AERONAUTICAL AND ASTRONAUTICAL Engineering department

Aeronautical and Astronautical Engineering Department University of Illinois Urbana, Illinois

Technical Report AAE 84-1
UILU ENG 840501
NASA Grant NAG-1-76
Allen I. Ormsbee, Principal Investigator
FINAL REPORT

TRAILING EDGE FLOW CONDITIONS AS A FACTOR IN AIRFOIL DESIGN by
A.I. Ormsbee and Mark D. Maughmer

University of Illinois
Urbana, Illinois

January 1984

Some new developments relevant to the design of single-element airfoils using potential fiow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally fresent in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.

TABLE OF CONTENTS

I. INTRODUCTION 1
Low-Speed, Single-Element Airfoil Design 1
Consideration of Flow Conditions in the Vicinity of the Trailing Edge 4
Objectives of the Present Investigation 10
II. MAXIMUM TRAILING EDGE VELOCITY RATIOS 13
Preliminary Remarks 13
Transformation of a Circle into an Airfoil 14
The Von Mises Transfo mation 17
Maximum Trailing Edge Velocity for Physically Realizable Airfoils 21
Numerical Results and Discussion. 30
III. AIRFOILS WITH FINITE TRAILING EDGE PRESSURE GRADIENTS 36
Conditions Required for Finite Trailing
Edge Pressure Gradients. 36
The Eppler Airfoil Design Method 43
Incorporation of the Conditions for Finite Trailing Edge Pressure Gradients into the Eppler Design Method 59
Calculation of Trailing Edge Pressure Gradients in the Modified Eppler Method 78
Influence of the Conditions for Finite Trailing Edge Pressure Gradients on Airfoils Designed Using the Eppler Method 80
IV. DESIGN EXAMPLES AND APPLICATIONS 84
V. CONCLUDING REMARKS 92

APPENDICES

A. LIMITING COEFFICIENT VALUES OF THE GENERAL TRANSFORMATION
FOR MAPPING A CIRCLE TO AN AIRFOIL. 96

B. COEFFICIENTS OF THE INEQUALITY EXPRESSION FOR
POSITIVE THICKNESS 101
c. USAGE OF THE EPPLER CODE INCORPURATING THE CONDITIONS FOR FINITE TRAILING EDGE PRESSURE GRADIENTS AND LISTING OF PROGRAM MODIFICATIONS 103
LIST OF REFERENCES 125
FIGURES 128

INTRODUCTION

Low-Speed, Single-Element Airfoil Design
Much of the current research effort applied to low-speed airfoils is directed toward the analysis and design of multi-element sections, which incorporate high-lift devices such as multiple-slotted flaps and movable ieading edge slats. The use of such airfoils permits a broad range of performance through the integration of an airfoil that is suitable for highspeed cruise with a configuration capable of high-lift for take-off and landing. In spite of the strong interest in the complicated flow phenomena connected with the multi-element design, considerable motivation remains for the study of single-element wing sections. For example, a number of practical applications exist, including low-speed recreational aircraft, sailplanes, helicopter and windmill rotors, and aircraft in the expanding arena of remotely piloted vehicles (RPV's), for which either the cost and mechanical complexity of a high-lift system cannot be justified, or such a section is unnecessary in that a broad performance envelope is not a design requirement. Furthermore, much of the increased understanding resulting from the study of single-element airfoils is directly applicable to the individual components of the multi-element designs.

As detailed by various authors, most notably Wortmann [1]-[4], Eppler [5]-[7], and Miley [8], the modern methodology of low-speed airfoil design involves relating the aerodynamic performance features sought to particular characteristics of the boundary layer and, $i l_{\text {t }}$ turn, specifying the velocity
(pressure) distribution around the airfoil necessary to achieve those boundary layer characteristics which give rise to the desired performance. Once the required velocity distribution has been established, the airfoil is obtained by means of any one of a number of inverse (design) procedures such as the exact potential flow methods, based on complex functions, developed by Lighthill [9], Eppler [5] and Arlinger [10]. Whereas in the direct (analysis) problem every airfoil has a corresponding velocity distribution, the inverse problem is complicated by the fact that every velocity distribution does not necessarily have a corresponding airfoil. Thus, in the design process it is necessary to allow some flexibility in the prescribed velocity distirbution such that a physically reasonable airfoil can be obtained. Also, in some inverse methods, including those of Lighthill [9] and Eppler [5], the velocity distribution is specified through parameters which are rather indirect. Consequently, these methods usually require some amount of iteration in order to determine what parameter values actually achieve the desired velocity distribution.

One particular low-speed airfoil research subject which has received considerable attention is concerned with the theoretically interesting question of how much lift can be generated by a single-element airfoil without using active means of boundary layer control. In order to make the problem more tractable, most efforts in the area have considered only flows which are fully attached. Typically, airfoils in application achieve maximum lift when the lift increase due to an increase in angle of attack is just equalled by the lift losses due to separation; and consequently, the production of high Lift is usually accompanied by relatively high drag. Thus, by limiting the maximum lift airfoil problem to fully attached flows, not only are the
complications of analyzing separated flows eliminated, but the desirable result that the airfoils generated attain high lift with comparatively low drag is also achieved.

As discussed by Smith [11] and Liebeck [12], the velocity distribution formulated for the purposes of maximizing the lift generated by a singleelement airfoil having fully attached flow is or the form shown in Figure 1 . On the lower surface, the desired velocity distribution is simply that which is as close to stagnation over as much of the lower surface as is possible. On the upper surface, it is dictated that the flow accelerate rapidly from the leading edge stagnation point to a level of constant velocity (rooftop velocity) that is to be maintained as far aft as possible and still permit pressure recovery over the rear of the airfoil without introducing flow separations due to an excessive adverse pressure gradient. As first adopted for airfoils by Liebeck and Ormsbee [13], the theoretical recovery that allows the longest rooftop by achieving the recovery of a given pressure in the shortest distances possible is the zero skin friction approximation of Stratford [14]. The notion of zero skin friction implies that separation is everywhere imminent along the Stratford distribution. The ideal maximum lift velocity distribution was further defined by Ormsbee and Chen [15] in that the optimum relationship between the maximum velocity on the upper surface, the rooftop velocity, and the tralling edge velocity was determined. This relationship, however, does not specify the magnitude of either the roof top velocity or the crailing edge velocity, but only the optimum ratio between the two. As a consequence, disregarding the small adjustment in rooftop length necessary because the local Reynolds number in that region changes, increasing the value of the trailing edge to free-stream velocity ratio, $V_{T E} / U$, allows
the level of the entire upper surface velocity distribution to increase while the margin agains: separation offered by the Stratford distribution is unchanged. Thus, increasing $V_{T E} / U$ is an extremely effective means of increasing the amount of lift generated by a particular design. At this point, however, although there is no doubt that for practical airfoils the value of $V_{T E} / U$ must have an upper bourd, it is not evident what that bound is. Because of its strong influence on the amount of lift generated, and because its specification can be connected to minimizing drag through the attainment of fully attached flow, it would be of some benefit to low-speed airfoil design to better understand the influences that the specification of $V_{T E} / U$ has on the aerodynamic characteristics of an airfoil, as well as how the specification physically impacts the geometry of the profile which results.

Consideration of Flow Conditions in the Vicinity of the Trailing Edge

In surveying the available literature to better understand what limits exist on the value of $V_{T E} / U$, it is found that conventional airfoils, such as those catalogued by Abbott and von Doenhoff [16], exhibit a trailing edge velocity in the neighborhood of eight to nine-tenths of the free-stream value. Liebeck [12], incicates that the bounding value for $V_{T E} / U$ in potential flow is unity. This conclusion is advanced through the argument that for a cusped crailing edge, symmetrical airfoil at zero angle of attack, the trailing edge velocity approaches that of the free-stream as the thickness of the airfoll goes to zero, i.e., a flat plate. Thus, it is supposed that any thickness or lift generation requires that the trailing edge velocity be less than free-stream. While no disagreement is taken with these notions, which can be demonstrated using the familiar Joukownky transformation, it remains to
develop them in a more general manner and to indicate how the physical characteristics of an airfoil are arfected by the specified value of $V_{T E} / U$. Another characteristic of the flow in the vicinity of the trailing edge which warrants further consideration, and will be developed in detall later, is the fact that, in general, the complex pressure gradient, $p_{x}-i p_{y}$, at the trailing edge is infinite. That $p_{x t}$ is infinite is readily confirmed by noting the vertical slope that occurs at the trailing edge in the pressure distributions of Joukowsky airfoils, for example. Although not as readily observable, the value of $P_{y t}$ exhibits similar behavior.

In addition to the presence of infinite trailing edge pressure gradients, there are numerous examples in the literature, including References [17]-[19], of airfoils in which the gotential flow velocity distribution is characterized by a large velocity differential between the upper and lower surfaces over the aft portions of the airfoil and in the region of the trailing edge. As is demonstrated by Figure 2, this large velocity differential is introduced as it increases the area enclosed by the velocity distribution and the resulting increase in aft pressure loading on the airfoil manifests itself through increased lift production. While it might appear, in some cases, that the velocity distribution is closed by vertical slope connecting the upper and lower surface velocities, because potential flow theory requires that each point in the flow field have a unique velocity then, as discussed by Nonweiler [20], there can be no difference between the upper and lower surface flow velocities at the point where they meet and flow into the wake. Thus, although the recovery distributions of a number of airfoils appearing in the literature, itciuding that of Figure 2 , have been formulated using a value of $V_{T E} / U$ in excess of unity, in actuality, the value used is not that of the
trailing edge but, rather, corresponds to a portion on the upper surface slightly upstream of the trailing edge. From this point, the fluid is decelerated very rapidly to the actual velocity at the trailing edge. This value is in common with that resulting from accelerating the flow on the lower surface in the immediate vicinity of the trailing edge through a steep, favorable pressure gradient. While it is quite clear that the viscous effects prevent the full realization of the lift gains predicted by potential flow methods, exper :-m" results have indicated, in some applications, that the proper implementacion of large velocity differentials between the upper and lower surfaces to very near the trailing edge can be of some benefit.

An interesting example of an airfoil designed to exploit the benefits of a large amount of aft loading is that of Kennedy and Marsden [18]. The potential flow analysis of this airfoil, shown in Figure 2, yields a lift coefficient of 3.81 , resulting from the design velocity distribution based on a upper surface trailing edge velocity of 1.2 U . While experimentally, the lift coefficient at the design conditions was found to be an impressive 2.64, it was obtained at the expense of relatively high drag resulting in a maximum lift-to-drag ratio notably less than those obtained for other high lift designs. It was also found experimentally that viscous effects reduced the upper surface velocity just upstrean of the trailing edge from its potential flow design value to 1.07 U . To further demonstrate the viscous influences, Figure 3 compares an off-design potential flow velocity distribution of the Kennedy and Marsden airfoil with one obtained experimentally, Reference [18]. In addition, the figure includes results obtained using the GRUMFULL code developed by Mead and Melnik [21]. In the classical method of correcting inviscid flow results for the effects of viscosity, the displacement thickness
of the boundary layer on the airfoil is calculated and added to the original profile. This results in an equivalent body which can be analyzed to approximately account for the influence of the boundary layer. This procedure, however, ignores additional viscid-inviscid inceractions, each of which has an influence on the inviscid result equal to that of the displacement thickness. The GRUMFOIL code remedies the deficiencies of previous methods for the analyses of the flow over an airfoil by incorporating a complete interacting boundary layer formulation which, in consideration of application to lowspeed flows, includes the effects of the boundary layer displacement thickness on the airfoil and in the wake, wake curvature effects arising from the turning of low momentum fluid in the wake along curved streamlines, and the effects of strong viscous interactions in the vicinity of the trailing edge. As Figure 3 demonstrates, the potential flow velocity distribution over the airfoil is modified considerably by viscous effects. In particular, the steep trailing edge velocity gradient is rounded off to the extent that the actual trailing edge velocity of .94 U is easily identified. Lt is also evident from Figure 3 that, because the viscous influenses are amplified in high lift situations, the conscientious design of high lift airfoils for actual applications mast involve the integration of viscous flow analysis with the potential flow design method.

In the potential flow inverse scheme of Eppler [5], an attempt is made co achieve the lift-increasing benefits of a large upper and lower surface velocity differential near the trailing edge and also, in a somewhat qualitative manner, account for the viscous effects. While the potential flow formulation requires that the upper and lower surfaces have equal velocities at the trailing edge, the manner in which geometrical closure of the airfoil
is achieved allows for large velocity differences between the upper and lower surfaces to a point very near the trailing edge. Consequently, this trailing edge treatment allows for velocity distributions which, in the ficinity of the trailing edge, are very similar to those which occur when viscous influences are considered. While this model is slearly an improvement on the usage of the nearly infinite trailing edge gradie, the question arises as to what is the permissible extent of recovery before the steepened portion of the distribution causes flow separation problems. For example, if a Stratford distribution is specified for recovery on the upper surface, then, even in the best of situations, separation would occur where the velocity gradient steepens due to the closure contribution. As is demonstr-ed by both the experimental and viscous analysis results shown in Figure 3 , the loss of loading near the trailing edge that occurs when viscous effects are considered generally causes the overall recovery gradients to be somewhat steeper than indicated by inviscid results. Thus, it is a possibility that the steeper gradients will cause severe separation probleme. Even in the case of more practical airfoils, not pushing recovery limits as does a Stratford distribution, only the gentlest distributions will have sufficient momentum in the boundary layer tc overcome the very steep adverse pressure gradient introduced in the vicinity of the trailing edge by the presence of large cmounts of aft loading. To reduce these problems, Eppler (S) discusses the fact that, while it is desirable to reduce the upper surface adverse pressure gradient in the ciosure region as much as possible by increasing the value of the trailing edge velocity ratio, such relief is linitied. As the value of $V_{T E} / U$ is increased, point is reached fur which any aiditional increase causes the upper and lower surfaces of the affcil io intersect one another
ahead of the trailing edge. In addition, Nonweiler [20] notes that even if it were possible to completely eliminate the upper surface adverse pressure gradient due to closure by accelerating the lower surface flow through a strong favorable gradient and discharging the flows from both surfaces into the wake at a velocity corresponding to a smooth continuation of the upper surface recovery distribution that, as this dumping velocity would be greater than th..t of the free stream, some deceleration of the flow in the wake would be required. This situation is also likely to have an upstream influence menifested as separation on the upper surface ahead oi the trailing edge.

