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Algorithm
 

David Renfrew, Xiao-Hua Yu 

Abstract— Traffic signal control is an effective way to improve 
the efficiency of traffic networks and reduce users’ delays. Ant 
Colony Optimization (ACO) is a meta-heuristic algorithm based 
on the behavior of ant colonies searching for food. ACO has 
successfully been employed to solve many complicated 
combinatorial optimization problems and its stochastic and 
decentralized nature fits well with traffic networks. This research 
investigates the application of the ant colony algorithm to 
minimize user delay at traffic intersections. Various ACO 
algorithms are discussed and a rolling horizon approach is also 
employed to achieve real-time adaptive control. Computer 
simulation results show that this new approach outperforms 
conventional fully actuated control, especially under the 
condition of high traffic demand. 

I. INTRODUCTION 

T RAFFIC network is an integral part of the civil 
infrastructures in many major metropolitan cities. Traffic 

congestion causes excess vehicle delays, leading to various 
issues and concerns such as safety, air pollution, and energy 
consumption ([1]). 

There are many difficulties that need to be addressed in 
traffic signal control. Traffic movements are generally 
stochastic and non-linear; thus many conventional control 
techniques cannot yield optimal results. Also, traffic 
conditions can change quickly; accordingly, the signal control 
strategies must be highly responsive in real-time. As traffic 
networks grow in size, finding the optimal strategy becomes a 
complex combinatorial problem. Thus, advanced techniques in 
control and optimization must be employed. 

TRANSYT (Traffic Network Study Tools; [2]), SCOOT 
(Split, Cycle and Offset Optimization Technique; [3]), and 
SCATS (Sydney Coordinated Adaptive Traffic System; [4], 
[5], and [6]) are conventional on-line control strategies based 
on the off-line optimization techniques. Detectors monitor 
traffic flows and predict future arrivals by creating flow 
profiles. The control strategies are then selected from a set of 
pre-determined off-line timing plans that match the current 
traffic flow profiles. 

OPAC (Optimized Policies for Adaptive Control; [7]) 

incorporates a rolling horizon approach for optimization. A 
long time interval (usually 60 seconds) is considered; and all 
possible signal cycles over this time interval are sequentially 
evaluated to find the best switching timing plan. However, this 
optimal control policy is only implemented over a short period 
(usually around 4 seconds); and the whole process is then 
repeated. The long time period of optimization guarantees the 
performance of the timing plan, while the short 
implementation time ensures the algorithm is responsive to the 
time-varying traffic dynamics. 

More recent research has introduced artificial neural 
networks into traffic control ([8], [9]). The advantage of neural 
networks is that no assumption on an analytic model for traffic 
flow needs to be made. However, neural network training can 
take a long time and require a large amount of data. Other 
latest developments on traffic signal control in recent years 
include fuzzy logic ([10]), Petri nets ([11]), and Markov 
decision control ([12]). PSO (Particle Swarm Optimization) 
has also been applied to traffic signal control at intersections 
with light traffic demands and showed some improvements 
(about 8.7%) on vehicle delay time over fixed signal cycle 
controls ([18]). 

Ant Colony Optimization (ACO) is a meta-heuristic 
approach for solving computationally hard combinatorial 
optimization (CO) problems ([13], [14], and [15]). Inspired by 
the behavior of the ants in real world, ant colony algorithm is a 
multi-agent system, in which each single agent is called an 
artificial ant. It is one of the most successful examples of 
swarm intelligent systems and has been applied to solve many 
different types of problems, including the classical traveling 
salesman problem, path planning and network routing. 

In nature, when searching for food, real ants may wander 
randomly until they find food. As an ant returns to the colony 
with food, it deposits pheromone, a chemical used for 
communication. These pheromone trails guide other ants as 
they continue their search for food. As more pheromone is 
deposited, the ants’ paths become less random and are biased 
toward the paths with higher pheromone concentration. 

