

Traffic Signal Optimization Using Ant Colony

Algorithm

David Renfrew, Xiao-Hua Yu

Abstract— Traffic signal control is an effective way to improve
the efficiency of traffic networks and reduce users’ delays. Ant
Colony Optimization (ACO) is a meta-heuristic algorithm based
on the behavior of ant colonies searching for food. ACO has
successfully been employed to solve many complicated
combinatorial optimization problems and its stochastic and
decentralized nature fits well with traffic networks. This research
investigates the application of the ant colony algorithm to
minimize user delay at traffic intersections. Various ACO
algorithms are discussed and a rolling horizon approach is also
employed to achieve real-time adaptive control. Computer
simulation results show that this new approach outperforms
conventional fully actuated control, especially under the
condition of high traffic demand.

I. INTRODUCTION

T RAFFIC network is an integral part of the civil
infrastructures in many major metropolitan cities. Traffic

congestion causes excess vehicle delays, leading to various
issues and concerns such as safety, air pollution, and energy
consumption ([1]).

There are many difficulties that need to be addressed in
traffic signal control. Traffic movements are generally
stochastic and non-linear; thus many conventional control
techniques cannot yield optimal results. Also, traffic
conditions can change quickly; accordingly, the signal control
strategies must be highly responsive in real-time. As traffic
networks grow in size, finding the optimal strategy becomes a
complex combinatorial problem. Thus, advanced techniques in
control and optimization must be employed.

TRANSYT (Traffic Network Study Tools; [2]), SCOOT
(Split, Cycle and Offset Optimization Technique; [3]), and
SCATS (Sydney Coordinated Adaptive Traffic System; [4],
[5], and [6]) are conventional on-line control strategies based
on the off-line optimization techniques. Detectors monitor
traffic flows and predict future arrivals by creating flow
profiles. The control strategies are then selected from a set of
pre-determined off-line timing plans that match the current
traffic flow profiles.

OPAC (Optimized Policies for Adaptive Control; [7])

incorporates a rolling horizon approach for optimization. A
long time interval (usually 60 seconds) is considered; and all
possible signal cycles over this time interval are sequentially
evaluated to find the best switching timing plan. However, this
optimal control policy is only implemented over a short period
(usually around 4 seconds); and the whole process is then
repeated. The long time period of optimization guarantees the
performance of the timing plan, while the short
implementation time ensures the algorithm is responsive to the
time-varying traffic dynamics.

More recent research has introduced artificial neural
networks into traffic control ([8], [9]). The advantage of neural
networks is that no assumption on an analytic model for traffic
flow needs to be made. However, neural network training can
take a long time and require a large amount of data. Other
latest developments on traffic signal control in recent years
include fuzzy logic ([10]), Petri nets ([11]), and Markov
decision control ([12]). PSO (Particle Swarm Optimization)
has also been applied to traffic signal control at intersections
with light traffic demands and showed some improvements
(about 8.7%) on vehicle delay time over fixed signal cycle
controls ([18]).

Ant Colony Optimization (ACO) is a meta-heuristic
approach for solving computationally hard combinatorial
optimization (CO) problems ([13], [14], and [15]). Inspired by
the behavior of the ants in real world, ant colony algorithm is a
multi-agent system, in which each single agent is called an
artificial ant. It is one of the most successful examples of
swarm intelligent systems and has been applied to solve many
different types of problems, including the classical traveling
salesman problem, path planning and network routing.

In nature, when searching for food, real ants may wander
randomly until they find food. As an ant returns to the colony
with food, it deposits pheromone, a chemical used for
communication. These pheromone trails guide other ants as
they continue their search for food. As more pheromone is
deposited, the ants’ paths become less random and are biased
toward the paths with higher pheromone concentration.

In the ant colony algorithm, artificial ants search the
solution space probabilistically to create candidate solutions.
These candidate solutions are then evaluated and updated,

based on the pheromone associated with each one of them. It
should be noticed that over time, certain amount of pheromone
concentration may evaporate. Finally, the one with the highest
value of pheromone is considered to be the optimal solution of
the problem.

