! L omme g ety cues

v e e eedn wealdrens g b - W E

PR

A A o Ve

AERONAUTICAL

AND ASTRONAUTICAL
ENGINEERING DEPARTMENT

(NASA-CE-173294) TRAILING ELGE FLOW NB84-17140

CONDITIONS AS A FACTOK IN AIRFOIL DESIGN

Final Report (Illinois Univ.) 186 p

HC AQ9/MF AU1 CSCL O1aA Unclas
G3/02 183449

ENGINEERING EXPERIMENT STATION, COLLEGE NF ENGIMEERING, UNIVERSITY OF ILLINOIS, URBANA

PR Suia— g o S S i



+)

-
Aeronautical and Astronautical Engineering Department
University of Illinois Urbana, Illinois
Technical Report AAE 84-1
UILU ENG 84 0501
-,?

NASA Grant NAG-1-76
Allen I. Ormsbee, Principal Investigator

FINAL REPORT

PR B SUUI0 A SN

TRAILING EDGE FLOW CONDITIONS

AS A FACTOR IN AIRFOIL DESIGN

by

A.I. Ormsbee and Mark D. Maughmer

University of Illinois

| . Urbana, Illinois
[ January 1984
H

(+)

$1i

-
IS IS

Ry

- b

o

-

1
3
;
:
i
3
;
1
:l}




b-u-_q

e

[ o8

Daians |

)

.““. M . -

WD) uy puy P S gy

ABSTRACT

Some new developments relevant to the design of single-element
airfoils using potential flow methods are presented. In particular,
the role played by the non~dimensional trailing edge velocity in
design is considered and the relationship between the specified
value and the resulting airfoil geometry is explored. In addition,
the ramifications of the unbounded trailing edge pressure gradients
generally present in the potential flow solution of the flow over an
airfoil are examined, and the conditions necessary to obtain a class
of airfoils having finite trailing edge pressure gradierts developed.
The incorporation of these conditions into the inverse method of
Eppler is presented and the modified scheme employed to generate a :
number of airfoils for consideration. The detailed viscous analysis
of airfoils having finite trailing edge pressure gradients demonstrates
a reduction in the strong inviscid-viscid interactions generally

present near the trailing edge of an airfoil.
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CHAPTER 1

INTRODUCTION

Low-Speed, Single-Element Airfoil Design

Much of the current research effort applied to low-speed airfoils is
directed toward the analysis and design of multi-element sections, which
incorporate high-lift devices such as multiple-slotted flaps and movable
ieading edge slats. The use of such airfoils permits a broad range of
performance through the integration of an airfoil that is suitable for high-
speed cruise with a configuration capable of high-lift for take-off and
landing. In spite of the strong interest in the complicated flow phenomena
connected with the multi-element design, considerable motivation remains for
the study of single—element wing sections. For example, a number of practical
applications exist, including low-speed cecreational aircraft, sailplanes,
helicopter and windmill rotors, and aircraft in the expanding arena of
remotely piloted vehicles (RPV's), for which either the cost and mechanical
complexity of a high-l1ift system cannot be justified, or such a section is
unnecessary in that s broad performance envelope is not a design
requirement. Furthermore, much of the increased understanding resulting from
the study of single-element airfoils is directly applicable to the individual
components of the multi-element designs.

As detailed by various authors, most notably Wortmann [1]-[4], Eppler
[5]1-(7], and Miley (8], the modern methodology of low-speed airfoil design
involves relating the aerodynamic performance features sought to particular

characteristics of the boundary layer and, in turn, specifying the velocity
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(pressure) distribution around the airfoil necessary to achieve those boundary
layer characteristics which give rise to the desired performance. Once the
required velocity distribution has been estsblished, the airfoil is obtained
by means of any one of a number of inverse (design) procedures such as the
exact potential flow methods, based on complex functions, developed by
Lighthill [9], Eppler [5] and Arlinger [lU}. Whereas in the direct (analysis)
problem every airfoil has a corresponding velocity distribution, the inverse
problem is complicated by the fact that every velocity distribution does not
necessarily have a corresponding airfoil. Thus, in the design process it is
necessary to allow some flexibility in the prescribed velocity distirbution
such that a physically reasonable airfoil can be obtained. Also, in some
inverse methods, including those of Lighthill [9] and Eppler [5], the velocity
distribution is specified through parameters which are rather indirect.
Consequently, these methods usually require some amount of iteration in order
to determine what parameter values actually achieve the desired velocity
distribution.

One particular low—speed airfoil research subject which has received -
considerable attention is concerned with the theoretically interesting
question of how much 1lift can be generated by a single-element airfoil without
using active means of boundary layer control. In order to make the problem

more tractable, most efforts in the area have considered only flows which are

fully attached. Typically, airfoils in application achieve maximum lift when ..
the 1ift increase due to an increase in angle of attack is just equalled by -
the lift losses due to separation; and consequently, the production of high b

1{ft is usually accompanied by relatively high drag. Thus, by limiting the

maximum lifc airfoil problem to fully attached flows, not only are the
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compl ications of analyzing separated flows eliminated, but the desirable
result that the airfoils generated attain high lift with comparatively low
drag is also achieved.

As discussed by Smith [il] and Liebeck [12], the velocity distribution
formulated for the purposes of maximizing the lift generated by a single-
element airfoil having fully attached flow is s: the form shown in Figure l.
On the lower surface, the desired velocity distribution is simply that which
is as close to stagnation over as much of the lower surface as is possible.

On the upper surface, it is dictated that the flow accelerate rapidly from the
leading edge stagnation point to a level of constant velocity (rooftop
velocity) that is to be maintained as far aft as possible and still permit
pressure recovery over the rear of the airfoil without introducing flow
separations due to an excessive adverse pressure gradient. As first adopted
for airfoils by Liebeck and Ormsbee [13], rhe theoretical recovery that allows
the longest rooftop by achieving the recovery of a given pressure in the
shortest distances possible is the zero skin friction approximation of
Stratford [14]). The notion of zero skin friction implies that separation is
everywhere imminent along the Stratford distribution. The ideal maximum lift
velocity distribution was further defined by Ormshee and Chen [15] in that the
optimum relationship between the maximum velocity on the upper surface, the
rooftaop velocity, and the trailing edge velocity was determined. This
relationship, however, does not specify the magnitude of either the rooftop
velocity or the trailing edge velocity, but only the optimum ratio between the
two. As a consequence, disregarding the small adjustment in rooftop length
necessary because the local Reynolds number in that region changes, increasing

the value of the trailing edge to free-stream velocity ratio, VTE/U’ allows
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the level of the entire upper surface velocity distribution to increase while
the margin agains: separation offered by the Stratford distribution is
unchanged. Thus, increasing VTE/U is an extremely effective means of
increasing the amount of lift generated by a particular design. At this
point, however, although there is ne doubt that for practical airfoils the
value of VTE/U must have an upper bounrd, it is not evident what that bound is.
Because of its strong influence on the amount of lift generated, and bhecause
its specification can be connected to minimizing drag through the attainment
of fully attached flow, it would be of some benefit to low-speed airfoil
design to better understand the influences that the specification of VTE/U has
on the aerodynamic characteristics of an airfoil, as well as how the

specification physically impacts the geometry of the profile which results.

Consideration of Flow Conditions in the Vicinity of the Trailing Edge

In surveying the available literature to better understand what limits
exist on the value of Vpp/U, it is found that conventional airfoils, such as
those catalogued by Abbott and von Doenhoff [16]), exhibit a trailing edge
velocity in the neighborhood of eight to nine-tenths of the free-stream
value. Liebeck [12], iniicates that the bounding value for Vrg/U in potential
flow is unity. This conclusion is advanced through the argument that for a
cusped trailing edge, symmetrical airfoil at zero angle of attack, the
trailing edge velocity approaches that of the free-stream as the thickness of
the airfoil goes to zero, i.e., a flat plate, Thus, it is supposed that any
thickness or lift generation requires that the trailing edge velocity be less
than free-stream. While no disagreement is taken with these notions, which

can be demonstrated using the familiar Joukowsky transformation, it remains to
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develop them in a more general manner and to indicate how the physical
characteristics of an aicrfoil are arfected by the specified value of VTB/U’

Another characteristic of the flow in the vicinity of the trailing edge
which warrents further consideration, and will be developed in detail later,
is the fact that, in general, the complex pressure gradient, px-ipy, at the
trailing edge is infinite. That Pyr is infinite is readily confirmed by
noting the vertical slope that occurs at the trailing edge in the pressure
distributions of Joukowsky airfoils, for example. Although not as readily
observahble, the value of Pyt exhibits similar behavior.

In addition to the presence of infinite trailing edge pressure gradients,
there are numerous examples in the literature, including References [17]-[19],
of airfoils in which the notential flow velocity distribution is characterized
by a large velocity differential between the upper and lower surfaces over the
aft portions of the airfoil and in the region of the trailing edge. As is
demonstrated by Figure 2, this large velocity differential is introduced as it
increases the area enclosed by the wvelocity distribution and the resulting
increase in aft pressure loading on the airfoil manifests itself through
increased lift production. While it might appear, in some cases, that the
velocity distribution is closed by a vertical slope connecting the upper and
lower surface velocities, because potential flow theory requires that each
point in the flow field have a unique velocity then, as discussed by Nonweiler
[20]), there can be no difference between the upper and lower surface flow
velocities at the point where they meet and flow into the wake. Thus,
although the recovery distributions of a number of airfoils appearing in the
literature, fucluding that of Pigure 2, have been formulated using a value of

VTE/U in excess of unity, in actuality, the value used is not that of the
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trailing edge hut, rather, corresponds to a portion on the upper surface
slightly upstream of the trailing edge. From this point, the fluid {s
decelerated very rapidly to the actual velocity at the trailing edge. This
value 1s in common with that resulting from accelerating the flow on the lower
surface in the immediate vicinity of the trailing edge thronugh a steep,
favorable pressure gradient. While it is quite clear that the viscous effects
prevent the full realization of the lift gains predicted by potential flow
methods, exper :«~*:. results have indicated, in some applications, that the
proper implementation of large velocity differentials between the upper and
lower surfaces to very near the trailing edge can be of some benefit.

An interesting example of an airfoil designed to exploit the benefits of
a large amount of aft loading is that of Kennedy and Marsden [18]. The
potential flow analysis of this airfoil, shown in Figure 2, yields a lift
coefficient of 3.8!, resulting from the design velocity distribution bhased on
a upper surface trailing edge velocity of 1.2U. While experimentally, the
l1ift coefficient at the design conditions was found to be an impressive .64,
it was obtained at the expense of relatively high drag resulting in a maximum
lift-to-drag ratio notably less than those obtained for other high lift
designs. It was also found experimentally that viscous effects reduced the
upper surface velocity just upstream of the trailing edge from its potential
flow design value to 1.07U. To further demonstrate the viscous influences,
Figure 3 compares an off-design potential flow velocity distribution of the
Kennedy and Marsden airfoil with one obtained experimentally, Reference
{18]. 1In addition, the figure includes results obtained using the GRUMFOIL
code developed by Mead and Melnik [21). 1In the classical method of correcting

inviscid flow results for the effects of viscosity, the displacement thickness

b |

¥

o ...



-~ e

- ——

—
.

—

nf the boundary layer on the airfoil is calculated and added to the original
profile. This results in an equivalent body which can be analyzed to
approximately account for the influence of the boundary layer. This
procedure, however, ignores additional viscid-inviscid interactions, each of
which has an influence on the inviscid result equal to that of the
displacement thickness. The GRUMFOIL code remedies the d:ficiencies of
previous methods for the analyses of the flow over an airfoil by incorporating
a complete interacting boundary layer formulation which, in consideration of
application to low-speed flows, includes the effects of the boundary layer
displacement thickness on the airfoil and in the wake, wake curvature effects
arising from the turning of low momentum fluid ir the wake along curved
streamlines, and the effects of strong viscous interactions in the vicinity of
the trailing edge. As Figure 3 demonstrates, the potential flow velocity
distribution over the airfoil is modified considerably by viscous effects. In
particular, the steep trailing edge velocity gradient is rounded off to the
extent that the actual trailing edge velocity of .94U is easily identified.

It is also evident from Figure 3 that, because the viscous influences are
amplified in high lift situations, the conscientious design of high lift
airfoils for actual applications must involve thie {ntegration of viscous flow
analysis with the potential flow design method.

In the potential flow inverse scheme of Eppler [5], an attempt is made to
achieve the lift-increasing benefits of a large upper and lower surface
velocity differential near the trailing edge and also, in a somewhat
qualitative manner, account for the viscous effects. While the potential flow
formulation requires that the upper and lower surfaces have equal velocities

at the trailing edge, the manner in which geometrical closure of the airfoil
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is achieved allows for large velocity differences between the upper and lower
surfaces to a point very near the treiling edge. Consequently, this trailing
edge treatment allows for velocity distributions which, in the sicinity of the
trailing edge, are very similar to those which occur when viscous influences
are considerved. While this model is :learly an improvement on the usage of
the nearly infinite trailing edge gradier . the question arises as to what is
the permissible extent of recovery before the steepened portion of the
distribution causes flow separation problems. For example, if a Stratford
distribution is specified for recovery on the upper surface, then, even in the
best of situations, separation would occur where the velocity gradient
steepens due to the closure contribution. As is demonstr-~ed by hLoth the
experimental and viscous analysis results shown in Figure 3, the lcss of
loading near the trailing edge that occurs when viscous effects are considered
generally causes the overall recovery gradients to be somewhat steeper than
indicated by inviscid results. Thus, it is a possibility that the steeper
gradients will cause severe separation probleme. Even in the case of more
practical airfoils, not pushing recovery limits as does a Stratford
distribution, only the gentlest distributions will have sufficient momentum in
the boundary layer tc overcome the very steep adverse pressure gradient
introduced in the vicinity of the trailing edge by the presence of large
zmounts of aft loading. To reduce these problems, Eppler [5) discusses the
fact that, while it is desivable to reduce the upper surface adverse pressure
gradient in the ciosure region as much as possible by increasing the value of
the trailing edge velocity ratio, such rel’‘ef s limiced. As the value of
VTEIU is increased, a point is reached four whic% any a.ditional increase

causes the upper and lower surfaces of the airfcil Lo intersect one another
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ahead of the trailing edge. In addition, Nonweiler [20] notes that even if it
were possible to completely eliminate the upper surface adverse pressure
gradient due to closure by accelerating the lower surface flow through a
strong favorable gradient and discharging the flows from both surfaces into
the wake at a velocity corresponding to a smooth continuation of the upper
surface recovery distribution that, as this dumping velocity would be greater
than th.t of the free stream, some deceleration nf the flow in the wake would
be required. This situation is also likely to have an upstream influence
mznifested as separation on the upper surface ahead o the trailing edge.

A demonstration of the problems that might occur usirg the trailing edge
treatment of Eppler [5] is provided by the high-lift, single-design-point
airfoils of Thompson [19]. These airfoils make use of the Stratfo-d recovery
distribution on the upper surface. As shown in Figure 4, the closure
contribution at the trailing ed.e of these airfoils extends over such a narrow
portion of chord length that, like the Kennedy and Marsden airfoil of Figure
2, it appears as though the large velocity difference between the upper and
lower surfaces is adjusted at the trailing edge through an infinite velocity
gradient. As illustrated in the insets of Figure 4, however, it is found that
the value of VTE/U used to generate the upper surface recovery distribution is
actually an upstream po‘nt at which is initiated a very rapid deceleration of
the flow around the small protuberance located at the rear of the airfoil.
Thus, the actual VTE/U is considerably less than the value in excess of unity
which was employed in formulating the Stratford distribution. Consequently,
rather than the desired velocity distribution, which includes recovery through
a Stratford distribution extending to the wake, the airfoil generated has

recovery through a Stratford distribution followed by a violent recompression
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at a point near the trailing edge. Not only might this result lead to flow
separation problems and a thicker wake than is necessary, but more
importantly, the discrepancies that exist between the intended velocity
distribution and that obtained introduces a degree of uncertainty into the
design procedure which is undesirable. While a part of these problems can be
attributed to erroneous interpretations ‘n the human-computer iteration
process which is necessary with the inverse method used for these designs, a
more significant element was the fact that the values of VTE/U used in
formulating the desired velocity distributions were much too high. While this
possibility was clearly acknowledged, it was also emphasized by Thompson [19]
that the literature contained very little information to aid in the selection

of this important parameter.

Objectives of the Present Investigation

As part of the desired velocity distribution, the value of the trailing
edge velocity ratio must be specified in most airfoil design procedures;
however, there is little information in the existing literature to guide in
its choice. Consequently, as has been discussed by several authors, including
McMasters and Headerson [22], VTE/U is perhaps one of the most difficult of
the required parameters to determine. While in many design exercises, such as
those directed at low drag, the situation is less critical in that the desired
aerodynamic characteristics are less sensitive to an optimum selection of
VTE/U, the difficulty is heightened in the maximum lift problem because of the
strong dependency of the lift generated to the value specified. Thus, in
order to provide some guidance for selecting the value of "TE/U in the design

of low-speed, high-lift airfoils, the first part of the present investigation
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considers the relationship between the maximum values of VTE/U obtainable and
profile characteristics such as thickness and camber.

Considering the modification of the potential flow maximum lift velocity
distributions by viscous effects, there is clearly a trade—off between the
lift gained by maintaining a large velocity differential between the upper and
lower surfaces in the vicinity of the trailing edge and the lift lost by
separation. While there are examples of potential flow designed airfoils that
achieve some portion of their design goals, Kennedy and Marsden [18] and
Sivier, et. al. [23], there are others, such as the designs of Thompson {19]
experimentally investigated by Moore [24], which exhibit extremely poor
performance attributed primarily tc¢ widespread flow separation. In the
context of designing airfolls having predictable characteristics, the
inconsistency of results for airfoils which make use of large velocity
differentials near the trailing edge leaves much to be desired. Thus, until
adaitional guidance is available, the design process is limited in not knowing
precisely to what extent the potential flow results in the vic nity of the
trailing edge will be modified by viscous interactions. In order to eliminate
some of the uncertainty in using potential flow airfoil desig; methods, the
second part of this regsearch is directed toward the development of a class of
airfoils in which the viscous interactions in the trailing edge region are
minimized by the introduction of a condition to insure that the pressure
gradients at the trailing edge are bounded. Not only does the enforcement of
this condition permit the fluid on the airfoil to flow smoothly into the wake;
but in addition, it typically excludes the possibility of the closure
contribution causing steep upper surface adverse pressure gradients in the

vicinity of the trailing edge. The practical implementation of this condition

(+)
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is achieved through modification of the airfoil design code of Eppler and
Somers [25]. While unquestionably viscous effects alter the flow in the
trailing edge region, it is hoped that the application of the condition for

finite trailing edge pressure gradients modify the viscous influences to the

extent that the results obtained using potential flow design methods are more

reliable.

The final phase of the research effort to be presented is directed toward

exploring the influences on the geometry and aerodynamic characteristics
caused by the introduction of the finite trailing edge pressure gradients
condition into the design process. To facilitate this exploration, a number
of airfoils having finite trailing edge pressure gradients are presented and
compared to airfoils which are as similar as possible but having unbounded

trailing edge pressure gradients.
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(' CHAPTER 11

MAXIMUM TRAILING EDGE VELOCITIES

Preliminary Remarks

- As the ratio of the trailing edge to free-stream velocity, VTE/U' has a
3lobal influence on the lifting capability of a given airfoil, it is important

:0 determine the maximum value that this ratio can attain and how its

specification affects other airfoil design considerations. While, as it has

been noted, there are assertions in the literature regarding a potential flow

Sty
L] »

upper bound of VTE/U equal to unity for a flat plate at zero angle of attack,

A
< . ‘

Reference [12] for example, these are apparently based on results formulated

through the use of the Joukowsky transformation. A survey of the literature

H

has not revealed an extension of this conclusion for the more general .

——

transformation mapping a circle into an airfoil. In order to develop such a

Jemonstrati ,u, a series of truncations of the general transformation, the so-

—

called von Mises transformations, will be used to show that the addition of a
finite number o( extra terms to the series does not alter the flat plate
results. While this does not result in a general proof concerning the
ultimate value that Vop/U can attain, it does indicate that the upper bound
for the very broad class of von Mises airfoils is indeed unity. More

importantly, however, the development provides some insight into how the

ﬂr——w S

[

specification of VTE/U influences the geometry of an airfoil.

N

In the course of numerical design studies in which it was attempted to

raise Vog/U to as high of value as possible, it was found that while the

potential flow formulation of the problem places no restrictions on the upper

oot
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bound of VTE/U' the resulting airfoils are physically restricted in that as
increases are made in Vqop/U, a point is eventually reached for which further

increases cause the upper and lower surface to cross one another such that a

W v et v e 1o e

profile .aving a region of negative thickness is generated. Thus, this

situation indicates that an additional constraint must be imposed such that

the problem becomes that of finding the largest value of VTE/U for which a

physically realizable airfoil is possible.

Transformation of a Ciccle into an Airfoil

The method of conformal mapping may be employed to analyze the flow over

airfoils by transforming the known flow field about a circular cylinder into

that about an airfoil as depicted in Figure 5. In this formulation,

i¢
=y +
G. = utre

the circular cylinder with circulation T can be expressed as

2

¢ = u denotes the center of the circle, r its radius, and the function

describes the circle. The complex potential for the flow about

= U(g-p)e 10 4 U E_ o AT (L) 2-
F(g) = U(g-u)e + o © + 55 In 0 (2-1)
re
and the complex velocity in the Z-plane is
dF(Z) ~fa 2 ia 1 ir 1
= = -u + == 2-
AT ¢ e 12 2 (@) 2-2)
L &-u
The complex velocity in the airfoil plane is then given by
= _di d_z ' -
w(z) 3 / ac " w(g)/z (2-3)
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where z(Z) is the mapping function which takes the circle into the airfoil.
This function will, in general, possess a certain number of critical points
which are defined by the solution of the equation (dz/dg) = 0. A profile
having a sharp trailing edge requires that one of these critical points be on
the circle while all of the others are contained in the interior of the
circle. Thus, the critical point on the circle, Sp» Maps to the trailing edge
of the airfoil while the regions external to the circle and the airfoil are
everywhere conformal.

The amount of circulation present in equation (2-1) may be determined by
introducing the Kutta condition, which requires that the flow velocity at the
trailing edge be finite and continuous. From equation (2-3), the compiex

velocity at the trailing edge is given

W,

T ™ w(z.r) = "(CT)/z‘i' (2-4)

Because a sharp trailing edge requires that zi be zero, the requirement that
wr be finite necessitates that w(cT) also be zero. The circulation which

-ig

fixes this stagnation point at CT = re + u is found from equation (2-2) to

be
I' = 4%RU sin (a + B) (2-5)

As presented in Karamcheti [26), a non-zero trailing edge closure angle
requires a stagnation point at the trailing edge of the airfoil. Thus, in
{nvestigating upper bounds of VTE/U' it is necessary to consider airfoils

whose trailing edges close in a cusp and thereby have non-zero trailing edge
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velocities. In order to obtain an expression for the trailing edge velocity

of this class of airfoils, L'Hopital's rule is applied to the indeterminate

form obtained from equation (2-4) such that

. . wigy el
Vg = el = s G- T
T

and, using equations (2-2) and (2-5) to obtain

, 2y e2i8

T ——— cos (a + 8)

(2-6)

(2-7)

the trailing edge to free-stream velocity ratio is found to be given by

Vrg . 2 |cos(a +8) |

U [zT" r

For the Joukowsky transformation,
z-c+—
where, as can te verified by consideration of Figure 5,

- r
b mcos 8

the trailing edge velocity ratio is then given by

L

EE = | §§8+8£) | |cos (a + B) |

L L P e R v ol SnE s @, =

X

-~

(2-8)

(2-9)

(2-10)

(2-11)

§
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As shown in Reference [26], as well as in any one of a number of classical
derodynamic texts, the thickness of the Joukowsky airfoil is increased as the
magnitude of ¢ is increased, while increases in B increase the amount of
camber. Thus, from equation (2-11), it is clear that for the case of the
Joukowsky transformation, the presence of any thickness or camber reduces
VTE/U from the value of unity which exists for the flat plate at zero angle of

attack.

