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ABSTRACT Intelligent Connected Vehicles (ICVs) can provide smart, safe, and efficient transportation

services and have attracted intensive attention recently. Obtaining timely and accurate traffic information

is one of the most important problems in transportation systems, which would allow people to select fast

routes and avoid congestions, thus saving their travel time on the road. Currently, the most popular ways to

obtain traffic information is to inquire navigation agents, e.g., Apple map, and Google map. However, these

navigation agents are essentially centralized systems, which are vulnerable to service congestions, a single

point of failure, and attacks. Furthermore, users’ privacy gets compromised as the agents can know their

home and work addresses and hence their identities, track them in real-time, etc. In this paper, we propose

TrafficChain, a secure and privacy-preserving decentralized traffic information collection system on the

blockchain, by taking advantage of fog/edge computing infrastructure. In particular, we employ a two-layer

blockchain architecture in TrafficChain to improve system efficiency, design a privacy-preserving scheme

to protect users’ identities and travel traces, and devise LSTM based deep learning mechanisms that can

defend against Byzantine attacks and Sybil attacks in our system. Furthermore, an incentive mechanism is

designed to motivate users to participate in the system. Simulation results show that TrafficChain works very

efficiently and is resilient to both Byzantine attacks and Sybil attacks.

INDEX TERMS Blockchain, intelligent connected vehicles (ICVs), fog/edge computing, Byzantine attacks,

Sybil attacks, LSTM.

I. INTRODUCTION

Intelligent Connected Vehicles (ICVs) aim to provide smart,

safe, and efficient transportation services by exploiting mul-

tiple modern technologies, including communications, com-

puting, data mining, deep learning. Intel has predicted

that vehicles will produce 4,000 GB of data every day

by 2025 [1]. Properly utilizing and mining the data pro-

vided by smart vehicles, ICVs would be able to support

various services such as dynamic routing [2], traffic incident

detection [3], autonomous driving [4].

Despite having been studied for years, the current trans-

portation infrastructure and systems are still simple and quite

traditional.Many problems are still open and extensive efforts

are required to fulfill the mission of ICVs. In particular,

real-time traffic status is crucial information for vehicles to

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhui Zhao .

plan their routes to avoid congestion or road incidents, like

accidents and road closure, and can greatly save people’s

travel time. Currently, people usually use popular navigation

agents like Apple map and Google map to help plan travel

routes. A driver can send his/her current location and the

destination to the service provider through smartphones or

navigation devices to acquire navigation guide. By collecting

and mining the real-time travel data from a large number

of users’ smartphones, the traffic map service providers like

Apple and Google are able to provide the traffic status on the

roads. However, such navigation agents raise several major

concerns. First, current navigation systems are centralized

and vulnerable to congestion and a single point of failure.

Second, current navigation systems likeApplemap orGoogle

map collect real-time information from users and has already

compromised users’ privacy. For example, they can know

users’ home and work addresses and hence their identities,

track them in real-time, etc. Third, users have no control over
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the security of current navigation systems. If compromised,

the navigation systems can not only deliberately return mali-

cious route plans to users, but also track users and cause

serious security concerns.

The emergence of blockchain provides a promising solu-

tion to the aforementioned issues. Blockchain is a novel data

storage technology, which is built upon decentralized peer-

to-peer networks [5]. On a blockchain, each participant is

allowed to view the content in all blocks. When a new block

is created, the transactions or information that belongs to the

corresponding time slot is stored in that block, and all the

participant can verify the content in the block. With different

mechanisms such as Proof ofWork (PoW) and smart contract,

blockchain has successfully provided security and privacy for

many applications, particularly for cryptocurrencies. How-

ever, how to exploit blockchain technology to design secure

and privacy-aware applications for ICVs is still a challenging

problem due to different security and privacy requirements in

such systems. In the literature, there have been a fewworks on

blockchain based ICV applications. For example, Li et al. [6]

propose a privacy-preserving incentive announcement net-

work called CreditCoin, whichmotivates the vehicles to share

the data including the traffic status.Michelin et al. [7] develop

a blockchain based smart transportation architecture named

SpeedyChain, that allow smart vehicles to share their data.

Hîrtan et al. [8] describe an architecture of the car navigation

system in which the personal data is protected. Neverthe-

less, most previous works introduce Road Side Infrastructure

(RSI), security managers, or other third-party authorities to

authorize vehicles or verify communication messages, which

essentially share the same concerns with the current central-

ized systems.

In this paper, we exploit blockchain to devise a decentral-

ized real-time city-wide traffic information collection system

called TrafficChain, which is both secure against malicious

attacks on the system and able to protect vehicles’ private

information. In particular, TrafficChain is featured with a

two-layer blockchain architecture as shown in Fig. 1, which

includes local chains, one for each road segment, and a global

chain. The computing nodes (i.e., ‘‘miners’’) in the system

can be either computing nodes owned by individuals (station-

ary like computers at home and vehicles parked on the streets,

or mobile like moving vehicles) that are willing to participate

in this system, or edge (or fog) routers that are deployed

by ‘‘edge service providers (ESP)’’ providing computing,

communication, and storage services for the city, e.g., at the

cellular base stations, on the streets, or on top of tall buildings.

For each local chain, the ‘‘localminers’’ are the nearbyminers

who would like to participate. Each block on a local chain

is broadcasted to the local miners that are on this particular

local chain and all the miners on the global chain. For the

global chain, any miner in the city that has enough computing

capabilities can be a ‘‘globalminer’’. Each block on the global

chain contains the aggregated report on the traffic status of

each of the road segments and is broadcasted to all the global

miners. Whenever a vehicle needs to find a route to some

FIGURE 1. A blockchain based secure and privacy-preserving ICV system.

location, it can retrieve the necessary traffic status from the

global chain, for example, by inquiring the nearby global

miners. In such an architecture, the traffic status collection

can be more efficient and the communication overhead can

be significantly reduced due to avoiding letting every vehicle

broadcast its reports to the whole network.

In addition to a new architecture design, we develop effec-

tive algorithms to protect the security of TrafficChain and the

privacy of vehicles in the system. We consider Byzantine and

Sybil attacks, which are the most popular and challenging

attacks to deal with in blockchain based systems. By exploit-

ing a deep learning model called Long Short-Term Memory

(LSTM), we design novel LSTM based schemes that can

not only defend against Byzantine and Sybil attacks but also

make predictions on the forthcoming traffic status in a city.

Besides, the SHA256 hash function and Elliptic CurveDigital

Signature Algorithm (ECDSA) are employed for generating

addresses for each user, where they can generate a large

number of addresses for broadcasting reports in different time

periods. Thus, the privacy of the participants can be protected.

Our main contributions in this paper are summarized as

follows:

• We propose TrafficChain, a blockchain based decen-

tralized real-time traffic information collection system.

It has a novel two-layer blockchain architecture that

can reduce the network communication overhead and

enhance the block update speed, making the system

more efficient.

• We introduce the Byzantine attack and Sybil attack on

TrafficChain and propose novel LSTMbasedmethods to

defend against them. Furthermore, the proposed LSTM

based schemes are able to predict the forthcoming traffic

status in a city.

VOLUME 8, 2020 60599



Q. Wang et al.: TrafficChain: Blockchain-Based Secure and Privacy-Preserving Traffic Map

• We employ SHA256 and ECDSA to protect users’ pri-

vacy. With digital signatures and verification schemes,

an incentive mechanism is further designed to motivate

users to report traffic status in TrafficChain.