In this research, a new approach to find the optimal signal
timing plan for a traffic intersection is investigated using ACO
algorithm. Traffic signal problem is a complex combinatorial iq

1 2 3 4q(t) = [q (t), q (t), q (t), q (t)] (1)
Similarly, the number of vehicles leaving movement i

iduring a time interval (t , t) can be denoted as q (t , t) .1 2 out 1 2

It is a function of the signal choice and the queue length at t1 .
When u(t , t) = green, we have: 1 2

ª
 §
¨

t2 − t1 ·
º
 (t1 , t) =
 i 1 Int (2) +
out 2 min q (t1),optimization problem which fits the nature of ACO very well.
Rolling horizon algorithm is also employed to achieve real-
time adaptive control. Computer simulation results indicates where hw is the headway between vehicles as they leave the

«
¬

»
¼
¸
¹hw©

intersection, u(t , t) is the signal during the time interval 1 2that this new approach is more efficient than traditional fully
actuated control, especially under the conditions of high, but
not saturated, traffic demand.

The rest of the paper is organized as follows. In section 2,
the traffic flow model and dynamic equations at a typical
intersection are summarized. In section 3, various ACO
algorithms are discussed, including the ant system algorithm,
the elitist ant system algorithm, and the rank-based ant system
algorithm. In section 4, the above algorithms are applied and
tested by simulation to find the optimal signal settings at a
traffic intersection to minimize the average vehicle delay time.
For each algorithm, the convergence rates with different
parameters (e.g., number of ants) are studied and compared. A
heuristic local search mechanism with weighted pheromone
levels is considered to improve the performance of the ACO
algorithm. Section 5 concludes the paper and also gives
directions for future works.

II. THE TRAFFIC FLOW MODEL

Modeling traffic dynamics and optimizing the control
signals are two interrelated problems. Consider a typical four-
lagged isolated traffic intersection with four external
approaches, as shown in Fig. 1. For the sake of simplicity, only
through movements are considered. The traffic flows move
along two directions (east/west or north/south, labeled as 1, 2,
3, and 4 in the figure) and thus only two sets of traffic control
signals (green for east/west while red for north/south, and green
for north/south while red for east/west) are considered. In
traffic engineering, directions (1 - 4 in Fig. 1) are also called
"movements".

Fig. 1. A typical traffic intersection

At a given time t, the queue length on movement i can be
idenoted as q (t) , where i represents the index of a movement.

Thus, the queue length at the whole intersection can be denoted
as:

(t , t) and Int(⋅) gives the integer part of the input. 1 2
iObviously, when u(t , t) = red, q (t , t) = 0.1 2 out 1 2

The number of cars arriving during a time interval (t , t)1 2

can be denoted as qin (t1 , t2) . It has been supported by the
results of many field tests that under most circumstances, the
arrival of vehicles for the external movements follows the
Poisson distribution [16]. Therefore,

n −λ Δt(λ Δt) eP(n) = (3)
n!

where n is a positive integer for number of arrivals, λ is the
average vehicle arrival rate in vehicles per hour and Δt is the
duration of time period.

From the above, the dynamic equation of traffic flow can be
described as:

q(t) = q(t −1) + q (t) − q (t) (4) in out

III. THE ANT COLONY ALGORITHM

If The principle of swarm intelligence is based on the
studies of social interactions between biological insects in
nature. In contrast to the global, centralized traditional
approach, it offers an alternative way to design an intelligent
system based on the collective, decentralized behavior of
many self-organized sub-systems.

A swarm intelligent system typically contains a population
of simple agents which only interact locally with each other
and the environment. That means, each individual agent in the
system only follows simple rules and may not have the
knowledge of the overall system. However, the local
interactions between such agents can lead to the emergence of
a very sophisticated and complicated group behavior. Some of
the examples of biological swarm intelligent systems include
ant colonies, bird flocking, fish schooling, bacterial growth,
etc.

The ant colony optimization (ACO) algorithm was first
developed by M. Dorigo in 1992 in his Ph. D. dissertation. It is
a meta-heuristic approach for solving computationally hard
combinatorial optimization (CO) problems; in other words, it
is an “approximate” algorithm which can be used to obtain

“good enough solutions” in a reasonable amount of
computation time ([13], [14], and [15]). Inspired by the
foraging behavior of the biological ants in real world, artificial
ants are introduced and employed as a novel computational
intelligence tool. In fact, it is a stochastic search algorithm
based on a parameterized probabilistic model called the
pheromone model.