The Von Mises Transformation

The general transformation which maps a circle into an airfoil is

expressed as

- ¢
z=2(g) =z + ) —% (2-12)
n=1 g

where, as can be seen in Figure 5, z = x + 1y, £ = £ + in , and, in general,
the c,'s are complex quantities. Note that the mapping function, z(Z),
satisfies the requirement of not altering the flow field at infinity.

Now, consider a truncated form of the general transformation which, after

differentiation, is written as

dz g " <q
€z . - (2-13)
dc a=1 ¢

This transformation must not possess any singular points outside the
generating circle, although one singular point, denoted by Ly must be on the
circle. Since the remaining singular points, given by cz, na..... CN’ are

zeros of equation (2-13), in factored form, that equation becomes
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g g G g
dz T 2 3 N
2.1 -=)(1-==2)(1-=)...[1 -— 2-14
Ze-H0-Ba-P0-0 (2-14)
where the zero locations are indicated by
Cn » En + inn (2-15)

At this point, it is seen that the mapping function may be generated by
postulating the locations of the N zeros which lie, along with the origin,
within a circle of radius r in the Z-plane. Without loss of generality, the
zero on the circle, Cp» which transforms to the trailing edge of the airfoil,
may be fixed at the location (1,0). By choosing different sets of zeros and
different penerating circles, a great deal of flexibility exists in the shapes
of airfoils which can be obtained. Profiies which are generated by these
means are known as von Mises airfoils and the mappings obtained by expanding
equation (2-14) and integrating the result are known as von Mises
transformations.

The coefficients of “he transformation, the c,'s, can be related to the
zero locations, the cn's, by expanding equation (2-14) and equating that
result with equation (2-13). 1In this manne?, it is found that the coefficient

of the C_l term must vanish. Hence, the relation

N
+ § g =0 (2-16)

g
T n=2 n

indicates that the origin of the {-plane must be the centroid of the zerns

located at c,r. §9s c3. .o e cN. The coefficients for von Mises transformations

vt B s wl m e - - LI Y

L
W g o

« * ol
—————

| SR

.

- |

T « -3 [ "
Py —— -

| TR

o
4

K

oo A
h i

RN

.-

Y TN

" =



o

-

L e ————

&l

—

ORIGINAL PAGE [J
OF POOR QUALITY 19

of up to six terms, N < 6, are related to the zero locations as follows:
cO'CT+C2+C3+CA+cS+;6-O (2-17)
2 \
ep = {ag” = pleg g+ 65+ 5g) - 6yl5, * 5 )
- g leg + g) - gggl (2-18)

ey =y legley(ey + 5, + 6 + ) + gyl + o5 + ¢g)

45, (8 + 8g) +age ] + y[eg(e, + g + T)

+ g, (g + 8o * ashe] * 4qle,(gs + gg) + Tetg] + guastgl  (2-19)
ey = = % {epleyEg0, + 6585 * By8 *+ §48 + 8,0 + Cg)

+ 83(8,8g + Gu8 * Cg8e) * G4l ) *+ Gy[E5(E, 8

* 0,0 * Gghg) * 640g8c] * 858,886} (2-20)
ey = 3 1epley(Eyt, 8y + 658,8 + 84855, + G, G5k

AR RAFN AR ENNANAN (2-21)
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For a two term transformation, N=2, equation (2-17) indicates that

Ty = = L and equation (2-14) reduces to the familiar Joukowsky case,

Gl
dz T
ac (1 ;5") (2-23)

From equation (2-13), c = CTZ and the Joukowsky transformation is obtained in
the form of equation (2-12) as

2
z =7+ — (2-24)

While Joukowsky airfoils are limited to a circular arc camberline and a
maximum thickness at approximately the quarter-chord position, such
restrictive limitations do not exist for von Miges airfoils. By appropriately
locating the generating zeros and the origin of the transformation circle, it
is possible to approximate a desired shape through an extremely wide range of
airfoil geomatries. While the zero locations govern the basic thickness
distribution and camberline shape, the center location of the generating
circle can be used to influence the overall amounts of thickness and camber as
in the case of Joukowsky airfoils. Displacements of the circle in the
direction of the real axis, Mps primarily influences the thickness of von
Mises airfoils while displacements in the direction of the imsginary axis, e
the camber.

A few sxamples of the profile variations possible using the von Mises
transformation are provided by the airfoils shown in Figures 6 and 7,
generated using four term transformations, and those shown in Figures 8 and 9,

obtained using six terms. The zero locations used to generate these sirfoils
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and the resulting transformation ccetficients are indicated in the figures
with the complex number pairs denoted by the Z 's and the C.'s,
respectively. The real and {maginary components of the origin of the
generating circle are given in the figures, respectively, as UR and UI.
Because the von Mises transformations provide for such a wide range or
possibilities, and airfoils of practical interest can generally be
characterized by relatively few inflections in the thickness distribution and
camberline shape, the conclusions developed using the von Mises
transformations are considered to be applicable over a broad range of
airfoils. 7z addition, the development is conducted using a relatively small
pu-ber of terms in the transformstion because, as demonstrated by the examples
presented, large variatons in profile geometries are possible without a large
number of terms. This is further justified by the fact that the contributions
made to the resulting airfoil shape by terms of increasing order rapidly

become insignificant compared to the influence of the first few terms.

Maximum Trailing Edge Velocity Ratios for Physically Realizable Airfoils

From equation (2-%), it is seen that Vop/U is inversely proportional
llr"! and r. Thus, the maximum value of Vrp/U occurs when IzT'E is minimized
and r is fixed at a minimum value for the given |‘r" which insures that the
airfoil generated is free of any regions of negative thickness. Denoting the
complex coefficients of the transformation function as Cy ™ 8, * ib,, taking
S ® (1,0), and perforaing the necessary operations on the truncated form of

equation (2-12), |zp"| is found to be




v [ !

ts
o

N-1 2 Nfl 2
(O3 atar) a) + () ameds)?]
n=1 n=1

|2 = e
Because the second term or the right of this expression {s positive, the
minimum value of [zp”|, for a given set of a_'s, occurs when the second term
17 zero. While there are non-zero values of the bn's that can achieve this,
the second term always disappears for symmetrical airfoils which are generated
when by and all of the b,'s are zero. Consequently, as developed turther in
Appendix A, ‘or determining the maximum value of VTE/U pos. »sle for an airfoil
generated by a fixed set of an's, it i{s sufficient to consider only the
sympetrical protile which can result. While there mey be non-symmetrical
sections having a value of VTE/U as large, there can be none for which the
value 1is larger. By eliminating the need to consider other than symmetrical
airfoils, the determination of the maximum atrainable values of Vig/U for
physically realizable airfoils of the von Mises family is significantly
simplified in that the thickness distributions, which must exclude negative
thicknesses, are dependent only upon vp and the a,'s. Through these
considerations, the problem of determining the conditions insuriag that a
transformation yield an sirfoil which does not cross-over itself is reduced to
that of finding the minimum value of r for which the upper surface coordinates
of the generated profile are all non-negative.

To proceed in this development, the representation of the generating

circle in the complex Z-plane, as previously noted, is given by

=2+ 4ins r.l’ + (2-26)
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Thus, the coordinates of the circle are
£ = rcos ¢ + up (2-27)
n = rsing + u; (2~28)

where, with G = (1,0), it is evident from Figure 5 that

r = ] 1 -y I = [(l.'-un)2 + ulz)llz (2-29)
Setting up to zero and defining
f = (1 - cosd) (2-30)
allows the preceding relationships to be written as
r=1-u (2-31)
E=1]1 - rf (2-32)
n = rsing (2-33)

The relationship between the real part of the transformation
coefficients, the an's, and the radius of the generating circle insuring that
the symmetrical airfoll developed is characterized by positive thickness
everywhere has been analytically determined for von Migses transformations of
up to six terms. Before this case is considered, however, it is instructive

to examine the derivacion with only three terms as the key points of the
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development are retained while the algebra is simplified considerably.
The three-term von Mises transformation having real coefficients is

written as

a a
z =g+ EL +—= (2-34)
4

For the symmetrical airfoil generated to have non-negative thickness
everywhere, it is required that
Im(z) =y >0 (2-35)
for 0 < ¢ < m, Substitution of equation (2-26) into (2-34), and making use of
the condition given by equation (2-35), yields
an 2a2£n

n - - >0 (2-30)
(Ef + nZ) (52 + n2)2

which may be rearranged to give

(62 + n?)? - a (68 + n?) - 20,6 > 0 (2-37)

Using equations (2-32) and (2-33), the quantities required in equation (2-37)
are found to be:

2 2.2

E° = rf° - 2rf + 1 (2-33)

n? = r? sins (2-39)
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(£2 + n2) = 2 ££(e-1) + 1 (2-40)

(62 + n?)2 = 4rf(e-1)[rfCe-1) + 1] + 1 (2-41)
Substitution of the above quantities into equation (2-37) gives

4rf(e-1)[rf(r-1) + 1] + 1 = a,[206(e-1) + 1]

- 2a, [1 - rf] 20 (2-42)

The terms in this expression which are independent of r and £, that is, l-a;-

2a;, may be eliminated by making use of the Kutta condition which requires,

for the general case, that

N-1
zp' =1 - ) na =0 (2-43)
n=1

For N=3, this expression indicates that

l1-a - 2a2 = 0 (2-44)

Applying this result and factoring rf from what remains, equation (2-42)

becomes

2e(r-1)%¢ + 2(e-1) - 8,(r-1) + ay > 0 (2-45)
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As the first term in this expression is non-negative, given that r is non-
negative, the most critical situation for meeting the conditica of the
inequality occurs when f = 0, i.e., when cos¢ = 1. For this case, equation
(2-45) becomes

4(r-1) - Zal(r-l) + 2a, » 0 (2-46)

2
Using this result, it 1is found that in order to prevent the airfoil obtained
through the mapping function from having regions of negative thickness, it is
necessary to require that

2 -a, - a,

i (2472

In addition, the value of IzT"I, from equation (2-25), is given by the

expression

lzp| = | 2a, + 6a, | (2-48)

Using equation (2-8), the maximum value of Vyg/U which can be obtained from a

given three-term transformation is

REN SRS S

v 2(2-al)cosa

TE _ 2 cosa -
U (20" Ttpqn 128, * 63y[(2-a; - ay)

(2-49)

For this cage, the maximum Vpp/U clearly occurs when the angle of attack, a,
is zero. To determine the transformation which affords the largest Vpg/U

overall, equations (2-18) and (2-19) are used to relate the coefficients to
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the locations of the generating zeros. Thus, for symmetrical airfoils

generated with all of the generating zeros located on the real axis such tha~

the hn's are all zero, the coefficients are given by
a = 1 - 5253 (2-50)
a, ~ + 6,k (2-51)
2 2 °273

Substitution of these relations into equations (2-49) and setting a equal to

zero yields

Yig _ 1+ 8%

(2-52)
] 1 2
(1 + 3 £585)
and using equation (2-17), it is found that
53 = = (l + 52) (2'53)
Equation (2-52) thus becomes
\ 4(g 2 + £, + 1)
TE 2 2
U T T2 2 (2-54)
(52 tE)- 2)

Maximizing Vop/U with respect to €, indicates that the overall largest value
of Ypg/U occurs when 52 = -1 and 53 = 0 or 52 = 0 and 63 = -]1. While it is
also possible to generate symmetrical airfoils with non-zero values of the

n,'s, for example, when 52 and £3 = -.5 and ny = = Ny, it is found that the

value of VTE/U {s maximum when Ny = =Ny = 0. Thus, for determining the
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bounding values of VTE/U’ it is sufficient to consider the case of having
the nn's set to zero. Thus, for the three-term von Mises transformation, the
maximum VTE/U occurs when the third term is zero and the remaining terms are
equivalent to those of the Joukowsky transformation which yield the flat plate
airfoil.

Now consider the case of the six—term von Mises transformations having

real coefficients, as given by

5 a,
z=¢+ ) — (2-55)
n=l
A physically realizable symmetrical airfoil is insured provided that
5 a (- im"
Infg +in+ | S—s—1}>0 (2-56)
n=1 (£ + n%)

Proceeding as in the case of the three term transformation, this equation is

expanded to obtain

(62 + n2)5 - al(gz e nd)% - 2a2£(g2 en?)d s 83(n2 - 382)(e? + n?)?

+ 4o 6(n? - €2)(E2 + n?) + ag(10€%n% - 5€* - n*) 50 (2-57)

After making the proper substitutions and expanding, the terms in the
resulting equation which are independent of r and f are again eliminated by
use of the Kutta condition, equation (2-43). Pactoring 2rf from the remaining

expression ylelds an inequality of the form

[
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At + B + CE2 + DE+E > 0 (2-58)

where expressions for the coefficients are given in Appendix B. For

0 < ¢ <m, f, given by equation (2-30), is never negative. Hence, when A, B,
C, and D are non-negative, the inequality will be satisfied as f goes to zero
provided that E is non-negative. Additionally, for the case when A, 3, C, and
D are not all non-negative, it has been demonstrated numerically that
requiring E to be non-negative is still sufficient to guarantee that the
condition of the inequality is met. From these results, the attainment of a
non-negative thickness distribution on an airfoil resulting from a six~term

von Mises transformation requires that

5 - 451 - 7a2 - 933 - 1054 - lOa5

r > (2-59)

5 - 431 - 6a2 - 533 + lOaS
It should be noted that the expression degenerates into the appropriate forms
for transformations having fewer than six terms.

The results of maximizing VTE/U for transformations of up to six terms in

a manner analogous to that used for three terms suggests that for = (1,0),

b1
a specified 52 location, and any number of remaining zeros, say k, that VTE/U
achieves a maximum when the k zeros are all positioned at the location defined

by

1
S (ez + 1) (2-6G)

Furthermore, the value of VTE/U is found to increase as the value of 52

A —— = =
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approaches -1.0 from either direction. When 52 is equal to -1.0, the maximum

-~ 4

value of VTE/U reaches unity and requires that all of the other zeros be

located at Cn = 0 and consequently, have no influence. Again, this indicates -
that the largest possible value of VTE/U for a physically reasonable airfoil v
is unity and occurs when the profile is a flat plate at zero angle of attack. :f ;
e
Numerical Results and Discussion :Z
In order to simplify the determination of the minimum generating circle -
radius for which an allowable airfoil is obtained, the development in the ri
preceding section considered only symmetrical profiles in order to uncouple -; z
the thickness distribution from the bn's. Note, however, that if the airfoils b f
under consideration have neither excessive camber or thickness, the resulting 'E
o

condition provides an approximation which is still useful to insure the

PR 19 W

-
generation of physically realizable airfoils. For ncn-symmetrical profiles, j‘
due to the fact that a chordwise location from an upper portion of the "
generating circle, x(6), does not correspond to the same location transformed 44
from the lower portion, x(-8), the thickness distribution becomes coupled to ;i
the bn's. If the airfoil is not excessively cambered, however, then x(6) will )
be approximately equal to x(-8) and consequently, the thickness distribution :
is only weakly influenced by the non-zero bn's. Thus, the positive thickness -
condition remains approximately correct. Similarly, in practice, it has been ;

i st 5 m e A0 H b M nedt i tilbe ak.

found that the condition i{s reasonably valid for small, non-zero values of Hyo

[ 2R |
L e

and only excessively cambered profiles actually might have regions of negative

thickness even though the positive thickness condition is satisfied. Thus,

for most practical purposes, the condition developed is useful in generating

=3

physically realizable von Mises airfoils whether or not they are symmetrical.
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To further understand the utility of the positive thickness condition, a
digital computer program was written to calculate the traansformation
coefficients and airfoil coordinates resulting from an input generating circle
and a set of zeros. As previously indicated, on the figures to be discussed,
the zero locations and the transformation coefficients are each listed as a
complex number pair denoted by the Zn's and Cn's, respectively. Considering
the condition on the minimum allowable radiuc such that MRmax l = rpgqs the
value of URMAX presented in the figures is the maximum allowable real axis
location of the generating circle center which results in a reasonable
airfoil. Depending on which sftuation is most critical, this value is based
on either the positive thickness condition, as determined from equation
(2-59), or, on the requirement that all of the zetros lie within the generating
circle. The radius of the mapping circle used to generate the airfoil shown
is denoted in the figures as R, while the real and imaginary components of its
center are UR and UL, respectively. The value of VTE/U for the airfoil is
identified by VTE.

To demonstrate the relationship of camber and thickness to the value of
VTE/U' a comparison of the airfoil shown in Figure 10 to that shown in Figure
7 is informative, The symmetrical airfoil of Figure 10 has been generated by

locating the zeros such that the bn’s are all zero, while the a_.'s have

n
essentially the same values as those of the section shown in Figure 7. As the
transformation for the ~ambered airfoil was dete;uined so that :Ei n(n+l) b,
is zero, the value of |zp"| is the same for both sirfoils as can be seen from
equation (2-25). Thus, with both airfoils having the same r, the values of
vTB/U from equation (2-8) are equal. In essence then, the airfoil of Figure 7

has traded an appropriate amount of thickness for camber such that there is no

T T T i e T & TR
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reduction in VTE/U' As is also demonstrated by the expression for the value
of Vpg/U in the case of Joukowsky airfoils, equation (2-11), the trading of
some amount of thickness for camber is possible in all cases provided that
some thickness is available to trade. Hence, in the case of the flat plate it
is not possible to obtain a cambered plate while VTE/U remains equal to

unity.

The effect of varying ug on the airfoil resulting from a given
transformation i3 exemplified by Figures 9, 11 and 12. The airfoll of Figure
9 is developed using the maximum value of ug as determined from the condition
for positive thickness, which is approximately correct for the cambered
profile shown. Thus, it can be considered that the point where the upper and
lower surfaces cross is located at the trailing edge of this profile. As the

value of Mr is made greater than u the point of cross—over moves from the

Rmax’
trailing edge toward the leading edge. The airfoil shown in Figure 11, using
the same set of generating zeros as the profile of Figure 9, exhibits this
behavior. As the value of Vg is increased above the value used in Figure 11,
the point of cross—over on the resulting sirfoil moves further and further
forward. In some cases, this continues until the cross-over point reaches the
leading edge, after which, further increases in up cause the thickness
distribution of the resulting airfoil to be totally negative. In this
situation, the upper parts of the generating circle are mapped to the lower
surface of the airfoil, and the lower parts of the circle to the upper surface
of the airfoil. An alternative possibility exists as, in some cases, before
the cross~over point reaches the leading edge, a value of LY is used which

csuses one of the generating zeros, in addition to that at the trailing edge,

to lie on the circle. This results in an additional cusp appearing on the
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boundary of the airfoil. A further increase in Y then results in a zero
becoming situated outside of the circle and the mapping of the flow field is
no longer conformal.

While moving the origin of the generating circle in the positive
direction causes the resulting airfoil to become thinner, Figure 12 shows that
moving it ia the opposite direction causes it to thicken. To the extent that
the positive thickness condirion {s an approximation for non-symmetrical
airfoils, the examples of *igure 9, 11 and 12 demonstrate that generating a

profile with MR equal to u results in the thinnest uncrossed airfoil

Rmax
possible for a given set of zeros.

The next group of figures is included to show quantitatively hvdian
additional non-zero term in the transformation influences the shape of the
profile and the value of VTE/U' Figure 13 depicts the Joukowsky flat plate
airfoil at zero angle of attack. As indicated in the figure, this airfoil has
the limiting value for VTE/U of unity. By moving a third generating zero a
small distance away from the origin in either direction, Figures 14 and 15, it
is seen that the profile thickness increases slightly while VTE/U becomes less
than unity.

Figure 16 depicts an airfoil having the highest attainable value of VTE/U
using a8 six-term transformation and Ez = -,6 as the specified location of the
second generatiug zero. The locations of the other zercs for this airfoil are
prescribed by equation (2-60). As before, Figure 17 {ndicates that a dscrease
in VTE/U results when the zeros are moved slightly from the wmaximizing
locations used to obtain the airfoil of ?igure 16.

Figures 18 and 19 present plots of the zero-lift, maximum values of Vyp/U

and the symmetrical airfoil thickness ratios as they depend on the zero

4 1:):
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location, 52' Figure 18 is produced using a three-term von Mises
transformation, while Figure 19 a six-term transformation. For both cases,
the zeros other than the trailing edge zero, CT’ and the given zero, 52' are
positioned using equation (2-60) in order to maximize the value of Vp/U. The
symmetrical behavior about 52 = - .5 of the plots shown in Figure 18 is due to
the fact that, with only three terms, equation (2-60) requires that 53 = -

(Ez + 1). Thus, the Joukowsky flat plate results that occurs when £y = -1 and
53 = 0 also occurs when £, = 0 and 53 = -1, It is {nteresting to note that
this behavior dissppears, as shown in Figure 19, when additional terms are
employed in the transformztion. In comparing the two figures in the region of
52 = 0, it is apparent that the presence of more term: allows higher values of
Vyg/U to occur for a given thickness ratio.

As an aid in airfoil design studies, Figure 20 sumnarizes the manner in
which the maximum, zero-lift trailing edge velocity ratios are limited by the
airfoil thickness ratio. It is important to note, however, that the
relationship shown should not be regarded as absolute potential flow limits
as, by wmoving the zeros off the real-axis, it is possible to obtain
symmetrical profiles of larger thickness ratios which prioduce higher values of
VTE/U than those indicated. As the profiles generating :hese results have
excessively blunted or concave noses, and otherwise radical shapes, these
cases were excluded from the re.ults presented in Figure 20.

Because the specification of Veg/U is necessary in a number of airfoil
design techniques, it i{s anticipated that the preceding results will be
useful. For example, in the fully laminar airfoil designs of Sappuppo and
Acrcher [27], the value of Vpp/U « .97 was selected “as hiph as possible so as

to obtain high 11ift™. As consistent with Figure 20, the thickness ratlio of
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the symmetrical airfoil resulting from the surface singularity inverse
procedure employed was 9.7%Z. On the introduction of camber, however,
difficulties were reported in retaining a reasonable thickness ratio and that
of the resulting airfoil was only 4.2%. While {t was concluded that the
thinness of these profiles was due to the low Reynolds number specificatiu.
and employment of the fully laminar Stratford recovery discribution, the
present investigation indicates that it is, more likely, a result of the high
value of VTE/U specified. Furthermore, in light of the discussion regarding
the trade-off of t‘hicknegs and camber necessary to maintain a given value of
VTE/U, the difficulties encountered when camber was introduced are to be
expected.