A demonstration of the problems that might occur usirg the trailing edge treatment of Eppler [5] is provided by the high-lift, single-design-point dirfoils of Thompson [19]. These airfoils make use of the Stratford recovery distribution on the upper surface. As shown in Figure 4, the closure contribution at the crailing ed e of these airfoils extends over such a narrow portion of chord length that, like the Kennedy and Marsden airfoil of Figure 2 , it appears as though the large velocity difference between the upper and lower surfaces is adjusted at the trailing edge through an infinite velocity gradient. As illustrated in the insets of Figure 4, however, it is found that the value of $V_{T E} / U$ used to generate the upper surface recovery distribution is actually an upstream point at which is initiated a very rapid deceleration of the flow around the small protuberance located at the rear of the airfoil. Thus, the actual $V_{T E} / U$ is considerably less than the value in excess of unity which was employed in formulating the Stratford distribution. Consequently, rather than the desired velocity distribution, which includes recovery through a Stratford distribution extending to the wake, the airfoil generated has recovery through a Stratford distribution followed by a violent recompression
at a point near the trailing edge. Not only might this result lead to flow separation problems and a thicker wake than is necessary, but more importantly, the discrepancies that exist between the intended velocity distribution and that obtained introduces a degree of uncertainty into the design procedure which is undesirable. While a part of these problems can be attributed to erroneous interpretations in the human-computer iteration process which is neressary with the inverse method used for these designs, a more significant element was the fact that the values of $V_{T E} / U$ used in formulating the desired velocity distributions were much too high. While this possibility was clearly acknowledged, it was also emphasized by Thompson [19] that the literature contained very little information to aid in the selection of this important parameter.

Objectives of the Present Investigation

As part of the desired velocity distribution, the value of the trailing edge velocity ratio must be specified in most airfoil design procedures; however, there is little information in the existing literature to guide in its choice. Consequently, as has been discussed by several authors, including McMasters and Henderson [22], $\mathrm{V}_{\mathrm{TE}} / \mathrm{J}$ is perhaps one of the most difficult of the required parameters to determine. While in many design exercises, such as those directed at low drag, the sicuation is less critical in that the desired derodynamic characteristics are less sensitive to an optimum selection of $V_{T E} / U$, the difficilty is heightened in the maximum lift problem because of the strong dependency of the lift generated to the value specified. Thus, in order to provide some guidance for selecting the value of ${ }^{\prime} T E / U$ in the design of low-speed, high-lift airfoils, the first part of the present investigation
considers the relationship between the maximum values of $V_{T E} / U$ obtainable and profile characteristics such as thickness and camber.

Considering the modification of the potential flow maximum lift velocity distributions by viscous effects, there is clearly a trade-off between the lift gained by maintaining a large velocity differential between the upper and lower surfaces in the vicinity of the trailing edge and the lift lost by separation. While there are examples of potential flow designed airfoils that achieve some portion of their design goals, Kennedy and Marsden [18] and Sivier, et. al. [23], there are others, such as the designs of Thompson [19] experimentally investigated by Moore [24], which exhibit extremely poor performance attributed primarily tc widespread flow separation. In the context of designing airfoils having predictable characteristics, she inconsistency of results for airfoils which make use of large velocity differentials near the trailing edge leaves much to be desired. Thus, until additional guidance is available, the design process is limited in not knowing precisely to what extent the potential flow results in the vic nity of the trailing edge will be modified by viscous interactions. In order to eliminate some of the uncertainty in using potential flow airfoil design methods, the second part of this research is directed toward the development of a class of airfoils in which the viscous interactions in the trailing edge region are minimized by the introduction of a condition to insure that the pressure gradients at the trailing edge are bounded. Not only does the enforcement of this condition permit the fluid on the airfoil to flow smoothly into the wake; but in addition, it typically excludes the possibility of the closure contribution causing steep upper surface adverse pressure gradients in the vicinity of the trailing edge. The practical implementation of this condition
is achieved through modification of the airfoil design code of Eppler and Somers [25]. While unquestionably viscous effects alter the flow in the trailing edge region, it is hoped that the application of the condition for finite trailing edge pressure gradients modify the viscous influences to the extent that the results obtained using potential flow design methods are more reliable.

The final phase of the research effort to be presented is directed toward exploring the influences on the geometry and aerodynamic characteristics caused by the introduction of the finite trailing edge pressure gradients condition into the design process. To facilitate this exploration, a number of airfoils having finite trailing edge pressure gradients are presented and compared to airfoils which are as similar as possible but having unbounded trailing edge pressure gradients.

maximum Trailing edge velocities

Preliminary Remarks
As the ratio of the trailing edge to free-stream velocity, $V_{T E} / U$, has a弓lobal influence on the lifting capability of a given airfoil, it is important :o determine the maximura value that this ratio can attain and how its specification affects other airfoil design considerations. While, as it has been noted, there are assertions in the literature regarding a potential flow upper bound of $V_{T E} / U$ equal to unity for a flat plate at zero angle of attack, Reference [i2] for example, these are apparently based on results formulated through the use of the Joukowsky transformation. A survey of the literature has not revealed an extension of this conclusion for the more general transformation mapping a circle into an airfoil. In order to develop such a demonstrati $h_{\text {, }}$ a series of truncations of the general transformation, the socalled von Mises cransformations, will be used to show that the addition of a finite number of extra terms to the series does not alter the flat plate results. While this does not result in a general proof concerning the ultimate value that $V_{T E} / U$ can attain, it does indicate that the upper bound for the very broad class of von Mises airfoils is indeed unity. More importantly, however, the development provides some insight into how the specification of $V_{T E} / U$ influences the geometry of an airfoil.

In the course of numerical design studies in which it was attempted to raise $\mathrm{V}_{\mathrm{TE}} / \mathrm{U}$ co as high of value as possible, it was found that while the potential flow formulation of the problem places no restrictions on the upper
bound of $V_{T E} / U$, the resulting airfoils are physically restricted in that as increases are made in $V_{T E} / U$, a point is eventually reached for which further increases cause the upper and lower surface to cross one another such that a profile .aving a region of negative thickness is generated. Thus, this situation indicates that an additional constraint must be imposed such that the problem becomes that of finding the largest value of $V_{T E} / U$ for which a physically realizable airfoil is possible.

Transformation of a Circle into an Airfoil

The method of conformal mapping may be eraployed to analyze the flow over airfoils by transforming the known flow field about a circular cylinder into that about an airfoil as depicted in Figure 5. In this formulation, $\zeta=\mu$ denotes the center of the circle, r its radius, and the function $\zeta_{c}=\mu+r e^{i \phi}$ describes the circle. The complex potential for the flow about the circular cylinder with circulation Γ can be expressed as

$$
\begin{equation*}
F(\zeta)=U(\zeta-\mu) e^{-i \alpha}+\frac{U r^{2}}{(\zeta-\mu)} e^{i \alpha}+\frac{i \Gamma}{2 \pi} \ln \frac{(\zeta-\mu)}{r e^{i \alpha}} \tag{2-1}
\end{equation*}
$$

and the complex velocity in the ζ-plane is

$$
\begin{equation*}
w(\zeta)=\frac{d F(\zeta)}{d \zeta}=U e^{-i \alpha}-U r^{2} e^{i \alpha} \frac{1}{(\zeta-\mu)^{2}}+\frac{1 \Gamma}{2 \pi} \frac{1}{(\zeta-\mu)} \tag{2-2}
\end{equation*}
$$

The complex velocity in the airfoil plane is then given by

$$
\begin{equation*}
w(z)=\frac{d F}{d \zeta} / \frac{d z}{d \zeta}=w(\zeta) / z^{\prime} \tag{2-3}
\end{equation*}
$$

where $z(\zeta)$ is the mapping function which takes the circle into the airfoil. This function will, in general, possess a certain number of critical points which are defined by the solution of the equation $(\mathrm{d} z / \mathrm{d} \zeta)=0$. A profile having a sharp trailing edge requires that one of these critical points be on the circle while all of the others are contained in the interior of the circle. Thus, the critical point on the circle, ${ }^{\prime} \mathrm{T}$, maps to the trailing edge of the airfoil while the regions external to the circle and the airfoil are everywhere conformal.

The amount of circulation present in equation (2-1) may be determined by introducing the Kutta condition, which requires that the flow velocity at the trailing edge be finite and continuous. From equation (2-3), the complex velocity at the trailing edge is given

$$
\begin{equation*}
w_{T}=w\left(z_{T}\right)=w\left(\zeta_{T}\right) / z_{T}^{\prime} \tag{2-4}
\end{equation*}
$$

Because a sharp trailing edge requires that z_{i} be zero, the requirement that W_{T} be finite necessitates that $w\left(\zeta_{T}\right)$ also be zero. The circulation which fixes this stagnation point at $\zeta_{T}=r e^{-1 B}+\mu$ is found from equation (2-2) to be

$$
\begin{equation*}
\Gamma=4 \pi R U \sin (\alpha+\beta) \tag{2-5}
\end{equation*}
$$

Abstract

As presented in Karamcheti [26], a non-zero trailing edge closure angle requires a stagnation point at the trailing edge of the airfoil. Thus, in investigating upper bounds of $V_{T E} / U$, it is necessary to consider airfolls whose trailing edges close in a cusp and thereby have non-zero trailing edge

velocities. In order to obtain an expression for the trailing edge velocity of this class of airfoils, L'Hopital's rule is applied to the indeterminate form obtained from equation (2-4) such that

$$
\begin{equation*}
V_{T E}=\left|w\left(z_{T}\right)\right|=\lim _{\zeta \rightarrow r_{T} T} \frac{\left|w^{\prime}(\zeta)\right|}{\left|z^{\prime \prime}(\zeta)\right|}=\frac{\left|w^{\prime}\left(\zeta_{T}\right)\right|}{\left|z_{T}{ }^{\prime \prime}\right|} \tag{2-6}
\end{equation*}
$$

and, using equations (2-2) and (2-5) to obtain

$$
\begin{equation*}
w_{T}^{\prime}=\frac{2 U e^{2 i B}}{r} \cos (\alpha+\beta) \tag{2-7}
\end{equation*}
$$

the trailing edge to free-stream velocity ratio is found to be given by

$$
\begin{equation*}
\frac{V_{T E}}{U}=\frac{2|\cos (\alpha+\beta)|}{\left|z_{T}^{\prime \prime}\right| r} \tag{2-8}
\end{equation*}
$$

For the Joukowsky transformation,

$$
\begin{equation*}
z=\zeta+\frac{b^{2}}{\zeta} \tag{2-9}
\end{equation*}
$$

where, as can be verified by consideration of Figure 5 ,

$$
\begin{equation*}
b=\frac{r}{(1+E)} \cos \beta \tag{2-10}
\end{equation*}
$$

the trailing edge velocity ratio is then given by

$$
\begin{equation*}
\frac{V_{T B}}{U}=\left|\frac{\cos \beta}{(1+\varepsilon)}\right||\cos (\alpha+\beta)| \tag{2-11}
\end{equation*}
$$

As shown in Reference [26], as well as in any one of a number of classical aerodynamic texts, the thickness of the Joukowsky airfoil is increased as the magnitude of ε is increased, while increases in B Increase the amount of camber. Thus, from equation (2-11), it is clear that for the case of the Joukowsky transformation, the presence of any thickness or camber reduces $V_{T E} / U$ from the value of unity which exists for the flat plate at zero angle of attack.

The Von Mises Transformation
The general transformation which maps a circle into an airfoil is expressed as

$$
\begin{equation*}
2=2(\zeta)=\zeta+\sum_{n=1}^{\infty} \frac{c_{n}}{\zeta^{n}} \tag{2-12}
\end{equation*}
$$

where, as can be seen in Figure $5, z=x+i y, \zeta=\xi+i n$, and, in general, the c_{n} 's are complex quantities. Note that the mapping function, $z(\zeta)$, satisfies the requirement of not altering the flow field at infinity. Now, consider a truncated form of the general transformation which, after differentiation, is written as

$$
\begin{equation*}
\frac{d z}{d \zeta}=1-\sum_{n=1}^{N} \frac{n c_{n}}{\xi^{n+1}} \tag{2-13}
\end{equation*}
$$

This transformstion mest not possess any singular points outside the generating circle, although one singular point, denoted by roust be on the circle. Since the remaining singular points, given by $r^{\prime \prime} 2, r_{3}, \ldots, r^{\prime} N$, are
zeros of equation (2-13), in factored form, that equation becomes

$$
\begin{equation*}
\frac{d z}{d \zeta}=\left(1-\frac{\zeta_{T}}{\zeta}\right)\left(1-\frac{\zeta_{2}}{\zeta}\right)\left(1-\frac{\zeta_{3}}{\zeta}\right) \ldots\left(1-\frac{\zeta_{N}}{\zeta}\right) \tag{2-14}
\end{equation*}
$$

where the zero locations are indicated by

$$
\begin{equation*}
\zeta_{n}=\xi_{n}+i n_{n} \tag{2-15}
\end{equation*}
$$

At this point, it is seen that the mapping function may be generated by postulating the locations of the N zeros which lie, along with the origin, within a circle of radius r in the ζ-plane. Without loss of generality, the zero on the circle, ζ_{T}, which transforms to the trailing edge of the airfoil, may be fixed at the location (1,0). By choosing different sets of zeros and different generating circles, a great deal of flexibility exists in the shapes of airfoils which can be obtained. Profiles which are generated by these means are known as vo Mists airfoils and the mappings obtained by expanding equation (2-14) and integrating the result are known as vo Moses transformations.