• We implement TrafficChain on Ethereum to demon-

strate its efficiency and resilience to both Byzantine and

Sybil attacks.

The remainder of this paper is organized as follows.

We introduce the related work in Section II and formulate

our problem including the threat model in Section III, respec-

tively. In Section IV, we detail the design of TrafficChain.

We conduct simulations to validate TrafficChain’s efficiency

and resilience to Byzantine and Sybil attacks in Section V.

Finally, we conclude the paper in Section VI.

II. RELATED WORK

A big chunk of work exists addressing traffic informa-

tion collection or prediction in transportation systems.

Jabari and Liu [9] propose a stochastic traffic flow model

for estimating traffic flow. He and Liu [10] propose a

prediction-correction model to describe the traffic equi-

libration process after an unexpected network disruption.

Wang et al. [11] present a NeverStop system, which uti-

lizes genetic algorithms and fuzzy control methods to

control the traffic lights at the intersection automatically.

Gisdakis et al. [12] leverage state-of-the-art crypto-

graphic schemes and readily available telecommunication

infrastructure and present a comprehensive solution to

smartphone-based traffic estimation that is proven to be

secure and privacy-preserving. Brown et al. [13] introduce

Haze, a system that collects traffic statistics from user reports

while protecting the users’ privacy. Zhu et al. [14] pro-

pose a secure and privacy-preserving traffic flow analysis

scheme for ICVs, called PTFA, where the traffic infor-

mation is obtained and aggregated by a traffic regional

center through vehicular ad hoc networks (VANETs).

Lin et al. [15] identify security and privacy requirements in

VANET communications and propose a group signature and

identity (ID)-based signature techniques. Rabieh et al. [16]

propose privacy-preserving route reporting schemes for

traffic management in both infrastructures supported and

self-organizing VANETs. Similarly, Zhang et al. [17] pro-

pose a privacy-preserving route reporting scheme that only

an authenticated vehicle can use the route reporting ser-

vice provided by the traffic management center. Note that

most previous systems assume a trusted central management

server, which may not always exist and can be under attacks.

A few recent works have employed the blockchain technol-

ogy to build decentralized ICVs. Rajbhandari [18] examine

various blockchain applications in ICVs, and demonstrate

that blockchain is applicable and beneficial to the current

transportation system. Saranti et al. [19] depict a future

of transportation system that combines autonomous vehicle

and blockchain. Yuan and Wang [20] propose a blockchain

based transportation system called La’zooz, which employs

a consensus algorithm called proof-of-movement, to

generate tokens for ridesharing and other transportation ser-

vices. Rivera et al. [21] conduct a review for existing research

on how to utilize digital identity on the blockchain for ICVs.

Pedrosa and Pau [22] propose an Ethereum based system to

support energy recharges for autonomous electric vehicles.

Although these works propose various blockchain based

ICV applications, security and privacy in the system are not

studied.

Some works address user privacy in ICV applications

built on blockchain. Li et al. [6] propose CreditCoin,

a privacy-preserving incentive based announcement network

on blockchain where users are able to send announce-

ments anonymously in the non-fully trusted environment.

Michelin et al. [7] propose a blockchain based smart trans-

portation architecture named SpeedyChain, which ensures

reliable Vehicle-to-Infrastructure communication and main-

tains vehicle privacy by employing periodically changeable

keys. Singh and Kim [23] propose intelligent vehicles (IV)

trust point (IVTP) by using blockchain, aiming at protect-

ing the privacy and security in the communications among

vehicles, where every message is signed by the private key of

the user. Although a number of works attempt to protect the

privacy in ICVs, most of them only focus on the anonymity

of the broadcasting messages. Due to the exposure of driving

routes for each user, attackers would be able to infer users’

identities based on their route information. In our work,

we consider the users’ driving routes as private information

and propose our privacy-preserving method.

Besides, several works are concerned about secu-

rity issues in ICVs. Su et al. [24] propose an energy

blockchain for secure electric vehicles (EV) charging

in a smart community, which is to optimally sched-

ule the charging behaviors of EVs with distinct energy

consumption preferences. They propose a reputation

based Byzantine fault tolerance consensus algorithm.

Huang et al. [25] propose a secure decentralized charging

pile management system on the blockchain, called lightning

network and smart contract (LNSC), which can resist imper-

sonating attack caused by key leaking. Sharma et al. [26]

propose a secure and reliable vehicle network architecture

based on blockchain, which considers the DoS attack, like

jamming on the cloud. Singh and Kim [27] propose a trusted

environment based intelligent vehicle framework, where

the blockchain technology provides the trust environment

between the vehicles with the based on proof of driving.

Lei et al. [28] focus on a critical technique for network

security, secure key management scheme, and develop a

blockchain based secure key management framework in

vehicular communication systems, which can reduce the key

transfer time during vehicles handover. Chen et al. [29] target

on the Byzantine attacks in a blockchain based distributed

systems and propose an l-nearest method to mitigate the

attacks. Xie et al. [30] propose three aggregation rules to

resist Byzantine attacks in a distributed system, which are

respectively based on geometric median, marginal median,

and beyond median. Otte et al. [31] propose TrustChain,
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FIGURE 2. The typical blockchain structure.

a Sybil-resistant scalable blockchain, which can determine

the trustworthiness of users in order to resist Sybil attacks

in a distributed system. Although cyber-physical attacks like

Byzantine and Sybil attacks have been widely studied, many

of the methods have high computational complexity and may

potentially leak sensitive or private information. Besides,

these kinds of attacks have not been fully studied in ICVs.

In our TrafficChain, we propose a novel deep learning based

secure aggregation scheme that is resilient to both Byzantine

and Sybil attacks.

III. PROBLEM FORMULATION

In this section, we first introduce some preliminaries about

blockchain. Then, we model the decentralized traffic status

collection problem, and describe the corresponding threat

models in the system.

A. BLOCKCHAIN

Blockchain is a distributed, decentralized, public ledger.

Originally devised for financial applications such as cryp-

tocurrencies, the technology has now found use in many other

applications such as smart health, smart business, smart city.

One of the main features of blockchain is that it provides a

decentralized solution to various traditional systems, where

all the system information, e.g., transactions in digital cur-

rency systems, is stored in blocks and shared among all the

participants. With communications through a peer-to-peer

network, blockchain is capable of eliminating the need of an

authorized third-party, e.g., bank, and hence has no concern

about a single point of failure. Furthermore, with the design

of different consensus protocols, e.g. proof of work (PoW)

and proof of stake (PoS), blockchain is resilient to dishonest

participants.

As shown in Fig. 2, blocks on a blockchain are linked

chronologically, each of which contains four parts, i.e., the

previous block’s hash code, time stamp, transaction records,

and a nonce. Among them, transaction records are repre-

sented by a Merkle tree. The nonce needs to be found by

the miners so that the current block’s hash fulfills certain

system requirement. The miner who finds this nonce first,

through PoW, wins the authority to write the new transactions

stored in its memory pool into this current block and append

it to the chain.

B. DECENTRALIZED TRAFFIC STATUS GENERATION

We define city traffic status as the passing time cost for each

road segment. Denote the traffic status in the time slot i by

ti = [t1i , t
2
i , . . . , t

N
i ], where N is the total number of road

segments, and t
j
i is the passing time cost for the jth road seg-

ment in the time slot i. Suppose that in the time slot i there are

h
j
i reports about t

j
i , which are denoted by t

j
i = {t

j
i (k), 1 ≤ k ≤

h
j
i}. To obtain the estimated passing time cost ti, we design

an aggregation function which is represented by A(·). Thus,

we have

t
j
i = A(t

j
i (1), . . . , t

j
i (h

j
i)), j ∈ [1,N ]. (1)

A naive aggregation method is to calculate the average of all

reports, which we consider as a benchmark, i.e.,

¯
t
j
i =

1

h
j
i

h
j
i∑

k=1

t
j
i (k), j ∈ [1,N ]. (2)

Note that the benchmark may be ineffective, particularly

when there are malicious reporters in the system.