As already noted, another area in which insight into the factors
influencing the selection of Vyp/U would be most valuable {s in the high lift
airfoil design procedure detsiled by Thompson [19]. In this method, the
formulation of the Stratford recovery distribution for the uppev surface is
iniciated by sel. .ting the value of Vpp/U. As has been discussed, the
literature provided little guidance for choosing reasonsble values of VTgIU.
and those used by Thompson were unreasonably high. Thus, the present work
provides the means by which the specification of VTB/U can be made with

dreater understanding.
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CHAPTER III

AIRFOILS WITH FINITE TRAILING EDGE PRESSURE GRADIENTS

Conditions Required for Finite Trailing Edge Pressure Gradients

In considering the results of interacting boundary layer theory to modei
the real flow around an airfoii, it {s found that the displacement thickness
of the boundary layer and of the wake increase rapidly in the vicinity of the
trailing edge, and a discontinuity generally exists where they join at the
trailing edge. This behavior has been considered in numerous references, such
as the classical papers of Preston, et. al., [29]}-[31]. as well as in more
modern sources such as Reference [32], and, as shown by Melnik, et. al., [33]
is attributable to singularities which occur at the trailing edge of the
inviscid solution. These unbounded quantities, present in the case of any
airfoil carrying s non-zero load at the trailing edge, lead to a hreakdown of
the boundary layer approximatiors such that, in the vicinity of the trailirg
edge, the assumption that pressure is constant across the bourdary lsayer is no
longer valid. Thus, the elimination of these singularities shculd allow the
viscous flow on an airfoil to be more reliably predicted using conventional
boundary layer theory. More signifisantly, because of the reduction in the
strong viscous effects at the trailing edge, it i{s reasonable o expect that
airfoil aerodynamics might he enhanced as the level of performence ach.aved in
the real flow field would more closely approach the high levels predicted
using potentisl flow msthods. Finally, becsuse the manner in which the flow
approsches the trailing edge should be globally influenced by the removal of

the trailing odge singularities, it is anticipated that the possibility ot
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large upper and lower surface velocity differentials in the vicinity of the
trailing edge would be eliminated. Thus, separation problems introduced by
the steep adverse pressure gradient that typically exists on the upper surface
near the trailing edge when such velocity differentials exist would be
mitigated.

In order to examine the flow in the vicinity of the trailing edge in
detail, consider the transformation of the unit circle centered at the origin
of the ¢-plane into an airfoil in the z-plane as shown in Figure 21. The
complex potential function for che unit circle having circulation I and an
angle of attack a is
ia

ettt o Lo gn g (3-1)

F(g) =Ue 7l

and the complex velocity is

JdF() _ o -fa _ . da -2 _ il -l _
w(g) a0 Ue Ue g tar st (3-2)

Imposing the Kutta condition, the circulation necessary to fix the stagnation

point at ¢ = b = l in the circle plane is found to be

PF=4n U sin a (3-3)

Thus,

wiz) = e-ia - eiaC-Z + 2:lt;-'l sin a (3=4)
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which may be written
3&%1 - (e—ia + eiac-l)(1 _ C-l) (3-5)
The velocity in the airfoil plane is
w(z) = u-tv = £ 48 2 gy /27 (0) (3-6)

¢ dz

To preclude the presence of a stagnation point at the trailing edge of the
airfoil, zgy, it !s necessary that the trailing edge of the airfoil be
cusped. This requires that
24(¢) = 0 (3-7)
Because the velocity at the trailing edge, from equation (3-6), is of an
indeterminant form, L'Hopital's rule can he invoked to yield
W'(CT)

W(zT) =-—-Z¥—- (3-8)

At this point, the complex pressure gradient is defined as

=3 _ % ., - -
R=gE-i2=p -1p (3-9)

Using the Bernoulli equation, the pressure at a point on an airfoil, p, may be

related to the free-stream conditions such that

P = P, +%— o [U? - (b2 +v?)] (3-10)
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which is differentiated to give
P, = P (uux + vvx) (3-11)
= - + vv 3-12
Py P (uuy y) ( )

By substituting equations (3-11) and (3-12) into equation (3-9), it is found

that

R=-p [u(ux - 1uy) + v(vx - iv )] (3-13)

y

Continuity and irrotationality require that v, = uy and u, = - v,. Thus,

y
equation (3-13) may be written

R=-p [u(ux

- 1vx) + v(uy - ivy)]

= <p [uw' + v(iw')]

= o [u+iv] w' (3-14)
or, more simply
R = =p w(z) w'(z) (3-15)

where w(z) is the complex conjugate of w(z). At the trailing edge, the

complex pressure gradient is given by

Rp = - ;Kzr) w'(zT) (3-16)
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In order to evaluate equation (3-16), an expression for w'(zy) is

required. Note that the result of differentiating equition (3-8),

w'(zT) = lim %; [3§$l] = 1lim {Z ()2 -'W§C)z"} (3-17)
g > gy g g (z')

is of an 1ndeterminant form such that L'Hopital's rule is applicable. Because

w(cT) and zy' are both zero, this yields

2 1im w'(g)z' - w(z)z'""'

w'(z o (3-18)
L+ oy 3(z")

1) }

z

which is still of an indeterminant form. Using L'Hopital's rule again gives

w'(z

= 1a (P82 (B2l (3-19)

¢ oo 6(2)(z") + 3(z) et

)

Now, because the denominator of this expression is zero, w'(zp) will be
unbounded unless the numerator is also zero. Thus, for w'{zqy) to be finite,

it is necessary that
wi(gp)zy = w'(gg)zy " = 0 (3-20)

If this condition is satisfied, then equation (3-19) will be of an

indeterminant form and the use of L'Hopital's rule again yields

w''' 2"~ w' 2z, 1V
(g~ e .
3(zT")

"'(ZT) =

Now, substituting the above relation, along with the conjugate of equation
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(3-8), into equation (3-16), the value of the complex trailing edge pressure

gradient, provided that equation (3-20) is satisfied, is given by

€
N
—j

Rp = 7° —'-_-—)—3_ [zg" ' (zg) - zTiv w'(ep)] (3-22)

To further evaluate equations (3-20) and (3-22), equation (3-5) may be

differentiated successively and evaluated at the trailing edge giving

T .
5 5 2cosa (3-23)
w(cp)
7 = - fcosa - 2isina (3-24)
W"'(CT)
— " 24¢cosa + 12isina (3-25)

By writini equation (3-20) as

vavv - V"(CT)
zp" w'(CT)

(3-26)

and making use of equations (3-23) and (3-24), the condition required for the
complex trailing edge pressure gradient to be finite on an airfoil may be
expressed as a condition on the transformation function requiring that

1t

Zp
w— = - 3 - jtana (3-27)
Zr

While the ramifications of this requirement will be considered later, note

that the imaginary part can only be satisfied for a particular airfoil at only

..‘._'.
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a single angle of attack. At any other angle of attack, the complex trailing
edge pressure gradient is unbounded.
Using equations (3-23) and (3-25) in equation (3-22), the value of the

complex trailing edge pressure gradient is given by

_4p U2 cos a
—_— wy3
3T (27)

(622 1V osal (3-28)

T(2cosa + isina) - z

T
provided that the condition of equation (3-27) is satisfied. Non-
dimensionalizing equation (3-28), where % is the chord length of the airfoil,

yields

3 [6zT”(2cosa + isina) - zTivcosa] (3-29)

By considering a circle of radius r and center location u in the Z-plane,
rather than a unit circle centered at the origin, the results of this analysis
can be made applicable to the von Mises airfoils previously considered. In
that case, it is interesting to note that all of the symmetrical airfoils
generated using the minimum circle radius which generates a physically

realizable airfoil, r satisfy the condition for a finite complex trailing

min?
edge pressure gradient. In order to explain this, consider that, in the case
of overlapping airfoils, the point of cross-over moves aft as the generating
circle radius, r, 18 increased. When r = Tain® the cross-over point is at the

trailing edge. Thus, the trailing edge of the airfoil is locally like the

flat plate at zero angle of attack and, evidently, the flow behavior is
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similar. As an example of such an airfoil, the von Mises profile depicted in
Figure 22 has trailing edge pressure gradient values of

CpXT = -1.37, while, as is the case for all non-lifting symmetrical airfoils,
CpYT = 0. For comparison, the airfoil of Figure 16 has CpXT = -,12 and cpYT =
0. 1t should be noted that because having r = Fmin In the case of two
generating zeros yields the Joukowsky flat plate, Figure 13, that this is the
only Joukowsky airfoil which can satisfy the condition for bounded trailing
edge pressure gradients. This fact explains the presence of the "hooked"”
shape observed at the trailing edge of Joukowsky airfoil velocity

distributions.

The Eppler Airfoil Design Method

In order for airfoils to be developed which make use of the conditon for
finite trailing edge pressure gradients, it is necessary to incorporate the
necessary condition into some airfoil design methodology. To this end, the
inverse scheme developed by Eppler was selected as being the most suitable for
this purpose. The theoretical details of this design procedure are presented
in Eppler [5], and also summarized in References [8], [17]), and [19], while a
description of the code and its usage are documented by Eppler and Somers
[25]. As modifications required to allow the method to design airfoils having
finite trailing edge pressure gradients are significant, before considering
these changes, a summary of the method will also be included here.

As depicted in Figure 21, the Eppler airfoil design procedure is based on
the conformal mapping of the flow field exterior to a unit circle in the Z-
plane into the flow field exterior to an airfoil in the z-plane. The complex

velocity for the flow about the unit circle is given by equation (3-5) where,

omm ) Bad o - G A oF Aol W ~ -4 A



s
b eaan pavmen W e w A6

PR

44

to be consistent with the derivation of Eppler, the free-stream velocity is
taken to be unity. The mapping function, z(g), must, as detailed in the
discussion of the von Mises transformation, preserve the flow conditions at

infinity. Thus, it is required that
z(w) = » and (QEJ = ] (3-30,
dg’= ’

Most generally, these requirements are met by the power series

. -v
2(g) = 85 + L B, ¢

(8, * 0, real) (3-31)
v=(

where the Bv's are limited to values for which the series is convergent when
lz] > 1. As consistent with equation (3-6), the velocity in the airfoil plane

is given by
wiz) =ve =~ = iz " A dz (3-32)

This relationship, for reasons discussed by Lighthill [9], is more
conveniently represented by
dF dz

ln w(z) = 1ln - - {6 = 1n =— - In

dc dz (3-33)

Because 1n dF is known from equation (3-5), chen if v(4) is specified, the

d¢
real part of ln %% follows directly. Furthermore, because ln %5 is analytic
in the exterior of the unit circle then, using the real part which is known on

14

the boundary, Z = ¢ ', the imaginary part can be determined. Thus, the
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function g%, which maps the circle into the airfoil, can be solved for from
equation (3-33) and z obtained by integration. The advances which are
reptesented by the Eppler method include the development of an algorithm for

the numerical computations required by the procedure just outlined, and the

introduction of a form for v(¢) which allows practical airfoils to be obtained

in a straightforward manner.

The numerical algorithm of the method is bhased on the introduction of

In %% in the form given by

-]

d 1 : -
1n E% = 1n (1 - E) + mEO (a + 1b_ )z " (3-34)

This form is advantageous in that it isolates the singularity which occurs on

the boundary, ¢ = ei¢. Operating on equation (3-34) yields

) (a_+1ib ) "
dz Ly a0 " T (3-35)
dg 3

This result must be consistent with equation (3-31). Thus, differentiating
equation (3-31) and comparing terms having like-powers of { to those of the

preceding expression, it is found that compatibility requires

bO =0 (3-36)
a = 1 (3-37)
b, =0 (3-38)

Equation (3-36) is necessary in order that there is no rotation of the

13).
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free-stream velocity at infinity. Equations (3-37) and (3-38) make

-1
the ¢ term vanish and, as a consequence, ensure that the profile will close

at the trailing edge. Additionally, the requirement that velocity of unity be

preserved at infinity, as given by equatior (3-30), necessitates that

2 0 (3-39)
i¢

3

Evaluating equation (3-33) on the circle boundary, ¢ = e ", and rearranging

the result gives

dz -1y - -
[1n & " In (1 C)Jc’ei¢ In v(4) + 18
F -1$
+ 1n (=) -1l - e 7)
e el
= P(¢) + 1 Q(4) (3-40)

P(¢) and Q(¢) are defined as the real and imaginary parts, respectively, of
this expression. The use of equations (3-5) and (3-34) allows P(¢$) to be
expressed as

(]

; ()
P(Q) = ) (a_cos mé +b_sin m¢) = - 1n| J ) (3-41)
=0 " " 2|cos(%~- a)lJ

so that the coefficients, the a_'s and bu's. are determinable in the same

manner as those of a real Fourier series. Consequently, using the formulas

for the evaluation of Fourier coefficients, and noting that the term

containing by disappears in the expansion of equation (3-41), the requirements

of equation (3-37)-(3-39) generate three integral constraints,

$oed  ed | @] g} e

$urd

s -4

e
o L

!

]
o

" o F -’ ‘ - '
%WWWWM.W W) i b b Sty ha s

biend

Gk il el

EPT I

o X

[ o




—

47
ORIGINAL PAGE IS
’ OF POOR QuaLiTy
may=f P(3)do =0 (3-42)
0
2n
ma =[ P(4) cos b dé = (3-43}
0
2n
mb =/ P(4) sin ¢ d¢ = 0 (3-44)
0

which must be satisfied by the specified velocity distribution, v(¢). In the
actual method, it is not necessary to determine the remaining series
coefficients but, rat*er, necessary only to calculate the conjugate harmonic

funtion, Q(¢). Thus, using Poisson's formula, Q(4) is given by

- ) 27
Q(¢) = mzo (bm cosmd - a_ sinm¢) = 57 IO P(y)ctn !%2 dy (3-45)

Substituting equation (3-41) into equation (3-40) and simplifying yields

dz ¢ ) e %)
(EE);-e1° = 4isin 3 lcos(f-- a)| ey © (3-46)
and, for dg = tel® de,
dz i (dz
"t (D)
a0 dc’ g 10
1(q + $)
- —4.10‘% Icos(%-- a)| vl° e : (3-47)

Splitting this expression into its real and imaginary parts gives
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%% - - 4sin‘% Icos(% - a)| ;%37 cos[% + Q(9) ] (3-48) ’
%% = - 4gin % ]cos(%-- a)l vé@) sin[%-+ Q(4)] (3-49) o0

Thus, once Q(4) has heen determined, the airfoil coordinates can be obt.ained
by simple quadrature. L
Up to now, the derivation has proceeded in such a way that a fixed angle
of attack, a, is selected, as well as a velocity dlstrtburicn, v(4), which
must satisfy the three integral constraints, equations (3-42)-(3-44). Then,
using equations (3-48) and (3-49), a profile is determined whose velocity
distribution, v(¢, a), agrees with the prescribed v(4) at the selected angle
of attack. The method, however, is considerably more flexible. From equation
(3-35), it is clear that the transformation, and therefore the airfoil shape, g,

is fixed once the ap's and b,'s have been determined. As a change in a has no :7 :
effect on the coefficients, P(¢) is independent of a. Consequently, equation

(3~41) can be written

*
P(o) = - 1n [—(0) | (3-50)
2| cos (7 - a%)
where v*(4) i{s the velocity specified at a point on the profile corresponding
to ¢, and a*(¢) is the angle of attack at which that v*(9) is to be B
realized. Thus, the velocity distribution v(¢, a), for any arbitrary a, is

obtained from equation (3-50) as .

v($, a) - v*(4) - £(4) 3-51) - ;
| cos (;-- a)l |cos f%- a*)| o
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where f(4) is invariant with respect to a. While v(4, a) must be continuous
over the a’~foil, it is possible for a discontinuity in a* to bhe compensated
by a discontinuity in v*(4). Thus, rather than specifying only a single a* at
which the velocity distribution v*(4) occurs, unlike other inverse methods, it
is possible to select different values of a*, as indicated by rhe notation
a*(3), for different segments of the airfoil. Consequently, differant parts
of the airfoil can be designed for different angles of attack. In this
manner, an airfoil can be designed from the onset to have the desired
aerodynamic characteristics over a chosen range of flight conditions, rather
than being point-designed for a single angle of attack and mod.fying the
result until acceptable off-design performance is achieved.

As mentioned, the numerical method is dependent on the conrvergence of the
series contained in equation (3-34). This convergence is assured if the
velocity distributiun, v*(4), is specified such that it makes P(4), equation
(3-41), a piecewise continuous function containing, at most, points having
finite jumps in the first derivative. In this case, as detailed in Reference
(28], the a,'s and b,'s are O(I/nz). This not only allows successful
numerical treatment, but also guarsntees that the resulting profiles are
smooth.

In order to implement the specification of the velocity distribution, the

unit circle in the ¢-plane is divided into I, segments over the interval (O,

P
2v), Referring to Figure 23,

and, in addition, °t le denotes the arc limit containing the leading edge
| ]
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stagnation point. 7o achieve the flexibility introduced by being able to
specify different values of a* for different segments of the airfoil,
a*(¢) will be considered as constant over each of the defined intervals such

that

* - - 1 -f
a*(¢) a = constant 1d S 6¢ @1] (3-53)

The specification of the velocity v*(4) takes the form
vA () = v, w(e) (3-54)

where Vi is taken ag constant within each cir.le segment, ‘1-1 < % < bi. and
w(4) is a function which includes a term allowing for main pressure .ecove:y
on the airfoil, as well as a contribution to insure that the profile closes.

On the upper surface, 0 < ¢ ¢ b 1e* the form of w(%) is

cosd - cosow ~-u cosé - cosos 2 KH

wie) = [1 + K| b1 - .36 (3-55)

I+ cosow I - cosOs !

while on the lower surface, < ¢ « 2, th: parameters Ky, u, @w , and

Y le
1‘ are replaced vy Eh, U, ;;, and ;., respectivoly., The expressions within

the braces, {f(¢)}, are treated as special functions in that, if £(3) < U then

[£(4)} = 0 and it £(4) > 0, {£(8)} = £(9). For simplicity, equation (3-55)

for the upper surface may be written

-u Xy
MOREERORE RO RN (3-56)
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and, for the lower surface,

= -u = Ky
w(o) =W () V(9

(3-~57)

In both cases, the ww(¢) term produces the main pressure recovery, the length
of which is governed by the specification of ¢w. The total amount of recovery
and its particular shape are established as part of the velocity

specification, along with the ¢i's and a;'s, by the parameters K and u. In

i
the term generating closure of the airfoil, the quantity hs(¢) is fixed by the
specification of ¢s' while the exponents, Ky and Eﬁ are left free to be
determined by the solution procedure. A typical velocity distribution,
7(¢(x)), is sketched in Figure 24,

Substitution of equation (3-54) into equation (3-50) yields

P(¢) = lnlcosf%-- ai)| = 1n v,~1a w(¢) + 1n2 (3-58)

(¢i_l <CH< Y 1=1,2,3,...,1p)
Thus, at the trailing edge, continuity of P(¢) requires that

p |lavy = 1n w(2m) (3-59)
P P

lnlcosuli = 1n v~ 1n w(0) = ln|cosa
whereas at all other segment boundaries,

b by
lnlcos(i— - “1)|’1“ v, = ln w(¢) = lnlcos(i—-- °1+1)|

i
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- 1n Viel T 1n w(9) (3-60)

( . -
(b S o <0, 5 i 1,2,3,...,1p_1)

A problem arises with the velocity distribution at the leading edge

stagnation point, given by ¢ = 7w + Zai, in that P(¢) is undefined at that

point and no longer satisfies the conditions imposed on it. This problem can

>,

-2

be avoided, however, by requiring ¢i le ~ Zai {7 and ¢i le
’ ’

,le %i,1e+1

or, more simply, by requiring

% 1e+ <% le (3-61)
At this point, the method requires that the values of the pressure

recovery and closure parameters, u, ;. LI 3;, ¢s, and E;, be given, along

w

with all of the ¢1. a, pairs. The Ip constants, the v;'s, and the closure

contribution exponents, KH and Eﬁ, are solved for such that the I  matching

p
conditions, equations (3-59) and (3-60), as well as the three integral
constraints, equations (3-42)-(3-44), are satisfied. Consequently, as given,
the problem is over—specified and it is necessary to relax one of the given
parameters so that all of the required conditions can be met. Because of its
strong influence as the matching point of the upper and lower surface velocity
distributions, the method uses the leading edge arc limit, ¢1,le’ as the
necessary free variable.

By substituting equation (3-58), along with equation (3-56) or (3-537),

into equations (3-42)-(3-44), it is found that the integral constraints can be
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evaluated in closed form. With the substitutions indicated, equation (3-43)

becomes
2n 2n b
jo P(¢)cosd do = fo [lnlcos(i - ai]l - 1n vi(¢)
+u ln W (8) = Ky 1o W _(8) + 1n 2] cosd do =« (3-62)
Now, defining
27
- [0 1n W_(6) cos$ do =W | (3-63)
27 _
- ]0 1n W_(4) cos¢ do =W , (3-64)
P
and, introducing the notation
¢i
In(i,j) = 1ln | cos (2— - uj)l (3-65)

The evaluation of equation (3-62) gives

2n _ FP
[ P(#) cose dv =K W +K W + | {sin 2a;
0

[1n(1,1) - 1n(i-1,1)] + % (¢! - ¢1_1) cos 2ai

+-;- (sin ¢, - sin °1-1) + sin ¢1[1n(1,i) - In vi]
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- sin ¢i_1[1n(i-l,i) - 1ln Vi]}

by _ 2nm _
+u fo In W _(6) coss d¢ + u /| 1n W, (#) coss d¢ = m (3-66)
)

w

Using the matching condition, equation (3-60), it is found that a number of
terms in this expression drop out such that, after simplification, it may be

written

KH wcl * KH chp * Jc =0 (3-67)

where Jc is defined as

I

P
J_ = ¥ {sin 2o /{1ln(i,i) - 1n(i-1,1)]
c 1=] i
1 i
t 5 (¢i - ¢1_1)cos 2a1} -m4 oy !0 1n ww(b)cos¢ dé
+u [_ 1o W (4) cosé d¢ (3-68)
)
w

Now, after formally setting a, and a; to zero, the terms containing ¢i are
collected and the leading edge arc limit, °i le’ is isolated such that

»
equation (3-68) 18 rewritten as

Jc =a, + bc 1n(le,le) + c. 1n (le, le + 1) + dC ¢ (3-69)

i,le

where the coefficients are given by

U

L% s i

e~ 4

;
2
i
¢
M
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a = ) {sin 20, la(i,i) - sin 2a;

1
- . \
b (cos 2a, - cos 20i+1)} + ?