The coefficients of the transformation, the c_{n} 's, can be related to the zero locations, the $\zeta_{n}{ }^{\prime} s$, by expanding equation (2-14) and equating that result with equation (2-13). In this manner, it is found that the coefficient of the ζ^{-1} term mast vanish. Hence, the relation

$$
\begin{equation*}
\zeta_{T}+\sum_{n=2}^{N} \zeta_{n}=0 \tag{2-16}
\end{equation*}
$$

indicates chat the origin of the ζ-plane mut be the centroid of the zeros located at $\zeta_{T}, \zeta_{2}, \zeta_{3}, \ldots \zeta_{N}$. The coefficients for vol Miser transformations
of up to six terms, $N \leqslant 6$, are related to the zero locations as follows:

$$
\begin{align*}
c_{0}= & \zeta_{T}+\zeta_{2}+\zeta_{3}+\zeta_{4}+\zeta_{5}+\zeta_{6}=0 \tag{2-17}\\
c_{1}= & \left\{\zeta_{T}{ }^{2}-\zeta_{2}\left(\zeta_{3}+\zeta_{4}+\zeta_{5}+\zeta_{6}\right)-\zeta_{3}\left(\zeta_{4}+\zeta_{5}+\zeta_{6}\right)\right. \\
& \left.-\zeta_{4}\left(\zeta_{5}+\zeta_{6}\right)-\zeta_{5} \zeta_{6}\right\} \tag{2-18}\\
c_{2}= & \frac{1}{2}\left\{\zeta _ { T } \left[\zeta_{2}\left(\zeta_{3}+\zeta_{4}+\zeta_{5}+\zeta_{6}\right)+\zeta_{3}\left(\zeta_{4}+\zeta_{5}+\zeta_{6}\right)\right.\right. \\
+ & \left.\zeta_{4}\left(\zeta_{T}+\zeta_{6}\right)+\zeta_{5} \zeta_{6}\right]+\zeta_{2}\left[\zeta_{3}\left(\zeta_{4}+\zeta_{5}+\zeta_{6}\right)\right. \\
& \left.\left.\left.\left.+\zeta_{4} \zeta_{5}+\zeta_{6}\right)+\zeta_{5} \zeta_{6}\right]+\zeta_{3}\left[\zeta_{4} \zeta_{5}+\zeta_{6}\right)+\zeta_{5} \zeta_{6}\right]+\zeta_{4} \zeta_{5} \zeta_{6}\right\} \tag{2-19}\\
c_{3}= & -\frac{1}{3}\left\{\zeta _ { T } \left[\zeta_{2}\left(\zeta_{3} \zeta_{4}+\zeta_{3} \zeta_{5}+\zeta_{3} \zeta_{6}+\zeta_{4} \zeta_{5}+\zeta_{4} \zeta_{6}+\zeta_{5} \zeta_{6}\right)\right.\right. \\
& \left.+\zeta_{3}\left(\zeta_{4} \zeta_{5}+\zeta_{4} \zeta_{6}+\zeta_{5} \zeta_{6}\right)+\zeta_{4} \zeta_{5} \zeta_{6}\right]+\zeta_{2}\left[\zeta _ { 3 } \left(\zeta_{4} \zeta_{5}\right.\right. \\
& \left.\left.\left.+\zeta_{4} \zeta_{6}+\zeta_{5} \zeta_{6}\right)+\zeta_{4} \zeta_{5} \zeta_{6}\right]+\zeta_{3} \zeta_{4} \zeta_{5} \zeta_{6}\right\} \tag{2-20}\\
c_{4}= & \frac{1}{4}\left\{\zeta _ { T } \left\{\zeta_{2}\left(\zeta_{3} \zeta_{4} \zeta_{5}+\zeta_{3} \zeta_{4} \zeta_{6}+\zeta_{3} \zeta_{5} \zeta_{6}+\zeta_{4} \zeta_{5} \zeta_{6}\right)\right.\right. \\
& \left.\left.+\zeta_{3} \zeta_{4} \zeta_{5} \zeta_{6}\right]+\zeta_{2} \zeta_{3} \zeta_{4} \zeta_{5} \zeta_{6}\right] \tag{2-21}\\
c_{5}= & -\frac{1}{5}\left\{\zeta_{T} \zeta_{2} \zeta_{3} \zeta_{4} \zeta_{5} \zeta_{6}\right\} \tag{2-22}
\end{align*}
$$

For a two term transformation, $N=2$, equation (2-17) indicates that $\zeta_{2}=-\zeta_{T}$ and equation (2-14) reduces to the familiar Joukowsky case,

$$
\begin{equation*}
\frac{d z}{d \zeta}=\left(1-\frac{\zeta T^{2}}{\zeta^{2}}\right) \tag{2-23}
\end{equation*}
$$

From equation (2-13), $c_{1}=\zeta_{T}{ }^{2}$ and the Joukowsky transformation is obtained in the form of equation (2-12) as

$$
\begin{equation*}
z=\zeta+\frac{\zeta_{T} T^{2}}{\zeta} \tag{2-24}
\end{equation*}
$$

While Joukowsky airfoils are limited to a circular arc camberline and a maximum thickness at approximately the quarter-chord position, such restrictive liaitations do not exist for von Mises airfoils. By appropriately locating the generating zeros and the origin of the transformation circle, it is possible to approxtaste a desired shape through an extremely wide range of airfoil geometries. While the zero locations govern the basic thickness distribution and camberline shape, the center location of the generating circle can be used to influence the overall amounts of chickness and camber as in the case of Joukowsky airfoils. Displacements of the circle in the direction of the real axis, H_{R}, priarily influences the thicknests of von Mises airfoils while displacements in the direction of the imaginary axis, H_{I}, the camber.

A few examples of the profile variations possible using the von Mises transformation are provided by the airfoils shown in Figures 6 and 7 , generated using four term tranaformations, and those shown in Figures 8 and 9 , obtained using six terms. The zero locations used to generate these airfoils
and the resulting transformation coefficients are indicated in the figures with the complex number pairs denoted by the Z_{n} 's and the C_{n} 's, respectively. The real and imaginary components of the origin of the generating circle are given in the figures, respectively, as UR and UI.

Because the vo Mises transformations provide for such a wide range oi: possibilities, and airfoils of practical interest can generally be characterized by relatively few inflections in the thickness distribution and camberline shape, the conclusions developed using the van Mises transformations are considered to be applicable over a broad range of airfoils. Ta addition, the development is conducted using a relatively sail number of terms in the transforastion because, as demonstrated by the examples presented, large variations in profile geometries are possible without a large number of terms. This is further justified by the fact that the contributions made to the resulting airfoil shape by terms of increasing order rapidly become insignificant compared to the influence of the first few terms.

Maxima Trailing Edge Velocity Ratios for Physically Realizable Airfoils

From equation (2-8), it is seen that $V_{T E} / U$ is inversely proportional $\left|z_{T}{ }^{\prime \prime}\right|$ and r. Thus, the maximum value of $V_{T z} / U$ occurs when $\left|z_{T}{ }^{-1}\right|$ is minimized and r is fixed at minimum value for the given $\left|z_{T}{ }^{" \prime}\right|$ which insures that the airfoil generated is free of any regions of negative thickness. Denoting the complex coefficients of the transformation function ac $c_{n}=a_{n}+1 b_{n}$, taking S_{1} - (1,0), and performing the necessary operations on the truncated form of equation (2-12), $\left|\varepsilon_{T}{ }^{*}\right|$ is found to be

$$
\begin{equation*}
\left|z_{T}{ }^{\prime \prime}\right|=\left[\left(\sum_{n=1}^{N-1} n(n+1) a_{n}\right)^{2}+\left(\sum_{n=1}^{N-1} n(n+1) b_{n}\right)^{2}\right]^{1 / 2} \tag{2-25}
\end{equation*}
$$

Because the second term or the right of this expression is positive, the minimum value of $\left|\mathbf{z}_{\mathrm{T}}{ }^{\prime \prime}\right|$, for a given set of a_{n} 's, occurs when the second term :i zero. While there are non-zero values of the b_{n} 's chat can achieve this, the second term always disappears for symetrical airfoils which are generated when u_{I} and all of the b_{n} 's are zero. Consequently, as developed further in Appendix A, : or determining the maximun value of $V_{T E} / U$ pos. sle for an airfoll generated by a fixed set of a_{n} 's, it is aufficient to consider only the symetrical protile which can result. While chere my be non-symmerical sections having a value of $V_{T E} / U$ as large, there can be none for which the value is larger. By eliainating the need to consider other than symatrical airfoils, the determination of the maximut atidinable values of $V_{T E} / U$ for physically realizable airfoils of the van Mises family is gignificantly simplified in that the thickness distributions, which must exclude negative thicknesses, are dependent only upon u_{R} and the a_{n} 's. Through these considerations, the problem of determining the conditions insuring that a transformation yield an airfoil which dose not crossover itself is reduced to that of finding the minime value of r for which the upper surface coordinates of the generated profile are all non-negative.

To proceed in this development, the representation of the generating circle in the complex \quad-plane, as previously noted, is given by

$$
\begin{equation*}
5=\xi+\ln =r \varepsilon^{1 \phi}+\mu \tag{2-26}
\end{equation*}
$$

Thus, the coordinates of the circle are

$$
\begin{align*}
& \xi=r \cos \phi+\mu_{R} \tag{2-27}\\
& n=r \sin \phi+\mu_{I} \tag{2-28}
\end{align*}
$$

where, with $\zeta_{T}=(1,0)$, it is evident from Figure 5 that

$$
\begin{equation*}
r=|1-\mu|=\left[\left(1-\mu_{R}\right)^{2}+\mu_{I}^{2}\right]^{1 / 2} \tag{2-29}
\end{equation*}
$$

Setting μ_{I} to zero and defining

$$
\begin{equation*}
f=(1-\cos \phi) \tag{2-30}
\end{equation*}
$$

allows the preceding relationships to be written as

$$
\begin{equation*}
r=1-\mu_{R} \tag{2-31}
\end{equation*}
$$

$$
\begin{equation*}
\xi=1-\mathrm{rf} \tag{2-32}
\end{equation*}
$$

$$
\begin{equation*}
\eta=r \sin \phi \tag{2-33}
\end{equation*}
$$

The relationship between the real part of the transformation coefficients, the a_{n} 's, and the radius of the generating circle insuring that the symmetrical airfoil developed is characterized by positive thickness everywhere has been analytically deternined for von Mises transformations of up to six terms. Before this case is considered, however, it is instructive to examine the derivation with only three terms as the key points of the

ORIGINAL PAGE IS OF POOR QUALITY

development are retained while the algebra is simplified considerably. The three-term von Mises transformation having real coefficients is written as

$$
\begin{equation*}
z=\zeta+\frac{a_{1}}{\zeta}+\frac{a_{2}}{\zeta^{2}} \tag{2-34}
\end{equation*}
$$

For the symmetrical airfoil generated to have non-negative thickness everywhere, it is required that

$$
\begin{equation*}
\operatorname{Im}(z)=y \geqslant 0 \tag{2-35}
\end{equation*}
$$

for $0 \leqslant \phi \leqslant \pi$. Substitution of equation (2-26) into (2-34), and making use of the condition given by equation (2-35), yields

$$
\begin{equation*}
n-\frac{a_{1} n}{\left(\xi^{2}+n^{2}\right)}-\frac{2 a_{2} \xi n}{\left(\xi^{2}+n^{2}\right)^{2}}>0 \tag{2-36}
\end{equation*}
$$

which may be rearranged to give

$$
\begin{equation*}
\left(\xi^{2}+\eta^{2}\right)^{2}-a_{1}\left(\xi^{2}+\eta^{2}\right)-2 a_{2} \xi \geqslant 0 \tag{2-37}
\end{equation*}
$$

Using equations (2-32) and (2-33), the quantities required in equation (2-37) are found to be:

$$
\begin{gather*}
\xi^{2}=r^{2} f^{2}-2 r f+1 \tag{2-j8}\\
\eta^{2}=r^{2} \sin ^{2} \tag{2-39}
\end{gather*}
$$

$$
\begin{align*}
& \left(\varepsilon^{2}+n^{2}\right)=2 \mathrm{rf}(\mathrm{r}-1)+1 \tag{2-40}\\
& \left(\xi^{2}+n^{2}\right)^{2}=4 \mathrm{rf}(\mathrm{r}-1)[\mathrm{rf}(\mathrm{r}-1)+1]+1 \tag{2-41}
\end{align*}
$$

Substitution of the above quantities into equation (2-37) gives

$$
\begin{gather*}
4 \mathrm{rf}(\mathrm{r}-1)[\mathrm{rf}(\mathrm{r}-1)+1]+1-a_{1}[2 \mathrm{rf}(\mathrm{r}-1)+1] \\
-2 a_{2}[1-r f] \geqslant 0 \tag{2-42}
\end{gather*}
$$

The terms in this expression which are independent of r and f, that is, $1-a_{1}-$ $2 a_{2}$, may be eliminated by making use of the Kutta condition which requires, for the general case, that

$$
\begin{equation*}
z_{T}^{\prime}=1-\sum_{n=1}^{N-1} n a_{n}=0 \tag{2-43}
\end{equation*}
$$

For $N=3$, this expression indicates that

$$
\begin{equation*}
1-a_{1}-2 a_{2}=0 \tag{2-44}
\end{equation*}
$$

Applying this result and factoring rf from what remains, equation (2-42) becomes

$$
\begin{equation*}
2 r(r-1)^{2} f+2(r-1)-a_{1}(r-1)+a_{2} \geqslant 0 \tag{2-45}
\end{equation*}
$$

ORIGINAL PAGE IS OF POOR QUALIT'.