In the ant colony algorithm, artificial ants search the 
solution space probabilistically to create candidate solutions. 
These candidate solutions are then evaluated and updated, 



 
 

  
 

 
 
 

    

 
 

 
 

 

 
 

 

  
 

  
 

 

    

 

   
   

 
    

    
  

    
 

 

 
 

   

 
   

   
   

 

    
   

   
   

 

 

 
   

    

   

   
    

   
  

 

  

 
 

   
 

   

    
  

   

  
 

 

  
   

 
    

 

 
 

 
 

  

based on the pheromone associated with each one of them. It 
should be noticed that over time, certain amount of pheromone 
concentration may evaporate. Finally, the one with the highest 
value of pheromone is considered to be the optimal solution of 
the problem. 

In this research, a new approach to find the optimal signal 
timing plan for a traffic intersection is investigated using ACO 
algorithm. Traffic signal problem is a complex combinatorial iq 

1 2 3 4q( t ) = [q ( t ), q ( t ), q ( t ), q ( t )] (1) 
Similarly, the number of vehicles leaving movement i 

iduring a time interval ( t , t ) can be denoted as q ( t , t ) .1 2 out 1 2 

It is a function of the signal choice and the queue length at t1 . 
When u( t , t )  = green, we have: 1 2 

ª
 §
¨


t2 − t1 ·
º
 ( t1 , t ) =
 i 1 Int  (2) +
out 2 min q ( t1 ),optimization problem which fits the nature of ACO very well. 
Rolling horizon algorithm is also employed to achieve real-
time adaptive control. Computer simulation results indicates where hw is the headway between vehicles as they leave the 

«
¬

»
¼
¸
¹hw©


intersection, u( t , t ) is the signal during the time interval 1 2that this new approach is more efficient than traditional fully 
actuated control, especially under the conditions of high, but 
not saturated, traffic demand. 

The rest of the paper is organized as follows. In section 2, 
the traffic flow model and dynamic equations at a typical 
intersection are summarized. In section 3, various ACO 
algorithms are discussed, including the ant system algorithm, 
the elitist ant system algorithm, and the rank-based ant system 
algorithm. In section 4, the above algorithms are applied and 
tested by simulation to find the optimal signal settings at a 
traffic intersection to minimize the average vehicle delay time. 
For each algorithm, the convergence rates with different 
parameters (e.g., number of ants) are studied and compared. A 
heuristic local search mechanism with weighted pheromone 
levels is considered to improve the performance of the ACO 
algorithm. Section 5 concludes the paper and also gives 
directions for future works. 

II. THE TRAFFIC FLOW MODEL 

Modeling traffic dynamics and optimizing the control 
signals are two interrelated problems. Consider a typical four-
lagged isolated traffic intersection with four external 
approaches, as shown in Fig. 1. For the sake of simplicity, only 
through movements are considered. The traffic flows move 
along two directions (east/west or north/south, labeled as 1, 2, 
3, and 4 in the figure) and thus only two sets of traffic control 
signals (green for east/west while red for north/south, and green 
for north/south while red for east/west) are considered. In 
traffic engineering, directions (1 - 4 in Fig. 1) are also called 
"movements". 

Fig. 1. A typical traffic intersection 

At a given time t, the queue length on movement i can be 
idenoted as q ( t ) , where i represents the index of a movement. 

Thus, the queue length at the whole intersection can be denoted 
as: 

( t , t ) and Int( ⋅ ) gives the integer part of the input. 1 2 
iObviously, when u( t , t )  = red, q ( t , t ) = 0.1 2 out 1 2 

The number of cars arriving during a time interval ( t , t )1 2 

can be denoted as qin ( t1 , t2 ) . It has been supported by the 
results of many field tests that under most circumstances, the 
arrival of vehicles for the external movements follows the 
Poisson distribution [16].  Therefore, 

n −λ Δt( λ Δt ) eP( n ) =   (3)  
n! 

where n is a positive integer for number of arrivals, λ  is the 
average vehicle arrival rate in vehicles per hour and Δt  is the 
duration of time period. 

From the above, the dynamic equation of traffic flow can be 
described as: 

q( t ) = q( t −1) + q ( t ) − q ( t ) (4) in out 

III. THE ANT COLONY ALGORITHM 

If The principle of swarm intelligence is based on the 
studies of social interactions between biological insects in 
nature. In contrast to the global, centralized traditional 
approach, it offers an alternative way to design an intelligent 
system based on the collective, decentralized behavior of 
many self-organized sub-systems. 