N —

+

| InGi,i+l)

{sin Zai In(i,i)

o . 1 ( -
sin 2ui+l In(i,i+l) + = ¢i { cos 2ai cos 2“i+l)}

2
¢w _ 2n _
-r+uf 1n ww(¢) cosd d¢ + u f_ 1n ww(¢)cos¢ d¢
0 ¢w
bC = sin 2a1e
c. = - sin 2“1e+l
1 -
dC 7 (cos 2a1e cos 2°1e+l)
Using the definitions given by
¢s
- lo n W_(9) sine do = W,
2n _
= J_ 1a W ($) siné dé = W_,
L P

55

(3-70)

(3-71)

(3-72)

(3-73)

(3-74)

(3-75)

the integral constraint of equation (3-44), in a manner similar to that

applied to equation (3-43), becomes

Kﬁ"’;l”ﬁi"slp*"s'o

(3-76)

P el AR, My N

ey 8
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where Jg 1s ultimately expressed as

Jg = ag *+ b, In(le,le) + cg In(le,le + 1) + dg e (3-77)

and the coefficients are

i,le-1
a_ = 120 { -(1 + cos 2ai) In(i,i) + {1 + cos 2ai+1)
1
Ln(i,itl) + 5 6, (sin 2a; - sin 2a )}
IP
+ ) { -(1 + cos 2a, J1n(i,i) + (1 + cos 2a )
i i+l
i,le+l
1
In(i,i+l) tye (sin Zui - sin 2“i+l)}
e _2n _
*ul InwW (s) sing dé +u [_ 1n W, (8) sino do (3-78)
0 0,
by = - (1 + cos 2¢1e) (3-79)

c. = (1 + cos 2a

s (3-80)

1e+l)

1
ds 7 (sin 201e sin 2a (3-81)

1e+l)
At this point, consider the trailing edge matching condition given by
equation (3-59). By repeated applications of equation (3-60), the velocity

terms v| and vy can be eliminated and the resulting expression written as
P

ey

IS

) Wonreiany

# oo ey
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' - Ky 1n W () + K ln W (2m) +J_ =0 (3-82)
in which
Jc =a, + bt In(le,le) + <, 1n(le,let+l) (3-83)
- and
- i,le-1
. a_ = 3 {-= 1a(i,1) + In(4,i+1)}
- t
i=0
)
) + ) {- 1n(1,1) + 1n(4,i+1)} = w 1n W (0)
i={,1le+l v
+ 1 ln Ew(zm (3~84)
' b, = -1 (3-85)
¢, =1 (3-86)

equations may be represented

Thus, equations (3-67), (3-76), and (3~82), can be used to solve for the

Lj three unknowns, Ky, KH' and °i,le' In matrix notation, this system of

-e L3N
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wcl ch Jc KH
P
Y1 Wer Is K =0 (3-87)
p H
- ( u
- In W_(0) ln W_(2m) Jt- % le
Solving for ¢1 le leads to a transcendental equation which can be expressed as
a+ bln (le,le) + c 1n (le,le+tl) + do, le = 0 (3-88)
in which
as= Dl a, + D2 a_ + D3 a, (3-89)
b= Dl bc + 02 bs + D3 bt (3-90)
c = Dl cC + 02 cs + D3 c, (3-91)
d = Dl dc + D2 ds (3-92)
and
D, = wsl 1n Ws(Zn) + “51 ln HS(O) (3-93)
P
D2 = - wcl ln ws(zw) - ch ln Ws(O) (3-94)
P
D3 =W W -W L] (3-95)

o -
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Equation (3-88) can now be solved numerically for ¢ using the

i,le
technique of Regula falsi. Once ¢i,1e has been obtained, Jc~ﬂ, Js, and J, can
be calculated and used in a straightforward manner to solve for Ky and Eﬁ. In

order to determine the vi's, the first integral constraint, equation (3-42),

is evoked along with the matching conditions given by equation (3-60). Thus,

2 I ¢
m P i 6 \
JooP(e)de = ) [ ] [1n]cos (Ev- ai)l = ln —
0 <1 ¢ "1
! i-1
+uln W (8) - Ky ln W _(4)] d¢ + 27(1n 2 = 1n v)) (3-96)
v

The velocity ratios, ;f, are found from sequential applications of equation
(3-60) and the results used to determine v; from equation (3-96). At this
point, P(¢) and Q(¢4) can be determined and the coordinates of the profile
follow directly.

The closure requirements of the airfoil determine the values of Ky and
Eﬁ which, in turn, influence the trailing edge closure angle. In order that
some control over the trailing edge shape is possible, the digital computer
coding of the method allows a value of Ks, where Ks =Ky + Eh, to be
specified. Then, any one of a number of iteration schemes can be sele:ted
which vary particular combinations of the specified input parameters until the
desired value or K; is achieved. This procedure, along with a detailed

discussion of the numerical implementation of the method, {s contained in

Reference [25]).

Incorporation of the Conditions for Finite Trailing Edge

Pressure Gradients into the Eppler Design Method

As developed previously, the condition on the transformation function

lay

T

¥

e v m———— = s
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which results in a finite complex pressure gradient at the trailing edge of an
airfoil 1is given by equation (3-27). In order to incorporate this result into
the design method of Eppler, the representation of the derivative of the

transformation function, provided by equation (3-35), is differentiated to

yield
v -n
m?;o (am v 1bm)c Y
2" = e - (-4 ) (s + m ) ™)
c m
4 m=0
(3-97)
which, when evaluated at the trailing edge, { = 1, becomes
mZO (a, + ib)
2" = e (3-98)
Differentiating equation (3-97) yields
)' (a + ibm)C—m
m=0 -
2 2 ~(m+l)
z''' = e -=%-5 ) m(a_ + 1ib )14
4 CZ 20 m m
1y, | -(m+2)
+ (1 -2) ) m(utl) (a_+1b ) g
4 m.o m m
s-H1 7 ala_+1bp) ()2 (3-99)
14 oe0 m m

For this expression to be evaluated at the trailing edge, it is necessary that

on oy
Fp———)

-
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the last two terms drop out as occurs if the summation present in each term is
finite. Noting that the ag's and b, 's can be considered as the coefficients
of the Fourier series representing P(¢), equation (3-41), and, considering the
theorems concerning the differentiation aad convergence of such a series,
Reference [28] for example, it is found that the summations will be finite {f

P'(4) is continuvovs at the trailing edge. Thus, i: is required that
P'(0) = P'(2m) (3-100)

[f this is the case, then equation (3-99) becomes

A =2-2 ) na_+ ibm)} (3-101)
m=0

Substitution of equations (3-98) and (3-101) into the condition for finite

trailing edge pressure gradients, equation (3-27), yields

zT - L]
—— = -2-2 ) ma -2 | mb_=-3 - itana (3-102)
Zr w0 " me0

To further resolve this expression, the series representations of P(¢) and

Q(%), given by equations (3-41) and (3-45), are differentiated to obtain

P'(4) = | - ma sin mp + mb_ cos ud (3-103)
m=0

Q'(¢) = ) - ma_ cos m - mb_ sin ae (3-104)
m=0 » ®
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which, when evaluated at the trailing edgc, become
P'(0) = ) mb (3-105)
m
m=0
[ J
Q'(0) = ) ma (3-106)
m=0
Using these results, equation (3-102) yields the conditions that
P'(0) = %-tan a (3-107)
Q'(0) = - % (3-108)

which must be satisfied in order for a airfoil to have finite trailing edge
pressure gradients.

In order to consider equation (3-107) further. the expression for P(4) of
equation (3-58) is differentiated and evaluated at the trailing edge yielding
'

' -.1. - 0) -
P'(0) 5 tan a w(0) (3-109)

€

In making the transition from v(4) to V(x), it is found that the velocity
distribution on the airfoil, V{x), has an infinite slope at the trailing edge
unless w'(0) = 0. Because of this, it already a requirement in the method

that w'(0) = 0 and, consequently, equation (3-109) becomes

P'(0) = % tan a, (3-110)

(¢)

—
—

0 oy
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Equating this result with equation (3-107), it is found that the condition

imposed on P'(0, is satisfied when

a = a (3-111)

Thus, the complex trailing edge pressure giadient on an airfoil can orly be
finite when the airfoil is operating at an angle of attack corresponding to
that specified in the design process for the first asrc segmenc.

To satisfy the second condition required for bounded trailing edge
pressure gradients, equation (3-108), the integral expression for Q(¢),
equation (3-45), is differentiated and calculated at the trailing edge giving

2%
2
Q'(0) = -,‘;-; . P(V) csc (-}] dv (3-112)

Substituting this result into equation (2-108) introduces an additional

integral constraint which i{s given by

2x 2
|  P(¥) ese Fdv = - 21 (3~113)

0
In addition to the conditions of equations (3-il1) and (3-113),
examination of equation (3-22) reveals that in order for Ry tn be finite, the
fourth derivative of the transformation evalusted at the trailing edge, zriv.
must also be finite. Evoking the same arguments used for insuring the
finiteness of zr"‘. it is found that ‘Tlv will be bounded provided that P*())

is continuous at the trailing edge. To insure this, consider the result of

differentisting equation (3-58) twice, giving

pglD B . GG A o St Pe D
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2 b _ oy _wt(8) , rw'(s))2 i
(2 Qi] w(d) + {w(¢7 ] (3-114)

P () = - % sec
. - \
(@1_1 <9 < 01 ’ i 192'3:"'vlp/

Because w'(0) = w'{2n) = 0, it is evident that the continuity of P"(4) at the

trailing edge requires

w'(0) _ w'(2m)
w(0) w(2m)

(3~115)

After performing the necessary manipulations, making use of equation (3-55),

ft is found that this condition can be written more specifically as

K

uk H
1 + K + (1-K)cos L *+ 1,125 (f - cos Q;)
w K Kn
- - - _ #1125 (——————) (3-116)
1 + K+ (1-K)cos ‘w 1 - cos 0'

It should be noted that satisfying this condition also guarantees that the
last two terms in equation (3-99) drop out.

As presented thus far, the development has shown that an airfoil <hich
satisfies equations (3-111), (3-113), and (3~118) will have finite trailing
edge pressure gradients; however, in order to incorporate these conditions
into the design process it remains to evaluate the {ntegral constraint, given
by cquation (3-113) 1in terms of the cppropttaic design parsmsters. To begin,
although the integrand of equation (3-113) ic singular, the integral can be

shown to exist in the Cauchy Principal Valve sense by difterentiating the

P
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exprcession for Q(4), equation (3-45), to obtain

2n
Q') == P cse’ (L) av (3-117)
0

and, integrating oy parts, yields

Q' () = - %; P(27) ctn (m - %) + %? P(0) ctn (- %)

L -9 i
+35=/  P'(¥) ctn () dv (3-118)
2n 0 2
Because the required continuity of P(¢) gives P(0) = P(2n), the leading terms
of this expression cancel leaving

2n
Q'(¢) = %; /] P'(Y¥) ctn (ELJQ dy (3-119)
0

2
and the fou :h 'ntegral coanstraint then becomes {

1 2 1
Q'(0) = = | P'(4) ctn %i dy = -3 (3-120)
0

After renaming the variable of integration, this result is used to define I,

as

2n
I, =2) P4 cen §do=-2n (3-121)
0

Now, differentiating equation (3~58) ~{ves
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P'(¢) = - % tan (g - ai) - 5%%%1 , (3-122)

( . -
by SO0 <o 5 i 1,2,3,...,1p)

Substituting this expression into equation (3-121) ultimately yields a result

which is denoted as

L,=I1 +1 =~-2n (3-123)
where
I ¢
LA
I =- l j tan (2 -a ) ctn gddi (3-124)
3 i=l ¢ 2 i <
-1
(6. <0 <0 5 1=1,2,3,...,1p)
and

)
I, = -2 fo ¥ cen 3 a0 (3-123)

The analytical evaluation of 1, is now undertaken, beginning with

congideration of the indefinite integral
- 2. k] -
I, | tan (2 ai) ctn % d¢ (3~126)

for which, after some manipulation, it is found that

. R . e Seee S - -8 LIRS
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sin %
Ial =¢ -2 tana, In | ————— | (3-127)

cos(? - ai)

Using this expression in equation (3-124) gives

¢

1 ¢ i
Zp { 2 | il [y, |} (3-128)
I = - ¢ + 2tana, In | —————— -
2 =1 t cos(% - ai) ¢i—l

which becomes

I
|4

- . ¢i ¢i'l. 1
Ia = 121 {- ¢i + 4»1_1 + Ztamcx1 [lnlsm —Z—I - 1n|sin 3 |
5 $-1
- 2tana, [1n|cos (2— - ai)l - 1n|cos ( 7 - ai)ll} (3-127)

Performing the indicated summation with ¢0 = ¢ + 0 and ¢I = 271 yields,

P
°i €
I, = 2tana; [1n|sin 71 = ln|sin 7”
4,JL
- 2tana, [1n]cos (2— - al) - lnlcos(-al)H
b
- 2n + 2tan a; (1n]sin(w - ;—] - 1n|sin _g:_l_”
P
*1
-1
- 2tana; [1n]cos(w - o )| - 1n]cos (—g——- - )|
p P p
I
P ¢ 4.
+ ) {Ztanai [1n|sin -2—1-| - 1ln|sin ; ll]
i=2
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¢ ¢
i i
- 2tana, [1n]cos (5_ - ai)| - 1n]cos ( 5 = ai)l]} (3-130)
Extracting the singular terms in the above expression and combining them as

Spa gives

S.. = - 2tana, ln|sin %I + 2tana

Ia 1 ; Inlstn (7 - §)| (3-131)

P

Because Isin(ﬂ - %Jl = |sin ;1, the singular terms can be eliminated by

requiring that

- q (3-132)
P

The expression for I, that remains is then simplified by incorporating

additional terms under the summation such that

Lp-1 ¢ ¢
\ i i
I == 2+ 121 {2tana1[1n|sin 7| = ln|cos (f" - ai)l]
& & .
+ 2tana [1n]cos fi— - °1+l)l - 1n|sin m (3-133)

To begin the evaluation of I,, equation (3-125), recall that w'($)/w(e)
varies in a piecewise fashion with ¢. Using the form of equation (3-56) to
describe w(¢), and comparing that with equatioﬁ (3-55), it is found that, on
the upper surface,

cosp - cos¢w

W,($) =1 +K ( (3-134)

1+ cos¢w
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cosd - cosdaS 2

W(®)=1-m ( (3-135)

1 - cosd
s

while, on the lower surface,

_ _ cosd - cos ;;
W (4) =1 +K( —) (3-136)
1 + cos ¢,

_ cos$ -~ cos ;S\
W) =1-m ( —=] (3-137)
1 - cos ¢s

With regard to the earlier discussion concerning the piecewise treatment given
to the function described by equation (3-55), [, is evaluated over the

plecewise segments defined as follows:

w'(6) w,'(¢) LG
ey ._UW+KHW o<¢<¢s (3-138)
w ' (¢)

w'ie) . _ . v -

w(3) * W, (4) ¢y < 0 <0, (3-139)

w'(9) _ 3 -

Ty, 0 ¢w < ¢ < ¢w (3-140)
W o'(e)

wl(o) w p— -

o5 u o= ow < ¢ < ¢s (3-141)
W )

' Wo'(e) W) -
!.(.i_;i.-‘g_" +® 2 — 5, <6 <2m (3-142)
v W (4) W (¢)

-d LI
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Thus, for the most general case, the indefinite integral is given by
Ib = Ibl + Ib2 (3-143)
where
W '(9)
= v $ -
I, =2 / 7, ctn 3 d¢ (3-144)
and
W_'(0) .
I, = 2Ky / W ctn 7 dé (3-145)

In the following evaluation of I,, only the notation for the upper
surface will be used; however, the results are valid for the lower surface as
well, if the upper surface quantities are replaced by their appropriate lower

surface counterparts. In order to evaluate I,;, let

K

8 ® T3 coss T (3-146)
)
f=1-g cos ¢w (3-147)
so that
Hw(¢) = f + g cosd (3-148)
Thus, the integral becomes
1, = -2 [ (B30 oen § 4o (3-149)
bl f + g cosd
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After some manipulation, it is found that

I, =~ 2u6 +uF (9, £, g

where
RN s Gt
- - n g
( 2 - EZ)I/Z (g—f)tan % - (gZ f2)1/2
(f-g)tan L]
a(g-f) 2
F=- tan [ £
(£ - )12 (2 - )12

In order to evaluate Ib2' let

/m

N B cm———
1 1 - cos ¢s

a=1-/nm

b=1+7Vm

so that

W () = [a + Ny (1 - cosd)][b - N - cosd) ]

and

ws'(¢) =N sin¢[s - Nl(l - cosd)] - N, sing[a + Nl(l - cosd) ]

71

(3-150)

(3-151)

(3-152)

(3-153)

(3-154)

(3-155)

(3-156)

(3-157)




o)

e

v v e

EW 3

. \'i

ORIGINAL PAGE i3

OF POOR QUALITY 2
The expression for I, may then be written as
Tp2 = Tpaa * T2 (3-138)
where
- - sin ¢ $ ~159
IbZa ZKH Nl f la + Nl(l - cos¢) | ctn 3 d¢ (3-159)
. - sin ¢ $ -
Lo2p T 2Ky Ny / 5= W,(T ~cosp] ctn 7 dé (3-160)

After performing the integration indicated in equation (3-159), I,24 becomes

a+ ZNl 1/2 a+ 2Nl 1/2

-1
I = 2Kyt = 4K, ("'??"") tan [(——:;————] tan %J (3-161)

Evaluation of the expression for Iyjy, equation (3-160), after some

manipulation, gives

Ibe - 2KH¢ + M(H KF(¢, Nl’ b) (3-162)
where
(2N, - b) (b - 2N, Jtan 3
1 -1 1 2
K, = tan b > 2N (3-163)
P - znlb)rfi (2 - an,p) /2 !
(2“1 - b) l(znl - b)tan~§ + (28b - bz)”zI .
= 1n i b € 2N
“r 2(2bN, ijrrf (2v, - b)ean %-- (2nb - b2)1/2 !
(3-164)

(4;)‘
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Combining equations (3~-150), (3-158), (3-161), and (3-162) into the

expression for L., equation (3-143), yields

Ib = - 2up + u F(¢.f.8) + AKH¢ + AKH KF(¢’N1’b)

a + 2N1 1/2

- 4Ky (—;——)

- At 2N 12 6
tan [(-——:;———) can-f] (3-165)

Using this result, I, can ke evaluated at the appropriate integration limits

for the given {intervals so that

a+ 2N 1/2  _| a+ 2N 1/2 ¢

b Wy ¢y 7 () e [(5—) ean )

[
N

<+
=
~
o)
~—
©
[*]
-
-4
p—
o
~—
)
[ad
=
h=g
€
+
=
=
—~
o
€
-
(o]
2]
~—
+
(]
=
|

~)  tan 3% (3-166)

+
&
=;‘|
~~
-]

This result, combined with that obtained for I,, equation (3-133), provides an

analytical representation of the integral constraint, I,, which must be
satisfied in order to insure that the trailing edge pressure gradients of an

airfoil are bounded.

At this point, there are four integral constraints and I_ matching

P
conditions which must be solved for °1,1e’ Ky » Eﬁ, sad the Ip unknown
constants, the vi's. Thus, in order to satisfy a fourth constraint, an

additional parameter must be relaxed. Because for most applications of

1

|
i
{
!
¢
}




i

ORIGINAL PAGE i3
OF POOR QUALITY 74

interest, the specification of the upper surface velocity distribution is of
greater consequence than the specification of the lower, both ;, and E, which
control the shape of the lower surface recovery, are candidates; however, as
freeing U results in a more direct method of solution, it is chosen as the
additional parameter to relax.

At this point, it is necessary to isolate ¢i,1e for solution in the
expression for I,, equation (3-133). To facilitate this, the terms not

containing °t le are combined in a parameter, KIa- such that I, becomes
’

¢ ¢
ln|sin —l%lgl - 1n|<:os(--—1-L-1-s - ale)[]

I =~ 27 +K, + 2tan a
a 2

Ia lel

¢ ¢
i,1 i,1
- 2tan °1e+l[1n|81n ——;—51 - 1n|cos(——?—s - a1e+1)|] (3-167)

where KIa is given by

le-1 ¢1 ¢i
Kia = 121 {2tan aillnlsin 7| = ln|cos (7— - ui)l]

¢ ]
i i
+ 2tan ui+l[1n|cos (7— - °1+l)| - lnlsin-f-l]}

1

p-l ) ¢
+ ) {2tan ui[lnlain 7—[ - 1n|cos(i— - ai)|]
i=le+l
$ ¢
i i
+ 2tan o, [1n]| cos (7— - °1+l)' - 1n| sin i—l]} (3-168)

Similarly, the expression for I,, equation (3-165), 1is rewritten to isolate

the unknowns K, Ea, and u for solution. Thus,
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Iy =Ko ¥ Ko tuey + Ky

where the constant terms are:

a+ ZNl 1/2 -1 2 + 2Nl 1/2 -1 ¢
ep T4y b ) e [ z
a+ W, 1/2 _ a+2W, 12 3

c, = 8n - Azs + 4(—3—-———) tan [(—a———-—) tan 21]

Klb - - 2u¢w +uF (¢U' £, 8)

75

(3-169)

) tan —-—]+4KF(OS.N1,b)

(3-170)

(3-171)

(3-172)

(3-173)

Using equations (3-123), (2-167), and (3-169), I, can be expressed as

I, = Kyep *Kyep vuey +J, =0

$
J, = 35+ b In(le,le) + c; In(le,letl) + e ln|sin —i-igl

where the coefficients are given by

8 =Ky, v Kpp

e v e e® . GG sen e o w

in which J, is defined, using the notation of equation (3-65), as

o

(3-174)

(3-175)

(3-17s)
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bJ = - 2 tan LI (3-177)
cy = 2 tan % o4l (3~178)
e; =2 (tan a1 ~ tan a; +1) (3~-179)

fi= this point, the integral constraint required for finite pressure
gradients al the trailing edge has been written with the unknowns isolated
appropriately for solution. It remains to rewrite the previously given
constraint equations of the Eppler wmethod to include ¥ as an unknown

parameter, To aid in this, the quantity w“clp is defined by

2%
Woel ™ j;_ In W (8) cosé d¢ (3-180)
w

and the equation resulting from the first closure constraint, equation (3-67),

is written as
KyW, Ky Wey *u W, *+J = 0 (3-181)

where Jc is defined as before, equations (3-69)-(3-73), except that the
expression given for a., equation (3-70), no longer includes the term
involving V. Similarly, the equatio. resulting from the second closure

constraint, equation (3-76), becomes

KH "ll M KH “sl tu "wol + Jl -0 (3-182)
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where

n

Woer = J_ 10 W (3) sin do (3-183)

P ¢

w

and the u term is no longer included in the expression for ag, equation
(3-78), which is used in defining Jg, equation (3-77). Finally, equation
(3-82), obtained using the matching condition at the trailing edge, is

rewritten as
- Ky 1n W (0) + Tgl In i’(zw) -WlaW (2m) +J =0 (3-184)

and, as before, the ; term is eliminated from the definition of 4., equation
(3-84), used in the expression for J,, equation (3-82).

Equations (3-174), (3-181), (3-182), and (3-184) can be used to sclve the
four unspecified parameters of the design problem. In mstrix notation, this

system of equations is represented by

— -
wcl ch wwcl Jc KH
P P -
wsl “sI wvsl Jn KH
- - - « (
-lnws(o) lnw.(Zt) -lnhw(Zl) Jt u
. J
L € €2 €3 b_J ’1,10
(3-185)

Expanding this system results in a transcenden: sl equation for 01 le which {»s
»

¢ the form

s + b In(le,le) + c 1n(le,lev!) + d.l le
.
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¢
+ e ln|sin -1515' =0 (3-186)

As {n the urmodified scheme, this equation {s solved by Regula falsi, after
which, J., Jq, and J. are calculated and Ky, Eh. and u obtained by back
substitution. At this point, it is still necessary to satisfy equation
(3-116) in order for the resulting airfoil to have a finite complex trailing
edge pressure gradient. In order to achieve this, the computational procedure
allows the designer to choose one of several possible fteration schemes which

vat.ies one of the parameters, K, i} v, or 3‘, until the condition of equation

(3-116) {8 met.

Calculation of Trailing Edge Pressure Gradients in the Modified Epnler Method

Once an airfoil nas been designed having bounded trailing edge pressure
gradients, it is of interest to know the values of those gradients. As zp” 1is
obtained ir .. :-rtion with the dezign process from equation (3-98), then, in
teference - 27... .ion (3-2B), the calculation of Ry further requires

that zTiv be determined. While z.ri

Y i{s mede finite by requi.ing continuiter of
P“(4) at the trailing edge, the actual calculation of the value of zrl' by
further differentiating the series representations of P(¢4) and Q(4), in a
manner similar to that used in obtaining zp''', would necessitate that P'(%)
be continuous everywhere and that P“(4) be piecevise continuous. As this
would place severe restrictions on the velocity distributions allowable simply
to facilitate the calculation of Ry, an alternative method vas developed to
approximete the value of ‘Tiv' The scheme employed centers on expanding the

transformstion, z(C), in a Taylor series sbout the trailing edge to odtain
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z(g) =z + z. '(g~¢.) 2 (e )2 v, "rr(g-g )3
T T T 2! °T T 31 °T T
1 iv . 4 -
+FZT (C CT) + ese (3 187)
in which, as determined previously,
zT' =0 (3-188)

and, as just noted, 2" is given by equation (3-98). 1In addition, because the
airfoil satisfies the conditions for a finite complex trailing edge pressure
gradient, the value of zp" can be used in equation (3-27) to solve

for zT"'. By substituting 2 coordinate from near the trailing edge on the
airfoil aad the corresponding coordinate on the unit circle into equation
(3-187), is possible to approximate z,r1v using the Taylor series
reoresentation truncated to fourth-order terms.