As the first term in this expression is non-negative, given that r is nonnegative, the most critical situation for meeting the conditica of the inequality occurs when $f=0$, i.e., when $\cos \phi=1$. For this case, equation (2-45) becomes

$$
\begin{equation*}
4(r-1)-2 a_{1}(r-1)+2 a_{2} \geqslant 0 \tag{2-46}
\end{equation*}
$$

Using this result, it is found that in order to prevent the airfoil obtained through the mapping function from having regions of negative thickness, it is necessary to require that

$$
\begin{equation*}
r>\frac{2-a_{1}-a_{2}}{2-a_{1}} \tag{2-47}
\end{equation*}
$$

In addition, the value of $\left|z_{T}\right|$, from equation (2-25), is given by the expression

$$
\begin{equation*}
\left|z_{T} "\right|=\left|2 a_{1}+6 a_{2}\right| \tag{2-48}
\end{equation*}
$$

Using equation (2-8), the maximum value of $V_{T E} / U$ which can be obtained from a given three-term transformation is

$$
\begin{equation*}
\frac{V_{T E}}{U}=\frac{2 \cos \alpha}{\left|z_{T}\right| r_{\min }}=\frac{2\left(2-a_{1}\right) \cos \alpha}{\left|2 a_{1}+6 a_{2}\right|\left(2-a_{1}-a_{2}\right)} \tag{2-49}
\end{equation*}
$$

For this case, the maximum $V_{T E} / U$ clearly occurs when the angle of attack, a, is zero. To determine the transformation which affords the largest $V_{T E} / U$ overall, equations (2-18) and (2-19) are used to relate the coefficients to
the locations of the generating zeros. Thus, for symmetrical airfoils generated with all of the generating zeros located on the real axis such tha the ${ }^{n} n$'s are all zero, the coefficients are given by

$$
\begin{equation*}
a_{1}=1-\xi_{2} \xi_{3} \tag{2-50}
\end{equation*}
$$

$$
\begin{equation*}
a_{2}=\frac{1}{2} \xi_{2} \xi_{3} \tag{2-51}
\end{equation*}
$$

Substitution of these relations into equations (2-49) and setting a equal to zero yields

$$
\begin{equation*}
\frac{V_{T E}}{U}=\frac{1+\xi_{2} \xi_{3}}{\left(1+\frac{1}{2} \xi_{2} \xi_{3}\right)^{2}} \tag{2-52}
\end{equation*}
$$

and using equation (2-17), it is found that

$$
\begin{equation*}
\xi_{3}=-\left(1+\xi_{2}\right) \tag{2-53}
\end{equation*}
$$

Equation (2-52) thus becomes

$$
\begin{equation*}
\frac{V_{T E}}{U}=\frac{4\left(\xi_{2}^{2}+\xi_{2}+1\right)}{\left(\xi_{2}^{2}+\xi_{2}-2\right)^{2}} \tag{2-54}
\end{equation*}
$$

Maxiraizing $V_{T E} / U$ with respect to ξ_{2} indicates that the overall largest value of $\mathrm{V}_{\mathrm{TE}} / \mathrm{U}$ occurs when $\xi_{2}=-1$ and $\xi_{3}=0$ or $\xi_{2}=0$ and $\xi_{3}=-1$. While it is also possible to generate symmetrical airfoils with non-zero values of the n_{n} 's, for example, when ξ_{2} and $\xi_{3}=-.5$ and $n_{2}=-n_{3}$, it is found that the value of $V_{T E} / U$ is maximum when $n_{2}=-n_{3}=0$. Thus, for determining the
bounding values of $V_{T E} / U$, it is sufficient to consider the case of having the η_{n} 's set to zero. Thus, for the three-term von Mises cransformation, the maximum $V_{T E} / U$ occurs when the third term is zero and the remaining terms are equivalent to those of the Joukowsky transformation which yield the flat plate airfoil.

Now consider the case of the six-term von Mises transformations having real coefficients, as given by

$$
\begin{equation*}
2=\zeta+\sum_{n=1}^{5} \frac{a_{n}}{\zeta^{n}} \tag{2-55}
\end{equation*}
$$

A physically realizable symmetrical airfoil is insured provided that

$$
\begin{equation*}
\operatorname{Im}\left\{\xi+i n+\sum_{n=1}^{5} \frac{a_{n}(\xi-i n)^{n}}{\left(\xi^{2}+n^{2}\right)^{n}}\right\} \geqslant 0 \tag{2-56}
\end{equation*}
$$

Proceeding as in the case of the three term transformation, this equation is expanded to obtain

$$
\begin{align*}
& \left(\xi^{2}+\eta^{2}\right)^{5}-a_{1}\left(\xi^{2}+\eta^{2}\right)^{4}-2 a_{2} \xi\left(\xi^{2}+n^{2}\right)^{3}+a_{3}\left(n^{2}-3 \xi^{2}\right)\left(\xi^{2}+\eta^{2}\right)^{2} \\
& \quad+4 a_{4} \xi\left(n^{2}-\xi^{2}\right)\left(\xi^{2}+n^{2}\right)+a_{5}\left(10 \xi^{2} n^{2}-5 \xi^{4}-n^{4}\right) \geqslant 0 \tag{2-57}
\end{align*}
$$

After making the proper substitutions and expanding, the terms in the resulting equation which are independent of r and f are again eliminated by use of the Kutta condition, equation (2-43). Pactoring 2 rf from the remainins expression yields an inequality of the form

$$
\begin{equation*}
A f^{4}+B f^{3}+C f^{2}+D f+E \geqslant 0 \tag{2-58}
\end{equation*}
$$

where expressions for the coefficients are given in Appendix B. For $0 \leqslant \phi \leqslant \pi, f$, given by equation (2-30), is never negative. Hence, when A, B, C, and D are nonnegative, the inequality will be satisfied as f goes to zero provided that E is non-negative. Additionally, for the case when A, B, C, and D are not all non-negative, it has been demonstrated numerically that requiring E to be non-negative is still sufficient to guarantee that the condition of the inequality is met. From these results, the attainment of a non-negative thickness distribution on airfoil resulting from a six-term vo Mises transformation requires that

$$
\begin{equation*}
r>\frac{5-4 a_{1}-7 a_{2}-9 a_{3}-10 a_{4}-10 a_{5}}{5-\frac{1 a_{1}}{}-6 a_{2}-5 a_{3}+10 a_{5}} \tag{2-59}
\end{equation*}
$$

It should be noted that the expression degenerates into the appropriate forms for transformations having fewer than six terms.

The results of maximizing $V_{T E} / U$ for transformations of up to six terms in a manner analogous to that used for three terms suggests that for $\boldsymbol{S}_{\mathrm{T}}=(1,0)$, a specified ξ_{2} location, and any number of remaining zeros, say k, that $V_{T E} / U$ achieves a maximum when the k zeros are all positioned at the location defined by

$$
\begin{equation*}
\xi_{n}=-\frac{1}{k}\left(\xi_{2}+1\right) \tag{2-60}
\end{equation*}
$$

Furthermore, the value of $V_{T E} / U$ is found to increase as the value of $\boldsymbol{\xi}_{2}$
approaches -1.0 from either direction. When F_{2} is equal to -1.0 , the maximum value of $V_{T E} / U$ reaches unity and requires that all of the other zeros be located at $\xi_{n}=0$ and consequently, have no influence. Again, this indicates that the largest possible value of $V_{T E} / U$ for a physically reasonable airfoil is unity and occurs when the profile is a flat plate at zero angle of attack.

Numerical Results and Discussion.
In order to simplify the determination of the minimum generating circle radius for which an allowable airfoil is obtained, the development in the preceding section considered only symmetrical profiles in order to uncouple the thickness distribution from the b_{n} 's. Note, however, that if the airfoils under consideration have neither excessive camber or thickness, the resulting condition provides an approximation which is still useful to insure the generation of physically realizable airfoils. For non-symmetrical profiles, due to the fact that a chordwise location from an upper portion of the generating circle, $x(\theta)$, does not correspond to the same location transformed from the lower portion, $x(-\theta)$, the thickness distribution becomes coupled to the b_{n} 's. If the airfoil is not excessively cambered, however, then $x(\theta)$ will be approximately equal to $x(-\theta)$ and consequently, the thickness distribution is only weakly influenced by the non-zero b_{n} 's. Thus, the positive thickness condition remains approximately correct. Similarly, in practice, it has been found that the condition is reasonably valid for small, non-zero values of μ_{I}, and only excessively cambered profiles actually might have regions of negative thickness even though the positive thickness condition is satisfied. Thus, for most practical purposes, the condition developed is useful in generating physically realizable von Mises airfoils whether or not they are symetrical.

To further understand the istility of the positive thickness condition, a digital computer program was written to calculate the transformation coefficients and airfoil coordinates resulting from an input generating circle and a set of zeros. As previously indicated, on the figures to be discussed, the zero locations and the transformation coefficients are each listed as a complex number pair denoted by the Z_{n} 's and C_{n} 's, respectively. Considering the condition on the minimum allowable radius such that $\mu_{\text {max }}=1-r_{\text {min }}$, the value of URMAX presented in the figures is the maximum allowable real axis location of the generating circle center which results in a reasonable airfoil. Depending on which situation is most critical, this value is based on either the positive thickness condition, as determined from equation (2-59), or, on the requirement that all of the zeros lie within the generating circle. The radius of the mapping circle used to generate the airfoil shown is denoted in the figures as R, while the real and imaginary components of its center are UR and UI, respectively. The value of $V_{T E} / U$ for the airfoil is identified by VTE.

To demonstrate che relationship of camber and thickness to the value of $V_{T E} / U$, a comparison of the airfoil shown in Figure 10 to that shown in Figure 7 is informative. The symmetrical airfoil of Figure 10 has been generated by locating the zeros such that the b_{n} 's are all zero, while the a_{n} 's have essentially the same values as those of the section shown in Figure 7. As the transformation for the cambered airfoil was determined so that $\sum_{n} \sum_{n} n(n+1) b_{n}$ is zero, the value of $\left|\mathbf{z}^{\prime} \mathbf{T}^{\prime \prime}\right|$ is the same for both airfoils as can be seen from equation (2-25). Thus, with both airfoils having the same r, the values of $V_{T E} / U$ from equation (2-8) are equal. In essence then, the airfoil of Figure 7 has traded an appropriate amount of thickness for camber such that there is no
reduction in $V_{T E} / U$. As is also demonstrated by the expression for the value of $V_{T E} / U$ in the case of Joukowsky airfoils, equation (2-11), the trading of some amount of thickness for camber is possible in all cases provided that some thickness is available to trade. Hence, in the case of the flat plate it is not possible to obtain a cambered plate while $V_{T E} / U$ remains equal to unity.

The effect of varying μ_{R} on the airfoil resulting from a given transformation is exemplified by Figures 9, 11 and 12. The airfoil of Figure 9 is developed using the maximum value of μ_{R} as determined from the condition for positive thickness, which is approximately correct for the cambered profile shown. Thus, it can be considered that the point where the upper and lower surfaces cross is located at the trailing edge of this profile. As the value of μ_{R} is made greater than $\mu_{R m a x}$, the point of cross-over moves from the trailing edge toward the leading edge. The airfoil shown in Figure 11 , using the same set of generating zeros as the profile of Figure 9, exhibits this behavior. As the value of μ_{R} is increased above the value used in Figure 11 , the point of cross-over on the resulting sirfoil moves further and further forward. In some cases, this continues until the cross-over point reaches the leading edge, after which, further increases in μ_{R} cause the thickness distribution of the resulting airfoil to be totally negative. In this situation, the upper parts of the generating circle are mapped to the lower surface of the airfoil, and the lower parts of the ciccle to the upper surface of the airfoil. An alternative possibility esists as, in some cases, before the cross-over point reaches the leading edge, a value of μ_{R} is used which causes one of the gencrating zeros, in addition to that at the trailing edge, to lie on the circle. This results in an additional cusp appearing on the
boundary of the airfoil. A further increase in μ_{R} then results in a zero becoming situated outside of the circle and the mapping of the flow field is no longer conformal.

While moving the origin of the generating circle in the positive direction causes the resulting airfoil to become thinner, figure 12 shows that moving it in the opposite direction causes it to titicken. To the extent that the positive thickness condition is an approximation for non-symmetrical airfoils, the examples of \boldsymbol{i} igure 9,11 and 12 demonstrate that generating a profile with μ_{R} equal to $\mu_{R_{\max }}$ results in the thinnest uncrossed airfoil possible for a given set of zeros.

The next group of figures is included to show quantitatively hud an additional non-zero term in the transformation influences the shape of the profile and the value of $\mathrm{V}_{\mathrm{TE}} / \mathrm{U}$. Figure 13 depicts the Joukowsky flat plate airfoil at zero angle of artack. As indicated in the figure, this airfoll has the limiting value for $V_{T E} / U$ of unity. By moving a third generating zero a small distance away from the origin in either direction, Figures 14 and 15 , it is seen that the profile thickness increases slightly while $V_{T E} / U$ becomes less than unity.

Figure 16 depicts an airfoil having the highest attainable value of $V_{T E} / U$ using a six-term transformation and $\xi_{2}=-.6$ as the specified location of the second generatiag zero. The locations of the other zproz for this affoil are prescribed by equation (2-60). As before, Figure 17 indicater, that a decrease in $V_{T E} / U$ results when the zeros are moved slightly from the maximizing locations used to obtain the airfoil of ligure 16.

Figures 18 and 19 present plots of the zero-lift, maximan values of $V_{T E} / U$ and the symmetrical airfoil chickness ratios as they depend on the zero

Locacion, ξ_{2}. Figure 18 is produced using a chree-term von Mises transformation, while Figure 19 a six-term transformation. For both cases, the zeros other than the trailing edge zero, S_{T}, and the given zero, ${ }_{2}$, are positioned using equation (2-60) in order to maximize the value of $V_{\mathrm{rE}} / \mathrm{U}$. The symmetrical behavior about $\xi_{2}=-.5$ of the plots shown in figure 18 is due to the fact that, with only three terms, equation (2-60) requires that $\boldsymbol{F}_{3}=-$ $\left(\xi_{2}+1\right)$. Thus, the Joukowsky flat plate results that occurs when $\xi_{2}=-1$ and $\xi_{3}=0$ also occurs when $\xi_{2}=0$ and $\xi_{3}=-1$. It is interesting to note that this behavior diseppears, as shown in Figure 19 , when additional terms are employed in the transformation. In comparing the two figures in the region of $\xi_{2}=0$, it is apparent that the presence of more terms allows higher values of $V_{T E} / U$ to occur for a given thickness ratio.

As an aid in airfoil design studies, Figure 20 sumarizes the manner in which the maximam, zero-lift trailing edge velocity rati.ss are limited by the airfoil thickness ratio. It is important to note, however, that the relationship shown should not be regarded as absolute potential flow limits as, by woving the zeros off the real-axis, it is possiblis to obtain symetrical profiles of larger thickness ratios which priduce higher values of $V_{T E} / U$ than those indicated. As the profiles generating :hese results have excessively blunted or concave noses, and otherwise radical shapes, these cases were excluded from the renults presented in Figure 20.

Because the specification of $V_{T E} / U$ is necessary in number of airfoil design techniques, it is anticipated that the preceding results will be useful. For example, in the fully laminar atrfoil designs of Sappuppo and Archer [27], the value of $V_{T E} / U * .97$ was selected "as high as possible so as to obtain high lift". As consistent with Figure 20 , the thickness ratio of
the symmetrical airfoil resulting from the surface singularity inverse procedure employed was 9.7%. On che introduction of camber, however, difficulties were reported in retaining a reasonable thickness ratio and that of the resulting airfoil was only 4.2%. While it was concluded that the thinness of these profiles was due to the low Reynolds number specificatiun and employment of the fully laminar Stratford recovery discribution, the present investigation indicates that it is, more likely, a result of the high value of $V_{T E} / U$ specified. Furthermore, in light of the discussion regarding the trade-off of chickness and camber riecessary to maintain a given value of $V_{T E} / U$, the difficulties encountered when camber was introduced are to be expected.