C. THREAT MODEL

We consider the following privacy and security threats in the

system.

1) PRIVACY

The privacy in the system refers to two types of sensitive

information: each user’s identity and driving route. A user’s

identity includes both the driver’s identity and the vehicle’s

identity, both of which need to be protected. Each user’s

driving route includes the road segments that the user passes

through. It is very sensitive information since attackers can

infer the user’s identity and many details about this user’s

daily life (such as work location, home address, frequently

visited places), and also track the user. Therefore, it is critical

to protect each user’s privacy in the system.

2) SECURITY

We are primarily concerned with Byzantine attacks and Sybil

attacks in the system, which are described below.

a: BYZANTINE ATTACKS

Byzantine attackers report bogus reports in order to disrupt

the normal report aggregation process in the system. For

example, a Byzantine attacker can report a very high passing

time for a certain road segment, which may lead the aggre-

gated passing time to be much higher than it really is, thus

forcing other users to use other roads while letting itself go

through the road very fast. On the other hand, a Byzantine

attacker can report a very low passing time for a road segment,

which may mislead other users to use the road segment that

is actually already crowded, thus exaggerating the traffic

congestion.

b: SYBIL ATTACKS

Sybil attackers can create many different identities in the

system in order to disrupt normal system operations. In partic-

ular, a Sybil traffic data reporter can use different identities to

submit a number of bogus reports for the same road segment
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to improve the chance that the aggregated passing time for

that road segment does get deviated from its true value.

Besides, a Sybil miner can take advantage of many different

identities to obtain more opportunities of writing blocks on

the blockchain.

IV. TrafficChain: REAL-TIME TRAFFIC STATUS

COLLECTION ON BLOCKCHAIN

A. SYSTEM OVERVIEW

In this section, we introduce the proposed real-time traffic

status collection system on blockchain, i.e., TrafficChain,

in detail. Different from most traditional ICV applications,

TrafficChain has a decentralized architecture, which mean-

while is secure and privacy-preserving. The objective of

TrafficChain is to securely collect and store the real-time

traffic status in a city on the blockchain, which includes the

estimated passing time cost for each road segment in the

city and can be retrieved by each service demanding vehicle.

The computing nodes (i.e., ‘‘miners’’) in the system can

be either computing nodes owned by individuals (stationary

like computers at home and vehicles parked on the streets,

or mobile like moving vehicles), that are willing to participate

in this system, or edge (or fog) routers that are deployed

by ‘‘edge service providers (ESP)’’ providing computing,

communication, and storage services for the city, e.g., at the

cellular base stations, on the streets, or on top of tall buildings.

In particular, we propose a two-layer architecture for Traf-

ficChain, which includes local chains, one for each road

segment, and a global chain. For each local chain, the ‘‘local

miners’’ are the nearby miners who would like to participate

in the traffic status collection for the corresponding road

segment. Each block on a local chain includes all the reports

for the corresponding road segment and is only multicasted

to these nearby local miners that are on this particular local

chain. For the global chain, all the miners in the city can

be the ‘‘global miners’’ for this global chain. Each block on

the global chain contains the aggregated report on the traffic

status of each road segment and is broadcasted to all the

global miners. Whenever a vehicle needs to find a route to

some location, it can retrieve the necessary traffic status from

the global chain, for example, by inquiring the nearby global

miners.

Besides, we aim to address the following critical issues

in TrafficChain, including preservation of vehicles’ privacy,

resilience towards the aforementioned two types of attacks,

and system anomaly detection. In the following, we first

introduce the architecture of the proposed TrafficChain, and

then elaborate on the privacy-preserving scheme and the

security assuring algorithms.

B. THE ARCHITECTURE OF TrafficChain

The essential information that TrafficChain collects and

stores is the passing time cost for each road segment. In gen-

eral, each vehicle will report the passing time cost for the

road segment that it just passed down, while the miner in

FIGURE 3. The architecture of TrafficChain.

TrafficChain will aggregate the reports and generate the esti-

mated time cost for each road segment. However, if every

vehicle simply broadcasts their reports to all the miners in

the city, e.g., through a 5G cellular network or an edge

network covering the whole city, the communication network

will suffer from very high communication overhead, while

every miner will be overloaded with a very high computa-

tional burden. Considering this practical issue, we propose

a two-layer blockchain architecture for TrafficChain, which

includes local chains and a global chain as shown in Fig. 3.

There is a local chain for each road segment. All the vehicles

passing down a road segment will report their individual

passing time cost to the corresponding local chain. The local

miners compete through Proof-of-Work (PoW) to determine

who gets to write the next block containing all the reports

from the vehicles. The winning local miner will broadcast the

new block to all the miners on the local chain and those on the

global chain. After receiving the blocks from the local chains,

the global miners employ PoW as the consensus protocol to

determine who ‘‘mines’’ the next block containing the traffic

status of the city and all the reports from the local miners.

The traffic status is obtained based on the local reports,

by employing our proposed LSTM based aggregation scheme

that will be introduced later.

1) BLOCK STRUCTURES

The structures for the blocks on the local chains and on the

global chain are shown in Fig. 4 and Fig. 5, respectively.

In a local chain block, the block header stores the pre-

vious block’s hash value, timestamp, a Merkle tree root,

and a nonce. In the block body, the data is stored in a

Merkle tree. For a local chain j, the data includes aggre-

gated time cost, aggregated reports quantity, all the traffic

reports for the corresponding road segment j broadcasted

by the passing by vehicles, which are the passing

time costs on the road segment j and will be detailed

later.

Different from local chains, the global chain contains the

global traffic information for the whole city. In a global chain

block, the block header has the same structure as that of a
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FIGURE 4. The structure of the blocks on local chain j , which is
corresponding to road segment j .

FIGURE 5. The structure of the blocks on the global chain.

local chain block. In the block body, the first element is the

city traffic status vector ti representing the aggregated time

cost for each road in the time slot i, which collected from

local miners who aggregate local traffic reports. The sec-

ond element is ŷi+1, i.e., the predicted traffic status in the

next time slot by our proposed time cost estimation LSTM

(TE-LSTM), which will be used by the local miners to

aggregate local traffic reports in the next time slot. The

third element is qi representing the aggregated traffic report

quantity for each road segment. The fourth element is ŷ′i+1,

which is the predicted traffic report quantity for the next

time slot. The next elements are the local Merkel trees’

roots. Note that every global miner has all the local chains

already. Thus, having only the local Merkel trees’ roots in the

global block is enough and can greatly reduce the size of the

global block. The rest two elements are the parameters from

our proposed LSTM based aggregation methods, i.e., model

weights, which are used for defending against Byzantine

attacks and Sybil attacks. All the above elements are stored

in a Merkel tree, whose root is included in the global block

header.

The blocks in both local chains and the global chain are

chained up chronologically. Each block records the data col-

lected in a time slot, the length of which can be set as needed.