A swarm intelligent system typically contains a population 
of simple agents which only interact locally with each other 
and the environment. That means, each individual agent in the 
system only follows simple rules and may not have the 
knowledge of the overall system. However, the local 
interactions between such agents can lead to the emergence of 
a very sophisticated and complicated group behavior. Some of 
the examples of biological swarm intelligent systems include 
ant colonies, bird flocking, fish schooling, bacterial growth, 
etc. 

The ant colony optimization (ACO) algorithm was first 
developed by M. Dorigo in 1992 in his Ph. D. dissertation. It is 
a meta-heuristic approach for solving computationally hard 
combinatorial optimization (CO) problems; in other words, it 
is an “approximate” algorithm which can be used to obtain 



  

 
 

 
 

 
 

 

  
 

 
   
      

 
 

  

   
  

   

  
 

 
   

   
  

 
 

 
    

  

  
 

 

   

   
 

   

 

 

 
  

 

  
  

 
  

 
  

 

 

 

 

 

    

  

   

  
  

 

 
  

  
 

   

  
  

 

   

    
  

“good enough solutions” in a reasonable amount of 
computation time ([13], [14], and [15]). Inspired by the 
foraging behavior of the biological ants in real world, artificial 
ants are introduced and employed as a novel computational 
intelligence tool. In fact, it is a stochastic search algorithm 
based on a parameterized probabilistic model called the 
pheromone model. 

Consider a solution space in which each node represents a 
possible solution for an optimization problem. The major steps 
of ACO can be summarized as follows: 

1) Initialization. The pheromone values on each node are 
set to a constant value. 

2) Solution construction. Each ant begins on a start node 
and moves to one of its neighboring node based on the 
pheromone values. In general, ants move from node i to node j 
with the following probability (also called the proportional 
rule, or the transition probability): 

4) The above solution construction and pheromone update 
procedures (i.e., step 2 and 3) are repeated until a stop 
criterion is met. 

ACO has been successfully applied to solve many different 
types of problems, including the classical traveling salesman 
problem, task assignment, path planning and routing in 
telecommunication network, etc. Many different ACO 
algorithms have been proposed, including the original Ant 
System algorithm (AS), Elitist Ant System, and Rank-based 
Ant System. In fact, the initialization and solution construction 
procedures are the same for different ACO algorithms; only 
the ways to update pheromone (i.e., step 3) are different. In 
this research, we consider three different ACO algorithms, 
namely, the Ant System (AS), the Elitist Ant System (EAS), 
and the Rank-based Ant System algorithm. 

A. Ant System Algorithm: 

α β In this algorithm, after all m ants have constructed their τ ηij ij if N 

l∈N
¦
­
°°


own solutions and the pheromones on all edges/arcs evaporate j ∈
 iτ α η β based on Eq. (6), the pheromones are updated by: (5)®
° 
°


il ilp =ij 
i m 

if j N0 

where Ni is the set of the neighborhood nodes of i that an ant 
has not visited yet, which includes all possible nodes that an 
ant can move to when at node i. τ ij is the pheromone value 

between node i and j; and ηij represents the heuristic 
information (which is available a priori – for example, in the 
famous traveling salesman problem, the reciprocal of the 
distance between two different cities i and j is usually chosen 
to be ηij ). The values of α  and β are usually application 
dependent; they weigh the importance of the pheromone and 
heuristic values, respectively. Note that there are potentially 
many different ways of choosing the transition probabilities; 

¯

however, Eq. (5) was introduced in the first ACO algorithms, 
and is still used most often in ACO literature nowadays mainly 
due to this historical reason ([13]). 

3) Update pheromone. Pheromone update can be 
implemented in different ways, depending on the specific 
algorithm being studied; but they all follow a general form. 

∉
 i (n) +
 Δτ
k 
ij (8)τ τij ij( 1)
+
n =
 ¦

k =1 

where Δτ ij
k , the pheromone deposited by ant k when moving 

from i to j, is defined by: 

k 1Δτ ij = k     (9)  
C 

where C k is the associated cost or reward. Otherwise (i.e., ant 
k doesn’t move to node j from node i), there is no pheromone 

kdeposit, i.e., Δτ ij = 0 . 