In ictual applications, by comparison with exact values obtained using
airfoils from the von Mises family, it was found that the most reliable values
of zTiv from the approximate method were obtained when tne upper surface
coordinate nearest the trailing edge was subs~ituted into the truncated series
and this result averaged with one obtained using a similar point on the lower '
surface. A value of Ry resulting from a z.r1v obtained in this manner,
however, must be viewed with some caution. The primary difficulty is that the

calculation is very seusitive to the detailed geometry of the trailing edge i

region. For example, while it might be expected that the shape of the
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trailing edge should not be zltered significantly by increasing the number of
points used to generate the airifoil, it can happen that when the resolution is
improved by increasing the number of points, what appeared to be a reasonable
trailing edge shape is actually overlapped. While this geometrical alteration
might be so s {ght that it is not evident in plotted results, the influence on
Rr is very significant. Although better accuracy can be achieved by greatly
increasing the number of points used to generate an airfoil, this is entirely
un' “cessary with regard to the basic design problem. Thus, in light of the
large number of computer runs dictated by the iterative nature of design, and
because the need for higher accuracy has yet to be established, the
maintenance of low-cost and minimal run time were considered more important
than obtaining Ry to higher accuracy.

Finally, it should be noted that once the non-dimensional values of the
trailing edge pressure gradients have been determined, they are resolved into

components and denoted as C or and CpNT in the output from the modified design

pS
code. The streamline flowing from the trailing edge is considered to be
directed along the bisector of the trailing edge closure angle and CpST is the

non-dimensional pressure gradient with respect to that direction. The

non-dimensional pressure gradient normal to the trailing edge streamline is

given by ¢yt

Influence of the Conditions for Finite Trailing Edge Pressure
Gradients on Airfoils Designed Using the Eppler Method

In order to better understand the impact of the finite complex trailing

edge pressure gradient conditions on the design of airfoils using the Eppler
and Somers code {25), it is instructive o compare vresults obtained using the

original rode with examples generated using a version of the code which
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incorporates the additional constraints. The airfoils to be considered in
this comparison are only to aid in the understanding of the influence of the
additional conditions on the designs generated by the code and are not
necessarily intended as viahle design possibilities.

The airfoil and velocity distribution shown in Figure 25 were obtained
using the unmodified Eppler and Somers code. In this extreme case, none of
the iteration schemes for achieving a particular trailing edge angle are
implomented and the trailing edge geometry resulting from the specified input
produces very steep velocity gradients in the trailing edge region, as well as
a very low trailing edge velocity ratio. Using the same input design
parameters in the modified version of the code, the value of 4 is determined
by the method such that the integral constraint required for finite trailing
edge pressure gradients, equation (3-113), is satisfied. As seen in Figure
26, imposing this constraint causes the flow in the recovery region and in the
vicinity of the trailing edge to be modified considerably. In particular,
note that the extent of the steepened gradients due to the closure
contribution has been lessened and that the trailing edge velocity ratio
increased significantly. This airfoil does not satisfy all of the conditions
for finite trailing pressure gradients, however, in that the requirement of
equation (3-116) has not been met. Next, the unmodified code is used with the
same input as before, except now the value of K is iterated to achieve Ks = Ky
+ Kﬁ = 0, The results of this case are shown in Figure 27. Clearly the final
iterated value of K has produced an airfoil very dissimilar to that obtained
us.ng the value initially specified. Last in this series of comparisons,
Figure 28 presents the airfoil obtained by iterating the value of K from that

used for the design »f Figure 26 in order to satisfy equation (3-116). The
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global influence, in particular the reduction in aft loading, which results
from imposing the conditions for finite trailing edge pressure gradients
should be noted.

It must be emphasized that the class of airfoils having finite trailing
edge pressure gradients is a subset of the family of airfoils designable using
the Eppler code. Thus, the utility of the modified method is to facilitate
the determination of the appropriate parameters which allow the conditions for
finite trailing edge pressure gradients to be satisfied. If after these
values have been found they are input into the unmodifie” code, then the
resulting airfoil would be the same as that generated by the modified scheme.

As the airfoils considered in the preceding examples are somewhat
extreme, Figures 29 and 30 provide a comparison of designs which are more
reasonable. The airfoil shown in Figure 29 is obtained using the unaltered
code while that of Figure 30 is a result of the modified version. As before,
the reduction in aft loading and the increase in trailing edge velocity ratio
occurring in the case of the airfoil generated with the additional constraints
in force should be noted.

Further appreciation of the behavior ot the modified code is obtained by
comparing the differences in the manner that the modified and unmodified codes
are used to design symmetrical airfoils. A symmetrical profile using the
original Eppler and Somers code is ohtained by setting corresponding upper and
lower surface design parameters equal to one another. If iteration to a
particular trailing edge closure angle is desired, a mode is chosen in which
the selected upper and lower surface interating parameters are incremented in
a manner that maintains the equality. Because the modified code solves for

the value of u that allows the additional {ntegral constraint to be 3atisfied,
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its value cannot be specified equal to u. A symmetrial airfoil will result,

however, if the other corresponding upper and lower surface inputs are set
equal, and the iteration mode selected to satisfy equation ((3-116) iterates
on u. Fulfilling the requirement that w"“(0) = w"“(2m) in this way forces u to
be equal to . As demonstrated, for example, by the result shown in Figure
31, this procedure yields a symmetrical airfoil having finite trailing edge

pressure gradieats.
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CHAPTER 1V

DESIGN EXAMPLES AND APPL _ATIONS

To explore the characteristics and capabilities of the modified version
of the Eppler code, the usage of which is described in Appendix C, the
velocity distributions of several airfoils appearing in the literature were
adjusted as necessary and used to generate comparative airfoils having fiaite
trailing edge pressure gradients. The first airfoil to be considered in this
manner is the design of Strand presented in Reference [34]. The inverse
method developed by Strand, used to generate this airfoil, is a development of
Arlinger's procedure [10] which, in turn, grew out of that of Lighthill [9].
In the formulation of this procedure, the constraints imposed by the inverse
problem on the velocity dictribution are satisfied by making adjustments to
the portion of th: desireu velocity distribution which occurs on the lower
surface of the airfoil. The differences between the desired distribution and
that achieved are minimized by making the required adjustments as small, in a
least-squares sense, as possible. The design point potential flow velocity
distribution for this airfoil, shown in Figure 32, is calculated using the
coordinates given by Strand [34] in the panel-method analysis procediure of the
Eppler and Somers code [25]. At this angle of attack, the velocity
distribution is intended to have a constant velocity rooftop followed by the
appropriate Stratford recovery. The non-smooth appearance of the points on
this calculated velocity distribution is largely a result of having an
{nsufficient number of coordinates to describe the airfoil. Also shown in

Figure 32 are the airfoil and velocity distribution obtained when the airfoil
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is modified to have finite trailing edge pressure gradients. The two
distributions are seen to be very similar except near the trailing edge. In
fact, it was found that these a.fferences could be largely eliminated by
splining in additional coordinates. A comparison of the original Strand
airfoil with the modified one is not presented as the geometrical differences
between them are almost imperceptible. In comparing the analysis results for
the two airfoils at the design angle of attack and Reynolds number of 3x106, a
1ift coefficient of 1.32 is calculated for both airfoils. With natursl
transition determined by the program, the lift-to-drag ratio of the original
airfoil at the design point is found to be 197, while that of the modified
profile is slightly better at 207.

Another example of a airfoil redesigned such that the trailing edge
pressure gradients are bounded is that shown in Figure 33. The parent airfoil
in this case is one developed by Liebeck and given the designation L1004 in
Reference [12]. It is intended that this airfoil have a fully turbulent
rooftop at the design Reynolds number of 3x106. Although details of the
velocity distribution and airfoil coordinates are unavailable, points taken
from the velocity distribution presented in Reference [12] are noted in Figure
33 for comparison with the distribution obtained for the modified version
having finite trailing edge pressure gradients. While the design lift
coefficients of 1.31, as calculated using the code of Eppler and Somers [25],
is slightly less than the value given of i.35 given for the L1004 by Liebeck
{12], the calculated lift-to-drag ratio of 184 for the modified airfoil is a
slight improvement over the value of 181 for the L1004.

Another example, from the same family as the preceding airfoil, is the

Liebeck L1003, derigned to have a fully laminar rooftop at a Reynolds number
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of 2x10%. As evident in Figure 34, the redesigned velocity distribution is
close to that plotted in Reference [12]. 1In this case, however, even after
fixing transition at the appropriate location, the Eppler aad Somers analysis
indicates that the entire recovery region is separated. As noted by Liebeck
[34], obtaining an unseparated recovery for this section is extremely
dependent upon having particular flow conditions at the beginning of the
pressure rise. Thusg, it is likely that the separation problems resuit because
of small differences in the flow conditions between the twn airfoils at the
initiation of recovery.

In addition to resulting in abrupt stalling behavior, the use of a
Stratford pressure recovery for practical airfoils is often criticized in
that, with regard to the normal flowfield variations that occur in realistic
applications, the attainment of the precise flow conditions required at the
beginning of the pressure rise cannot be assured. Consequently, the
consideration of designs incorporating Stratford distributions is often of an
academic nature, as is the case of studies directed toward exploring ultimate
possibilities in airfoil performance. Thus, an example of a more practical
candidate for adaptation to an airfoil having finite trailing edge pressure
gradients is provided by the well-proven and documented Wortmann FX 67-K-150,
Reference [36]. The actual airfoil considered here, shown in Figure 35, is
defined by the aerodynamically smoothed coordinates given by Somers [37].
Although this section is optimized for use with flaps, only the configuration
having a neutral flap setting will be treated. .The lack of steep gradients
near the trailing edge in the velocity distribution examples considered up to
now has permitted the conditions for a finite complex trailing edge pressure

gradient to be applied to the existing designs with only minor alterations
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necessary. Hence, the goal has been to obtain an airfoil with bounded
trailing edge pressure gradients that has a velocity distribution as close as
possible to that of the parent section. The Wortmann section, however, is
unlike those already considered in that, due to the significant differential
between velocities on the upper and lower surfaces near the trailing edge, a
steep adverse pressure gradient is present over the aft portion of the
velocity distribution. Consequently, the concern in this case is to obtain an
airfoil with finite trailing edge pressure gradients which, although having a
somewhat altered velocity distributicn, embodies the same design philosophy
and achieves comparable performance. With this in mind, consider the result
shown in Figure 37 and note that the use of the modified code has changed the
velocity distribution such that the upper surface aft loading present on the
Wortmann section, causing the steep adverse pressure gradient near the
trailing edge, has heen eliminated. It should be pointed out that there is a .
drag penalty associated with Lhe steep lower surface favorable pressure

gradient that is a result of the closure contribution on the newly designed

airfoil. While it was found that the drag could be reduced considerably by

beginning the lower surface closure contribution sooner, and thereby lessen

the gradient, the distribution shown was retained as it is more like that of

the Wortmann section. 1In addition, in order to contrul separation problems

that were introduced by the velo:ity distribution changes at the trailing

edge, some modifications were made to the shape of the upper surface recovery

distribution. Although the elimination of the upper surface aft loading ;
ctesults in a loss of 1ift as calculated by potential flow methode, this is !
more than offset by the increased value of VTE/U which allows the lower 3

surface to carry a greater amount of aft loading. A comparison of the overall
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aerodynamic performance of the two airfoils is provided by the viscous
analysis results obtained using the Eppler and Somers code and presented in
Figures 36 and 38. The finite trailing edge pressure gradients airfoil has -~
been designed such that the maximum lift-to-drag ratio occurs near the design

angle of attack dictated by equation (3-111). Both airfoils exhibit best

lift~-to-drag ratios at a lift coefficient near unity. A more detailed

comparison reveals that the drag polars of the new profile are roughly

equivalent to those of the original section over most of the usable

performance range; however, the performance of the section generated with the o
modified code 1s extended considerably in the direction of higher lift .
coefficients.

While the imaginary part of the condition necessary for an airfoil to
have finite trailing edge pressure gradients can only be satisfied at a single
angle of attack, as equation (3-27) reveals, the results of the Eppler and
Somers code viscous analysis of such airfoils indicates nothing particularly -
special about the zerodynamic characteristics at that angle of attack. This -
fact, however, should be to some degree expected in that the analysis makes 3

use of conventional boundary layer theory in which normal pressure gradients

e~ 8
S——g

through the Loundary layer, as well as all wake influences, ~"e assumed to be

unimportant. As has been discussed, this assumption breaks down near the

.
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trailing edge where the inviscid pressure gradients are generally unbounded.

It should be no surprise, then, that the results of a calculation based on
conventional boundary layer theory do not i{ndicate any characteristics

attributable to the presence of finite trailing edge pressure gradients.

Thus, a thorough evaluation of the effect of such factors or airfoil

8-y
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performance would require a fairly extensive investigation that makes use f a
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theoretical model having a more detailed description of the €low in the
vicinity of the trailing edge. To demonstrate what such a model might
indicate, consider the application of the GRUMFOIL code [21] to the two
airfoils just presented. The results of this 1inalysis for the FX 67-K-150 are
given in Figures 39-41, and those for the corresponding finite trailing edge
pressure gradient airfoil in Figures 42-44. The analysis of the latter
section was perfcemed at its design angle of attack and that of the Wortmann
at an angle of attack which resulted in the 1ift coefficients matching. The
Reynolds number used was 2x10% and the Mach number was set to zero. The
aerodynami« characteristics calculated using GRUMFOIL are somewhat different
from those obtained with the Eppler and Somers code. In general, the lift
coefficients calculated by GRUMFOIL are slightly greater than those of the
Eppler and Somers code, while the drag coefficients, even though transition
predictions agree fairly well, are notably less.

The fully viscous GRUMFOIL pressure distributions for the two airfoils
are given in Figure 39 and 42, In considering the viscous pressure
distribution for the Wortmann section, Figure 39, the pressure spike near the
leading edge which is not present in the Eppler and Soncrs potential flow
results warrants explanation. Based on distributions obtained at lower angles
of attack, it was concluded that the peak is due to a lack of smoothness in
one of the coordinates rather than froz the angle of attack under
consideration being too large. It has been found that only a very small
inconsistency in the given coordinates can be responsible for such a result.
In further considering the viscous pressure distribution of the Wortamann
design, it should be observed that the steep upper surface gradients near the

tralling edge present i the potential flow results are largely elimi- :red Ly
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the smoothing action of viscous influences. As 3een in Figure 42 for the
airfoil having finite trailing edge pressure grzdients, on the other hand, the
inviscid calculations are lirtle impacted by the inclusion of viscid-inviscid
iterations.

Further differences in the trailing edge region flow behavior are well
demonstrated by comparing the boundary l.yer characteristics of the two
airfoils. In the case of the Wortmann profile, Figures 40 and 41 readily
demonstrate the singular behavior at the trailing edge of the displacement
thickness, form facror, aad the equivalent surface source velocity. 1t should
be noted that these results conform very well to those found experimentally,
guch as in the work of Preston, et. al., [29]=[31]. In remarkable contrast,
as seen in Figures 43 and 44, the slope discontinuities are eliminated for the
airfoil with bounded trailing edge pressure gradients. The ramifications of
these results are significant. In addition to any performance benefits
arising from smooth flow off the airfoil and into the wake, the application of
the condition for finite trailing edge pressure gradients has produced a class
of airfoils for which the strorg viscid-invisccid interactions, beyoud that of
the displacement thickness, csn be neglected. That is, conve *"~23l boundary
layer theory remains valid in the region of the tral{ling e w2 u. -uch
airfoils and is sufficient for the prediction of their aeruva; --'.
characteristics. Furthermore, as the influences d.e to viscosi'y .
minimized, the results calculated using potential flow design n. - s zhould
be mora reliable than those generally obtained.

Becasuse the imaginary part of the condition required for achieving finice
tralling edge pressure gradients can only be satisfied at a single angle of

attack, equation (3-27), it is of interest to examine the importance of this
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limitation by considering the off-design boundary layer behavior as calcu:ated
using GRUMFOIL. First, however, it should be noted that becaus. of
differences in the zero-1ift angle of attack prediction, it is likely that the
~orregpondence between the angles of attack calculated by the Eppler and
Somers code and those used in GRUMFOIL {s not exact. Thus, in all
probability, the case already presented represents a slightly off-design
situation. In any e.ent, to further consider the flowfield behavior off-
design, Figures 45 to 47 summarize the GRUMFOIL output for the Wortmann based
finite trailing edge pressure gradients airfoil at an angle of attack of
approximately four degrees less than the design value. From these rosults, it
is apparent that strong singular boundary layer characterisrics alL the
trailing edge do not dramatically appear when the airfoil is operated at
conditions other than those of the design point. It is evident f-om Figure
45, however, that the streamwise change of pressure along the wake centerline
in the vicin.lty of the trailing edge, ard consequently its effect on the
inviscid flow, has increased over than seen in Figure 42. In addition,
although certainly not discontinuous, the slopes in the immediate vicinity of
the trailing edge on the boundary layer property distributions do appear
slightly steeper than those present at the design angle of attack. Although
additional verification is warranted, on the bssis of these off-design
GRUMFOIL results, it can be concluded that if any aerodynamic henefits are
realized by the presence of finite trailing edge pressure gradients, then
these benefi’s are not limited to the desi~n angle of attack but are present
to some extent o' er an operational range of angles. Thus, in addition t»
being of academic interest, this allows airfoils designed with finite trailing

adge pressure gradients to merit consideration for practical application.
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CHAPTER V

CONCLUDING REMARKS

The potential flow sol ition for any airfoil having non~zero trailing edge
loading is characterized by the presence f unbounded pressure gradients at
“he trailing edge. Although in a real fluid the pressure gradients are
somewhat soffened by viscous a2ffects, those in the trailing edge region do
‘1deed become extremeiy steep resu:ting in, among other things, the slope of
the displacement thick. 3s distribution being disconrinvaux =t the crailing
edge. Considering the near critical nature of many of the velocity
di<tributions prescribed for maximum 1ift or minimum drag, the en-~ounter ¢
such a disturbance could be sufficient to cause severe upstream sepa:ation
problems. Thus, the goal of separation free flcw should benefit by the
removal of this disturbance to allow the fluid on the airfoli o flow into the
wake as smoothly as pcssible. Of additional conce:n in this regard, the
presence of strong adverse pressure jradients in the vicinity of the trailing
eige, as seen in many maximum performance design efforts, may result in
upstream separation problems. Thus, to help ensure that the higi performance
levels promised by potential flow methodr ere reslized in practice, a
procedure has been developed to design airfoils for which the trailing edge
pressure grad‘cnts are finite and the flows on the upper and lower surfaces
approach the crailing edge ‘ree of strong sdverse pressure jgradients.

The ability to spacifically configure the trailing sdge region of an
yirfoil to achieve finite pressure gradients has been made possible by the

unique capability of the Eppler method which allows different segments of an
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airfoil to be designed for different angles of attack. As the removal of the
trailing edge pressure gradient singularities requires that no load be carried
by the trailing edge, the method is able to adapt the aft portions of the
airfoll such that this no-load requirement is met. To some extent, the
resulting airfoil can be thought of as one in which the trailing edge region
behaves locally like a flat plate at zero angle of attack although, in the
flat p'ate case, ... gradients are not only finite but zero. By eliminating
the uabcunded trailing edge pressure gradients, it is possible to specify a
velocity distribution on an airfoil which pushes boundary layer performance to
its critical limits as is the case, for example, in specifying a Stratford
recovery, or in choosing a distribution for which the trailing edge velocity
ratio is maximized.

In the formulatloa of conventional boundary layer theory, normal pressure
gradients through the boundary layer are ignored and only the influence of the
displacement thickness on the inviscid results is considered. Thus, because
of the unbounded pressure gradients that generally occur at the trailing edge
in the potential flow solution, conventional boundary layer theory is invalid
in the vicinity of the trailing edge. In regard to this limitation, Melnik,
et. al. [33] demonstrated that the potential flow solution singularities give
rise to additional viscid-inviscid interactions, each having an effect as
{mportant as that of the displacement thickness. Thus, by allowing for the
influences caused by the normal pressure gradients in the trailing edge
region, wake thickness, and wake curvature, Melnik and his coworkers developed
a self-consistent boundary layer tl.eory able to account for the strong viscous
interactions due to the singularities in the inviscid flow solution. Although

the formulation is distinctly different, the removal of the trailing edge
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singularities can be considered an alternative approach to the same problem.
In this light, airfoils having finite trailing edge pressure gradients
represent a class for which the strong viscid-inviscid interactions in the
trailing edge region have been minimized. Consequently, conventional boundary
layer theory is sufficient for the viscous analysis of such airfoils.
Furthermore, because the corrections necessary to the inviscid solution due to
viscous effects are minimal, potential flow design methods are likely to yield
more reliable results than they otherwise would.

Considering the nature of the flow behavior in the region of the trailing
edge, airfoils designed to have finite trailing edge pressure gradients may be
ideally suited to aid in the development and calibration of improved
aerodynamic prediction methods for airfoils. For example, in the theoretical
formulation used in the GRUMFOIL code {33}, the local trailing edge region is
modeled as unseparated flow over a {lat plate at angle of attack. Thus, the
class of airfoils having bounded pressure gradients at the trailing edge are
much more consistent with this model than is generally the case. Such
airfoils should, thereiore, provide useful development tools and calibration
cases. In a similar application, because the rapid growth of the displacement
thickness at the trailing edge that generally occurs leads to numerical
divergence problems, the development of viscous analysis met.ods in which
potential flow-boundary layer iteration is employed should benefit from the
well-behaved growti in displacement thickness at the trailing edge on airfoils
having finite trailing edge pressure gradients.