2) TRAFFIC REPORTERS

In TrafficChain, the traffic reporters typically refer to the

vehicles driving in the streets, which are encouraged to report

the recorded time cost for the road segments that it has passed

down. In the meantime, traffic reporters’ privacy as defined

in Sec. 4.2.1, i.e., their identities and driving routes, need to

be protected.

Towards this goal, each user first generates its own

blockchain address, e.g., the SHA256 and RIPEMD160 hash

functions on its ECDSA public key like that on the bitcoin

blockchain [32]. Note that each user can generate an unlim-

ited number of addresses on a given private key, for example,

similar to that in sequential or hierarchical deterministic wal-

lets, and hence use different addresses for reports of different

road segments to protect its identity.

The traffic reports are generated as follows. Consider a

user k on road segment j in the time slot i. It will first generate

a message tuple:

m
j
i(k) =< roadj, t

j
i (k), timestamp >, (3)

where roadj is the ID of the road segment j, t
j
i (k) is the

reported passing time cost, timestamp represents the time

when the report is generated. Next, user k signs the message

with a signature < r
j
i(k), s

j
i(k) >. Particularly, all users in

the system share the same curve parameters (CURVE,G, n),

where CURVE is an elliptic curve equation, G is an elliptic

curve base point, and n is a prime and the order of G. To gen-

erate a signature, the detail process is as follows. User k first

generates a private key integer a ∈ [1, n − 1], and a public

key with elliptic curve point multiplication, i.e., b = a × G.

The signature < r
j
i(k), s

j
i(k) > is generated by

r
j
i(k) = x

j
i mod n, (4)

s
j
i(k) = R−1(H (m)+ r

j
ia), (5)

respectively. Here, H (·) is the hash function SHA256, R is a

secure per message random integer on [1, n − 1], x
j
i is from

a curve point (x
j
i , y

j
i) = R × G. At last, user k broadcasts

the following traffic report to the local miners for the road

segment j in the time slot i:

R
j
i(k) =< bk , r

j
i(k), s

j
i(k),m

j
i(k) > (6)

where bk is the address of user k . The process for user k to

generate a traffic status report for road segment j in the time

slot i is summarized in Algorithm 1.

Note that the public and private keys are utilized for pro-

tecting user identities and signing the message, while the

messages are not encrypted. Thus, attacks like the Dolev-Yao

model [33] are not concerns of our system. Besides, to moti-

vate the users to submit traffic status reports, we design an

incentive mechanism for the regular nodes that broadcast

traffic status. The details of the incentive mechanism will be

detailed later.
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Algorithm 1 Traffic Report Generation

Input: CURVE,G, n, and current time timestamp.

Private key a← 1 ≤ a ≤ n− 1; public key b← a× G.

TrafficChain address← b.

Message m
j
i(k)←< roadj, t

j
i (k), timestamp >.

Signature< r
j
i(k), s

j
i(k) >←Calculate equations (4) & (5).

Report R
j
i(k)←< bk , r

j
i(k), s

j
i(k),m

j
i(k) >.

Output: R
j
i(k).

3) COMPUTING NODES

The computing nodes or miners compete through PoW to win

the authority for creating new blocks. As mentioned before,

the winning local miner will broadcast the new block to all

the miners on the local chain and those on the global chain.

After receiving the blocks from the local chains, the global

miners also compete through PoW to get to write new blocks

on the global chain. The winning global miner employs our

proposed LSTM based aggregation algorithms to aggregate

all the local reports, which are resilient to Byzantine and Sybil

attacks and will be discussed next.

C. SECURE TRAFFIC REPORT AGGREGATION ON

TrafficChain

Recall that the passing time cost reports about each road

segment need to be aggregated as shown in Eq. (1). How

to ensure that the reports aggregation is correct and resilient

against both Byzantine attackers and Sybil attackers is a

very challenging and critical problem in TrafficChain. In this

section, we design a secure aggregation method by utilizing

a deep learning model called LSTM.

1) LSTM BASED SECURE REPORT AGGREGATION

Deep learning techniques, such as Artificial Neural Network

(ANN), Recurrent Neural Network (RNN), LSTM, have been

widely employed in various applications due to their strong

capability in data pattern and correlation mining [34], [35].

In TrafficChain, it is obvious that the road passing time cost

for and the number of vehicles on each road segment are

highly related to the history data on the same road segment

and the data on other road segments, which essentially indi-

cates the spatiotemporal correlation among the traffic status

data. Therefore, we employ the LSTM model to predict the

traffic status and the number of vehicles on all the road

segments, which are then used to defend against Byzantine

and Sybil attacks. In the following, we describe a Byzantine

attack resilient algorithm and a Sybil attack resilient algo-

rithm, respectively, in detail.

a: A BYZANTINE ATTACK RESILIENT ALGORITHM

First, we develop a time cost estimation LSTM (TE-LSTM)

neural network for global miners to predict the traffic status

on all the road segments. In particular, the TE-LSTM network

is trained with a data batch denoted by X = {X1, . . . ,XQ},

FIGURE 6. The structure of the TE-LSTM network.

whereXi ∈ X is a data sample. For each data sample, we have

Xi = {tai−τ , tai−τ+1, . . . , tai−1}(1 ≤ i ≤ Q). Note that

ta = [ta1i , ta
2
i , . . . , ta

N
i ] is the aggregated traffic status on

all the road segments in the time slot i (ta
j
i represents the

aggregated time cost for road segment j in the time slot i

and will be introduced later) collected from local miners,

τ is the lookback window size representing the amount of

temporal information used for each prediction. The structure

of the TE-LSTM network is shown in Fig. 6. For each data

sample Xi, we expect the output of the network ŷi to be close

to yi = tai. Particularly, we denote by G(·) the classifica-

tion function of the proposed TE-LSTM network, and W

the model parameter set that needs to be optimized during

the training process. The objective function of TE-LSTM,

denoted by J (W), is:

J (W) =
1

Q

Q∑

i=1

φ(G(W;Xi), yi)+
λ

2
||W||22 (7)

where φ(·) is the loss function, ||W||22 is the regularization

term, and λ > 0 is the regularization coefficient.

Note that all the global miners share the same TE-LSTM

network that can predict the passing time costs on all the

road segments in the city. The TE-LSTM network can be

trained and initialized by a certain winning global miner

using the history traffic status stored on the global chain, and

published in the new global block. The winning global miner

also predicts the passing time costs on all the road segments

in the next time slot based on the TE-LSTMmodel and writes

them in the new global block. In the next time slot, when the

winning local miner aggregates the passing time cost reports

for the corresponding road segment, it employs the predicted

value by the winning global miner in the previous time slot

as a reference value.

Second, by taking advantage of the predicted time cost by

TE-LSTM, we propose our Byzantine resilient aggregation

method based on an existing scheme Krum [36], which is

called Mean-Around-Krum. Recall that in the time slot i

for road segment j, local miners have the traffic reports by

vehicles denoted by t
j
i = {t

j
i (1), . . . , t

j
i (h

j
i)}, where h

j
i is the

number of reports that include both honest and bogus reports.