B. Elitist Ant System Algorithm: 

In Elitist Ant System (also called elitist strategy for ant 
system) algorithm, extra weight is given to the best-so-far 
solution. As in the Ant System algorithm, pheromone 
evaporates first (as in Eq. (6)), then is updated by: 

Over time, pheromone evaporates: m 

¦
k =1 

where n is the index of iteration; ρ ∈(0,1] is the evaporation where e is a weighting parameter. The additional term Δτ ij
bs 

rate. The pheromone on some of the paths is then updated by: reinforces the best-so-far solution and can be defined as the 
following (if ant k moves from i to j):

τ ij (n + 1) = τ ij (n) + Δτ ij   (7)  
bs 1Δτ =     (11)  ij bswhere Δτ ij , the pheromone update, is determined by the C 

specific algorithm. 
Cbswhere is the total cost/reward (from the start of the 

algorithm) associated with the best-so-far solution (including 

k τ bsτ τij ij( 1)
 (n) Δτ
 Δ
+
 +
 +
 (10)n e=
 ij ij
τ ij (n +1) = (1 − ρ )τ ij (n)   (6)  



    
   

 
 

 
 
 

  
   

 

  

 
  

 

   
 

   
  

   
    

   
 

 
  

 
 

  
  

    
  

   
   
  

 
 

 
  

  
 

   
 

   

    
   

     
 

    
  

  

 
  

  
 

  
  

   
   

  

   
   

   

 
     

 
 

   

 

 
     

 
 

  
   

  
 

   

  

 

 
 
 
 
 

 

  
 

 

the transition from i to j). This term can also be viewed as the 
pheromone deposited by an additional ant called the best-so-far 
ant. 

C. Rank-Based Ant System: 
In this algorithm, the ant’s solutions are sorted in order of 

increasing cost before the pheromone is deposited. Only the 
(w-1) best-ranked ants and the best-so-far ant are allowed to 
deposit pheromone. The best-so-far solution is weighted by w; 
and the rth best ant is weighted by max{w-r, 0}. Thus the 
pheromone update rule is: 

w−1 
r bsτ ij (n + 1) = τ ij (n) + ¦(w − r)Δτ ij + wΔτ ij
 

r =1
 

      (12)  
r bswhere Δτ ij  and Δτ ij are defined in Eq. (9) and Eq. (11). 

The pheromone evaporation stage is performed before the 
update, as in the other methods, but less pheromone is 
generally evaporated on each step. The rank-based update 
biases away from bad solutions, allowing for more 
conservative evaporation. 

IV. COMPUTER SIMULATION RESULTS 

In this section, the ACO algorithm is applied to traffic 
signal optimization at a "four-legged" intersection as shown in 
Fig. 1. First, a simple case is considered to qualitatively study 
the performance of different ant colony algorithms. The 
convergence rates of pheromone concentration to the optimal 
solution using different algorithms and parameters are 
examined. Then, the proposed ACO algorithm is tested on a 
traffic intersection with various vehicle arrival rates, from 400 
(vehicles per hour per movement) to 850 (vehicles per hour per 
movement); and the average vehicle delay of the ACO 
algorithm is compared with a traditional fully actuated control 
algorithm based on NEMA (National Electrical Manufacturers 
Association) standard. It is assumed that camera-type sensors 
are available at the intersection to monitor vehicle arrivals 
and/or departures. The traffic parameters used in simulations 
are summarized in Table 1. 

Table  1. Traffic Simulation Parameters 

Parameter Value 
Minimum green time (s) 5 
Maximum green time (s) 30 
All red time (s) 2 
Minimum headway (s) 2 
Extension time (s) 1 

One of the most important goals of traffic signal control is 
to minimize vehicle waiting time at intersections. In this 
research, the amount of pheromone deposited by artificial ant is 
directly related with this performance criterion. As we know, 
the green time duration for each signal phase can be any value 
bounded between a minimum and a maximum value (called the 
minimum green and maximum green time). The inputs of the 
ACO controller include the current traffic queue (available 
from sensor measurements) and a prediction of vehicle waiting 

time; the output of ACO controller is the optimal signal 
switching time (or optimal time duration of the signal phase). It 
is assumed that the number of vehicles at the intersection is 
known, i.e., video-camera type detectors are available at the 
intersection. The ACO algorithm determines the optimal green 
time duration to minimize the total vehicle waiting time, which 
includes the actual waiting time of the vehicles already in the 
current queue, and the estimated waiting time of vehicles that 
may just arrive during this time duration ([17]): 

Let’s consider the situation when the length of a green 
signal is ( t2 − t1 ) , where t1 is the starting time, and 
tmin_ green ≤ ( t2 − t1 ) ≤ tmax_ green . Let q be the queue length 

(number of vehicles) at time t1 , and q ≠ 0 . 