As already noted, another area in which insight into the factors influencing the selection of $V_{T E} / U$ would be most valuable is in the high lift aisfoil design procedure detsiled by Thompson [19]. In chis method, the formalation of the Stratford recovery distribution for the upper surface is initiaced by sel. iting the value of $V_{T E} / U$. As has been discussed, the literature provided little guidance for choosing reasonable values of $V_{T E} / U$, and those used by Thompson were unreasonably high. Thus, the present work provides the means by whith the specification of $V_{T E} / U$ can be made with sreater understanding.

AIRFOILS WITH FINITE TRAILING EDGE PRESSURE GRADIENTS

Conditions Required for Finite Trailing Edge Pressure Gradients

In considering the results of interacting boundary layer theory to modei the real flow around an airfoil, it is found that the displacement thickness of the boundary layer and of the wake increase rapidly in the vicinity of the trailing edge, and a discontinuity generally exists where they join at the trailing edge. This behavior has been considered in numerous references, such as the classical papers of Preston, et. al., [29]-[31], as well as in more modern sources such as Reference [32], and, as shown by Melnik, ct. al., [33] is attributable to singularities which occur at the trailing edge of the inviscid solution. These unbounded quantities, present in the case of any airtoil carrying a non-zero load at the trailing edge, lead to a breakdown of the boundary layer approximations such that, in the virinity of the trailing edge, the assumption that pressure is constant across the bourdary layer is no longer valid. Thus, the eliaination of these singularities should allow the viscous flow on an airfoil to be more reliably predicted using conventional boundary layer theory. More signifitantly, because of the reduction in the strong viscous effect at the tralling edge, it is reasonable to expect that airfoil serodynamics might he enhanced as the level of performance ach.aved in the real flow field would more closely approach the high levels predicted using potential flow methods. Finally, because the maner in which the flow approachee the trailing edge should be globally influenced by the removel of the trailing odge singularities, it is anticipated that the posibllity of
large upper and lower surface velocity differentials in the vicinity of the trailing edge would be eliminated. Thus, separation problems introduced by the steep adverse pressure gradient that typically exists on the upper surface near the trailing edge when such velocity differentials exist would he mitigated.

In order to examine the flow in the vicinity of the trailing edge in detail, consider the transformation of the unit circle centered at the origin of the 5 -plane into an airfoil in the $2-p l a n e$ as shown in Figure 21. The complex potential function for the unit circle having circulation Γ and an angle of attack α is

$$
\begin{equation*}
F(\zeta)=U e^{-i \alpha}-U e^{i \alpha_{\zeta}-1}-\frac{\Gamma}{2 \pi i} \ln \zeta \tag{3-1}
\end{equation*}
$$

and the complex velocity is

$$
\begin{equation*}
\omega(\zeta)=\frac{d F(\zeta)}{d \zeta}=U e^{-i \alpha}-U e^{i \alpha} \zeta^{-2}+\frac{i \Gamma}{2 \pi} \zeta^{-1} \tag{3-2}
\end{equation*}
$$

Imposing the Gutta condition, the circulation necessary to fix the stagnation point at $\zeta=\zeta_{T}=1$ in the circle plane is found to be

$$
\begin{equation*}
\Gamma=4 \pi U \sin \alpha \tag{3-3}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{w(\zeta)}{U}=e^{-i \alpha}-e^{i \alpha} \zeta^{-2}+2 i \zeta^{-1} \sin \alpha \tag{3-4}
\end{equation*}
$$

which may be written

$$
\begin{equation*}
\frac{w(\zeta)}{U}=\left(e^{-i \alpha}+e^{i \alpha} \zeta^{-1}\right)\left(1-\zeta^{-1}\right) \tag{3-5}
\end{equation*}
$$

The velocity in the airfoil plane is

$$
\begin{equation*}
w(z)=u-i v=\frac{d F}{d \zeta} \frac{d \zeta}{d z}=w(\zeta) / z^{\prime}(\zeta) \tag{3-6}
\end{equation*}
$$

To preclude the presence of a stagnation point at the crailing edge of the airfoil, z_{T}, it is necessary that the trailing edge of the airfoil be cusped. This requires that

$$
\begin{equation*}
z_{T}^{\prime}(\zeta)=0 \tag{3-7}
\end{equation*}
$$

Because the velocity at the trailing edge, from equation (3-6), is of an indetermiant form, L'Hopital's rule can be invoked to yield

$$
\begin{equation*}
w\left(z_{T}\right)=\frac{w^{\prime}\left(\zeta_{T}\right)}{z_{T}^{\prime \prime}} \tag{3-8}
\end{equation*}
$$

At this point, the complex pressure gradient is defined as

$$
\begin{equation*}
R=\frac{\partial p}{\partial x}-i \frac{\partial p}{\partial y}=p_{x}-i p_{y} \tag{3-9}
\end{equation*}
$$

Using the Bernoulli equation, the pressure at a point on an airfoil, p, may be relatec to the free-stream conditions such that

$$
\begin{equation*}
p=p_{\infty}+\frac{1}{2} \rho\left[u^{2}-\left(u^{2}+v^{2}\right)\right] \tag{3-10}
\end{equation*}
$$

which is differentiated to give

$$
\begin{align*}
& p_{x}=-\rho\left(u u_{x}+v v_{x}\right) \tag{3-11}\\
& p_{y}=-\rho\left(u u_{y}+v v_{y}\right) \tag{3-12}
\end{align*}
$$

By substituting equations (3-11) and (3-12) into equation (3-9), it is found that

$$
\begin{equation*}
R=-\rho\left[u\left(u_{x}-i u_{y}\right)+v\left(v_{x}-i v_{y}\right)\right] \tag{3-13}
\end{equation*}
$$

Continuity and irrotationality require that $v_{x}=u_{y}$ and $u_{x}=-v_{y}$. Thus, equation (3-13) may be written

$$
\begin{align*}
R & =-\rho\left[u\left(u_{x}-i v_{x}\right)+v\left(u_{y}-i v_{y}\right)\right] \\
& =-\rho\left[u w^{\prime}+v\left(i w^{\prime}\right)\right] \\
& =-\rho[u+i v] w^{\prime} \tag{3-14}
\end{align*}
$$

or, more simply

$$
\begin{equation*}
R=-\rho \bar{w}(z) w^{\prime}(z) \tag{3-15}
\end{equation*}
$$

where $\bar{w}(z)$ is the complex conjugate of $w(z)$. At the trailing edge, the complex pressure gradient is given by

$$
\begin{equation*}
R_{T}=-\rho \bar{w}\left(z_{T}\right) w^{\prime}\left(z_{T}\right) \tag{3-16}
\end{equation*}
$$

In order to evaluate equation (3-16), an expression for $w^{\prime}\left(z_{T}\right)$ is required. Note that the result of differentiating equation (3-8),

$$
\begin{equation*}
w^{\prime}\left(z_{T}\right)=\lim _{\zeta^{+} \zeta_{T}} \frac{d}{d z}\left[\frac{w(\zeta)}{z^{\prime}}\right]=\lim _{\zeta+\zeta_{T}}\left\{\frac{w^{\prime}(\zeta) z^{\prime}-w(\zeta) z^{\prime \prime}}{\left(z^{\prime}\right)^{3}}\right\} \tag{3-17}
\end{equation*}
$$

is of an indeterminant form such that L'Hopital's rule is applicable. Because $w\left(\zeta_{\mathrm{T}}\right)$ and z_{T} ' are both zero, this yields

$$
\begin{equation*}
w^{\prime}\left(z_{T}\right)=\lim _{\zeta \rightarrow \zeta T} \frac{w^{\prime \prime}(\zeta) z^{\prime}-w(z) z^{\prime \prime}}{3\left(z^{\prime}\right)^{2} z^{\prime \prime}} \tag{3-18}
\end{equation*}
$$

which is still of an indeterminant form. Using L'Hopital's rule again gives

$$
\begin{equation*}
w^{\prime}\left(z_{T}\right)=\lim _{\zeta \rightarrow \zeta_{T}}\left[\frac{\omega^{\prime \prime}(\zeta) z^{\prime \prime}-\omega^{\prime}(\zeta) z^{\prime \prime}}{6\left(z^{\prime}\right)\left(z^{\prime \prime}\right)^{2}+3\left(z^{\prime}\right)^{2} z^{\prime \prime \prime}}\right] \tag{3-19}
\end{equation*}
$$

Now, because the denominator of this expression is zero, $w^{\prime}\left(z_{T}\right)$ will be unbounded unless the numerator is also zero. Thus, for $w^{\prime}\left(z_{T}\right)$ to be finite, it is necessary that

$$
\begin{equation*}
w^{\prime \prime}\left(\zeta_{T}\right) z_{T}{ }^{\prime \prime}-w^{\prime}\left(\zeta_{T}\right) z_{T}{ }^{\prime \prime \prime}=0 \tag{3-20}
\end{equation*}
$$

If this condition is satisfied, then equation (3-19) will be of an indeterminant form and the use of L'Hopital's rule again yields

$$
\begin{equation*}
w^{\prime}\left(z_{T}\right)=\frac{w^{\prime \prime \prime}\left(\zeta_{T}\right) z_{T} T^{\prime \prime}-w^{\prime}\left(\zeta_{T}\right) z_{T}{ }^{i v}}{3\left(z_{T}{ }^{\prime \prime}\right)^{3}} \tag{3-21}
\end{equation*}
$$

Now, substituting the above relation, along with the conjugate of equation
(3-8), into equation (3-16), the value of the complex trailing edge pressure gradient, provided that equation (3-20) is satisfied, is given by

$$
\begin{equation*}
R_{T}=-p \frac{\overline{w^{\prime}\left(z_{T}\right)}}{3 \bar{z}_{T} \cdot\left(z_{T}{ }^{\prime \prime}\right)^{3}}\left[z_{T}{ }^{\prime \prime} w^{\prime \prime \prime}\left(\zeta_{T}\right)-z_{T}{ }^{i v} w^{\prime}\left(\zeta_{T}\right)\right] \tag{3-22}
\end{equation*}
$$

To further evaluate equations (3-20) and (3-22), equation (3-5) may be differentiated successively and evaluated at the trailing edge giving

$$
\begin{align*}
& \frac{w^{\prime}\left(\zeta_{T}\right)}{U}=\frac{\overline{w^{\prime}\left(\zeta_{T}\right)}}{U}=2 \cos \alpha \tag{3-23}\\
& \frac{w^{\prime \prime}\left(\zeta_{T}\right)}{U}=-6 \cos \alpha-2 i \sin \alpha \tag{3-24}\\
& \frac{w^{\prime \prime \prime}\left(\zeta_{T}\right)}{U}=24 \cos \alpha+12 i \sin \alpha \tag{3-25}
\end{align*}
$$

By writing equation (3-20) as

$$
\begin{equation*}
\frac{z_{T}^{\prime \prime \prime}}{z_{T}{ }^{\prime \prime}}=\frac{w^{\prime \prime}\left(\zeta_{T}\right)}{w^{\prime}\left(\zeta_{T}\right)} \tag{3-26}
\end{equation*}
$$

and making use of equations (3-23) and (3-24), the condition required for the complex trailing edge pressure gradient to be finite on an airfoil may be expressed as a condition on the transformation function requiring that

$$
\begin{equation*}
\frac{{ }^{2} T^{\prime \prime \prime}}{{ }^{2} T}=-3-i \tan \alpha \tag{3-27}
\end{equation*}
$$

While the ramifications of this requirement will be considered later, note
that the imaginary part can only be satisfied for a particular airfoil at only
similar. As an example of such an airfoil, the von Mises profile depicted in Figure 22 has trailing edge pressure gradient values of $C_{p X T}=-1.37$, while, as is the case for all non-lifting symmetrical airfoils, $C_{p Y T}=0$. For comparison, the airfoil of Figure 16 has $C_{p X T}=-.12$ and $C_{p Y T}=$ 0. It should be noted that because having $r=r_{m i n}$ in the case of two generating zeros yields the Joukowsky flat plate, Figure 13, that this is the only Joukowsky airfoil which can satisfy the condition for bounded trailing edge pressure gradients. This fact explains the presence of the "hooked" shape observed at the trailing edge of Joukowsky airfoil velocity distributions.

The Eppler Airfoil Design Method

In order for airfoils to be developed which make use of the conditon for finite trailing edge pressure gradients, it is necessary to incorporate the necessary condition into some airfoil design methodology. To this end, the inverse scheme developed by Eppler was selected as being the most suitable for this purpose. The theoretical details of this design procedure are presented in Eppler [5], and al so summarized in References [8], [17], and [19], while a description of the code and its usage are documented by Eppler and Somers [25]. As modifications required to allow the method to design airfoils having finite trailing edge pressure gradients are significant, before considering these changes, a sumary of the method will also be included here.

As depicted in Figure 21, the Eppler airfoil design procedure is based on the conformal mapping of the flow field exterior to a unit circle in the ;plane into the flow field exterior to an airfoil in the z-plane. The complex velocity for the flow about the unit circle is given by equation (3-5) where,
to be consistent with the derivation of Epplet, the free-stream velocity is taken to be unity. The mapping function, $z(\zeta)$, must, as detailed in the discussion of the von Mises transformation, preserve the flow conditions at infinity. Thus, it is required that

$$
\begin{equation*}
z(\infty)=\infty \quad \text { and } \quad\left(\frac{d z}{d \zeta}\right)_{\infty}=1 \tag{3-30}
\end{equation*}
$$

Most generally, these requirements are met by the power series

$$
\begin{equation*}
z(\zeta)=\beta_{1} \zeta+\sum_{\nu=0}^{\infty} \beta_{-v} \zeta^{-v} \quad\left(\beta_{1} \neq 0, \text { real }\right) \tag{3-31}
\end{equation*}
$$

where the β_{y} 's are limited to values for which the series is convergent when $|\zeta| \geqslant 1$. As consistent with equation (3-6), the velocity in the airfoil plane is given by

$$
\begin{equation*}
w(z)=v e^{-i \theta}=\frac{d F}{d z}=\frac{d F}{d \zeta} \frac{d \zeta}{d z} \tag{3-32}
\end{equation*}
$$

This relationship, for reasons discussed by Lighthill [9], is more conveniently represented by

$$
\begin{equation*}
\ln w(z)=\ln \cdots-1 \theta=\ln \frac{d F}{d \zeta}-\ln \frac{d z}{d \zeta} \tag{3-33}
\end{equation*}
$$

Because $\ln \frac{d F}{d \zeta}$ is known from equation (3-5), chen if $v(\phi)$ is specified, the real part of $\ln \frac{d z}{d \zeta}$ follows directly. Furthermore, because $\ln \frac{d F}{d z}$ is analytic in the exterior of the unit circle then, using the real part which is known on the boundary, $\zeta=e^{i \phi}$, the imaginary part can be determined. Thus, the
function $\frac{d z}{d \zeta}$, which maps the circle into the airfoil, can be solved for from equation (3-33) and z obtained by integration. The advances which are represented by the Eppler method include the development of an algorithm for the numerical computations required by the procedure just outlined, and the introduction of a form for $v(\phi)$ which allows practical airfoils to be obtained in a straightforward manner.