The aggregated time cost ta
j
i is calculated as:

ta
j
i = (1−

µ

|t
j∗
i − ŷ

j
i|
)t
j∗
i + (

µ

|t
j∗
i − ŷ

j
i|
)ŷ
j
i, (8)
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t
j∗
i =

1

m

∑

k→k∗

t
j
i (k), (9)

k∗ = argmin

I∈[1,h
j
i]

∑

p→I

|t
j
i (p)− t

j
i (I )|. (10)

Here, ŷ
j
i is the estimated time cost given by TE-LSTM from

the last time slot i − 1, t
j∗
i is the aggregated value from

Mean-Around-Krum method, k → j means the m closest

reported costs to tj, µ is a control parameter. Particularly,

Eq. (10) is from the Krum method, which is to find the index

of the report that the m closest neighbors have the smallest

total distance from. Our final aggregated time cost ta
j
i is a

weighted sum of the cost t
j∗
i given by Mean-Around-Krum

and the cost ŷ
j
i estimated by TE-LSTM. As t

j∗
i gets close to ŷ

j
i,

it means that the system is under a regular pattern, and the

weight of ŷ
j
i is larger. Otherwise, it shows that system may be

subject to an abnormal pattern because of sudden changes,

e.g., traffic accidents or attacks, and hence the weight of

ŷ
j
i decreases.

Recall that the winning local miner broadcasts the new

local block to all theminers on the local chain and those on the

global chain. When a winning global miner gets the authority

to write a new global block, it will have the aggregated pass-

ing time cost on all the road segments in the current time slot,

and utilize this new traffic status data to update the current

TE-LSTM model. Specifically, at the end of the ith time slot,

the winning global miner can have a new training sample

Xi = {tai−τ , . . . , tai−1}, yi = tai. Then, it employs the

Stochastic Gradient Descent (SGD) algorithm to minimize

the objective function and in turn update the model parameter

setW , where the gradient is calculated as

∇J (Wi−1) =
d

dWi−1
φ(G(Wi−1;Xi), yi)+ λWi−1 (11)

Note that the loss function φ is considered to be convex and

differentiable, e.g., the mean square loss function. Subse-

quently, the winning global miner updates the model param-

eter set as follows:

Wi =Wi−1 + η∇J (Wi−1) (12)

where η is a control parameter.

The winning global miner finally writes the updated

TE-LSTMmodelWi, aggregated time cost tai, predicted time

cost for the next time slot ŷi+1 obtained through the new

model Wi and input Xi, and ∇J (Wi−1) into the new global

block as shown in Fig. 5.

b: A SYBIL ATTACK RESILIENT ALGORITHM

Next, we build another LSTM network for quantity esti-

mation of traffic reports for each road segment, called QE-

LSTM. Similar to the passing time cost, the quantity of traffic

reports for each road segment is also correlated to one another

in a spatiotemporal manner. Therefore, we follow the same

way as we design TE-LSTM to build QE-LSTM. Particu-

larly, the ith data sample is X′i = {qai−τ , . . . ,qai−1}, where

Algorithm 2Defending Against Byzantine and Sybil Attacks

Input: At the ith time slot, obtained data sample Xi, X
′
i,

weights Wi−1, W
′
i−1 from the global chain, threshold ǫ

and l.

1: Winning Miner on Local Chain j, j ∈ [1,N ]:

2: ta
j
i← aggregate reports R

j
i on road segment j.

3: qa
j
i← length of t

j
i.

4: NewLocalBlock ← ta
j
i, qa

j
i,R

j
i.

5: Winning Miner on Global Chain:

6: for each road j do

7: ta
j
i,qa

j
i← obtained from local chain j.

8: if |qa
j
i − ŷ′

j

i−1|/|ŷ
′
j

i−1| ≤ ǫ then

9: y
j
i← ta

j
i.

10: y′
j
i← qa

j
i.

11: else

12: y
j
i← ŷ

j
i−1.

13: y′
j
i← ŷ′

j

i−1.

14: end if

15: end for

16: ∇J (Wi−1),Wi ← update the TE-LSTM with Xi, yi,

Wi−1.

17: ∇J ′(W ′i−1),W
′
i ← update the QE-LSTM with X′i, y

′
i,

W ′i−1.

18: NewGlobalBlock ← tai, ŷi+1,qai, ŷ
′
i+1,Wi,W

′
i .

Output: New blocks on local and global chains.

qai = [qa1i , . . . , qa
N
i ] is the vector of the aggregated quan-

tities of traffic reports on all the road segments in the time

slot i and stored in the ith global block. Similar to Eq. (8)

(note that in this case qa
j∗
i denotes the aggregated num-

ber of reports while y
j′

i is the predicted number of reports

by QE-LSTM), (11), and (12) for TE-LSTM, in the time

slot i, with the sample X′i and its label y′i = qai, the winning

global miner can calculate the gradients ∇J ′(W ′i−1), update

the QE-LSTM model parameter set W ′i , and predict the

quantity of traffic reports in the next time slot ŷ′i. Moreover,

the winning global miner compares the predicted quantity of

reports ŷ′i from the last time slot with the finally aggregated

quantity of reports qai. If |qa
j
i − ŷ′

j

i|/ŷ
′
j

i ≤ ǫ, the global

winning miner decides that there are no Sybil attacks on this

road segment, and proceeds as mentioned before. Otherwise,

the global winning miner takes the predicted quantity of traf-

fic reports ŷ′
j

i as the real quantity, the predicted passing time

cost ŷ
j
i as the real passing time cost. It then writes the updated

QE-LSTM model W ′i , aggregated traffic report quantity qai,

predicted report quantity for the next time slot ŷ′i obtained

through the new modelW ′i and input X
′
i, and ∇J (W

′
i−1) into

the new local block and broadcasts this new block to all the

global miners.

The whole process for defending against Byzantine attacks

and Sybil attacks and update the local and global chains is

described in Algorithm 2.
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FIGURE 7. The structure of the MT-LSTM network.

2) MULTI-TASK LEARNING BASED SECURE REPORT

AGGREGATION

Since the passing time costs and the number of vehicles on

all the road segments are highly correlated as we mentioned

above, we further extend our traffic report algorithm by

utilizing Multi-Task Learning (MTL), which can potentially

enhance the estimation of both passing time costs and vehicle

quantities. In particular, the structure of ourMulti-task LSTM

network (MT-LSTM) is shown in Fig. 7. In the time slot i,

the input sample for training and updating the network is

Xi = {xi−τ , . . . , xi−1}, where xi =< ti,qi >, and < ·, · > is

to concatenate the two vectors. The labels for input Xi are

the target values for two specific tasks, i.e., yTEi = ti for

time cost estimation and y
QE
i = qi for quantity estimation

as defined before. The predictions of the network are ŷTEi
and ŷ

QE
i for the two tasks, respectively. The two tasks are

trained simultaneously, where the shared LSTM layer cap-

tures the correlation among the two tasks and the task-specific

layer includes an individual fully connected layer for each

task. In so doing, the MT-LSTM fulfills three advantages.

First, MT-LSTM helps prevent overfitting since common

representations are learned [37]. Second, MT-LSTM further

improves the accuracy of predicting passing time costs and

report quantities by learning more information from mining

the correlations among them. Third, MTL structure helps

simplify the network and makes it light-weighted.

D. AN INCENTIVE MECHANISM

In order to motivate users to participate in the system and

submit traffic status reports, we also propose an incentive

mechanism. In particular, we reward users whose reports are

deemed valid when aggregated by the winning local miners.

In other words, reports t
j
i (k) in Eq. (9) are considered valid,

which contribute to the final aggregated ta
j
i. The reporter

can get rewards from TrafficChain operator, e.g., the city or

Department of Transportation. In addition, since each report

in TrafficChain has an ECDSA based signature, TrafficChain

can easily check the authenticity of the reports.

E. SECURITY ANALYSIS

We first discuss the system resilience to Byzantine attacks.