Case 1. Green phase. When all vehicles in the initial queue 
are released, that is, when ( t − t ) ≥ ( q −1) hw , the total 2 1 
expected waiting time for a traffic movement under green 
signal (from t1  to t2 ) can be written as: 

q (q −1) hw q 
i λ((q −1) hw) 2 

J1green (t1, t2 ) = + ¦ (t1 − ta ) +

2 i=1 2
 

λ((q −1) hw) [λ((q −1) hw)−1] hw
+ 
2 

      (13)  
iwhere t is the arrival time of vehicle i. The first and second a 

terms are the total waiting time of the initial queue, the third 
term is the expected waiting time of vehicles that arrive during 
the time interval ( t , t ) when the initial vehicles are released, 1 2 
and the fourth term is the expected time that takes to release 
these new arrivals in ( t , t ).1 2 

Case 2. Green phase. When ( t − t ) < ( q −1) hw , not 2 1 
all the vehicles in the initial queue can be released. The total 
expected waiting time for this case is: 

q (q −1) hw q 
i

q 
iout outJ 2 green (t1, t2 ) = + ¦ (t1 − ta ) + ¦ (t1 − ta )2 i=1 i=1 

λ(t − t )2 

+ (q − q )(t − t ) + 2 1 
out 2 1 2 

      (14)  
The first term is the waiting time of the released vehicles in 

( t , t ), the second term is the waiting time of the initial queue 1 2 

before t1 , the third term is the waiting time of the initial 
vehicles not being released in ( t , t ), and the fourth term is 1 2 

the expected waiting time of estimated arrivals in ( t , t ).1 2 

Case 3. Red phase. During the red phase, no vehicle can be 
released; in addition, λ( t2 − t ) vehicles are expected to 1 

arrive. Therefore, the total queue at t2  becomes 
q + λ ( t2 − t ) . The expected total waiting time is: 1 



 

  
  

 

  
   

  
   

   
    

  
   
    

 
  

   
    

 
    
      

 
  

 
  

  
      

   

 

     
 
 

    
  

  
  

 
 

  
  

   
    
  

  
    

  
   

     
    

 
   

  
   

    
 

    
    

  
  

 
    

 
  

 
  

  

 
 

 

 

 
 

  
 
 

 

 

 

 
 

   
 

 

  
 

   
 

  

q λ (t − t )2 
i 2 1J red (t1, t2 ) = q (t2 − t1) + ¦(t1 − ta ) +
 

i=1 2
 
     (15)  

A detailed discussion on the above equations (Eq. (13) -
(15)) can be found in [17]. 

The number of ants used in ACO is an important 
implementation issue. As little as one ant could be used, but 
this does not take full advantage of the algorithm. When more 
ants are used, more explorations can be done during each 
iteration. As a result, more pheromone is released per iteration, 
decreasing the chance of biasing towards poor solutions. But, 
increasing the number of ants increases the computational work 
done per iteration. Additionally, the large amount of 

deposited on the optimal signal (for 10 ants) in its steady state. 
That is, the optimal solution is found after 60 iterations. 

To achieve a faster rate of convergence, ants’ solutions are 
ranked and the solutions with the highest cost function are 
discarded. Once the optimal solution is found pheromone 
accumulates more rapidly, because the best solutions are 
weighted heavier and the bad solutions are ignored. Comparing 
with other ACO algorithms, the rank-based ant system usually 
requires the fewest ants for similar performance, which is more 
computational efficient and thus more suitable for real-time 
applications. 

Average rate of convergence 
pheromone deposited does not allow significant bias towards 
the optimal path. As a result, the pheromone levels may change 
slowly and thus makes it more difficult to find  the optimal 
solution. In this research, we compare the performance of each 
algorithm with 10, 25, and 50 ants. 