Consider a solution space in which each node represents a
possible solution for an optimization problem. The major steps
of ACO can be summarized as follows:

1) Initialization. The pheromone values on each node are
set to a constant value.

2) Solution construction. Each ant begins on a start node
and moves to one of its neighboring node based on the
pheromone values. In general, ants move from node i to node j
with the following probability (also called the proportional
rule, or the transition probability):

4) The above solution construction and pheromone update
procedures (i.e., step 2 and 3) are repeated until a stop
criterion is met.

ACO has been successfully applied to solve many different
types of problems, including the classical traveling salesman
problem, task assignment, path planning and routing in
telecommunication network, etc. Many different ACO
algorithms have been proposed, including the original Ant
System algorithm (AS), Elitist Ant System, and Rank-based
Ant System. In fact, the initialization and solution construction
procedures are the same for different ACO algorithms; only
the ways to update pheromone (i.e., step 3) are different. In
this research, we consider three different ACO algorithms,
namely, the Ant System (AS), the Elitist Ant System (EAS),
and the Rank-based Ant System algorithm.

A. Ant System Algorithm:

α β In this algorithm, after all m ants have constructed their τ ηij ij if N

l∈N
¦
­
°°

own solutions and the pheromones on all edges/arcs evaporate j ∈
 iτ α η β based on Eq. (6), the pheromones are updated by: (5)®
°
°

il ilp =ij
i m

if j N0

where Ni is the set of the neighborhood nodes of i that an ant
has not visited yet, which includes all possible nodes that an
ant can move to when at node i. τ ij is the pheromone value

between node i and j; and ηij represents the heuristic
information (which is available a priori – for example, in the
famous traveling salesman problem, the reciprocal of the
distance between two different cities i and j is usually chosen
to be ηij). The values of α and β are usually application
dependent; they weigh the importance of the pheromone and
heuristic values, respectively. Note that there are potentially
many different ways of choosing the transition probabilities;

¯

however, Eq. (5) was introduced in the first ACO algorithms,
and is still used most often in ACO literature nowadays mainly
due to this historical reason ([13]).

3) Update pheromone. Pheromone update can be
implemented in different ways, depending on the specific
algorithm being studied; but they all follow a general form.

∉
 i (n) +
 Δτ
k
ij (8)τ τij ij(1)
+
n =
 ¦

k =1

where Δτ ij
k , the pheromone deposited by ant k when moving

from i to j, is defined by:

k 1Δτ ij = k (9)
C

where C k is the associated cost or reward. Otherwise (i.e., ant
k doesn’t move to node j from node i), there is no pheromone

kdeposit, i.e., Δτ ij = 0 .

B. Elitist Ant System Algorithm:

In Elitist Ant System (also called elitist strategy for ant
system) algorithm, extra weight is given to the best-so-far
solution. As in the Ant System algorithm, pheromone
evaporates first (as in Eq. (6)), then is updated by:

Over time, pheromone evaporates: m

¦
k =1

where n is the index of iteration; ρ ∈(0,1] is the evaporation where e is a weighting parameter. The additional term Δτ ij
bs

rate. The pheromone on some of the paths is then updated by: reinforces the best-so-far solution and can be defined as the
following (if ant k moves from i to j):

τ ij (n + 1) = τ ij (n) + Δτ ij (7)
bs 1Δτ = (11) ij bswhere Δτ ij , the pheromone update, is determined by the C

specific algorithm.
Cbswhere is the total cost/reward (from the start of the

algorithm) associated with the best-so-far solution (including

k τ bsτ τij ij(1)
 (n) Δτ
 Δ
+
 +
 +
 (10)n e=
 ij ij
τ ij (n +1) = (1 − ρ)τ ij (n) (6)

the transition from i to j). This term can also be viewed as the
pheromone deposited by an additional ant called the best-so-far
ant.