Under Byzantine attacks, attackers submit bogus reports con-

taining misleading passing time on road segments. Recall the

naive aggregation method in Eq. (2). A few bogus reports

would severely deviate the estimated passing time cost t̄
j
i from

its true value. In the following theorem, we prove that the

impact of Byzantine attacks is limited in our Mean-Around-

Krum aggregation method. We drop the subscripts and super-

scripts to simplify the notations.

Theorem 1: Consider the reports for a road segment where

2f < m ≤ h. f and h denote the number of bogus reports, and

that of honest reports, respectively. Let t(b) = {t
(b)
1 , . . . , t

(b)
f }

be all the Byzantine reports, where t
(b)
l ≤ t

(b)
l+1, l ∈ [1, f − 1],

t(h) = {t
(h)
1 , . . . , t

(h)
h } be all the honest reports, where t

(h)
l ≤

t
(h)
l+1, l ∈ [1, h− 1], and {tmin, tmax} = {t

(h)
1 , t

(h)
h }. The output

of Mean-Around-Krum t∗ in the worst case is bounded by

tmin −
f

m
(tmax − tmin) < t∗ < tmax +

f

m
(tmax − tmin).

Proof: To analyze the bounds of the output of Mean-

Around-Krum t
j∗
i in the worst case, we consider the scenario

where all the Byzantine reports are included in the aggrega-

tion. So, Eq. (9) can be rewritten into

t∗ =
1

m
(

f∑

i

t
(b)
i +

m−f∑

j

t
(h)
j ).

Besides, the ground truth is 1
h

∑h
j=1 t

(h)
j ∈ [tmin, tmax], while

the second term in t∗ is
∑m−f

i t
(h)
j ∈ [(m−f )tmin, (m−f )tmax].

Since we have m > 2f , although all bogus reports are

included in the aggregation, t(k∗) is still located in [tmin, tmax]

according to Eq. (10). The proof of this is given in Lemma 1 in

Appendix.

The objective of attackers is to steer the aggregated

value t
j∗
i as small or large as possible. Therefore, we discuss

the attack in two worst cases.

Case I: All the bogus reports aim to steer the passing time

smaller, where t
(b)
f < tmin ≤ t(k

∗). From Eq. (10), we get

|t
(b)
1 − t(k

∗)| + · · · + |t
(b)
f − t(k

∗)|

+ |t
(h)
1 − t(k

∗)| + · · · + |t
(h)
m−f − t(k

∗)|

< |t
(h)
m−f+1 − t(k

∗)| + · · · + |t (h)m − t(k
∗)|

+ |t
(h)
1 − t(k

∗)| + · · · + |t
(h)
m−f − t(k

∗)|.

Due to t
(b)
f < t(k∗) < t

(h)
m−f+1, the above inequality can be

rewritten into

ft(k∗)−

f∑

l=1

t
(b)
l

<

m∑

l=m−f+1

t
(h)
l −ft(k

∗)

⇒

f∑

l=1

t
(b)
l > 2ft(k∗)−

m∑

l=m−f+1

t
(h)
l > 2ftmin−ftmax

⇒

f∑

l=1

t
(b)
l +

m−f∑

l=1

t
(h)
l > 2ftmin−ftmax + (m− f )tmin

= (m+ f )tmin − ftmax

⇒ t∗ > tmin −
f

m
(tmax − tmin) (13)
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Case II: All the bogus reports aim to steer the pass-

ing time greater, where t
(b)
1 > tmax ≥ t(k∗). Similarly,

we get

|t
(b)
1 − t(k

∗)| + · · · + |t
(b)
f − t(k

∗)|

+ |t
(h)
h−m+f+1 − t(k

∗)| + · · · + |t
(h)
h − t(k

∗)|

< |t
(h)
h−m+1 − t(k

∗)| + · · · + |t
(h)
h−m+f − t(k

∗)|

+ |t
(h)
h−m+f+1 − t(k

∗)| + · · · + |t
(h)
h − t(k

∗)|.

Because of t
(b)
1 > t(k∗) > t

(h)
h−m+f , we have

f∑

l=1

t
(b)
l −ft(k

∗)

< ft(k∗)−

h−m+f∑

l=h−m+1

t
(h)
l

⇒

f∑

l=1

t
(b)
l < 2ft(k∗)−

h−m+f∑

l=h−m+1

t
(h)
l < 2ftmax−ftmin

⇒

f∑

l=1

t
(b)
l +

m−f∑

l=1

t
(h)
l < 2ftmax−ftmin + (m− f )tmax

= (m+ f )tmax − ftmin

⇒ t∗ < tmax +
f

m
(tmax − tmin) (14)

Thus, Theorem 1 follows. �

Note that the attackers need to know t(h) in order to impose

the worst impact on the aggregation results, which can be

challenging for attackers. Otherwise, the malicious reports

t(b) can be either too far away from or too close to t(h). In

the first case, the malicious reports may be ignored in the

aggregation process due to the proposedMean-Around-Krum

scheme, while in the second case, the effect of attacks is

mitigated to a large extent.

Next, we analyze Sybil attacks. Since every user submits its

traffic reports with different addresses so as to mask its real

identity and driving routes, Sybil attackers can take advan-

tage of it to submit many bogus reports for each segment.

To defend against Sybil attacks, our proposed QE-LSTM

network detects attacks by comparing the collected num-

ber of traffic reports with the predicted one. Thus, if Sybil

attacks are detected for a road segment, we discard all the

reports and take the reference passing time, i.e., the pre-

dicted passing time by TE-LSTM network, as the aggre-

gated passing time for this road segment. In so doing,

the system performance is bounded by the prediction error

of TE-LSTM.

Note that both accidents and attacks can result in longer

than expected or predicted passing time on road segments.

In fact, there are key differences between these two scenarios.

Particularly, in the case of accidents, all honest users, and

hence most users, will report longer than predicted passing

time. However, in the case of attacks, only a few reports by

attackers will include longer than expected passing time since

TABLE 1. Main attributes of data in CEbTS.

extensive Sybil attacks will be detected. Thus, when accidents

happen, the proposed TE-LSTM can correctly aggregate traf-

fic reports and adapt to system status changes.

V. PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the

performance of our TrafficChain system and focus on its

information accuracy and attack resistance. In particular,

we first show the performance of TE-LSTM network on

predicting traffic statuses and compare with other machine

learning methods. Then, we launch Byzantine attacks and

Sybil attacks in the system, and test the resilience of Traf-

ficChain to them respectively. Meanwhile, we compare

with other existing Byzantine resilient aggregation meth-

ods. At last, we further analyze and discuss the simulation

results.

A. DATASET

The dataset we use for simulations is a public dataset of

Chicago city [38]. Specifically, we use the dataset of Chicago

Traffic Tracker-Congestion Estimates by Traffic Segments

(CEbTS). The city of Chicago divides the streets into seg-

ments, where each segment is typically a half-mile long in

one direction of traffic. CEbTS gives the estimated speed

for 1250 road segments covering 300 miles of streets, which

is obtained by continuously monitoring and analyzing GPS

traces of Chicago Transit Authority (CTA) buses. Speed

data is generated every 10 minutes for the period of the

year 2018, leading to a total of 50,457,500 data samples

for 1250 road segments over 40,366 time slots. The main

attributes of data in CEbTS are shown in Table 1. ‘#, T,

D&T’ represents number, text, and date & time data types,

respectively. It should be noticed that a GPS trace is required

for estimating speed on a road segment. Therefore, the speed

information is missing in the dataset when there is no bus on

a road segment, e.g., in some time slots of off-peak hours.