Finally, if imposing the requirement for finite trailing edge pressure
gradients does indeed minimize the viscous interactions and allow pbtential

flow predictions ts be more fully realized, then this situation clearly
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suggests that an improvement in airfoil performance is possible. In the
examples that were considered, the design effort was directed at matching the
characteristics of previously defined velocity distributions. Consequently,
it remains to explore the potential of exploiting the use of finite trailing
edge pressure gradients to enhance airfoil aerodynamics. Encouragement that
gains might be meie, however, is provided by the results of the GRUMFOIL
analysis from which, for example, the employment of the finite trailing edge
pressure gradients condition ylelds an airfoil having a thinner displacement
thickness and wake than otherwise occurs. If such performance benefits are
indeed found to exist then, as the GRUMFOIL results indicate that reasonable
of f-design capability is present, airfoils having finite trailing edge

pressure gradients become candidates for practical application.
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ORIGINAL PAGE IS
OF POOR QUALITY

APPENDIX A

LIMITING COEFFICIENT VALUES OF THE GENERAL TRANSFORMATION

FOR MAPPING A CIRCLE TO AN AIRFOIL

Consider the general transformation which maps a circle centered at the

origin of the Z-plane into an airfoil in the z-plane as given by

= ¢
z =7 + X
n=l z

=

= (A-1)

where ¢, = aj + ib,. In this transformation, depicted in Figure 48, it is
assumed that |g| » rand r > 1. G‘ven that the origin of the z-plane lies

within the profile, the area enclosed by the boundary of the airfoil is

2w
1 2 1 2 38
A--z-fcRde--z-fo R 35 40 (A-2)

and, from the Cauchy-Riemann equations,

Substitution of equation (A-3) into (A-2) yields
2n 2n
r IR I 2 1
A= Ri-desza-{ ] R}
0 0
2n
r 3d i$y,2
R ARANEC !)1% a0} (A=4)
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ORIGINAL PAGE {9
OF POOR QUALITY
Noting that
z(reih = rel® 4 ‘z CFV— (A-5)
’ n=1 rneimb
z(rew) = re-i¢ + ai ——‘-:-5——- (A-6)
n=1 rne-in¢
the integral in equation (A-4) yields
2n 2n
/ |z(rei¢)|2 d¢ = [ z(rew) z(rew) dé
0 0
S Wy S W
- re’ + ) ——][re "+ —] d¢
0 n=1 rnehw n=l r"e iné
2
2 = el
= [+ ) 5] (A-7)
n=1 r
Thus, equation (A-4) becomes
2
LA 2 3 Icnl Tr I 2“l""'nl 1
Arg gl U ool =gl - L =
n=1 T n=1 r
which can be rearranged to give
2
@ nfc |
A.2-1 B (A-8)
n=1 ren

Since the area of the airfoil cannot be negative, it follows that
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OF POOR QUALITY

(4-9)

As the expression is valid for all values of r between one and infinity, it

must hold for r equal to one. Thus,

L -]
- 2 2 2
ni[ nlcnl = ngl n(an + b ) <1 (A-10)

An immediate consequence of this result is that

2 1/2

2
leyl = (3" + %) <1 (A-11)
To examine these results further, consider the case for which the
equality in equation (A-ll) holds, i.e., when |c1I is unity. Observe from
equation (A-10), that for this to be true all of the other transformation
coefficients must be zero. Thus, for this case, the transformation becomes
€1

z = +C_ (A-12)

where [c)| = 1. Writing the transformation coefficient as

- 21y
(:1 e

where 0 < v < 2, the mapping function becomes

24y

z(g) =g + £ : (A-13)
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For the case of mapping the unit circle, this gives

2(e1?) = o1f 4 Q20N THE L Y[ A0 S1Y  -10 4]
- eiY[ei(¢-Y) + ei(-¢+Y)] - eiY[ZcosW"Y)}

= 2e1Y cos(e-v) (A-14)

Hence, as shown in Figure 49, if { describes the unit circle chen its
conformal image, z, describes both sides of a flat plate oriented to the
positive real axis at the angle Y. Thus, 1°l| can be equal to unity only for
functions mapping the unit circle to a flat plate. Note that without loss of
generality, the trailing edge of the profile generated can be assumed to be
located on the real axis. For the example given, this results in the
orientation of the flat plate being aicng the real axis with y = 0. Thus, a
1s unity and all the other a,'s and b,'s must be zero. This case is
equivalent to that of the Joukowsky flat plate at zero angle of attack.

To examine the relationship of the transformation coefficients to the
maximum possible trailing edge velocity, VTE, consider the expression for the
trailing edge velocity for an airfoil obtained from a mapping of the unit
circle as given by

VIE = 2U cosa (A-15)

where, for the case of the trailing edge fixed on the real axis,
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20”1 = L2 nCa+Da)? + () a(arp )?]'2 (A-16)
n=1 n=|

Clearly, the maximum value of VIE/U is obtained when IzT"I is minimized. This
occurs when the second term on the right is zero as accomplished when all of
the b 's are zero. Although there are noa-zero values of the b,'s which can
achieve the same result, there are none which can result in a higher value of
VTE/U. Consequently, the symmetrical airfoil that results when the bn's are
~ero has a trailing edge velocity ratio which is at least as great as any non-

symmetrical airfoil generated using the same set of an's.
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COEFFICIENTS OF THE INEQUALITY EXPRESSION FOR POSITIVE THICKNESS

e

The expression which is developed to insure that physically realizable

L P S @Ema . ~

& L

- airfoils will result from a six term von Mises transformation, equation
(2-58), is
At + B3 +cEf +DE+ES O (8-1)
8.
the coefficients terms for this expression are given by
. [ A= 16:4(1'-1)5 (8-2)
) B = 82[5(r-1* - &, (1" + ay(r-1)? - ay(e-1)?
+ a,(r1) - ag) (8-3)
C= 6:2[(10 - b4a, - 2a )(r-l)3 + (32, + 3a, + a r)(r-l)z
1 2 2 3 3
s - - (225 + 4o, + 2a,t)(r=1) + (a, + Saq + 3a5r)] (B-4)
,;j .
'
: ? D = 2r[(10 - 6a, - 6a, - 3n3) (r-l)z + (3a, + 6a, + 6a,
N
+ 2a3r + 4abr) (e-1) - (13 + ba, + 10ag + 2a,r
+ 10at + asrz)] (B-5)
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2 3

- ba3 - 434)(r-1) + (a, + 3a

3T + Aaat + IOasr)
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APPENDIX C

USAGE OF THE EPPLER CODE INCORPORATING THE CONDITIONS FOR FINITE TRAILING

EDGE PRESSURE GRADIENTS AND LISTING OF PROGRAM MODIFICATIONS

[n making modifications to the Eppler and Souwers code [25] in order to
facilitate the design of airfoils having finite trailing edge pressure
gradients, the effort was made to leave as much of the existing code and its
data input as unchanged as possible. Thus, the discussion included in this
appendix should be considered in conjunction with the code description and
operating instructions presented in Reference [25].

While the primary purpose of the modified code is the design of airfoils
having finite trailing edge pressure gradients, it might also be of use in the
design of airfoils in which the upper and lower velocity distributions merge
smoothly at the trailing edge without the nearby presence of steep gradients.
In eithar case, the integral constraint of equation (3-113) i3 satisfied.
Because this condition eliminates the pressure loading at the trailing edge,
the shape of the aft portion the airfoil is largely governed by the zero
closure angle which results. Thus, although control remains over the extent
that this zero closure angle is allowed to influence the overall shape of the
rear of the profile, much of the ability to iterate to a desired closure angle
that is present in the original code is lost.

With reference to Eppler and Somers [25), the input to the modified code
differs from that of the original as follows:

i« On the TRAl card, although assumed internally ty the modificd code,

“Ip should be set equal to a, as required by equation {3-132).

- lama




104

2.  The value of u is no longer specified by the F , word on the TRAZ
card, but determined by the program such that the fourth integral
constraint is satisfied. In its place, however, the quantity IWPPM
is designated to select the mode of iteration used to achieve the
requirement that P”(0) = P”(2n), equation (3-116). The iteration
mode possihilities are as follows:

IWPPM = 0O = No iteration is performed and P"(0) will, in

general, not be equal to P"("-).

[WPPM = | - K is replaced by K + AK
[WPPM = 2 - Kis replaced by K + AK
IWPPM = 3 = u is replaced by u + Au
— >
IWPPM = 4 - X 1is replaced by A + A), unless that result is
calculated to be less than zero or greater than X.
H
In that case, the program switches to IWPPM = |, -
3. Also on the TRAZ ceavd, Fg = BMS|,, which deteruines the 2

interpretation of Fg and F 5, must be set to zero. Consequently,
-l Fg is always interpreted as K.

4. While still active in the code, it should be noted that the
specification of IT™OD equal to 5 or 6, F|; on the TRA2 card, will o
generally not result in convergence to the specified value of K..
This is because in these modes, K is iterated and the calculated
iteration increment, &E. is suparseded by the code determination
of 1 which, in turn, alters the valuc‘of K.

A sample input set for the modified code is presenced in FPigure 50. The f;

result of this input {s the airfoill having finite trailing odge pressure

ey
» t

gradients shown in Figure 37.
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It should be noted that that it is not intended that the modified code be
run with ITMOD # O and IWPPM # O gimultaneously. The design of airfoils
having finite trailing edge pressure gradients is carried out with ITi.OD = 0
and IWPPM # O, The design of airfoils in which it is only desired that
velocity distribution be free of steep adveise gradients in the vicinity of
the trailing edge can be accomplished with ITM... # O and IWPPM = 0, In
designing airfoils having finite pressure gradients, it is sometimes
advantageous to begin the pro.ess with one of the ITMOD modes and switching to
one of the IWPPM options when close to the desired velocity distribution. For
example, 2 symmctrical airfoil can be obtained by first setting ITMOD = 6 or
9, IWPPM = 0, and specifying the additional inputs as described ° - Eppler and
Somers [25] such that the upper and lower surface velocity distribution
specification quantities are equivalent. In the case of using the modified
code, however, the program will solve for a value of u which is different from
that specified fcr u. Now, inputting the results from this run and changing
to ITMOD = O and IWPPM = 3, 1 will be iterated until it agrees with 1 and a
symmetrical profile having finite trailing edge pressure gradients will
result.

A listing of the modifications made to the Eppler and Somers code [23]
will follow. Only the msin programs and modified subroutines, in addition tc
ssveral nevwly sdded subroutines, will be prescnted. The reader is again

referved to Reference [25] for a listing of the original code.
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OF POOR QUALITY

PROGRAM EPPLER3 (INPUT,OUTPUT,TAPEY,TAPES=INPUT,TAPE6=QUTPUT)

DIMENSION XF(121),YF(121),BETAF(121)

DTMENSION AM(7,7),AV(T7)

DIMENSION V(14),MARKEN(20),ALCA(14),CAE(2)

DIMENSION RE(5),MA(5),MU(5),T(42)

DIMENSION TM(5),ALS(5),RER(5),MUR(5)

DIMENSION TST(5),BANT(5),CW(5,2,14),SU0(5,2,1+),SA(5,2,14)

COMMON P1(121),P(121, ,XP(121),YP(121),PUFF(14) ,AGAM(14),Xx(121),
1Y(121),DS(122) ,VF(121) ,ARG(121) ,ANI(28),ALFA(29),I12Z,KFU,NQ,NUPRO,
2JAB,JST,CM,ETA,ABFA,PI,BOGEN,DARG,PURES(13),FUW(60,7),RS(60)

COMMON XTF,SMA,XFL(10),GAMMA(121,2),AMAT(120,120)

COMMON /GRZX/CDK,AA(7),BB(7)

COMMON/PRAL/DLT,DLTU,ALN,ALV(14) ,NAL,ITP,NAMP(12) ,CML(14) ,CRL( 14)
1 ,CPV(2),ALTX(4,2) ,DARF,ITIT1,ITIT2

COMMON/PLTM/MPL ,MGC,XZEH,YZEH,MSPLI

COMMON/EA/ILES,IDRU,ISTA,NNESE

COMMON/TRIT/DLV,SUMP,XTRI(4),NU,ND

COMMON /LINING/BROKL(12) ,NLINE(S5),NPAR(5S),JNEW

EQUIVALENCE(XF(1),FUW(1,1)),(YF(1),FUW(3,3)),(BETAF(1),FUW(5,5))

EQUIVALENCE (Cw(1,1,1),P1(1)),(SA(1,1,1),P(20)),

1 (SU(1,1,1),XP(39))

DATA ILES,IDRU,ISTA,NNESE/S,6,4,1H1/

DATA MARKEN/4HTRA1,4HTRA2,4HALFA,YHAGAM, 4HABSZ , 4HSTRK , Y4HENDE,
14HDIAG,4HRE ,UHSTRD,4HFLZW,4HPLWA, 4HPLW ,4HTRF ,4HAPPR,4HCDCL,
24HPAN ,4HFXPR, 4HFLA®, 4HPUXY/

DATA CPV/9HVELOCITY ,9HPRESSURE /,ALTX/YH ZER,U4HO-LI,UYHFT L,
#UHINE ,4H CHO,4HRD L,4HINE ,4H /,KBLT/H /

DATA MGC,ISTIFT,MXZ,CDK/0,1,=-1,.01/

DATA ZAEH,DICHTE/13.6E-6,.12533/

MPL=0

PI = 3.141592654

BOGEN = 0.0174532925199

ABFA = 1.0
AGAM(2)=1.

AGAM(3)=1 .

AGAM(6)=1 .

AGAM(8)=0.

AGAM(10)=1.

MTR=0
READ(ILES, 2)MARKE,NUPA,NUPE,NUPI,NUPU,PUFF

2 FORMAT(A4,3I1,13,14F5.2)

DO 12 I=1,20
IF (MARKE.EQ.MARKEN(I)) GO TO 13

12 CONTINUE
14 WRITE(IDRU,3) MARKE
3 FORMAT (11H INCORRECT ,Al4,5H CARD)

GO TO 0

C  TRATTRA2ALFAAGAMABSZSTRKENDEDIAGRE STRDFLZWPLWAPLW TRF APPRCDCL
C  PAN FXPRFLAPPUXY

13 GO T0(15,22,333, 14, 142,90, 150, 104,30, 112,30,71,60, 14, 14, 160,

*170, 180, 190, 106),I
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TRA1 CARD
15 NUPRO=NUPU+1000%NUPI
IF(MTR.EQ.0)JST=0
I=0
18 I=I+1
ANRI=RUND(PUFF(I)®ABFA, 1000.)
IF(ANRI.NE.0.)GO TO 20
IF(JST.NE.0)GO TO 21
JST=MTR+1
20 MTR=MTR+1
ANI(MTR)=ANRI
I=I+1
ALFA(MTR)=PUFF(I)
IF(I.NE.14)GO TO 18
21 JAB=MTR
GOTO 11
TRA2 CARD
22 DO 23 I=1,13
23 PURES(I)=RUND(PUFF(I),1000.)
MSPLI=0
ITP=0
IZZ=INT(PUFF(14))
CALL TRAPRO
XDA=0.
YDA=0.
DEFLG=0.
GO TO 9
RE CARD
25 IF(PUFF(2).EQ.0.) GO TO 28
DO 27 J=1,5
RERX= PUFF(2%J)
IF(RERX.EQ.0.)GO TO 26
RE(J)=1.ES®RERX
IPU = INT(PUFF(2%J-1))
MA(J) IPU/100
MU(J) IPU/10 - 10"MA(J)
27T JR =
26 DO 29 J=1,4
29 XTRI(J)=zPUFF(J+10)%.01
28 CALL GRP(NAL,RE,MU,JR,ISTIFT)
MSPLI=0
JP=JR
GOTO 11
FLZW CARD
30 IF(NUPA.EQ.0) GO TO 1
AGAM(6) =FLOAT(NUPE)
AGAM(8) =PLOAT(NUPI)
31 IF(I.EQ.9) GO TO 25
IF(PUFF(2).EQ.0.) GO TO 36
GDF = PUFF(1)
VMAX = PUFF(2)
IF(PUFF(3) .NE.O.) DICHTE = .1#PUFF(3)/9.806
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IF(PUFF(4).NE.O.)ZAEH
Go

IF(PUFF(5).EQ.0.)
D = 0.

DO 34 J = 1,5

JZ = 2%J + 3

TO

+)
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PUFF(4)#1.E-6
50

IF(PUFF(JZ).EQ.0.) GO TO 36

TM(J)=PUFF(JZ)
ALS(J)=PUFF(JZ+1)
MUR(J) = NUPU
38JT =4
36 IZT=NZPZ(2,6%NAL+2)
JP=JT

WRITE(IDRU,37)IZT,NAMP, (ALTX(J,ITIT2),J=1,4)
37 FORMAT (A1,36HAIRCRAFT-ORIENTED SUMMARY  AIRFOIL ,12A1,3X,
#31HANGLE OF ATTACK RELATIVE TO THE,4Ad4)

IVMAX=INT(VMAX#3.6)+1
IZT=N2PZ(2,0)

WRITE(IDRU,38)12T,GDF,IVMAX,DICHTE, ZAEH .
38 FORMAT (A1,6H W/S =,F6.2,8H KG/SQ.M,3X,THV MAX =,I4,5H KM/H,3X,

#*5HRHO =,F5.3, 13H KG*S E2/M EY4,3X,4HNU =,F10.8,TH SQ.M/S)

IZ2T=N2PZ(2,0)

WRITE(IDRU,40)IZT, (KBLT,TM(J) ,ALS(dJ),d=1,JT) - ’

40 FORMAT (A1,5X,5(A1,4X,3HC =,F5.2,84 THETA =,F5.2))
41 V1 = SQRT(2.*GDF/DICHTE)

DO 48 1=1,NAL
IVS = -I
DO 46 J = 1,dJT

IF(ALV(I)-ALS(J) )42, 44,42 ' ‘

42 VALF = V1/SQRT(.11#ABS(ALV(I)-ALS(J))) ™

IF(VALF - VMAX)Uu6,46,44

44 VALF = VMAX

46 RER(J) = VALF®TM(J)/ZAEH

48 CALL GRP(IVS,RER,MUR,JT,ISTIFT) ‘1 '

MSPLI=0
49 1F(D)72,50,72
50 GO TO 11
PLW CARD
60 IF(PUFF(1))62,68,62
62 DST = PUFF(1)%.01
GST = PUFF(2)
DGF = PUFF(3)
CWSF = PUFF(4)%.001
DO 66 J = 1,5
JZ = 2%J+3
IF(PUFF(JZ))64,68,64
64 TST(J) = PUFF(JZ)
BANT(J) = PUFF(JZ+1)
MUR(J) = NUPY

66 JT = J

68 BF 2 0.
FST = 0.
NF = 0
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CALL DIA(X,Y,NQ,D) OF POOR QUALITY

IFDST.LT.0.) DST = D
DO 70 J = 1,JT
T™M(J) = TST(J)®DST/D
ALS(J) = 0.
BF = BF + BANT(J)

70 FST = FST + BANT(J)®*TST(J)
FF = FST®*DST/D

GEW = GST + (FF-FST)®DGF
GDF = GEW/FF
GO TO 36
PLWA CARD

71 NAN = NUPU
CWSFU=CWSF
FAU = FF
GAU = GEW

DO 88 NF = 1,NAN
FF = FF+PUFF(1)
GEW = GEW+PUFF(2)
CWSF=CWSF+.001#PUFF(3)
V1 = SQRT(2.%GEW/ (DICHTE®*FF))
72 IZT=NZPZ(3,NAL+10)
WRITE(IDRU,74)IZT,NAMP
T4 FORMAT (A1,25HAIRCRAFT POLAR  AIRFOIL ,12A1)
CWS = CWSF/FF
I1ZT=NZPZ(2,0)
WRITE(IDRU,76)I1ZT
76 FORMAT (A1,39H B(M) S(SQ.M) S®(SQ.M) W(KG) W®(kG),
#3X,3HT/C,3X,6K(T/C)*®,2X,8HAP(SQ.M) ,2X, 3HCDP)
I2T=N2PZ(1,0)
WRITE(IDRU,78)12T,BF,FF,FST,GEW,GST,D,DST,CWSF,CWS
78 FORMAT (A1,F6.2,2F8.2,2F8.0,4F8.4)
12T=N2PZ2(2,0)
WRITE(IDRU,80)IZT
80 FORMAT (A1,54H ALPHA CL cDhP CDT  V(KM/H)
#/D)
DO 84 I = 1,NAL
CA ] 00
C“P = 00
DO 82 J =2 1,JT
BATF=BANT(J)®*TST(J)/FST
CALL VISC(I.J,CANT,CWNT,CMDU)
CAaCA+CANT#BATF
82 CWP=CWP+CWNT#BATF
CWGES = CWP + CWS + 1.03%CA®CA®PF/(PI*BF#BF)
VKMH = 3.6%V1/SQRT(ABS(CA))
VS = VKMH®CWGES/(3.6®ABS(CA))
GLTZ =2 CA/CWGES
12T=N2P2(1,0)
84 WRITE(IDRU,86) I2T,ALV(I),CA,CWP,CWGES,VKMH,VS,GLTZ
86 FORMAT (A1,F6.2,F8.3,2F8.4,F8.1,F9.3,F8.2)
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ORIGINAL PAGE 15
OF POOR QUALITY

IF(NF.EQ.0) GO TO 50
88 CONTINUE
CWSF = CWSFU
FF=FAU
GEW = GAU
GO TO 50
STRK CARD
30 IF(NUPU)94, 100,92
92 NT = 0
3 DO 98 J = 1,14
IF(PUFF(J)) 96,100,96
36 NT = NT + 1
€8 T(NT) = PUFF(J)*10.
IF(IABS(NUPU).GT.14) GO TO 11
110 CALL STRDR(T,NT)
IF(NUPI.NE.O) GO TO 11
DO 102 I = 1,NT
102 CALL STRAAK(T(I),RUA,YBL,MXZ,ISTIFT)
GO TO 11
DIAG CARD
104 CALL DIAGR(ISTIFT,NUPU,NUPI)
GO TO 11
PUXY CARD
106 CALL PUDECK
GO TO 11
STRD CARD
112 IF(NUPU.NE.O) MXZ = N
IF(PUFF(1).NE.O.) YBL
IF(PUFF(2).NE.O.) RUA
GO TO 11
ABSZ CARD
142 IF(NUPA.NE.O) AGAM(3)=FLOAT(NUPE)
1.*(PUFF(2) .NE.O.) ABFA=PUFF(2)
GO TO 1N
ENDE CARD
150 IF(MGC.NE.O) CALL GCLOSE
IF(MPL.NE.O)CALL FINISH
SI0P
CDCL CARD
160 IF{NUPA.EQ.uv)GO TO 166
BL1=PUF~{1)+.005
BL2=2FL7F(2)+.005
DO 162 K=1,5

UPU
= 100.*PUFF(1)
= 100.#PUFF(2)

NUINE(K)=INT(BL1#(10.##(K-3)) )~ 10RINT(BL1#( 10, ##(K-4)))
167 NPAR(K) =INT(BL2%(10.%%(K-3)))-10%INT(BL2%(10.%#(K-4)))

DO 164 K=1,12
164 BROKL(K)=PUFF(K+2)
G0 TO 11
166 CALL CDCL(NUPU,JP,ISTIFT)
GO TO 1
FXZR CARD
180 Z1P=NUPU
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CALL FIXLES
MSPLI=0
PAN CARD

ORIGINAL Pags :-
OF POOR QUALHE;

170 IF(MSPLI.EQ.0)CALL SPLITZ(X,Y,NQ,XP)
IF(NUPA.NE.O) AGAM(10)=FLOAT(NUPE)

IF(NUPA.EQ.9) GO TO 11

DO 17« I=1,14
IF(PUFF(I).EQ.0.)GO TO 172
MEIG=INT(PUFF(I))
MEI=MEIG/ 10

KEI ¢MEIG-10%MEI

XSTX=ABS(PUFF(I)-FLOAT(MEIG))

CALL PADD(X,Y,XP,NQ,MEI,KEI,XSTX)

172 CONTINUE
XF(I)=x(1)
YF(I)=Y(I)

174 BETAF(I)=XP(I)
DLTR=DLT
DLTUR=DLTU
XDA=0.
YDA=0.
FLCH=0.
DEFLG=0.
NQRS=NQ

176 NKR=NQ-1

CALL PANEL(NKR,AMAT,GAMMA,CAE)

DARG = ALN
GO TO N
FLAP CARD

190 CHORD = XF(1)
FLCH=PUFF(1)
XDA=( 1.~ .01%FLCH) *CHORD
YDAz .01*PUFF(2) *CHORD
ARCL=.01%PUFF(3) %CHORD
DEFLG=PUFF(U4)
DLT=DLTR+DEFLG
DLTUsDLTUR-DEFLG
DEFL=DEFLG*BOGEN
ARCLU=.01#PUFF(5) *CHORD
MSPLI=1

CALL FLAP(XF,YF,BETAF,NQRS,XDA,YDA,ARCL,ARCLU,DEFL,X,Y,XP,NQ)

GO TO 176
ALFA CARD
333 IF(NUPA.EQ.O) GO TO 330
MOMAG=NUPA
AGAM(2) =FLOAT(NUPE)

IF(NUPA.EQ.1) AGAM(10)=FLOAT(NUPE+1)