C. Rank-Based Ant System:
In this algorithm, the ant’s solutions are sorted in order of

increasing cost before the pheromone is deposited. Only the
(w-1) best-ranked ants and the best-so-far ant are allowed to
deposit pheromone. The best-so-far solution is weighted by w;
and the rth best ant is weighted by max{w-r, 0}. Thus the
pheromone update rule is:

w−1
r bsτ ij (n + 1) = τ ij (n) + ¦(w − r)Δτ ij + wΔτ ij

r =1

 (12)
r bswhere Δτ ij and Δτ ij are defined in Eq. (9) and Eq. (11).

The pheromone evaporation stage is performed before the
update, as in the other methods, but less pheromone is
generally evaporated on each step. The rank-based update
biases away from bad solutions, allowing for more
conservative evaporation.

IV. COMPUTER SIMULATION RESULTS

In this section, the ACO algorithm is applied to traffic
signal optimization at a "four-legged" intersection as shown in
Fig. 1. First, a simple case is considered to qualitatively study
the performance of different ant colony algorithms. The
convergence rates of pheromone concentration to the optimal
solution using different algorithms and parameters are
examined. Then, the proposed ACO algorithm is tested on a
traffic intersection with various vehicle arrival rates, from 400
(vehicles per hour per movement) to 850 (vehicles per hour per
movement); and the average vehicle delay of the ACO
algorithm is compared with a traditional fully actuated control
algorithm based on NEMA (National Electrical Manufacturers
Association) standard. It is assumed that camera-type sensors
are available at the intersection to monitor vehicle arrivals
and/or departures. The traffic parameters used in simulations
are summarized in Table 1.

Table 1. Traffic Simulation Parameters

Parameter Value
Minimum green time (s) 5
Maximum green time (s) 30
All red time (s) 2
Minimum headway (s) 2
Extension time (s) 1

One of the most important goals of traffic signal control is
to minimize vehicle waiting time at intersections. In this
research, the amount of pheromone deposited by artificial ant is
directly related with this performance criterion. As we know,
the green time duration for each signal phase can be any value
bounded between a minimum and a maximum value (called the
minimum green and maximum green time). The inputs of the
ACO controller include the current traffic queue (available
from sensor measurements) and a prediction of vehicle waiting

time; the output of ACO controller is the optimal signal
switching time (or optimal time duration of the signal phase). It
is assumed that the number of vehicles at the intersection is
known, i.e., video-camera type detectors are available at the
intersection. The ACO algorithm determines the optimal green
time duration to minimize the total vehicle waiting time, which
includes the actual waiting time of the vehicles already in the
current queue, and the estimated waiting time of vehicles that
may just arrive during this time duration ([17]):

Let’s consider the situation when the length of a green
signal is (t2 − t1) , where t1 is the starting time, and
tmin_ green ≤ (t2 − t1) ≤ tmax_ green . Let q be the queue length

(number of vehicles) at time t1 , and q ≠ 0 .

Case 1. Green phase. When all vehicles in the initial queue
are released, that is, when (t − t) ≥ (q −1) hw , the total 2 1
expected waiting time for a traffic movement under green
signal (from t1 to t2) can be written as:

q (q −1) hw q
i λ((q −1) hw) 2

J1green (t1, t2) = + ¦ (t1 − ta) +

2 i=1 2

λ((q −1) hw) [λ((q −1) hw)−1] hw
+
2

 (13)
iwhere t is the arrival time of vehicle i. The first and second a

terms are the total waiting time of the initial queue, the third
term is the expected waiting time of vehicles that arrive during
the time interval (t , t) when the initial vehicles are released, 1 2
and the fourth term is the expected time that takes to release
these new arrivals in (t , t).1 2

Case 2. Green phase. When (t − t) < (q −1) hw , not 2 1
all the vehicles in the initial queue can be released. The total
expected waiting time for this case is:

q (q −1) hw q
i

q
iout outJ 2 green (t1, t2) = + ¦ (t1 − ta) + ¦ (t1 − ta)2 i=1 i=1

λ(t − t)2

+ (q − q)(t − t) + 2 1
out 2 1 2

 (14)
The first term is the waiting time of the released vehicles in

(t , t), the second term is the waiting time of the initial queue 1 2

before t1 , the third term is the waiting time of the initial
vehicles not being released in (t , t), and the fourth term is 1 2

the expected waiting time of estimated arrivals in (t , t).1 2

Case 3. Red phase. During the red phase, no vehicle can be
released; in addition, λ(t2 − t) vehicles are expected to 1

arrive. Therefore, the total queue at t2 becomes
q + λ (t2 − t) . The expected total waiting time is: 1

q λ (t − t)2
i 2 1J red (t1, t2) = q (t2 − t1) + ¦(t1 − ta) +

i=1 2

 (15)

A detailed discussion on the above equations (Eq. (13) -
(15)) can be found in [17].