In this case, the speed is marked as ‘−1’ to reflect data

unavailability. Besides, the speed ‘0’ reflects full or partial

street closure due to an unexpected event. For the longitudes

and latitudes of start and end points of the segment, the end-

ing latitude and longitude for a segment will be the same

as the starting latitude and longitude for the segment next

to it.
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FIGURE 8. The data in CEbTS. Each point is a road segment, and there are
1250 points in total. The dashed line rectangle shows our area of interest,
which contains a total of 419 road segments.

B. DATA PRE-PROCESSING

As shown in Fig. 8, we select the rectangular area in the

City of Chicago as our area of interest, which contains

419 road segments. The CEbTS dataset provides estimated

traffic speeds on the road segments, while our TrafficChain

system collects the time cost for each road segment. Since

each road segment is set to half a mile long, we calculate the

time cost in seconds for road segment i as ti =
0.5
vi
× 3600,

where vi is the estimated speed (mph) on the road segment i.

Moreover, we set an upper limit of 600 seconds to the time

cost for a road segment, which refers to street closure.

As mentioned before, the CEbTS dataset has missing data

marked as ‘−1’. We fill the missing data with the most recent

estimated traffic speed. This is because most missing data

happen during off-peak hours when the traffic speed usually

remains stable. Besides, recall that there are 40,366 time

slots in total. We only use the data in the first select 10,000

(24.77%) time slots as training samples, and use the data in

the rest time slots as testing samples.

C. PERFORMANCE OF TE-LSTM

1) NETWORK SETUP

We first evaluate the performance of TE-LSTM in traffic

reports aggregation. We implement it in a multi-task archi-

tecture, with the prediction for time cost on each road seg-

ment being a task. The hard parameter sharing structure is

adopted [37]. The lookback window size is set to 24, which

is to analyze 4 hours’ history data for making prediction

in the next time slot of ten minutes. So, the size of each

training sample has a dimension of 24× 419, and the label is

1 × 419. We set the output of the parameter sharing layer

to 128 nodes. Each task-specific layer maps the previous

output to the particular road time cost with size 128 → 1.

Normalization is also performed for the added at the input of

TABLE 2. RMSE of TE-LSTM, RNN, ARIMA, logistic regression, and linear
regression.

FIGURE 9. Average training loss of TE-LSTM, RNN, and logistic regression.
It shows the training speed of our task-specific LSTM, and comparing
models, i.e., RNN and Logistic Regression. The horizontal axis is the
training epochs, and the vertical one is normalized MSE error with the
unit of 10(−3).

the network.We chooseMean Square Error (MSE) as the loss

function.

2) SIMULATION RESULTS

Table 2 presents the Root of Mean Square Error (RMSE)

of TE-LSTM and other popular time series data prediction

methods, including RNN, ARIMA, logistic regression, and

linear regression. Since our TE-LSTM network is imple-

mented as a multi-task structure, we show the testing results

for some particular road segments, i.e., segments 1, 25, 50,

100, as well as the overall results for all the road segments.We

can see that our TE-LSTM network outperforms all the other

methods both in individual prediction for each road segment

and in overall prediction.

Note that LSTM is usually difficult to be well trained when

the dimension of the training samples gets huge. However,

as the multi-task structure is employed, the parameter shar-

ing layer can be pre-trained and only the task-specific layer

parameters need to be updated, whose size is relatively small.

We show the training speed on task-specific layers with the

pre-trained parameter sharing layer in Fig. 9. We can observe

that TE-LSTM can converge fast.

D. ATTACK RESILIENCE

Next, we test the performance of TrafficChain in terms of

resilience to Byzantine and Sybil attacks.

1) RESILIENCE TO BYZANTINE ATTACKS

We launch Byzantine attacks in the system by adding Gaus-

sian noises to the traffic reports. Particularly, we select three

of the busiest road segments for simulations, i.e., 889, 922,

and 1295, respectively. We set the number of the reports

equal to the number of buses on a road segment. A certain
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FIGURE 10. Resilience to Byzantine attacks on road segment #889. The
horizontal axis represents time slots index in a day. The vertical axis
represents the aggregated time cost. The dashed line is the ground truth
of time cost by CEbTS. The vertical dashed lines separate data into 40%,
20%, 20%, 20%. σ

(H)
= 0.2, σ

(M)
= 50. In these four parts of data, 0%,

30%, 50%, and 80% of the reports are attacked, respectively.

ratio of reports are added with Gaussian noises |N (0, σ (M ))|.

To simulate a practical scenario, we also add Gaussian noises

N (0, σ (H )) to honest reports too. For each of the three road

segments, we use the data on a particular day to test our

MT-LSTM aggregation method. We compare our proposed

MT-LSTM aggregation with two state-of-the-art schemes,

i.e., l-nearest [29] and marginal median (MarMed) [30], as

well as with using TE-LSTM only without the proposed

Mean-Around-Krum scheme.

In particular, for road segment #889, we divide the time

slots in a day into four parts as shown in Fig. 10. In the

first 40% of time slots, no attack is launched, which means

all the reports are submitted honestly. In the first 40% to

60% time slots, we add malicious Gaussian noises to 30%

of the reports. In the first 60% to 80% time slots, we add

malicious Gaussian noises to 50% of the reports. In the rest

time slots, 80% of the reports are attacked. The results are

shown in Fig. 10. In the first 40% time lots, all four schemes

can obtain aggregated time cost fairly close to the ground

truth. Among them, TE-LSTM returns the worst performance

caused by prediction errors, which indicates the effective-

ness of Mean-Around-Krum. When it comes to the sec-

ond part, since 30% of the reports are attacked, the regular

l-nearest method has the worst performance among all the

schemes because it selects l-nearest reports to the mean of all

reports to aggregate, which gets higher due to the attacks. Our

MT-LSTM aggregation slightly outperforms MarMed. Then,

when 50% of the reports are attacked, both MarMed and reg-

ular l-nearest methods include a number of attacked reports

for aggregation and hence achieve degraded results, while our

MT-LSTM aggregation scheme still obtains aggregated time

cost close to the ground truth. In the last data part where 80%

reports are attacked, our MT-LSTM aggregation inevitably

includes some attacked reports for aggregation, but its perfor-

mance is still better than the other two aggregation methods.

The simulation results on the other two road segments are

shown in Fig. 11 and Fig. 12, where σ (M ) is set to 100 and 120,

respectively. We can observe that the proposed MT-LSTM

FIGURE 11. Resilience to Byzantine attacks on road segment #922. Setup
is the same as in Fig. 10, except for σ

(M)
= 100.

FIGURE 12. Resilience to Byzantine attacks on road segment #1295.
σ

(M)
= 120. Different from the setup in Fig. 10 and Fig. 11, in four parts of

data separated by dashed lines, 0%, 20%, 40%, and 60% of the reports
are attacked, respectively.

based aggregation can always achieve the best results close

to the ground truth.

2) RESILIENCE TO SYBIL ATTACKS

Recall that Sybil attackers create many fake identities to

submit malicious traffic reports. Our QE-LSTM detects Sybil

attacks by comparing the number of collected traffic reports

with the predicted one. Similar to TE-LSTM, we add a

task-specific layer for predicting the number of reports for

each road segment. The RMSE of the QE-LSTM is used to

estimate whether Sybil attacks exist. In particular, let e(q)

be the RMSE of QE-LSTM. If |x ′ − x̂ ′| ≤ e(q), where

x ′ and x̂ ′ are the total number of collected reports and the

quantity prediction from QE-LSTM, respectively, there is no

Sybil attack, and Mean-Around-Krum is employed to finally

aggregate the time cost. Otherwise, it is determined that there

are Sybil attacks. In this case, only the outputs of QE-LSTM

and TE-LSTM are used for generating the final result and

updating both LSTMs.