To study the convergence rates of pheromone concentration 
to the optimal solution of different ant colony algorithms, a 
simple case of just one signal cycle is considered first. It is 
assumed that each movement of the intersection initially has 
zero vehicles in their queue, and the vehicle arrival rate is 800 
vehicle/hour/movement. In this case, it is optimal to switch the 
signal after the minimum green time. For each choice of each 
ant colony algorithms and/or parameters, 100 trials are run. Fig. 
2, 3, 4 and 5 show the average results of these 100 trials, with 0 20 40 60 80 100 
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y-axis representing the percentage of the total pheromone 
deposited on the optimal signal (path) and x-axis representing 
the index of iterations. Fig. 2. The average rate of convergence of the Ant System algorithm 

Fig. 2 shows the average rate of convergence of the Ant 
System algorithm. The best result is obtained by using only 10 
ants; however, the maximum percentage of the total pheromone 
on the optimal signal is only about 11%. The performance is 
the Elitist Ant System algorithm is illustrated in Fig. 3, where 
the maximum percentage of the total pheromone deposited on 
the optimal signal is increased to about 45% with 50 ants, 
showing a significant improvement over the Ant System 
algorithm. 

One problem with the ACO is its tendency to accumulate 
pheromone on near optimal solutions ([13]). At initialization, 
all paths are chosen with equal probability. If a near optimal 
solution is chosen by some ants at the beginning, the positive 
feedback of the ant colony algorithm can cause pheromone to 
accumulate rapidly on this near optimal solution. As a result, 
the optimal path may not be found. When using an ACO 
algorithm with the best-so-far ant, this stagnation became 0 20 40 60 80 100 
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especially apparent. To avoid stagnation, a search of the 
solutions near the best-so-far solution can be added. It is 
accomplished by replacing every the nth iteration of the random 
solution search with a local search. In this local search the 
search space is replaced with a neighborhood of size T of the 
best-so-far solution. In this simulation, local search is 

Number of iterations 

Fig. 3. The average rate of convergence of the Elitist Ant System 
algorithm 

An advantage of the ACO is its ability to incorporate 
performed every 3 iterations with the neighborhood size T = 4. heuristic information about the solution space being searched 
The simulation result of the Elitist Ant System algorithm with ([13]). In the traffic signal problem, releasing all vehicles in the 
local search is shown in Fig. 4, where all the pheromones are queue usually results in smaller waiting times; thus the green 

phase length should be set accordingly. For shorter queues, 



     
   

 
  

  
     
   

   
   

   
 

  

 
 

   
   

  
   

 

 
 

 

 

 

 

 
 

    
 

 
   

 
  

  
     

  
     

  
   

    
     

 
   
  

 
 

 

 

 

 
 

    
  

 

  
    

  
   

     
   

  
 

   

 

   
  

    
  

   
 

   
 

  
  

  
   

  
   

   
  

  
    

   
    
   

 
   

  

releasing the current queue and then switching the signal is 
optimal. For longer queues, additional time is needed because Average rate of convergence 
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additional vehicles may arrive before all vehicles (that are 
currently in the queue) are released. In either case, intuitively, 
the optimal green signal length is around the time that is 
needed to release all vehicles that are currently in the queue. 

g	 qgThis time interval is t + (q (t1) −1)hw , where (t1) is1 
the length of the largest queue on the green movements at time 
t1 . To bias the search towards switch timing near this time, the 
pheromone levels in Eq. (5) can be weighted by the heuristic 
value of 

(qg (t ) − 1)hw − (t − t )1 1 ª
 º
 η
 2 (16) = exp«
¬


»
¼


t t1 2 c 

where c is a positive constant. The exponential function is 
chosen because it can provide a maximum value at the desired 
peak location and smooth transitions on both sides of the peak. 
The performance of the rank-based ant system with local 
search and heuristics is demonstrated in Fig. 5. Obviously, it 
yields the fastest convergence rate (comparing with other ACO 
algorithms such as the ant system and the elitist ant system). 