The numerical algorithm of the method is based on the introduction of $\ln \frac{d z}{d \zeta}$ in the form given by

$$
\begin{equation*}
\ln \frac{d z}{d \zeta}=\ln \left(1-\frac{1}{\zeta}\right)+\sum_{m=0}^{\infty}\left(a_{m}+i b_{m}\right) \zeta^{-m} \tag{3-34}
\end{equation*}
$$

This form is advantageous in that it isolates the singularity which occurs on the boundary, $\zeta=e^{i \phi}$. Operating on equation (3-34) yields

$$
\begin{equation*}
\frac{d z}{d \zeta}=\left(1-\frac{1}{\zeta}\right) e^{\sum_{m=0}^{\infty}\left(a_{m}+i b_{m}\right) \zeta^{-m}} \tag{3-35}
\end{equation*}
$$

This result must be consistent with equation (3-31). Thus, differentiating equation (3-31) and comparing terms having like-powers of ζ to those of the preceding expression, it is found that compatibility requires

$$
\begin{align*}
& b_{0}=0 \tag{3-36}\\
& a_{1}=1 \tag{3-37}\\
& b_{1}=0 \tag{3-38}
\end{align*}
$$

Equation (3-36) is necessary in order that there is no rotation of the
free-stream velocity at infinity. Equations (3-37) and (3-38) make the ζ^{-1} term vatish and, as a consequence, ensure that the profile will close at the trailing edge. Additionally, the requirement that velocity of unity be preserved at infinity, as given by equation (3-30), necessitates that

$$
\begin{equation*}
a_{0}=0 \tag{3-39}
\end{equation*}
$$

Evaluating equation (3-33) on the circle boundary, $\zeta=e^{i \phi}$, and rearranging the result gives

$$
\begin{align*}
{\left[\ln \frac{d z}{d \zeta}\right.} & \left.-\ln \left(1-\frac{1}{\zeta}\right)\right]_{\zeta=e^{i \phi}}=-\ln v(\phi)+i \theta \\
& +\ln \left(\frac{d F}{d \zeta}\right)_{\zeta=e^{i \phi}}-\ln \left(1-e^{-i \phi}\right) \\
& =P(\phi)+1 Q(\phi) \tag{3-40}
\end{align*}
$$

$P(\phi)$ and $Q(\phi)$ are detined as the real and imaginary parts, respectively, of this expression. The use of equations (3-5) and (3-34) allows $P(\phi)$ to be expressed as

$$
\begin{equation*}
P(Q)=\sum_{m=0}^{\infty}\left(a_{m} \cos m \phi+b_{m} \sin m \phi\right)=-\ln \left[\frac{v(\phi)}{2\left|\cos \left(\frac{\phi}{2}-\alpha\right)\right|}\right] \tag{3-41}
\end{equation*}
$$

so that the coefficients, the a_{m} 's and b_{m} ' s, are determinable in the same manner as those of real Fourier series. Consequently, using the formulas for the evaluation of Fourier coefficients, and noting that the term containing bo disappears in the expansion of equation (3-41), the requirements of equation (3-37)-(3-39) generate three integral constraints,

$$
\begin{align*}
& \quad \begin{array}{l}
\text { ORIGINAL PAGE IS } \\
\text { OF POOR QUALITY }
\end{array} \\
& \pi a_{0}=\int_{0}^{2 \pi} P(\phi) d \phi=0 \\
& \pi a_{1}=\int_{0}^{2 \pi} P(\phi) \cos \phi d \phi=\pi \tag{3-42}\\
& \pi b_{1}=\int_{0}^{2 \pi} P(\phi) \sin \phi d \phi=0 \tag{3-43}
\end{align*}
$$

which must be satisfied by the specified velocity distribution, $v(\phi)$. In the actual method, it is not necessary to determine the remaining series coefficients but, rat'er, necessary only to calculate the conjugate harmonic funtion, $Q(\phi)$. Thus, using Poisson's formula, $Q(\phi)$ is given by

$$
\begin{equation*}
Q(\phi)=\sum_{m=0}^{\infty}\left(b_{m} \cos m \phi-a_{m} \sin m \phi\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P(\psi) \operatorname{ctn} \frac{\psi-\phi}{2} d \psi \tag{3-45}
\end{equation*}
$$

Substituting equation (3-41) into equation (3-40) and simplifying yields

$$
\begin{equation*}
\left(\frac{d z}{d \zeta}\right)_{\zeta=e^{i \phi}}=4 i \sin \frac{\phi}{2}\left|\cos \left(\frac{1}{2}-\alpha\right)\right| \frac{1}{v(\phi)} e^{i\left(Q-\frac{\phi}{2}\right)} \tag{3-46}
\end{equation*}
$$

and, for $d \zeta=i e^{i \phi} d \phi$,

$$
\begin{align*}
& \frac{d z}{d \phi}=1 e^{i \phi}\left(\frac{d z}{d \zeta}\right) \\
& \zeta=e^{i \phi} \tag{3-47}\\
&=-4 \sin \frac{\phi}{2}\left|\cos \left(\frac{\phi}{2}-\alpha\right)\right| \frac{1}{v(\phi)} e^{1\left(Q+\frac{\phi}{2}\right)}
\end{align*}
$$

ORIGINAL PAGE IS OF POOR QUALITY

$$
\begin{align*}
& \frac{d x}{d \phi}=-4 \sin \frac{\phi}{2}\left|\cos \left(\frac{\phi}{2}-\alpha\right)\right| \frac{1}{v(\phi)} \cos \left[\frac{\phi}{2}+Q(\phi)\right] \tag{3-48}\\
& \frac{d y}{d \phi}=-4 \sin \frac{\phi}{2}\left|\cos \left(\frac{\phi}{2}-\alpha\right)\right| \frac{1}{v(\phi)} \sin \left[\frac{\phi}{2}+Q(\phi)\right] \tag{3-49}
\end{align*}
$$

Thus, ance $Q(\phi)$ has been determined, the airfoil coordinates can be obtained by simple quadrature.

Up to now, the derivation has proceeded in such a way that a fixed angle of attack, α, is selected, as well as a velocity distributicn, $v(\phi)$, which must satisfy the three integral constraints, equations (3-42)-(3-44). Then, using equations (3-48) and (3-49), a profile is determined whose velocity distribution, $v(\phi, \alpha)$, agrees with the prescribed $v(\phi)$ at the selected angle of attack. The method, however, is considerably more flexible. From equation (3-35), it is clear that the transformation, and therefore the airfoil shape, is fixed once the $a_{m}{ }^{\prime} s$ and $b_{m}{ }^{\prime} s$ have been determined. As a change in a has no effect on the coefficients, $P(\phi)$ is independent of a. Consequently, equation (3-41) can be written

$$
\begin{equation*}
P(\phi)=-\ln \left[\frac{v^{*}(\phi)}{2 \left\lvert\, \cos \left(\frac{\phi}{2}-a^{*}\right)\right.}\right] \tag{3-5v}
\end{equation*}
$$

where $v^{*}(\phi)$ is the velocity specified at point on the profile corresponding to ϕ, and $a^{*}(\phi)$ is the angle of attack at which that $v *(\$)$ is to be realized. Thus, the velocity distribution $v(\phi, \alpha)$, for any arbicrary a, is obtained from equation (3-50) as

$$
\frac{v(\phi, \alpha)}{\left|\cos \left(\frac{\phi}{2}-a\right)\right|}=\frac{v^{*}(\phi)}{\left|\cos \left(\frac{\phi}{2}-a^{*}\right)\right|}=f(t)
$$

where $f(\phi)$ is invariant with respect to α. While $v(\phi, \alpha)$ must be continuous over the a^{\prime} rfoil, it is possible for a discontinuity in a^{*} to be compensated by a discontinuity in $v^{*}(\phi)$. Thus, rather than specifying only a single α^{\star} at which the velocity distribution $v *(\phi)$ occurs, unlike other inverse methods, it is possible to select different values of a^{*}, as indicated by the notation $n^{*}(j)$, for different segments of the airfoil. Consequently, differont parts of the airfoil can be designed for different angles of attack. In this manner, an airfoil can be designed from the onset to have the desired aerodynamic characteristics over a chosen range of flight conditions, rather than being point-designed for a single angle of attack and mod.fying the result until acceptable off-design performance is achieved.

As mentioned, the numerical method is dependent on the convergence of the series contained in equation (3-34). This convergence is assured if the velocity distributiun, $v^{*}(\phi)$, is specified such that it makes $P(\phi)$, equation (3-41), a piecewise continuous function containing, at most, points having finite jumps in the first derivative. In this case, as detailed in Reference [28], the a_{m} 's and b_{m} 's are $0\left(1 / m^{2}\right)$. This not only allows successful numerical treatment, but also guarantees that the resulting profiles are smouth.

In order to implement the specification of the velocity distribution, the unit circle in the c-plane is divided into I_{p} segments over the interval (0 , 25). Referring to Figure 23,

$$
\begin{equation*}
\phi_{0}-0<1_{1}<\phi_{2}<\ldots<\phi_{I_{p}} \tag{3-52}
\end{equation*}
$$

and, in addition, $\phi_{1, l}$ denotes the arc liait containing the leading edge
stagnation point ${ }^{n}$ achieve the flexibility introduced by being able to specify different values of a^{\star} for different segments of the airfoil, $\alpha^{*}(\phi)$ will be considered as constant over each of the definec intervals such that

$$
\begin{equation*}
a^{\star}(\phi)=a_{i}=\text { constant } \quad\left(\phi_{i-1} \leqslant \phi \leqslant \phi_{i}\right) \tag{3-53}
\end{equation*}
$$

The specification of the velocity $v *(\phi)$ takes the form

$$
\begin{equation*}
v^{*}(\phi)=v_{i} w(\phi) \tag{3-54}
\end{equation*}
$$

where v_{i} is taken ac constant within each ciris segment, $\phi_{i-1} \leqslant \$ \leqslant p_{i}$, and $w(D)$ is a function which includes a cerm allowing for main pressure .ecove:y on the airfoil, as well as contribution to insure that the profile closes. On the upper surface: $0 \leqslant \phi \leqslant \downarrow, 1$, the form of $w(\phi)$ is

$$
\begin{equation*}
w(\phi)=\left[1+K\left\{\frac{\cos \phi-\cos \phi_{w}}{1+\cos \phi_{w}}\right\}\right]^{-\mu}\left[1-.36\left\{\frac{\cos \phi-\cos \phi_{s}}{1-\cos \phi_{s}}\right\}^{2}\right\}_{H}^{K_{H}} \tag{3-55}
\end{equation*}
$$

while on the lower surface, ${ }_{1,1} \leqslant \phi \leqslant 2 \pi$, th: parameters K_{H}, ψ, ϕ_{w}, and ${ }^{1}$, are replaced oy $\bar{K}_{H}, \bar{\mu}, \bar{\phi}_{w}$, and $\bar{\phi}_{s}$, respectivaly. The expressions within the braces, $\{f(\phi)\}$, are treated as special functions in that, if $f(p) \leqslant U$ then $\{f(\phi)\}=0$ and if $f(\phi)>0,\{f(\phi)\}=f(\phi)$. For simplicity, equation (3-55) for the upper surface may be written

$$
\begin{equation*}
w(t)=W_{w}(t)^{-u} w_{s}(t)^{K_{H}} \tag{3-56}
\end{equation*}
$$

and, for the lower surface,

$$
\begin{equation*}
w(\phi)=\bar{W}_{w}(\phi)^{-\bar{\mu}} \bar{W}_{S}(\phi)^{\bar{K}_{H}} \tag{3-57}
\end{equation*}
$$

In both cases, the $W_{W}(\phi)$ term produces the main pressure recovery, the length of which is governed by the specification of ϕ_{W}. The total amount of recovery and its particular shape are established as part of the velocity specification, along with the ϕ_{i} 's and $\alpha_{i}{ }^{\prime} s$, by the parameters K and μ. In the term generating closure of the airfoil, the quantity $h_{s}(\phi)$ is fixed by the specification of ϕ_{S}, while the exponents, K_{H} and \bar{K}_{H} are left free to be determined by the solution procedure. A typical velocity distribution, $w(\phi(x))$, is sketched in Figure 24.

Substitution of equation (3-54) into equation (3-50) yields

$$
\begin{equation*}
P(\phi)=\ln \left|\cos \left(\frac{\phi}{2}-a_{i}\right)\right|-\ln v_{i}-\ln w(\phi)+\ln 2 \tag{3-58}
\end{equation*}
$$

$$
\left(\phi_{i-1}<p<\phi_{i} ; \quad i=1,2,3, \ldots, I_{p}\right)
$$

Thus, at the trailing edge, continuity of $P(\phi)$ requires that

$$
\begin{equation*}
\ln \left|\cos \alpha_{1}\right|-\ln v_{1}-\ln w(0)=\ln \left|\cos \alpha_{I_{p}}\right|-\ln v_{I_{p}}-\ln w(2 \pi) \tag{3-59}
\end{equation*}
$$

whereas at all other segment boundaries,

$$
\ln \left|\cos \left(\frac{\phi_{i}}{2}-\alpha_{i}\right)\right|-\ln v_{i}-\ln w(\phi)=\ln \left|\cos \left(\frac{\phi_{i}}{2}-\alpha_{i+1}\right)\right|
$$

$$
\begin{gather*}
-\ln v_{i+1}-\ln w(\phi) \tag{3-60}\\
\left(\phi_{i-1} \leqslant \phi \leqslant \phi_{i} ; \quad i=1,2,3, \ldots, I_{p-1}\right)
\end{gather*}
$$

A problem arises with the velocity distribution at the leading edge stagnation point, given by $\phi=\pi+2 \alpha_{i}$, in that $P(\phi)$ is undefined at that point and no longer satisfies the conditions imposed on it. This problem can be avoided, however, by requiring $\phi_{i, l e}-2 \alpha_{i, l e}\left\langle\pi\right.$ and $\left.\phi_{i, l e}-2 \alpha_{i, 1 e+1}\right\rangle \pi$, or, more simply, by requiring

$$
\begin{equation*}
\alpha_{i, 1 e+1}<\alpha_{i, 1 e} \tag{3-61}
\end{equation*}
$$

At this point, the method requires that the values of the pressure recovery and closure parameters, $\mu, \bar{\mu}, \phi_{w}, \bar{\phi}_{w}, \phi_{s}$, and $\bar{\phi}_{s}$, be given, along with all of the ϕ_{i}, α_{i} pairs. The I_{p} constants, the v_{i} 's, and the closure contribution exponents, K_{H} and \bar{K}_{H}, are solved for such that the I_{p} matching conditions, equations (3-59) and (3-60), as well as the three integral constraints, equations (3-42)-(3-44), are satisfied. Consequently, as given, the problem is over-specified and it is necessary to relax one of the given parameters so that all of the required conditions can be met. Because of its strong influence as the matching point of the upper and lower surface velocity distributions, the method uses the leading edge arc limit, $\phi_{i, l e}$, as the necessary free variable.