The number of ants used in ACO is an important
implementation issue. As little as one ant could be used, but
this does not take full advantage of the algorithm. When more
ants are used, more explorations can be done during each
iteration. As a result, more pheromone is released per iteration,
decreasing the chance of biasing towards poor solutions. But,
increasing the number of ants increases the computational work
done per iteration. Additionally, the large amount of

deposited on the optimal signal (for 10 ants) in its steady state.
That is, the optimal solution is found after 60 iterations.

To achieve a faster rate of convergence, ants’ solutions are
ranked and the solutions with the highest cost function are
discarded. Once the optimal solution is found pheromone
accumulates more rapidly, because the best solutions are
weighted heavier and the bad solutions are ignored. Comparing
with other ACO algorithms, the rank-based ant system usually
requires the fewest ants for similar performance, which is more
computational efficient and thus more suitable for real-time
applications.

Average rate of convergence
pheromone deposited does not allow significant bias towards
the optimal path. As a result, the pheromone levels may change
slowly and thus makes it more difficult to find the optimal
solution. In this research, we compare the performance of each
algorithm with 10, 25, and 50 ants.

To study the convergence rates of pheromone concentration
to the optimal solution of different ant colony algorithms, a
simple case of just one signal cycle is considered first. It is
assumed that each movement of the intersection initially has
zero vehicles in their queue, and the vehicle arrival rate is 800
vehicle/hour/movement. In this case, it is optimal to switch the
signal after the minimum green time. For each choice of each
ant colony algorithms and/or parameters, 100 trials are run. Fig.
2, 3, 4 and 5 show the average results of these 100 trials, with 0 20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

Number of iterations

N
o

rm
al

iz
e

d
p

he
ro

m
on

e
o

n
 o

p
tim

al
 p

a
th

10 Ants
25 Ants
50 Ants

y-axis representing the percentage of the total pheromone
deposited on the optimal signal (path) and x-axis representing
the index of iterations. Fig. 2. The average rate of convergence of the Ant System algorithm

Fig. 2 shows the average rate of convergence of the Ant
System algorithm. The best result is obtained by using only 10
ants; however, the maximum percentage of the total pheromone
on the optimal signal is only about 11%. The performance is
the Elitist Ant System algorithm is illustrated in Fig. 3, where
the maximum percentage of the total pheromone deposited on
the optimal signal is increased to about 45% with 50 ants,
showing a significant improvement over the Ant System
algorithm.

One problem with the ACO is its tendency to accumulate
pheromone on near optimal solutions ([13]). At initialization,
all paths are chosen with equal probability. If a near optimal
solution is chosen by some ants at the beginning, the positive
feedback of the ant colony algorithm can cause pheromone to
accumulate rapidly on this near optimal solution. As a result,
the optimal path may not be found. When using an ACO
algorithm with the best-so-far ant, this stagnation became 0 20 40 60 80 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Average rate of convergence

N
o

rm
al

iz
ed

 p
he

ro
m

on
e

on
 o

pt
im

al
 p

at
h

10 Ants
25 Ants
50 Ants

especially apparent. To avoid stagnation, a search of the
solutions near the best-so-far solution can be added. It is
accomplished by replacing every the nth iteration of the random
solution search with a local search. In this local search the
search space is replaced with a neighborhood of size T of the
best-so-far solution. In this simulation, local search is

Number of iterations

Fig. 3. The average rate of convergence of the Elitist Ant System
algorithm

An advantage of the ACO is its ability to incorporate
performed every 3 iterations with the neighborhood size T = 4. heuristic information about the solution space being searched
The simulation result of the Elitist Ant System algorithm with ([13]). In the traffic signal problem, releasing all vehicles in the
local search is shown in Fig. 4, where all the pheromones are queue usually results in smaller waiting times; thus the green

phase length should be set accordingly. For shorter queues,

releasing the current queue and then switching the signal is
optimal. For longer queues, additional time is needed because Average rate of convergence