330 IF(NUPU.EQ.0) GO TO 335
DO 331 I=1,14

331 ALCA(I)sPUFF(I)

328 ITIT1aNUPI/2+1
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ORIGINAL PAL& .
ITIT2=NUPI-2%ITIT1+3 OF POOR QUALITY
DARF=0.
IF(ITIT2.NE. 1)DARF=1.
NAL=IABS(NUPU)
IF(NAL.GT. 14)NAL=Y
335 DO 334 I=1,NAL
PA=ALCA(I)
IF(PA.LE.~99.) PA=RS(30+I)
IF(PA.GT.-99.) PA=PA+DARF*DARG
334 ALV(I)=PA
CALL MOMENT(X,Y,NQ,XDA,YDA,DEFLG ,MOMAG)
IF(AGAM{2) .EQ.0.)GO TO 11
NZF=NQ+3
IF(ITP.EQ.2.AND.AGAM(10) .EQ.1.)NZF=0
CALL DIA(X,Y,NQ,THK)
THKP=100. #THK
DO341 N=1,NQ
ND=N-1
XDR=X(N)
YDR=Y (N)
DO 340M=1,NAL
V(M) =ABS(VPR(N,M))
VQ=1.-V(M)#®V(M)
IF(ITIT1.EQ.2)V(M)=VQ
340 CONTINUE
NZT=NZPZ(1,NZF)
IF(NZT.NE.NNESE. AND.N.NE. 1)GO TO 341
NZF=0
DO 339 M=1,NAL
339 P(M)=ALV(M)-DARF#DARG
332 IF(ITP.EQ.1)WRITE(IDRU,337)NZT,NUPRO, THKP, (P(M),M=1,NAL)
337 FORMAT (A1,8HAIRFOIL ,I4,F8.2, 1HS,F9.2,13F8.2)
IF(ITP.EQ.2)WRITE(IDRU, 336)NZT,NAMP, THKP, FLCH ,DEFLG, (P(M) ,M=1,NAL)
336 FORMAT (A1,BHAIRFOIL ,12A1,F8.2,11HS THICKNESS,F10.2,6H3% FLAP,
*F8.2, 194 DEGREES DEFLECTION/23X, 14F8.2)
IF(ITP.EQ.2)NZT=NZPZ(1,0)
NZT=NZPZ(1,0)
WRITE(IDRU, 338)NZT,CPV(ITIT1) , (ALTX(M,ITIT2) ,M=1,4)
338 FORMAT (A1,3H N,TX, 1HX,8X, 1HY,5X ,A9, 60HDISTRIBUTIONS FOR THE ABOV
*E ANGLES OF ATTACK RELATIVE TO THE,4Al)
NZT=NZPZ(1,0)
341 WRITE(IDRU,342)ND,XDR ,YDR ,(V(M),M=1,NAL)
342 FORMAT (I4,F10.5,F9.5, 14F8. 3)
IF(ITP.EQ.2)G0 TO 11
NZT=NZPZ(1,0)
WRITE(IDRU, 344)NZT,DARG,CM,ETA
344 FORMAT (A1,BHALPHAO =,FS5.2,8H DEGREES,3X,SHCMO =,F7.4,3X,
SHETA =,F6. 3)
GOTO11
STOP
END
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ORIGINAL FAGE 3, H

OF POOR QUALITY

SUBROUTINE TRAPRO
DIMENSION FLS(2),FLA(2),)RAK(2),DRAM(2),AC(5,4),D(4)},
1WSI(2),WwCcI(2),FINT(3),A(5),HK(2),R(3),FKERN(30)
DIMENSION CFP(2),AKK(2),PHIS(2),PHIW(2),AKN1(2),F(2),G(2)
DIMENSION XRT(2),YRT(2)
COMMON/EA/ILES,IDRU,ISTA,NNESE
COMMON/PRAL/DLT,DLTU,ALN,ALV(14) ,NAL, ITP,NAMP(12),CML(14) ,CRL(14)
1 ,CPV(2),ALTX(4,2) ,DARF,ITIT1,ITIT2
COMMON P1(121),P(121),XP(121),YP(121),PUFF(14) ,AGAM(14) ,X(121),
1¥(121),DsS(122),VF(121) ,ARG(121) ,ANI(28) ,ALFR(29),12Z,KFU,NQ,NUPRO,
2JAB,JST,CM,ETA,ABFA,PI,BOGEM,DARG,PURES(13),GAP(450) ,ALFA(29)
DATA ABSZ/0./
CALL WANDEL(NUPRO,NAMP, 12,5)
ALFR(JAB+1)=0.
ABZT=ANI(JAB)
IF(ABS(ABZT-ABSZ).LT..1) GO TO 14
IB=zINT(.25%ABZT+.1)
MQ=2%IB
NKR=2®MQ
ABSZ=zFLOAT(NKR)
ABGR=360./ABSZ
HABGR=.5®ABGR
PURES(8)=0.0
DO 8 M=1 ,IB
ARI=FLOAT(MQ+1-2"M) *HABGR
8 FKERN(M)=ABGR®COSG(ARI)/ (SING(ARI)®PI)
14 MAGAM=INT(AGAM(3))
NQ=NKR+1
IF(MAGAM.EQ.O0) GO TO 22
NZT=NZPZ(3,0)
WRITE(IDRU,82)NZT
MCT=0
22 DO 23 I=1,29
23 ALFA(I)=ALFR(I)
I21
Js1
24 FLS(J)= PURES(1)®ABFA
4 CALL DRAW(WC,WS,WL,.6,-1.,FLS(J),ABGR, 1)
CALL DRAW(WCI(J),WSI(J),WLI,=.6,-1.,FLS(J),ABGR,1)
WCI(J)= WCI(J)+WC
WSI(J)= WSI(J)+WS
WLI = WLI+WL
ClsWLI
C5=-WLI
FLA(J)s PURES(I+1) ® ABFA
IF(PLA(J) )25,25,26
25 DRAK(J)= O
DRAM(J)= 1.
GOTO 34
26 IF(J.EQ.2) GO TO 401
W1 = COSG(ABGR®*FLA(J))
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28

29

30

31

32
33

401

34

38

35
36

37

39

114
ORIGINAL FAG: -,
IF(PURES(I+2)-1.)27,30,29 OF POOR QUALITY
DRAK(J)= . 1*PURES(I+3)
DRAM(J)= . 1#PURES(I+4)
GOTO 34
DRAK(J)=((.1#PURES(I+4) )##(_10./PURES(I+3))=-1.)%(1.+WI)/(1.-WI)
DRAK(J)= RUND(DRAK(J),1000.)
DRAM(J) = .1%PURES(I+3)
GO TO 34
AA = .05%(1.-WI )®PURES(I+3)
WILN = ALOG(.1#PURES(I+4))
FMIT = -5 .
MIT =0
FM = -WILN/ALOG(AA/FMIT +1.)
MIT=MIT+1
IF(ABS(FM-FMIT)-1.E-6) 33,32,32
FMIT = FM
GO TO 31
DRAM(J) = RUND(FM, 1000.) -
DRAS = .O5%PURES(I+3)*(WI+1.)/FM
DRAX(J) = RUND(DRAS, 1000.)
GO TO 34
DRAK(J)=. 1®PURES(I+3)
DRAM(J)=100
I= I+5
J= J+1
IF(J-B)Z“,38,38 1:
MER = 0 a

WSI(2)= -WSI(2)

IWPPM=INT(PURES(10)) -
ITMOD=INT(PURES(11)) .
RUF=100.

IF(ITMOD.GE.Y4.AND.ITMOD.LE.6)RUF=1000. .
ITMR=ITMOD .
SHKS = .1%PURES(12) -
HKST=. 1%ABS(PURES(13)) .
DO 36 J=1,4 j
AC(1,J)= O.

ALFA(JAB) =ALFA(1)

QLIV k4 °l

SINAI = O.

COSAI = 1.

FNI = O.

TN&I:O.

J=1

CSAIP = COSG(2.%ALFA(J))
SNAIP = SING(2.®ALFA(J))
TNAIP2TNG(ALFA(J))
IF(J-JST-1)40,39,40
AC(2,1)2 SINAI

AC(2,2)= -1--008‘1
AC(2,3)=z +1.

AC(3,1)s -SNAIP
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1”5’“1*“1‘*%’*%“4&*4&:—&

40

402
41
42

43
49

47

1

-

AC(3,2)= 1.+CSAIP

AC(3! 3)=-1 -

AC(H4,1)= COSAI-CSAIP

AC(4,2)= SINAI-SNAIP

Ac(4,3)= 0.

AC(5, 1)=0.

AC(5,2)=0-

AC(S, 3)30-

AC(2,4)=-2.%TNAI
AC(3,U4)=2."TNAIP

AC(“,“)=0-
AC(5,4)=2.®(TNAI-TNAIP)

ALIS = ALIV

ALISP = ALFA(J)

GOTO 41

FII = CSLG(HABGR*FNI-90.,ALIV)
FIIP= CSLG(HABGR®*FNI-90.,ALFA(J))
PB=FNI*HABGR*BOGEN

AC(1,1)2-FIIP*SNAIP+FII*SINAI+(COSAI-CSAIP)#PB +AC(1,1)
AC(1,2)2-FII®(1.+COSAI)+FIIP*(1.+CSAIF;+(SINAI-SNAIP)®*PB+AC(1,2)

AC(1,3)==FIIP + FII + AC(1,3)
JCK=2J=1

JMIzJ-JAB-1
IF(JCK.EQ.0.OR.JMI.EQ.0) GO TO 402
FSI=SNLG(HABGR®*FNI)

AC(1,4)=FSI*(2.#TNAI-2.#TNAIP)-2.*TNAI®FII+2. *TNAIP#*FIIP+AC(1,4)

CONTINUE
IF(J-JAB-1)42,43,43
ALIV =ALFA(J)
SINAI=SNAIP
COSAI=CSAlP
TNAI=TNAIP

FNI = ANI(J)

Jz=Jei

GO T0 37

J=1

IF(FLA(J)) 47,47,49

CALL DRAW(WC,WS,WL,DRAK(J) ,DRAM(J) ,FLA(J) ,ABGR,0)

AC(1,1)= WC+ AC(1,1)
AC(1,2) = WS +AC(1,2)
AC(1,3)=WL+AC(1,3)

J=2

WCGSO. 0

WWS620.0

C6:O. °

IF(FLA(J)) 410,410,411
CALL DRAW(WC,WS,WL,DRAK(J),1.0,FLA(J),ABGR,0)
WWC63WC

WWS6=-WS

c6s-WL

410 CONTINUE

PHIS(1)=FLS( 1) *ABGR*BOGEN
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420

421

422

425

430

431

432

450

ORIGINAL P/GE IS
OF POOR QUALITY

PHIW(1)=FLA(1)®ABGR*BOGEN
PHIS(2)=(360.-FLS(2)*ABGR)*BOGEN
PHIW(2)=(360.-FLA(2)#ABGR) *BOGEN

DO 425 J=1,2

G(J)=DRAK(J)/ (1.0+COS(PHIW(J)))
F(J)=1.0-G(J)*COS(PHIW(J))
IF(G(J)#R2_F(J)#%2) 420,421,422
TARG=( (F(J)=G(J) )*TAN(PHIW(J)/2.) )/SQRT(F(J)##2.G(J)##2)
TARG 1=ATAN(TARG)
CFP(J)=-((4.%(G(J)=F(J)))/SQRT(F(J)##2.G(J)*#2) )*TARG
GO TO 425

CFP(J)=0.0

GO TO 425
GFLN2=SQRT(G(J)#%2.F(J)##2)
GFLN1=(G(J)-F(J) )®*TAN(PHIW(J)/2.)
GFLN=ALOG (ABS( (GFLN1+GFLN2)/ (GFLN1-GFLN2)))
COEFFz-(2.%(G(J)-F(J))/SQRT(G(J) #%2_F(J)##2))
CFP(J)zCOEFF#*GFLN

CONTINUE

SRM=.6

AK=1.0-SRM

BK=1.0+SRM

DO 450 J=1,2

AKN1(J)=SRM/ (1.0-COS(PHIS(J)))
IF(BK-2.%AKN1(J)) 430,431,432
AKSR=SQRT (2.%BK®AKN1(J)-BK##2)
AKT122.#AKN1(J)-BK
COEFK=AKT1/(2.%AKSR)
AKLN1=AKT1#TAN(PHIS(J)/2.)

AKLN=ALOG (ABS( (AKLN1+AKSR )/ (AKLN1-AKSR)))
AKK (J) =COEFK®AKLN

GO TO 450

AKK(J):O.

GO TO 450
AKSR1=SQRT(BK#*#2.2.%AKN1(J)*BK)
AKT222.%AKN1(J)=-BK
AKT32BK-2.%AKN1(J)
AKTAN=(AKT3®TAN(PHIS(J)/2.) )/AKSRY
AKATAN=ATAN( AKTAN)

AKK (J) 2(AKT2/AKSR1) AKATAN

CONTINUE

AC12-2.9DRAM( 1) *PHIW(1)
AC2:=DRAM( 1) ®%CFP(1)
AC(1,U4)2AC(1,4)+ACI1+AC2

C1A=SQRT( (AK+2.®AKN1( 1) )/AK)

C1Cs4. ®CIAPATAN(C IA®TAN(PHIS(1)/2.))
C134,.0%PHIS(1)-C1C+4. 0RAKK(1)
C2A2SQRT( (AK+2.%AKN1(2) )/AK)
C2CzU.®C2APATAN(C2AMTAN(PHIS(2)/2.))
C228.0%P1-4,.0%PHIS(2)+C2C-4.08AKK(2)
C352.0%PHIW(2)-CFP(2)-4.0%P1

D(1)=WSI(1)#(C3%C5-C2¥%C6)-WSI(2)#(CIMCU-CI19C6)+WWSER(C29CH.C19C5)
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GF POOR QuUALITY
D(2) == (WCI{1)%(C3%C5-C2%CH)-WCI(2)#(C3I¥CU-CI1#CH)+WWCEH(C2%CY-C1%C5
)
D(3)=WCI{1)*(C3IMISI(2)~-C2MWWS6)-WCI(2)#(CIMSI(1)=-CI?WSE)+WWCOHR(C
12%SI1(1)-C1MSI(2))
D(U)==(WCI(1)#(COMSI(2)-C5%WWSH)-WCI(2)¥(COHMSI(1)-CUMUSE)+WWCEH®
1(C5SMSI(1)-C4MSI(2)))
A(1)=D(1)®AC(1,1)+D(2)#AC(1,2)+D(3)®AC(1,3)+D(4)®AC(1,4)
A(2)=zD(1)%AC(2,1)+D(2)%AC(2,2)+D(3)*AC(2,3)+D(U)®AC(2,4)
A(3)=D(1)®AC(3,1)+D(2)#AC(3,2)+D(3)®AC(3,3)+D(U4)®AC(3,H4)
A(4)=D(1)%AC(4,1)+D(2)*AC(4,2)
A(5)=D(U4)®AC(5,4)

SOLUTION OF TRANSCENDENTAL EQUATION

53 1=0
FV = 9-39
PHISH = 5 ®(ALIS+ALISP)

60 CSLI = CSLG(PHISH,ALIS)
CSLIP= CSLG(PHISH,ALISP)
SNLI=SNLG(PHISH+90.)
FP3A(1)+A(2)*CSLI+A(3)*CSLIP+A(N4)®BOGEN®(90.+PHISH)+A(5)*SNLI
IF(I.GE.20) GO TO 66
1=20
PHISH = PHISH - PDIF
GO TO 60

62 FDIFz-FP/(A(2)/(PHISH-ALIS)+(A(3)/(PHISH-ALISP))+A(5)*PHISH)
I 2 Iet

65 FVaFp
PHISH = PHISH + PDIF
IF(PHISH.LT.ALIS.AND.PHISH.GT.ALISP) GO TO 60
WRITE(IDRU,64)MER, ITMOD

64 PORMAT (66HOTRANSCENDENTAL EQUATION HAS DIVERGED. CHECK TRA!1 AND
®TRA2 CARDS., 12H ITERATION,12,8H MODE ,11)
STOP

66 ANI(JST) = (PHISH+90.)/HABGR
AJCsAC(1,1)+AC(2, 1)8CSLI+AC(3, 1) ®CSLIP+AC(4, 1) *BOGEN® ( PHISH+90.)
AJSSAC(1,2)¢AC(2,2)'C8LI-OAC(3,2)'CSLIPOAC(“,2)'5003“'(?“13H*90o)
AJT=AC(1,3)+AC(2,3)8CSLI+AC(3,3)%CSLIP
AJUsAC{1,4)+AC(2,H4)9CSLI+AC(3,4)*CSLIP+AC(5,4)9SNLI
DDsWCI(1)®(WSI(2)9CO6-WWSEH9CS)-WCI(2)¥(WSI(1)9CO-WWSOEOCH)+WWCH®(WST
1(1)8C5.4SI(2)%CH)
DRAM(2) = (KCI(1)®(AJS*CS-AJTMISI(2) )-WCI(2)*(AJS*CE-AIJTHSI(1) )=AJC
19(NS1(1)%Cc5-usS1(2)*CH))/DD

69 HK(1)s(=AJC®(WSI(2)9C6-UWS69CS)=WCI(2) #(AJTINSO-AJISHCE) +WWCOHP(AJT
19481(2)-AJS%CS) )/DD
HK(2) s(WCI (1) ®(AJT"AS6-AJS#CO) +AICH(WSTI( 1) BCHWHSOHCH) LWNC O (AIS?
1CHNSI(1)%AJT))/DD
HKS = HK(1)+¥K(2)

WPPWUDs( 1.0+DRAK(1)+(1.0-DRAK( 1) ) 8COS(PHIN(1)))
WPPWU= (DRAM( 1) ®DRAK (1) ) /WPPWUD
WPPSUs(1.125%HK(1))/(1.0-COS(PHIS(1)))
WPPUsWPPWUWPPSU
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ORIGINAL PAGE ;%
OF POOR QUALITY 18

WPPWLD=(1.0+4DRAK(2)+(1.0-DRAK(2) )#*COS(PHIW(2)))

WP L=(DRAM(2) ®DRAK(2) ) /WPPWLD
WPPSL=(1.125%HK(2) )/ (7.0-COS(PHIS(2)))
WPPL=WPPWL+WPPSL

IF(ITMOD.EQ.0.OR.ABS(HKS~-SHKS) .LT.HKST) GO TO T4

IF(MAGAM.LT.2.AND.MAGAM-MER.NE. 1) GO TO 100
GO TO 76
74 ITMOD =0
IF(MAGAM.EQ.0) GO TO 300
76 NZT=NZPZ(2,JAB+4)
WRITE(IDRU,77)NZT,NUPRO,MER, ITMR
77 FORMAT (A1,42HTRANSCENDENTAL EQUATION RESULTS
8124 ITERATION,I2,8H MODE ,I1)
NZT=NZPZ(1,0)
WRITE(IDRU,78)NZT
78 FORMAT (A1,69H NU  ALPHA® OMEGA®~ OMEGA
. LAMBDA LAMBDA®)
JH= 1
DO 85 JN=1,JAB
79 NZT=N2PZ(1,0)
IF(JN.NE.1.AND.JN.NE.JAB) GO TO 83
X1 = .5%( 1.+ COSG(FLA(JH)®ABGR))
WHK = (1.+DRAK(JH)®(1.-X1)/X1)*%(_.DRAM(JH))
WSTR= DRAM(JH)®DRAK(JH)/X1

AIRFOIL ,I4,

WRITE(IDRU,82)NZT,ANI(JN) ,ALFA(JN) ,WSTR,WHK,DRAK (JH) ,DRAM(JH) ,HK(J

1H) ,FLA(JH) ,FLS(JH)

82 FORMAT (A1,F6.2,F8.2,F8.3,F7.3,F9.4,F9.4,F8.3,F8.2,F7.2)

JHs2

GO TO 85
83 WRITE(IDRU,82)NZT,ANI(.JN) ,ALFA(JN)
85 CONTINUE

WRITE(IDRU,2000) WPPU.WPPL,IWPPM,MCT
210HITERATION=,12/)

IF(ITMOD.EQ.0) GO TO 300

100 IF(MER)103, 102,103

102 DAL = .1
GO TO 104

103 IF(HKS-HKSV.EQ.0.)GO TO 74
DAL = (SHKS-HKS)®DAL/(HKS-HKSV)
DALD3DAL
IF(ITP.EQ.O)DAL=RUND(DAL,RUF)
IP(MAGAM.EQ.0.)GO TO 1004
NZTsNZPZ(2,0)
WRITE(IDRU, 1003)NZT,MER,HKS,DALD ,DAL

.3X995300'DED 3"6-2)

1004 IF(DAL.EQ.0.)GO TO 74
IF(MER.GE. 3.AND.ABS(DALV) .LE.ABS(DAL))GO TO 74

- @ . G an o sy &S N

2000 FORMAT(/5X ,S5HWPPU=,F7. 3,5X,SHWPPL=,F7. 3,5X, 1 1HWPP ITMODEs,I2,3X,

1003 FORMAT (A1,104 ITERATION,I2,3X,5HK S =,F9.6,3X,THDELTA =,F12.8,
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104 DALV=DAL QUALITY
IF(ITMOD.GE.4)GO TO 113
DO 111 J=1,JAB
IF(ITMOD.NE.2.AND.J.LE.JST) ALFA(J)=ALFA(J)+DAL
IF(ITMOD.NE. 1.AND.J.GT.JST) ALFA(J)=ALFA(J)-DAL
111 CONTINUE
GO TO 112
113 IF(ITMOD.GE.7)GO TO 114
IF(ITMOD.NE.5)DRAK( 1)zDRAK( 1)+DAL
IF.ITMOD.NE. 4)DRAK(2) 2DRAK (2) +DAL
GO TO 11
114 IF(ITMOD.NE.8)ALFA{JST) z:ALFA(JST)+DAL
IF(ITMOD.NE.7)ALFA(JST+1)zALFA(JST+1)-DAL
112 HKSVsHKS
MER z2MER+1
GOTO 35

300 DWPPsWPPU-WPPL
CFUNC=ABS(DWPP)
WPPTOL=.001
IF(CFUNC.LE.WPPTOL) GO TO 301
IF(IWPPM.EQ.0) GO TO 301
IF(MCT.GT.15) GO TO 301
IF(MCT.NE.O) GO TO 19
DEL=z.1
GO TO 20

19 DELs-DWPP®DEL/ (DWYP-DWPPV)
IF(DEL.EQ.0.) GO TO 301
20 IF(IWPPM.EQ.4) GO TO 7
IP(IWPPM.EQ.3) GO TO 6
IP(IWPPM.2Q.2) GO TO 9
15 DRAK( 1)3DRAK( 1)+DEL
GO TO 21
9 DRAK(2)=DRAK(2)+DEL
GO TO 21
6 DRAM(1)aDRAM( 1)+DEL
GO TO 21
7 PLSN=PLS(2)+DBEL
1P (PLSN.LT.0.0.0R.PLSN.GT.PLA(2)) GO TO 12
PLS(2)sPLSN
DELV=DEL
DWPPVsDWPP
MCTsMCT+1
136
Js2
GO TO &
12 IWPPMs1
DELs. 1
60 T0 15
21 DELV=DEL
DWPPVsDNPP
MER=MER+1

119
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301

302

304

306

310
312
314

320

324

QRIGINAL PACE &

IF(ITMOD.EQ.0Q) MER=0
MCT=MCT+1
GO TO %5

AKX 1=.5%(COSG(PHISH-ALFA(JST+1))/SING (PHISH-ALFA(JST+1))
~COSG(PHISH-ALFA(JST) )/SING(PHISH-ALFA(JST)))

AKP  =AK1%1560./9.8696044

PHIM = G.