By substituting equation (3-58), along with equation (3-56) or (3-57), into equations (3-42)-(3-44), it is found that the integral constraints can be
evaluated in closed form. With the substitutions indicated, equation (3-43) becomes

$$
\begin{align*}
& \int_{0}^{2 \pi} P(\phi) \cos \phi d \phi=\int_{0}^{2 \pi}\left[\ln \left|\cos \left(\frac{\phi}{2}-\alpha_{i}\right)\right|-\ln v_{i}(\phi)\right. \\
& \left.\quad+\mu \ln W_{W}(\phi)-K_{H} \ln H_{s}(\phi)+\ln 2\right] \cos \phi d \phi=\pi \tag{3-62}
\end{align*}
$$

Now, defining

$$
\begin{align*}
& -\int_{0}^{2 \pi} \ln W_{s}(\phi) \cos \phi d \phi=W_{c l} \tag{3-63}\\
& -\int_{0}^{2 \pi} \ln \bar{W}_{s}(\phi) \cos \phi d \phi=W_{c I} \tag{3-64}
\end{align*}
$$

and, introducing the notation

$$
\begin{equation*}
\ln (i, j)=\ln \left|\cos \left(\frac{\phi_{i}}{2}-a_{j}\right)\right| \tag{3-65}
\end{equation*}
$$

The evaluation of equation (3-62) gives

$$
\begin{aligned}
& \int_{0}^{2 \pi} P(\phi) \cos \phi d \psi=K_{H} W_{c l}+\bar{K}_{H} W_{c I}+\sum_{i=1}^{I}\left\{\sin 2 \alpha_{i}\right. \\
& \quad\lfloor\ln (1, i)-\ln (i-1, i)\rfloor+\frac{1}{2}\left(\phi_{i}-\phi_{i-1}\right) \cos 2 \alpha_{i} \\
& \quad+\frac{1}{2}\left(\sin \phi_{i}-\sin \phi_{i-1}\right)+\sin \phi_{i}\left\lfloor\ln (i, i)-\ln v_{i}\right\rfloor
\end{aligned}
$$

$$
\begin{align*}
& \left.-\sin \phi_{i-1}\left[\ln (i-1, i)-\ln v_{i}\right]\right\} \\
& +\mu \int_{0}^{\phi_{W}} \ln W_{W}(\phi) \cos \phi d \phi+\bar{\mu} \int_{\bar{\phi}_{W}}^{2 \pi} \ln \bar{W}_{W}(\phi) \cos \phi d \phi=\pi \tag{3-66}
\end{align*}
$$

Using the matching condition, equation (3-60), it is found that a number of terms in this expression drop out such that, after simplification, it may be written

$$
\begin{equation*}
\mathrm{K}_{\mathrm{H}} \mathrm{~W}_{\mathrm{cI}}+\overline{\mathrm{K}}_{\mathrm{H}} \mathrm{~W}_{\mathrm{cI}}+\mathrm{J}_{\mathrm{c}}=0 \tag{3-67}
\end{equation*}
$$

where J_{c} is defined as

$$
\begin{align*}
J_{c} & =\sum_{i=1}^{I}\left\{\sin 2 \alpha_{i}[\ln (i, i)-\ln (i-1, i)]\right. \\
& \left.+\frac{1}{2}\left(\phi_{i}-\phi_{i-1}\right) \cos 2 \alpha_{i}\right\}-\pi+\mu \int_{0}^{\phi_{W}} \ln W_{W}(\phi) \cos \phi d \phi \\
& +\bar{\mu} \int_{\phi_{W}}^{2 \pi} \ln \bar{W}_{W}(\phi) \cos \phi d \phi \tag{3-68}
\end{align*}
$$

Now, after formally setting α_{0} and $\alpha_{I_{p}}$ to zero, the terms containing ϕ_{i} are collected and the leading edge arc limit, $\phi_{i, l e}$, is isolated such that equation (3-68) is rewritten as

$$
\begin{equation*}
J_{c}=a_{c}+b_{c} \ln (l e, l e)+c_{c} \ln (l e, l e+l)+d_{c} \Phi_{i, l e} \tag{3-69}
\end{equation*}
$$

where the coefficients are given by

$$
\begin{align*}
& a_{c}=\sum_{i=0}^{i, \operatorname{le-1}}\left\{\sin 2 \alpha_{i} \ln (i, i)-\sin 2 \alpha_{i+1} \ln (i, i+1)\right. \\
& \left.+\frac{1}{2} \phi_{i}\left(\cos 2 \alpha_{i}-\cos 2 \alpha_{i+1}\right)\right\}+\sum_{i=1,1 e+1}^{1} p\left(\sin 2 \alpha_{i} \ln (i, i)\right. \\
& \left.-\sin 2 \alpha_{i+1} \ln (i, i+1)+\frac{1}{2} \phi_{i}\left(\cos 2 \alpha_{i}-\cos 2 \alpha_{i+1}\right)\right\} \\
& -\pi+\mu \int_{0}^{\phi_{W}} \ln W_{W}(\phi) \cos \phi d \phi+\bar{\mu} \int_{\phi_{W}}^{2 \pi} \ln \bar{W}_{W}(\phi) \cos \phi d \phi \tag{3-70}\\
& b_{c}=\sin 2 \alpha_{l e} \tag{3-71}\\
& c_{c}=-\sin 2 \alpha_{1 e+1} \tag{3-72}\\
& d_{c}=\frac{1}{2}\left(\cos 2 \alpha_{1 e}-\cos 2 \alpha_{1 e+1}\right) \tag{3-73}
\end{align*}
$$

Using the definitions given by

$$
\begin{align*}
& -\int_{0}^{\phi} \ln W_{s}(\phi) \sin \phi d \phi=W_{s l} \tag{3-74}\\
& -\int_{\bar{\phi}_{s}}^{2 \pi} \ln \bar{W}_{s}(\phi) \sin \phi d \phi=W_{s I} \tag{3-75}
\end{align*}
$$

the integral constraint of equation (3-44), in a manner similar to that applied to equation (3-43), becomes

$$
\begin{equation*}
K_{H} W_{s l}+\bar{K}_{H} W_{s I}+J_{s}=0 \tag{3-76}
\end{equation*}
$$

where J_{s} is ultimately expressed as

$$
\begin{equation*}
J_{s}=a_{s}+b_{s} \ln (l e, l e)+c_{s} \ln (l e, l e+1)+d_{s} \phi_{l e} \tag{3-77}
\end{equation*}
$$

and the coefficients are

$$
\begin{align*}
& a_{s}=\sum_{i=0}^{i, 1 e^{-1}}\left(-\left(1+\cos 2 \alpha_{i}\right) \ln (i, i)+\left(1+\cos 2 \alpha_{i+1}\right)\right. \\
& \left.\ln (i, i+1)+\frac{1}{2} \phi_{i}\left(\sin 2 \alpha_{i}-\sin 2 \alpha_{i+1}\right)\right\} \\
& +\sum_{i, 1 \mathrm{e}+1}^{\mathrm{L}}\left(-\left(1+\cos 2 \alpha_{i}\right) \ln (i, i)+\left(1+\cos 2 \alpha_{i+1}\right)\right. \\
& \left.\ln (i, i+1)+\frac{1}{2} \phi_{i}\left(\sin 2 \alpha_{i}-\sin 2 \alpha_{i+1}\right)\right\} \\
& +\mu \int_{0}^{\phi_{W}} \ln W_{W}(\phi) \sin \phi d \phi+\bar{\mu} \int_{\bar{\phi}_{W}}^{2 \pi} \ln \bar{W}_{W}(\phi) \sin \phi d \phi \tag{3-78}\\
& b_{s}=-\left(1+\cos 2 a_{1 e}\right) \tag{3-79}\\
& c_{s}=\left(1+\cos 2 a_{1 e+1}\right) \tag{3-80}\\
& d_{s}=\frac{1}{2}\left(\sin 2 \alpha_{1 e}-\sin 2 \alpha_{1 e+1}\right) \tag{3-81}
\end{align*}
$$

At this point, consider the trailing edge matching condition given by equation (3-59). By repeated applications of equation (3-60), the velocity terms v_{1} and $v_{I_{p}}$ can be eliminated and the resulting expression written as

OF POOR QUALITY

$$
\begin{equation*}
-K_{H} \ln W_{S}(0)+\bar{K}_{H} \ln \bar{W}_{S}(2 \pi)+J_{t}=0 \tag{3-82}
\end{equation*}
$$

in which

$$
\begin{equation*}
J_{t}=a_{t}+b_{t} \ln (l e, l e)+c_{t} \ln (l e, l e+1) \tag{3-83}
\end{equation*}
$$

and

$$
\begin{gather*}
a_{t}=\sum_{i=0}^{i, 1 e-1}\{-\ln (i, i)+\ln (i, i+1)\} \\
+\sum_{i=i, 1 e+1}^{\sum_{p}}\{-\ln (i, i)+\ln (i, i+1)\}-\mu \ln W_{w}(0) \\
+\bar{\mu} \ln \bar{W}_{w}(2 \pi) \tag{3-84}\\
b_{t}=-1 \tag{3-85}\\
c_{t}=1 \tag{3-86}
\end{gather*}
$$

Thus, equations (3-67), (3-76), and (3-82), can be used to solve for the three unknowns, K_{H}, \bar{K}_{H}, and $\phi_{i, 1 e}$. In matrix notation, this system of equations may be represented

$$
\left[\begin{array}{ccc}
w_{c l} & w_{c I_{p}} & J_{c} \tag{3-87}\\
W_{s l} & w_{s I} & J_{s} \\
-\ln W_{s}(0) & \ln \widetilde{W}_{s}(2 \pi) & J_{t}
\end{array}\right] \quad\left\{\begin{array}{l}
\mathrm{K}_{H} \\
\bar{K}_{H} \\
\phi_{i, l e}
\end{array}\right\}=0
$$

Solving for $\phi_{i, l e}$ leads to a transcendental equation which can be expressed as

$$
\begin{equation*}
a+b \ln (l e, l e)+c \ln (l e, l e+1)+d \phi_{i, l e}=0 \tag{3-88}
\end{equation*}
$$

in which

$$
\begin{align*}
& a=D_{1} a_{c}+D_{2} a_{s}+D_{3} a_{t} \tag{3-89}\\
& b=D_{1} b_{c}+D_{2} b_{s}+D_{3} b_{t} \tag{3-90}\\
& c=D_{1} c_{c}+D_{2} c_{s}+D_{3} c_{t} \tag{3-91}\\
& d=D_{1} d_{c}+D_{2} d_{s} \tag{3-92}
\end{align*}
$$

and

$$
\begin{align*}
& D_{1}=W_{s 1} \ln \bar{W}_{s}(2 \pi)+W_{s I} \ln W_{s}(0) \tag{3-93}\\
& D_{2}=-W_{c l} \ln \bar{W}_{s}(2 \pi)-W_{c I} \ln W_{s}(0) \tag{3-94}\\
& D_{3}=W_{c l} W_{s I}-W_{c I} W_{s l} \tag{3-95}
\end{align*}
$$

Equation (3-88) can now be solved numerically for $\phi_{i, l e}$ using the technique of Regula falsi. Once $\phi_{i, l e}$ has been obtained, $J_{c}{ }^{-\pi}, J_{s}$, and J_{t} can be calculated and used in a straightforward manner to solve for K_{H} and \bar{K}_{H}. In order to determine the v_{i} 's, the first integral constraint, equation (3-42), is evoked along with the matching conditions given by equation (3-60). Thus,

$$
\begin{align*}
& \int_{0}^{2 \pi} P(\phi) d \phi=\sum_{i=1}^{I p}\left\{\int _ { \phi _ { i - 1 } } ^ { \phi _ { i } } \left[\ln \left|\cos \left(\frac{\phi}{2}-\alpha_{i}\right)\right|-\ln \frac{v_{i}}{v_{1}}\right.\right. \\
& \left.\quad+\mu \ln W_{W}(\phi)-K_{H} \ln W_{s}(\phi)\right] d \phi+2 \pi\left(\ln 2-\ln v_{1}\right) \tag{3-96}
\end{align*}
$$

The velocity ratios, $\frac{v_{i}}{v_{1}}$, are found from sequential applications of equation (3-60) and the results used to determine v_{i} from equation (3-96). At this point, $P(\phi)$ and $Q(\phi)$ can be determined and the coordinates of the profile follow directly.

The closure requirements of the airfoil determine the values of K_{H} and \bar{K}_{H} which, in turn, influence the trailing edge closure angle. In order that some control over the trailing edge shape is possible, the digital computer coding of the method allows a value of K_{s}, where $K_{s}=K_{H}+\bar{K}_{H}$, to be specified. Then, any one of number of iteration schemes can be seleced which vary particular combinations of the specified input parameters until the desired value or K_{s} is achieved. This procedure, along with a detalled discussion of the numerical implementation of the method, is contained in Reference [25].