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

N
or

m
a

liz
e

d
ph

e
ro

m
on

e
o

n
op

tim
al

 p
a

th

10 Ants
25 Ants
50 Ants

additional vehicles may arrive before all vehicles (that are
currently in the queue) are released. In either case, intuitively,
the optimal green signal length is around the time that is
needed to release all vehicles that are currently in the queue.

g	 qgThis time interval is t + (q (t1) −1)hw , where (t1) is1
the length of the largest queue on the green movements at time
t1 . To bias the search towards switch timing near this time, the
pheromone levels in Eq. (5) can be weighted by the heuristic
value of

(qg (t) − 1)hw − (t − t)1 1 ª
 º
 η
 2 (16) = exp«
¬

»
¼

t t1 2 c

where c is a positive constant. The exponential function is
chosen because it can provide a maximum value at the desired
peak location and smooth transitions on both sides of the peak.
The performance of the rank-based ant system with local
search and heuristics is demonstrated in Fig. 5. Obviously, it
yields the fastest convergence rate (comparing with other ACO
algorithms such as the ant system and the elitist ant system).

Number of iterations

Fig. 5. The average rate of convergence of the Rank-based Ant System
with local search and heuristics

It is assumed that the intersection is “clear” when the
simulation starts (i.e., zero initial conditions, or no queue at the
beginning), and each traffic movement is independent. The

Average rate of convergence 	 traffic simulation runs for ten minutes, allowing traffic flow to
"settle" and also to reduce the effects of initial conditions; then
vehicle delays are recorded and compared (ACO vs. the
traditional fully actuated control). A vehicle’s delay is defined
as the time difference between its departure time and arrival
time. The average delay (per vehicle) is defined as:

N

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
e

d
p

he
ro

m
o

ne
 o

n
o

pt
im

al
 p

at
h

10 Ants
25 Ants
50 Ants

¦
i=1Average _ delay =

N

(td
i − ta

i)
 (17)

i iwhere td and t is the departure time and arrival time of the a
ith vehicle, respectively. The average is taken over the all N
vehicles that arrive during the time period of consideration. As
stated in section 2, it is a general assumption that the vehicle
arrival pattern follows Poisson distribution ([16]); therefore, 40
different random sets of data are simulated for each arrival rate.
The time resolution of all the simulations is 0.01 seconds.

When vehicle arrival rate is low (i.e., light traffic), the fully
actuated controller performs better. For example, when the
arrival rate is less than 600 vehicles per hour per movement,
the expected vehicle inter-arrival time (i.e., the time between
two adjacent arrivals) is greater than 6 seconds. The minimum
green time is 5 seconds and with the 2 second all red time; so
the minimum time between a phase transition is 7 seconds. The
probability of a vehicle arriving during a red signal is small
(though cannot be ignored). The fully actuated controller is
better suited for this situation - the signal changes only when
there is a vehicle that arrives during red signal.

Once traffic flow rate is greater than 600 vehicles per hour
per movement, the number of vehicles that arrive per red signal
is frequently greater than one. The fully actuated controller
gives too much preference to the green direction; while the
proposed ACO algorithm takes all movements into account and
performs better. Fig. 6 plots the average vehicle delay for both

Number of iterations

Fig. 4. The average rate of convergence of the Elitist Ant System algorithm
with local search

The proposed ACO algorithm (rank-based ant system with
local search and heuristic) is tested and compared with the
conventional fully actuated control by computer simulation. In
fully actuated control algorithm, both the cycle length and the
green time for every phase of the intersection can be varied. At
every time step, the fully actuated controller checks whether an
arrival has occurred on any lane of the intersection. If an arrival
has occurred, then the phase is given an extension if it has a
green indication. If the phase does not have a green, a call is
registered for that phase. To determine the signal indication of
next phase, all the calls need to be taken into account. The
phase sequence of fully actuated control is fixed; however,
certain phases in the cycle may be skipped if there is no
demand detected by detectors.

fully actuated control and ACO algorithm over 40 trials. As
traffic approaches saturation, the average delay for the fully
actuated control increases much faster than in ACO control.
For example, when the vehicle arrival rate is 850
(vehicles/hour/movement), the ACO algorithm shows about
85% improvement over the fully actuated control in terms of
the average delay time.

