annealing optimization 
on a system with L = 8 is performed, and results are compared between the no-partitioned and quadruple-parti-
tioned cases. Figure 11 shows the time average of the objective function for various α . �e values with partitioning 
are larger than those without partitioning, where the di�erence between these values represents the error caused 
by partitioning. �e error increases with larger α , indicating that the larger the straight driving rate of vehicles, 
the more the partitioning has a negative e�ect. In Fig. 3, the quantum annealing has advantage at large α , and 
thus a higher performance signal control should be achieved once the D-wave without partitioning is realized.

(22)H j(σσσ j(t)) := σσσ j(t)⊤Jjjσσσ
j(t) + (hj + σσσ j̄(t)⊤Jj̄j)σσσ

j(t),

Figure 10.  Graph partitioning using Metis. Each node represents a component of the Hamiltonian coe�cient 
matrix J in Eq. (10), and the color of each node indicates the group to which the component belongs. (�e data 
obtained using Metis 5.1.0 are plotted with so�ware Python/matplotlib).
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