We first show the performance of QE-LSTM and

MT-LSTM on the prediction of the number of traffic reports,

and then evaluate their resilience to both Byzantine and Sybil

attacks. Table 3 shows the prediction results of our QE-LSTM

and MT-LSTM, compared with other prediction methods,

including RNN, logistic regression, and linear regression.

Particularly, bus counts information in CEbTS is used as

the ground truth of the number of reports. We can see that

MT-LSTM achieves better results than QE-LSTM since it
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TABLE 3. RMSE results of MT-LSTM and QE-LSTM on predicting the
quantity of passing vehicles compared with RNN, logistic and linear
regression. The RMSE of three particular roads with segment IDs #889,
#922, #1295, and the overall average RMSE on all roads are given. Bus
counts information is used as the ground truth.

FIGURE 13. The system performance under both Byzantine and Sybil
attacks. The vertical axis means the average error of all segments. From
the first vertical dash line (20th time slot), the attacks are added, where
each time slot is added by one more arbitrary report than the previous
time slot. From the second dash line, the LSTM agent notices the attack
and the information from reports are eliminated.

can learn more information, and that both MT-LSTM and

QE-LSTM outperform the other state-of-the-art methods.

Fig. 13 shows the system performance under both Byzan-

tine and Sybil attacks. The testing data includes a whole day

period. In the first 20 time slots, there is no attack. After that,

in each time slot, one more malicious report is added which

reports the time cost of 600s. Four aggregation methods are

tested, including regular l-nearest, MarMed, QE-LSTM, plus

TE-LSTM,MT-LSTM. As the time index increases, there are

more and more malicious reports, the regular l-nearest aggre-

gation method is severely affected. MarMed obtains competi-

tive performance when only a limited amount of Sybil attacks

are launched. However, as there are over 20malicious reports,

i.e., when malicious reports are more than honest reports,

MarMed gets very poor results. In this case, QE-LSTM and

MT-LSTMwill detect Sybil attacks due to |x ′−x̂ ′| > e(q), and

solely use the prediction results of TE-LSTM as the time cost.

Although the accuracy of time cost decreases under Sybil

attacks, both QE-LSTM + TE-LSTM and MT-LSTM can

obtain significantly better results than the other schemes.

E. TrafficChain UPDATE EFFICIENCY

Since, in practice, there can be a huge number of vehicles

in a city participating in the system, the computing load in

the system can be heavy. To address this problem, we have

developed a two-layer blockchain architecture to enhance

system efficiency. In this section, we test the time consump-

tion of reports collection and model update by comparing

TrafficChain with a normal single blockchain. In particular,

FIGURE 14. Time consumption for building a new global block. Green and
blue bars are the time needed for reports collection and LSTM based
aggregation processes in TrafficChain, respectively. The light blue bar is
the updating process for a regular single blockchain.

the single blockchain collects reports from all vehicles in

the system, and aggregate them with the regular l-nearest

method. In TrafficChain, local miners first aggregate the

traffic reports for their corresponding road segments and then

submit reports to global miners for the model update. Since

traffic reports aggregation is conducted by local miners in

a distributed fashion, the reports collection process is much

faster. Since the number of local chains is much smaller than

the number of all the vehicles in the system, the model update

process is much faster.

1) BLOCK UPDATE EFFICIENCY

Fig. 14 shows the results of time consumption of building a

global block on TrafficChain and on a regular blockchain.

The simulation is based on a Mobile Adhoc Network

MANET in NetSim emulator [39] supported by a PC with

16GB of RAM and Intel i7 at 2.8Ghz. From the results,

we can see that when there are fewer than 100 vehicles in

the system, TrafficChain spends more time than a regular

blockchain to collect reports and build a new global block.

However, when there are more than 100 vehicles, the time

needed by TrafficChain to build a new block remains rel-

atively stable since the number of local chains remains the

same, while the time needed by a regular blockchain to build

a new block increases significantly.

2) REPORT AGGREGATION EFFICIENCY

Since the proposed deep neural network can be pre-trained

offline, the time cost for running our proposed schememainly

comes from two parts. One part is due to the online updating

of the trained deep neural network, which is to calculate the

gradients in the SGD algorithm as in Eq. (11). The other is

due to the Mean-Around-Krum algorithm. Comparing with

the second part, the time cost of online updating is negligi-

ble. The time complexity of Mean-Around-Krum depends on

sorting the reports. As we use quicksort as the sorting algo-

rithm, the time complexity of Mean-Around-Krum is lower

and upper bounded by O(n) and O(nlog(n)), respectively,

when sorting n reports. On a PC with 16G RAM and Intel
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i7 CPU, our aggregation method only takes 6s to aggregate

the reports for 2800 road segments in each time slot.

VI. CONCLUSION

In this paper, we have developed TrafficChain, a secure and

privacy-preserving decentralized traffic information collec-

tion system. In particular, we have designed a two-layer

blockchain architecture for efficient communication and

block updating in TrafficChain. Besides, a privacy-preserving

scheme has been devised to protect users’ identities and driv-

ing routes. Moreover, we have considered two critical kinds

of attacks, i.e., Byzantine and Sybil attacks, in TrafficChain,

and developed novel deep learning based schemes to defend

against them. Simulation results show that TrafficChain is

both resilient to those attacks and efficient in generating new

blocks.

APPENDIX

Lemma 1: Under the same conditions as in Theorem 1,

in the worst case that all Byzantine reports are included in

the aggreggation, we have t(k∗) ∈ [tmin, tmax].

Proof: Note that tmin = t
(h)
1 and tmax = t

(h)
h . We first

consider the worst case that the Byzantine attackers aim to

maliciously make t(k∗) very small, where t
(b)
f < tmin. Thus,

the report set of ‘‘p → I ’’ in Eq. (10) can be written as t =

{t(1), t(2), . . . , t(m)} = {t
(b)
1 , . . . , t

(b)
f , t

(h)
1 , . . . , t

(h)
(m−f )}.

Define KR(I ) =
∑

p→I |t(p)− t(I )| and 1ij = |t(i)− t(j)|.

Then, we have

KR(s) = 11s + · · · +1(s−1)s

+1(s+1)s + · · · +1ms,

KR(s+ 1) = 11(s+1) + · · · +1s(s+1)

+1(s+2)(s+1) + · · · +1m(s+1).

Note that1i(s+1) = 1is+1s(s+1) for 1 ≤ i < s and1i(s+1) =

1is −1s(s+1) for s+ 1 < i ≤ m. Thus, we can obtain

KR(s+ 1) = 11s +12s + · · · +1(s−1)s

+ (s− 1)1s(s+1) +1s(s+1) +1(s+2)s

+ · · · +1ms − (m− s− 1)1s(s+1)

= KR(s)+ (2s− m)1s(s+1).

Due to m ≥ 2f , we have KR(s + 1) < KR(s) for 1 ≤

s ≤ f , which means KR(f + 1) < KR(f ). Consequently,

we get t(k∗) ≥ tmin.

Similarly, in the worst case that Byzantine attackers aim to

maliciously make t(k∗) very large, where t
(b)
1 > tmax , we can

prove that t(k∗) ≤ tmax .

Therefore, Lemma 1 follows. �
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