Number of iterations 

Fig. 5. The average rate of convergence of the Rank-based Ant System 
with local search and heuristics 

It is assumed that the intersection is “clear” when the 
simulation starts (i.e., zero initial conditions, or no queue at the 
beginning), and each traffic movement is independent. The 

Average rate of convergence 	 traffic simulation runs for ten minutes, allowing traffic flow to 
"settle" and also to reduce the effects of initial conditions; then 
vehicle delays are recorded and compared (ACO vs. the 
traditional fully actuated control). A vehicle’s delay is defined 
as the time difference between its departure time and arrival 
time. The average delay (per vehicle) is defined as: 
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¦
i=1Average _ delay = 

N 

(td
i − ta

i ) 
  (17) 

i iwhere td  and t is the departure time and arrival time of the a 
ith vehicle, respectively. The average is taken over the all N 
vehicles that arrive during the time period of consideration. As 
stated in section 2, it is a general assumption that the vehicle 
arrival pattern follows Poisson distribution ([16]); therefore, 40 
different random sets of data are simulated for each arrival rate. 
The time resolution of all the simulations is 0.01 seconds. 

When vehicle arrival rate is low (i.e., light traffic), the fully 
actuated controller performs better. For example, when the 
arrival rate is less than 600 vehicles per hour per movement, 
the expected vehicle inter-arrival time (i.e., the time between 
two adjacent arrivals) is greater than 6 seconds. The minimum 
green time is 5 seconds and with the 2 second all red time; so 
the minimum time between a phase transition is 7 seconds. The 
probability of a vehicle arriving during a red signal is small 
(though cannot be ignored). The fully actuated controller is 
better suited for this situation - the signal changes only when 
there is a vehicle that arrives during red signal. 

Once traffic flow rate is greater than 600 vehicles per hour 
per movement, the number of vehicles that arrive per red signal 
is frequently greater than one. The fully actuated controller 
gives too much preference to the green direction; while the 
proposed ACO algorithm takes all movements into account and 
performs better. Fig. 6 plots the average vehicle delay for both 

Number of iterations 

Fig. 4. The average rate of convergence of the Elitist Ant System algorithm 
with local search 

The proposed ACO algorithm (rank-based ant system with 
local search and heuristic) is tested and compared with the 
conventional fully actuated control by computer simulation. In 
fully actuated control algorithm, both the cycle length and the 
green time for every phase of the intersection can be varied. At 
every time step, the fully actuated controller checks whether an 
arrival has occurred on any lane of the intersection. If an arrival 
has occurred, then the phase is given an extension if it has a 
green indication. If the phase does not have a green, a call is 
registered for that phase. To determine the signal indication of 
next phase, all the calls need to be taken into account. The 
phase sequence of fully actuated control is fixed; however, 
certain phases in the cycle may be skipped if there is no 
demand detected by detectors. 



 
  

  
    

   
 

   
   

   
  

 

 

 

 

 

 
 

 

  
 

  

 
 

  
  

 
  

 
  

   
 

  
  

  
 

  
   

 
  

  
 

 
 

 
 

 
 

   
  

  
  

  
 

  
 

 
  

  
 

    
 

  
 

 
  

 
 

 
  

 

 

 
 

  
 

 
 

fully actuated control and ACO algorithm over 40 trials. As 
traffic approaches saturation, the average delay for the fully 
actuated control increases much faster than in ACO control. 
For example, when the vehicle arrival rate is 850 
(vehicles/hour/movement), the ACO algorithm shows about 
85% improvement over the fully actuated control in terms of 
the average delay time. 

The ant colony simulations run fast enough to be effectively 
implemented in real time systems. For example, it only takes 
about eight minutes (on a PC) to simulate twenty minutes of 
traffic flows and controls (with the rank-based ant system using 
local search, elitist ant, heuristic weights and ten ants). 
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Fig. 6. The average delay 

V. CONCLUSION 

ACO (Ant Colony) algorithm is a new optimization 
technique based on swarm intelligence. In this paper, the rank-
based ant system algorithm with local search and heuristic is 
applied to control signals at traffic intersection to reduce the 
vehicle waiting time. Computer simulation results show this 
method outperforms the conventional fully actuated control 
under the situation of high traffic demand. In addition, the ant 
colony algorithms are fast enough to be effectively 
implemented in real time systems. Further evaluation and 
testing on this approach will be performed. 
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