NU=1

I= 1

ANU =0.

JH=0

Vi= 0.

JH=JH+1

FF1 “0SG(ABGR*FLA(JH))

FF2 vRAK(JH)/ (1.+FF1)

FG1 COSG (ABGR®*FLS(JH))

FG3 = .6/(FG1-1.)

VI= VI - CSLG(PHIM-90., ALFA(I))

GO TO 310

ARGN = ANU

IF(ANU.GT..5% ABSZ)ARGN= ABSZ - ANU

CSP = COSG(ARGN*ABGR)

F1=0.0

IF(ARGN.LT.FLA(JH) )F1=DRAM(JH) #*ALOG( (CSP-FF1)#FF2+i.)

G1=0.

IF(ARGN.LT.FLS(JH) )G1=-HK (JH) #ALOG(1.-( (CSP~-FG1)#FG3) ##2)

P(NU)= F1+G1+CSLG(ANU*HABGR-90.,ALFA(I)) + VI

P1(NU)=P(NU)-AK1*ABS(SING ( (ANU#HABGR - 90.) - PHISH))

NU = NU + 1

ANU= ANU+ 1.

IF{ANU-ANI(I))306,306,312

IF(ANU- ABSZ)314,320,320

PHIM = ANI(I)®HABGR

VI=VI+CSLG(PHIM-90.,ALFA(I))

I = I+t

IF(I-1-JST) 304,302,304

PS=0.

£2=0.

DO 324 I=1,NKR

PS=PS+P(I)

BI = 2%(I-1)

B2 B2 + SING(BI®ABGR)®*P(I)

Al 2.%EXP(PS/ABSZ)

SXI = .00000000

SY:O.

p0328 N=1,NQ

Q=0.

D0326 M=1,IB

MN =N+ 1 +MQ - 2"

MM = 28N - MN

IF(MN.GT.NKR) MN = MN - NKR

e MY s i e
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IF(MM.LT.1) MM = MM + NKR OF POOR QUALITY
326 Q = Q+ FKERN(M)®(P1(MN)-P1(MM))

ANU= N-1

ZP = ANUHABGR - 90.

ZL = COSG(ZP - PHISH)

ZL = ABS((1.-ZL)/(1.+ZL))

IF(ZL.NE.O.)ZL=ALOG(ZL)

ARG(N) = Q - AKP®SING(ZP-PHISH)%ZL + ZP

VF(N) = V1*EXP(-P(N))

WV = COSG(ZP)/VF(N)

XP(N)= WV®SING(ARG(N))

YP(N)=-WV#*COSG(ARG(N))

SXI= SXI+ XP(N)
328 SY = JY + YP(N)

SX = SXI

XPK = SX/(ABSZ = 1.)

YPK = SY/(ZBSZ -1.)

DO 329 N=2,NKR

XP(N) =XP(N)-XPK
329 YP(N)=YP(N)-YPK

CALL CINT(XP,X,NQ,IZ2)

CALL CINT(YP,Y,NQ,IZZ)

RQV = Oo

DO 330 N=2,NKR

RQ=X(N) #X(N)+Y (N) ®Y(N)

IF(RQ.GT.RQV)L=N

330 RQV = RQ
DO 327 I = 1,3
IEPPL = L-2+I

327 R(I)=SQRT(X(IEPPL)#X(IEPPL)+Y(IEPPL)®*Y(IEPPL))
333 TAU = (R(3)=R(1))/(4.#(R(2)+R(2)=R(1)=R(3}))

121

XNAS = X(L)+TAU®(X(L+1)=X(L=1)+2.#TAU*(X(L+1)+X(L-1)=X(L)-X(L)))
YNAS = Y(L)+TAU®(Y (L+1)-Y(L-1)+2.#TAU#(Y(L+1)+Y(L-1)-Y(L)=Y(L)))

SQ = XNAS®XNAS + YNASH#*YNAS

AT=XNAS/SQ

B= YNAS/SQ

STREF = 1./SQRT(SQ)

ETA = ABSZ®#STREF/PI

CM = .S®ETA®STREF#B2

DARG = 19.09859 #(3.%YNAS/XNAS - (YNAS/XNAS)##3)

IF(ABS(SX)+ABS(SY).LT..0001#ABSZ) GO TO 335

3X=STREF#*3X*200.

SY=STREF#5Y#200.

NZT=NZPZ(2,0)

WRITE (IDRU,334) N2T,SX,SY
334 FORMAT (A1, 14HWARNING - SX =,F6.3,3X,4HSY =,F6.3)
335 CONTINUE

IF(IWPPM.EQ.0) GO TO 605
CHORD=(4.0%PI)/(ABSZ*STREF)
PHIW12COSG(FLA( 1) ®*ABGR)
PHIS1:COSG(FLS( 1) ®ABGR)
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605

3N

332
346

602
603
604
606
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PHIWF=1.0+DRAK(1)#((1.0-PHIW1)/(1.0+PHIW1))
WO=(PHIWF®#(_DRAM(1)))#(.64)*#K (1)
APO=-ALOG(V1)-ALOG(WO)+ALOG(2.0)
Q0=(ARG(1)+90.)*(PI/180.)
ALFA1=ALFA(1)#*(PI/180.)
DELTE=.5%(ATAN(Y(2)/X(2) )+ATAN(Y (NKR)/X(NKR)))
GAMMA=ALFA1..DELTE

DO 331 N=2,NQ

XR=X(N)

X(N)= 1.-B*Y/N)-AT*XR

Y(N)= B®*XR -AT#*Y(N)

ARG(N) = ARG(N) - DARG

WQ = (XP(N)+XP(N-1)-XPK~-XPK)®#2 4+ (YP(N)+YP(N-1)-YPK-YPK)##2
DS(N=1) = STREF®*SQRT(WQ)®*(1.+.6666667#( (XP(N)®#YP(N=-1)
1-XP(N-1)#YP(N) )/WQ)#%2)

NHKW=NQ/ 12

DLT = Y(NHXW)/(BOGEN#*(1.-X(NHKW)))

NHKW=NQ-NEXW«+ 1

DLTU=-Y(NHKW )/ (BOGEN#( 1.-X(NHKW)))

X(1) = 1,

ARG(1) = ARG(1) - DARG

ITP=1

IF(IWPPM-.EQ.0) GO TO 606

XT=X(1) #*CHORD

YT=Y( 1) #*CHORD

XRT(1)=X(2)#*CHORD

XRT(2) =X(NKR) ®*CHORD

YRT(1)=Y(2)*CHORD

YRT(2) =Y (NKR ) #*CHORD

CALL RCAL(XT,YT,XRT,YRT,AP0,Q0,ALFA1,PXT,PYT,NKR)
PST=PXT#*COS(GAMMA) +PYT#SIN(GAMMA)

PNT=~PXT#SIN(GAMMA) +PYT#*COS(GAMMA)

CPST=2.0%CHORD*PST

CPNT=2.0%CHORD#®PNT

WRITE(IDRU,602)

FORMAT("O", 11X ,45HTHE TRAILING EDGE PRESSURE GRADIENT IS FINITE)
WRITE(IDRU,603) ALFA(1)

FORMAT( 15X ,25HWHEN THE ANGLE OF ATTACK=,F4.1,1X,THDEGREES)
WRITE(IDRU,604) CPST,CPNT

FORMAT(8X, 19HIN THAT CASE, CPST=,F10.3,7X,5HCPNT=,F10.3)

ALN=DARG
IF(PURES(13).GE.0.)GO TO 11
PURES(12)=10. *HKS
PURES(13)=.00001

RETURN

END
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FUNCTION TNG(A)
TNG=SING(A)/COSG(4A)
RETURN

END

FUNCTION SNLG(A)
SNLG=ALOG(ABS(SING(A)))
RETURN

END
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SUBROUTINE RCAL(XT,YT,X,Y,APO,QO,ALFA1,PXT,PYT,NKR)
DIMENSION PX(4),PY(4),X(2),Y(2),THETA1(2)
COMPLEX CEXP,CMPLX,CONJG,ZETA,EIA,EMIA,ZTEXP,
12ETA2,WZ,2T2P,2T3P,WTP,WT2P,ZETAY,Z, ZT4P, 2T,
22T2PC,PTCAL,C(2) ,ZETA1P(2) ,WT3P,WTPC,PTCOEF
PI=3.141592653589

ANKR=FLOAT(NKR)

THETDEG=360./ANKR

THETA1(1) =THETREG

THETA1(2) = 500.-THETDEG

ZTZXP=CMPLX(APO,Q0)

ZT2P=CEXP(ZTEXP)

COSA=COS(ALFAY)

SINA=SIN(ALFA1)

2IA=CMPLX(CNSA,SINA)

EMIA=CMPLX(COSA,-SINA)

WTP=(EIA+EMIA)

WT2P=(-U4.0®EIA-2.05EMIA)

WTPC=CONJG (WTP)

WT3P=6.0%(3.0%EIA+EMIA)

ZT3P=ZT2P#(WT2P/WTP)

ZT=CMPLX(XT,YT)

ZT4P=0.0

M=1

Do 20 1=1,2

2=CMPLX(X(I),Y(I))

THETA=THETA1(I)#*(P1/180.)

XI=COS(THETA)

ETAzSIN(THETA)

ZETA=CMPLX(XI,ETA)

ZETA1P(M)=(2ETA-1.0)
C(M)=(120./ZETATIP(M) ##4) #( 22T .S#ZT2PRZETA1P(M) #¥2
1-(2T3P/6.)#ZETATP(M)##3)

M=2

20 CONTINUE

ZTUP=.10%(C(1)+C(2) )+ZTUP
ZT2PC=CONJG(ZT2P)

PTCOEF=-(WTPC)/ (3.0%ZT2PC#ZT2P%#%3)
PTCAL=CONJG ( PTCOEF®( ZT2P*WT3P-ZT4P*WTP))
PXT=REAL(PTCAL)

PYT=AIMAG(PTCAL)

RETURN

END
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Form of the velocity distribution for maximum lift on a
single-element airfoil. -
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V/U 1
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Figure 2. Kennedy and !{arsden digh Lift Airfoil and Design
Velocity Distribution [18]. REI = 1 x 106,
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Figure 3.
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ORIGINAL FAGT
OF POOR QUALITY

—— POTENTIAL FLOW ANALYSIS
—— GRUMFOIL CODE ANALYSIS
EXPERIMENTAL RESULTS

a

L4 T T v ] v T LA T

0.0 .S
x/C

b

Kennedy and Marsden airfoil potential flow velocity distribution
(Eppler panel metnod code) compared with viscous analysis
(GRUMFOIL code) and experimental results (18]. ALPHA = 4,2 DEG
(relative to chord-line), RE = 1 x 106,
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z-plane

Conformal transformation of the flow around an infinite
circular cylinder into the flow around an airfoil.
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iT= 1.000 0.030
23= 0.370 -0. 471
15= 0.000 0. 000

Cl=s 0.91506 -0.34854
C3= 0.02831 0.11618
CS= 0.00000 0.00000

Rsl.111 UR= -0. 072
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2= -1.000 0,000
Z4= -0.370 0.47)
26= 0.000 0. 000

C2= 0.00000 0.03000
C4= 0.00000 0.00000
URMAX=0. 000

UI=0. 290 VTE=0. 76274

Pigure 6. Example of von Mises airfoll generated using a

four~tern transformatinm.
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|
L
ZT= 1.000  0.000 72= -1.000 -0.330 . j
Z3= 0.283  -0.142 Z4= -0.283  0.472 L
Z5= 0.000  0.000 Z6= 0.000  0.000 t ‘
Cl= 0.90416 0.15624 C2= 0.08312 -0.16284 - ;
3= -0.02347 0.05648 C4= 0.00000 0.00000 . ?

C5= 0.00000 0. C0000 URMAX= -0. 027 ;

R=1.131 UR=-0. 131 ur=0.000 VTE=0.87305

Figure 7. Example von Mises airfoil generated using a o
four-term transformation.
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- I* IT= 1.000  0.000 72= -1.000 0.000
. Z3= 0.030  -0.300 Z4= 0.020  0.300
; } 25= 0.025 . 000 26= 0.025  0.000
- Cl= 1.00627 -0.00300 C2= -0.04772 0. 00007
‘ 3= 0.03122 0.00100 C4= -0.00114 -0.00004
32 - 5= 0.00001 O.00000 URMAX= 0. 000
f A=i.123  UR=-0.120  UI=0.088  VTE=0.85389

PN

Figur~ 8. Example von Mises airfoil generated using a
six-term transformation.
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ZT=
23=
5=

Ci=
C3=
CS=

R=1.

Figure 9.

1.000 0. 000
0. 300 -0. 150
0.1S0 0. 08¢

1.04840 0.08850
-0. 04847 0. 04072
0.00028 -0.00010

118 UR=-0.118

ORIGINAL PAGE 2
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2=
4=
6=

C2=
Cd=

uI=0.000

-1.000 -0.240
-0.400 0.300
-0.050 0.000

0.03719 -0.10348
0.00530 -0.00078
URMAX=-0.118

VTE=0. 96515

Example von Mises airfoil generated using a
six-term transformation and a mapping circle radius
equal to the minimum allowable for a physically

realizable airfoil.
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Figure 10.
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1. 000 0. 000
-0.461 0.000
0. 000 0. 000

0.90415 0.00000

-0. 02347 0. 00000
0. 00000 0.00000

131 UR=-0. 13!

Symmetrical von Mises airfoil having real transformation
coefficients equal to those of the airfoil shown in

Figure 7,
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2=
z4
26=

c2
C4

UI=0.000 VTE=0. 87307
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-0.744  0.000 .
0.205  0.000 5
0.000  0.000 .

0.08313 0.00000
0.00000 0.00000 i
URMAX=-0. 011
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7=
Z3=
Z5=

Cl=
C3=
CS=

R=1.

Figure 11.
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=

1.000 0. 000
0. 300 -0. 150
0. 150 0.080

1.04840 0.08850
~-0. 04847 0. 04072
0. 00028 -0.00010

040 UR=-0. 040

22=

C2=
C4=

-1.000 -0.240
-0.400 0.300
-0.050 0.000

0.03719 -0.10348
0.00530 -0.000798
URMAX=-0.118

Ul=0.000 VTE=1.03779

Von Mises airfoil generated with a mapping circle

radius less than the minimum allowable for a physically

realizable airfoil,
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Cl=
C3=
CS=

R=1.

Figure 12.
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1. 000 0. 000
0. 300 -0. 150
0.150 0.080

1.04840 0.088S0
-0.04847 0.04072
0.00029 -0.00010

180 UR=-0. 180

Z2= ~-1.000
Z4= -0. 400
Z6= -0.050

C2= 0.03718

C4

0. 00530

-0. 240
0. 300
0. 000

-0. 10349
-0. 00078

URMAX=-0.118

Ul=0.000

VTE=0. 91466

Von Mises airfoil generated with a mapping circle
radius greater than the minimum allowable for a
physically realizable airfoil.
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ZT=
23=
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Cl=
C3=
CS=

R=1.

Figure 13.
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1. 0G0
0.000
0. 000

o

. 000
. 000
. 000

o o

1.00000 0.00000
0. 00000 0.00000
0.00000 0.00000

o

000 UR=0. 300

4
16

C2=
C4

-1.000 0.000
0. 000 0. 000
0. 000 0. 000

0.00000 0. 00000
0.00000 0.00000
URMAX=0. 000

UI=0.000 VTE=1.00000

Flat plate airfoil generated by simplifying the
von Mises transformation to that of Joukowsky.
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2T=
3=
i5=

Ci=
C3=
CS=

R.ll

1.000 0. 000
0.100 0. 000
0. 0ao 0.000

1. 11000 0. 00000
0.00000 0.00000
0. 00000 0. 00000

062 UR= -0. 062

ORIGINAL PAGE 3

OF

POOR QUALITY

72=
24=
6=
C2e
Cd=

Ul=0.000

-1.100 0.000
0.000 0. 000
0. 000 0. 000

~0. 05500 0. 00000
0.00000 0.00000
URMAX= -0, 062

VTE=0. 99661

Figure 14, Von Mises airfoil resulting from small perturbation
of zero locations giving the flat plate result.
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Fa)
23
5=

Cl=
c3
cS

ORIGINAL PACT

1.000 0. 000
-0.100 0.000
0 Gao 0. 000

0.81000 0.00000
0. 00000 0.00000
0. 00000 0.30000

R=0.959 UR=0. 041

Figure 15.

OF POOR QUALIT
Z2= -0.900 0.000
Z4= 0.000 0. 000
Z6= 0.000 0. 000
C2= 0.04500 0.00000
C4= 0.00000 0.00000

URMAX=0. 041

UIl=0.000 VTE=(Q. 99814

Von Mises airfoil resulting from small perturbation
of zero locations giving the flat plate result.
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VTE=0. 98959

C v
IT= 1,000 0. 000 2= -0.600 0.00C
Z3= -C.100 0.000 Z4= -0.100 0.000
IS= -0.100 @.cCO00 Z6= -0.100 0.000
Ci= 0.70000 0.219000 C2= 0.13000 0.00000
C3= 0.01250 0.70000 C4= 0.00061 0.00G600
CS= 0.00001 0.00000 URMAX=0. 137
R=0, 863 UR=0. 137 Ul=0.000

Figure 16. Von Mises airfoil having largest VTE attainable

for the given real parts of the transformation

coefficients.
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2T= 1,000 0. 000 22= -0.6G0 0.000
Z3= -0.120 0.000 Z4= -0.080 0.000
25= -0.100 0.000 26= -0.100 0.000
Cl= 0.70040 0.00000 C2= 0.129986 0.00000
C3= 0.01241 0.00000 C4= 0.00060 0.00000
CS= 0.0000! 0.00000 URMAX=0. 137

R=0. 863 UR=0. 137 UI»0. 000 VTE=0. 98958

Figure 17,

Von Mises airfoil resulting from the small perturbation

of the zero locations used in generating the airfoil
of Figure 16.
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2. 0 1
&
(VTE/U) oy
L] s —d
- ® THREE-TERM TRANSFMRMATION
& SIX-TERM TRANSFORMARTION
g \
0.0 el A e, A L L N N
0.0 .S 1.0
T/C

Figure 20. Approximate relationship between the muximum trailing edge
velocity ratio and the thickness ratio for reasonable
symmetrical airfoils.
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“’7
£-plane r=1

ool

U=1
4 z-plane

Figure 21. Transformation of a unit circle at angle of attack
into an airfoil.

(+)

148




?MWM;

ﬂmvt

lm:

m‘ Birmisiny Bair b f
’ v +

s B s B s

G R ey pey vy ey e e

l
i

7=
23=
5=

Ci=

R=1.

Figure 22.

1.000 0. 000
0.125 0. 000
0.125 0. 000

1.65625 0.00000
0.04810 0.00000
0.00007 0.00000

458 UR= -0. 458

ORIGINAL PAGE
OF POCR QUALITY

Z22=
Z4=
Z6=

C2=

-1.500 0.000
0.125 0. 00¢
0.125 0. 000

-0. 39453 0. 00000
-0. 00296 0. 00000
URMAX= -0. 458

UI=0.000 VTE=0. 393584

Von Mises airfoil having finite trailing edge
pressure gradients, CPXT = - 1.37, CPYT = 0.0,
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z-plane }
-~ $ ¢-J Py '

- - E,!
Pise <"i.um Tt 4’1,,-1 $w [N 4’1,, |

Figure 23. Segmentation of the interval (0, 2m) in the circle ’g‘
and airfoil planes.
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Closure
Contribution

ORIGINAL PAGE S
OF POOR QUALITY

Main Recovery
Contribution

Typical pressure recovery distribution.
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1.5.] .

\
V/U 4

1.0 -
b 3
.S )
- \ -?
C. 0_‘ I T T T Y T T T T T | o
.0 .5 1.0 iy
X/C .
Figure 25. Airfoil obtained using Eppler and Somers code (25] in which .
no iteration is performed for achieving a desired trailing .y
edge closure angle. ALPHA = 8.0 DEG (relative to zero- .
lift liﬂG) . -




SRS

nwng,b-‘

Snad )

_

1. 5—

v/u |

Figure 26.

153

ORIGINAL PAGE Iy
OF POOR QUALITY

—

T ] § L] LA 1 T T 1 4 —]
0.0 \5 1.0

X/C

Airfoil obtained using the modified Eppler and Somers code
in which the integral constraint required for finite
trailing edge pressure gradients is satisfied.

ALPHA = 8,0 DEG (relative to zero-lift line).
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1.5
V/U i
1.0
.5
0.0_
L] ¥ ) 1 L ] L g L) T 1
0.0 'S 1.0
X/C

Figure 27. Airfoil resulting from Eppler and Somers code in which X
is iterated to achieve a desired trailing edge angle.
ALPHA = 8.0 DEG (relative to zero-lift line).
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-
1.5
1.0
i
“ - .
e
. !
1
. :} a
.5 Yo
-l "‘
0. Od r L] 1 L] ¥ I ¥ v L\ T ] ? :
0.0 .S 1.0 X
X/C s
L
Figure 28. Alrfoil having finite trailing edge pressure gradients
obtained using modified Eppler and Somers code.
ALPHA = 8.0 DEG (relative to zero-1ift line).
CPST » - 7.2 CPNT = - 57,0
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T1
3
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l ¥ T T Lg l T T 1 Lg *‘I
0. 0 . s 1- 0 :;
X/C i
¥
~d
Al:foil obtained from Eppler and Somers code in which K ig

iterated to achieve the desired trailing edge closure angle. .
ALPHA = 12,0 DEg (relative to zero-1lift line). 'f
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%0 s 7 1o
X/C
Alrfcil having finite trailing edge pressure gradients

obtained using modified Eppler and Somers code.
ALPHA = 12.0 DEG (relative to zero-lift line).

CPST = - 12.6 CPNT = - 72.4
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6.0 .S 1.0 -
X/C
Figure 31. Symmetrical airfoil having finite trailing edge pressure N
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—— MODIFIED STRAND RIARFOIL
a ORIGINAL STRAND RIARFOIL

l L BLE L L) l T LS ¥ L] *]
0.0 .S 1.0

X/C

Potential flow velocity distribution of Strand airfoil,
Reference [34), calculated using the panel method analysis
capability of the Eppler and Somars code, showr along with
the finite trailing edge pressure gradient airfoil and its
design velocity distribution. ALPHA = 12.0 DEC (relative
to zero-1lift line).
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—— MOOIFIED LIEBECK RIRFOIL
a ORIGINARL LIEBECK RIRFOIL

a
a
L__,/ o ——
o0 .s 1o

X/C

Liebeck L1004 airfoil redesigned to have finite tralling
edge pressure gradients. CL » 1.31, CD = ,0071, C{ = - .0276
CPST = - 38, CPNT = - 227, ALPHA = 8.9 DEG
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T MOOIFIED LIEBECK RIRFEIL
a  ORIGINAL LIERECK RIRFAIL

vV/U

1.¢

0.0

Pigure 34, Liedeck 11003 airfoil Tedesigned ¢, have fingee trailing edge
Pressure Sradients. ¢ o 1.07, D « «027¢, M » . 0228,
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flow op Upper surface,
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Figure 35.
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0.0 s {0

Aerodynamically smoothed Wortmann FX 67-K-150 airfoil,
Reference {37), and calculated velocity distribution.
ALPHA = 10.0 DEG (relative to zero-lift line).
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Figure 37.
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1€4

0.0

Velocity distribution at the design point and finite trailing
edge pressure gradients airfoil based on FX 67-K~-150 of
Wortmann.

ALPHA = 10.0 DEG (relative to zero-lift line).
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Figure 48. General transformation of a circle to an airfoil.

Figure 49. Mapping of the unit circle using the transformation of
equation (A-13).
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