The ant colony simulations run fast enough to be effectively
implemented in real time systems. For example, it only takes
about eight minutes (on a PC) to simulate twenty minutes of
traffic flows and controls (with the rank-based ant system using
local search, elitist ant, heuristic weights and ten ants).

Average delay

400 500 600 700 800
0

5

10

15

20

A
ve

ra
ge

 d
el

ay
 in

 s
ec

on
ds

ACO control
Fully Actuated control

Volume in vehicles per hour

Fig. 6. The average delay

V. CONCLUSION

ACO (Ant Colony) algorithm is a new optimization
technique based on swarm intelligence. In this paper, the rank-
based ant system algorithm with local search and heuristic is
applied to control signals at traffic intersection to reduce the
vehicle waiting time. Computer simulation results show this
method outperforms the conventional fully actuated control
under the situation of high traffic demand. In addition, the ant
colony algorithms are fast enough to be effectively
implemented in real time systems. Further evaluation and
testing on this approach will be performed.

REFERENCES

[1]	 M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and
W. Yibing, "Review of road traffic control strategies,"
Proceedings of the IEEE, vol. 91, pp. 2043-2067, 2003.

[2]	 Transportation research center, Traffic network study tool:
TRANSYT-7F software summary, University of Florida, 1987

[3]	 P. Hunt, and D. Robertson, “The SCOOT on-line traffic signal
optimization technique”, Traffic engineering and control, April
1982.

[4]	 J. Y. K. Luk, "Two traffic-responsive area traffic control
methods: SCAT and SCOOT," Traffic engineering and control,
1984.

[5]	 P. Hunt, and D. Robertson, “The SCOOT on-line traffic signal
optimization technique”, Traffic engineering and control, April
1982.

[6]	 P. Lowrie, “The Sydney coordinated adaptive control systems –
principles, methodology, algorithms”, IEE conference
publication, vol. 207, 1982.

[7]	 N. Gartner, "OPAC: A demand-responsive strategy for traffic
signal control," Transportation research record, no. 906, 1983.

[8]	 S. Chien, Y. Ding, “Dynamic Bus Arrival Time Prediction with
Artificial Neural Networks,” J. Trans. Engrg., vol. 128, 2002.

[9]	 M. Papageorgiou, A. Messmer, J. Azema, and D. Drewanz, "A
neural network approach to freeway network traffic control,"
Control Engineering Practice, vol. 3, pp. 1719-1726, 1995.

[10] W.	 Wei, et. al., “Traffic signal control using fuzzy logic and
MOGA,” Proceedings of IEEE conference on systems, man, and
cybernetics, 2001.

[11] G.	 List, and M. Cetin, “Modeling traffic signal control using
Petri nets”, IEEE Transaction on intelligent transportation
systems, vol. 5, no. 3, 2004.

[12] X.-H. Yu, and A. Stubberud, “Markovian decision control for
traffic signal systems”, Proceedings of the 36th IEEE conference
on decision and control, 1997.

[13] M. Dorigo, and T. Stutzle, Ant Colony optimization, The MIT
Press, 2004.

[14] M. Dorigo, and C. Blum, “Ant colony optimization theory: A
survey”, Theoretical Computer Science, vol. 344, 2005, pp. 243
– 278.

[15] M. 	Dorigo, M. Birattari, and T. Stutzle, “Ant colony
optimization - Artificial ants as a computational intelligence
technique”, IEEE Computational Intelligence magazine, vol. 1,
issue 4, 2006, pp. 28-39.

[16] R. Wilshire, R. Black, et al., Traffic control systems handbook,
FHWA-IP-85-12, 1985.

[17] D. Renfrew, and X.-H. Yu, “Traffic Signal Control with Swarm
Intelligence”, Proceedings of the International Conference on
Natural Computation, pp. 79 – 83, August 2009.

[18]	 L. Zhang; Y. Zhong; Z. Li and Y. Chen, “PSO-based
optimization for isolated intersections signal timings and
simulation”, Proceedings of the International Conference on
Machine Learning and Cybernetics, pp. 993 – 996, 2008.