Incorporation of the Conditions for Finite Trailing Edge Pressure Gradients into the Eppler Design Method

As developed previously, the condition on the transformation function

ORIGINAL PAGE IS OF POOR QUALITY

which results in a finite complex pressure gradient at the trailing edge of an airfoil is given by equation (3-27). In order to incorporate this result into the design method of Eppler, the representation of the derivative of the transformation function, provided by equation (3-35), is differentiated to yield

$$
\begin{equation*}
z^{\prime}=e^{\sum_{m=0}^{\infty}\left(a_{m}+i b_{m}\right) \zeta^{-m}}\left\{\frac{1}{\zeta^{2}}-\left(1-\frac{1}{\zeta}\right) \sum_{m=0}^{\infty} m\left(a_{m}+i b_{m}\right) \zeta^{-(m+1)}\right\} \tag{3-97}
\end{equation*}
$$

which, when evaluated at the trailing edge, $\zeta=1$, becomes

$$
z_{T}=e^{\sum_{m=0}^{\infty}\left(a_{m}+i b_{m}\right)}
$$

Differentiating equation (3-97) yields

$$
\begin{align*}
& z^{\prime \prime \prime}=e^{\sum_{m=0}^{\infty}\left(a_{m}+i b_{m}\right) 5^{-m}}\left\{-\frac{2}{\zeta}-\frac{2}{\zeta^{2}} \sum_{m=0}^{\infty} m\left(a_{m}+i b_{m}\right) \zeta^{-(m+1)}\right. \\
& +\left(1-\frac{1}{\zeta}\right) \sum_{m=0}^{\infty} m(m+1)\left(a_{m}+i b_{m}\right) \zeta^{-(m+2)} \\
& \left.+\left(1-\frac{1}{\zeta}\right)\left[\sum_{m=0}^{\infty} m\left(a_{m}+i b_{m}\right) \zeta^{-(m+1)}\right]^{2}\right\} \tag{3-99}
\end{align*}
$$

For this expression to be evaluated at the trailing edge, it is necessary that

ORIGINAL PAGE [s OF POOR QUALITY

the last two terms drop out as occurs if the summation present in each term is finite. Noting that the a_{m} 's and b_{m} 's can be considered as the coefficients of the Fourier series representing $P(\phi)$, equation (3-41), and, considering the theorems concerning the differentiation and convergence of such a series, Reference [28] for example, it is found that the summations will be finite if $P^{\prime}(\phi)$ is continuous at the trailing edge. Thus, $i=$ is required that

$$
\begin{equation*}
P^{\prime}(0)=P^{\prime}(2 \pi) \tag{3-100}
\end{equation*}
$$

If this is the case, then equation (3-99) becomes

$$
\left.z_{T}{ }^{\prime \prime}=e^{\sum_{m=0}^{\infty}\left(a_{m}+i b_{m}\right)} i-2-2 \sum_{m=0}^{\infty} m\left(a_{m}+i b_{m}\right)\right\}
$$

Substitution of equations (3-98) and (3-101) into the condition for finite trailing edge pressure gradients, equation (3-27), yields

$$
\begin{equation*}
\frac{z^{2} I^{\prime \prime \prime}}{z_{I}{ }^{\prime \prime}}=-2-2 \sum_{m=0}^{\infty} m a_{m}-2 i \sum_{m=0}^{\infty} m b_{m}=-3-1 \tan \alpha \tag{3-102}
\end{equation*}
$$

To further resolve this expression, the series representations of $P(\phi)$ and $Q(\phi), g i v e n$ by equations (3-41) and (3-45), are differentiated to obtain

$$
\begin{align*}
& P^{\prime}(\phi)=\sum_{m=0}^{i}-m \sin m \phi+m b_{m} \cos m \phi \tag{3-103}\\
& Q^{\prime}(\phi)=\sum_{m=0}^{i}-m a_{m} \cos m \phi-m b_{m} \sin m \phi \tag{3-104}
\end{align*}
$$

which, when evaluated at the trailing edge, become

$$
\begin{align*}
& P^{\prime}(0)=\sum_{m=0}^{\infty} m b_{m} \tag{3-105}\\
& Q^{\prime}(0)=\sum_{m=0}^{\infty} m a_{m} \tag{3-106}
\end{align*}
$$

Using these results, equation (3-102) yields the conditions that

$$
\begin{align*}
& P^{\prime}(0)=\frac{1}{2} \tan a \tag{3-107}\\
& Q^{\prime}(0)=-\frac{1}{2} \tag{3-108}
\end{align*}
$$

Which mast be satisfied in order for airfoil to have finite trailing edge pressure gradients.

In order to consider equation (3-107) further. the expression for $P(\phi)$ of equation (3-58) is differentiated and evaluated at the railing edge yielding

$$
\begin{equation*}
P^{\prime}(0)=\frac{1}{2} \tan \alpha_{1}-\frac{w^{\prime}(0)}{w(0)} \tag{3-109}
\end{equation*}
$$

In making the transition from $v(\phi)$ to $V(x)$, it is found that the velocity distribution on the airfoil, Xix), has an infinite slope at the trailing edge unless $w^{\prime}(0)=0$. Because of this, it already a requirement in the method that $w^{\prime}(0)=0$ and, consequently, equation (3-109) becomes

$$
\begin{equation*}
P^{\prime}(0)=\frac{1}{2} \tan a_{1} \tag{3-110}
\end{equation*}
$$

Equating this result with equation (3-107), it is found that the condition imposed on $\mathrm{P}^{\prime}(0$; is satisfied when

$$
\begin{equation*}
\alpha=a_{1} \tag{3-111}
\end{equation*}
$$

Thus, the complex trailing edge pressure giadient on an airfoil can orly be finite when the airfoil is operating at angle of attack corresponding to that specified in the design process for the first arc segment.

To satisfy the second condition required for bounded trailing edge pressure gradients, equation (3-108), the integral expression for $Q(\phi)$, equation (3-45), is differentiated and calculated at the trailing edge giving

$$
\begin{equation*}
Q^{\prime}(0)=\frac{1}{4 \pi} \int_{0}^{2 \pi} P(\psi) \csc ^{2}\left(\frac{\psi}{2}\right) d \psi \tag{3-1,1}
\end{equation*}
$$

Substituting this result into equation (3-108) introduces an additional integral constraint which is given by

$$
\begin{equation*}
\int_{0}^{2 \pi} P(\psi) \csc ^{2} \frac{\psi}{2} d \psi=-2 \pi \tag{3-113}
\end{equation*}
$$

In addition to the conditions of equations (3-111) and (3-113), examination of equation (3-22) reveals that in order for R_{T} to be finite, the fourth derivative of the transformation evaluated at the trailing edge, z^{i} iv, mint al so be finite. Evoking the sem arguments used for insuring the finiteness of $\mathrm{E}_{\mathrm{T}}{ }^{\prime \prime \prime}$, it is found that a_{T} iv will be bounded provided that $\mathrm{P}^{\prime \prime}(\mathrm{p})$ is continuous at the trailing edge. To insure chis, consider the result of differentiating equation (3-58) twice, giving

$$
\begin{gather*}
p \prime(\phi)=-\frac{1}{4} \sec ^{2}\left(\frac{\phi}{2}-\alpha_{i}\right)-\frac{w^{\prime \prime}(\phi)}{w(\phi)}+\left[\frac{w^{\prime}(\phi)}{w(\phi)}\right]^{2} \tag{3-114}\\
\left(\phi_{i-1} \leqslant \phi \leqslant \phi_{i} ; \quad i=1,2,3, \ldots, I_{i}\right)
\end{gather*}
$$

Because $w^{\prime}(0)=w^{\prime}(2 \pi)=0$, it is evident that the continuity of $P=(\phi)$ at the trailing edge requites

$$
\begin{equation*}
\frac{w^{\prime \prime}(0)}{w(0)}=\frac{w^{\prime \prime}(2 \pi)}{w(2 \pi)} \tag{3-115}
\end{equation*}
$$

After performing the necessary manipulations, making use of equation (3-55), Lt is found that this condition can be written more specifically as

$$
\begin{gather*}
\frac{\mu K}{1+K+(1-K)} \cos \phi_{w}+1.125\left(\frac{K_{H}}{1-\cos \phi_{s}}\right) \\
=\frac{\bar{\mu} \bar{K}}{1+\bar{K}+(1-\bar{K}) \cos \bar{\phi}_{W}}+1.125\left(\frac{\bar{K}_{H}}{1-\cos \bar{\phi}_{s}}\right) \tag{3-116}
\end{gather*}
$$

It should be noted that satisfying this condition also guarantees that the last two teras in equation (3-99) drop out.

As presented thus far, the developaent has shown that an airfoil which satiafies equations (3-111), (3-113), and (3-1!6) will have finite erailing edge pressure gradients; however, in order to incorporate these conditions Into the deaign process it remaina to evaluate the integral constraint, given by equation (3-113). In terms of the appropriate design parameters. To begin, although the integrand of equation (3-113) le singular, the integral can be shown to exist in the Csuchy Principal Value sanse by difterentiating the

ORIGINAL PAGE IS OF POOR QUALITY OF POOR QUALITY

expression for $Q(p)$, equation (3-45), to obtain

$$
\begin{equation*}
Q^{\prime}(\phi)=\frac{1}{4 \pi} \int_{0}^{2 \pi} P(\psi) \csc ^{2}\left(\frac{\psi-\phi}{2}\right) d \psi \tag{3-117}
\end{equation*}
$$

and, integrating dy parts, yields

$$
\begin{align*}
Q^{\prime}(\phi) & =-\frac{1}{2 \pi} P(2 \pi) \operatorname{ctn}\left(\pi-\frac{\phi}{2}\right)+\frac{1}{2 \pi} P(0) \operatorname{ctn}\left(-\frac{\phi}{2}\right) \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} P^{\prime}(\psi) \operatorname{ctn}\left(\frac{\psi-\phi}{2}\right) d \psi \tag{3-118}
\end{align*}
$$

Because the required continuity of $P(\phi)$ gives $P(0)=P(2 \pi)$, the leading terms of this expression cancel leaving

$$
\begin{equation*}
Q^{\prime}(\phi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P^{\prime}(\psi) \operatorname{ctn}\left(\frac{\psi-\phi}{2}\right) d \psi \tag{3-119}
\end{equation*}
$$

and the fou :h integral constraint then becomes

$$
\begin{equation*}
Q^{\prime}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P^{\prime}(\psi) \operatorname{ctn} \frac{\psi}{2} d \psi=-\frac{1}{2} \tag{3-120}
\end{equation*}
$$

After renaming the variable of integration, this result is used to define I_{4} as

Now, differentiating equation (3-58) ives

$$
\begin{aligned}
& P^{\prime}(\phi)=-\frac{1}{2} \tan \left(\frac{\phi}{2}-\alpha_{i}\right)-\frac{w^{\prime}(\phi)}{w(\phi)} \\
& \quad\left(\phi_{i-1} \leqslant \phi \leqslant \phi_{i} ; \quad i=1,2,3, \ldots, I_{p}\right)
\end{aligned}
$$

Substituting this expression into equation (3-121) ultimately yields a result which is denoted as

$$
\begin{equation*}
I_{4}=I_{a}+I_{b}=-2 \pi \tag{3-123}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{a}=-\sum_{i=1}^{I_{p}} \int_{\phi_{i-1}}^{\phi_{i}} \tan \left(\frac{\phi}{2}-\alpha_{i}\right) \operatorname{ctn} \frac{\phi}{2} d \phi \tag{3-124}\\
& \quad\left(\phi_{i-1}<\phi \leqslant \phi_{i} ; \quad i=1,2,3, \ldots, I_{p}\right)
\end{align*}
$$

and

$$
\begin{equation*}
I_{b}=-2 \int_{0}^{2 \pi} \frac{w^{\prime}(\phi)}{w(\phi)} \operatorname{ctn} \frac{\phi}{2} d \phi \tag{3-125}
\end{equation*}
$$

The analytical evaluation of I_{a} is now undertaken, beginning with consideration of the indefinite integral

$$
\begin{equation*}
I_{a l}=\int \tan \left(\frac{\phi}{2}-a_{i}\right) \operatorname{ctn} \frac{\phi}{2} d \phi \tag{3-126}
\end{equation*}
$$

for which, after some manipulation, it is found that

ORIGINAL PAGE is

$$
\begin{equation*}
I_{a l}=\phi-2 \tan \alpha_{i} \ln \left|\frac{\sin \frac{\phi}{2}}{\cos \left(\frac{\phi}{2}-\alpha_{i}\right)}\right| \tag{3-127}
\end{equation*}
$$

Using this expression in equation (3-124) gives

$$
\begin{equation*}
I_{a}=\sum_{i=1}^{I_{p}}\left\{-\phi+\left.2 \tan \alpha_{i} \ln \left|\frac{\sin \frac{\phi}{2}}{\cos \left(\frac{\phi}{2}-\alpha_{i}\right)}\right|\right|_{\phi_{i-1}} ^{\phi_{i}}\right\} \tag{3-128}
\end{equation*}
$$

which becomes

$$
\begin{align*}
I_{a} & =\sum_{i=1}^{I_{p}}\left\{-\phi_{i}+\phi_{i-1}+2 \tan \alpha_{i}\left[\ln \left|\sin \frac{\phi_{i}}{2}\right|-\ln \left|\sin \frac{\phi_{i-1}}{2}\right|\right]\right. \\
& \left.-2 \tan \alpha_{i}\left[\ln \left|\cos \left(\frac{\phi_{i}}{2}-\alpha_{i}\right)\right|-\ln \left|\cos \left(\frac{\phi_{i-1}}{2}-\alpha_{i}\right)\right|\right]\right\} \tag{3-123}
\end{align*}
$$

Performing the indicated summation with $\phi_{0}=\varepsilon \rightarrow 0$ and $\phi_{I_{p}}=2 \pi$ yields,

$$
\begin{aligned}
I_{a} & =2 \tan \alpha_{1}\left[\ln \left|\sin \frac{\phi_{i}}{2}\right|-\ln \left|\sin \frac{\varepsilon}{2}\right|\right] \\
& -2 \tan \alpha_{1}\left[\left.\ln \left|\cos \left(\frac{\phi_{i}}{2}-\alpha_{1}\right)-\ln \right| \cos \left(-\alpha_{1}\right) \right\rvert\,\right] \\
& -2 \pi+2 \tan \alpha_{I_{p}}\left[\left.\ln \left|\sin \left(\pi-\frac{\varepsilon}{2}\right)-\ln \right| \sin \frac{\phi_{I_{p}-1}^{2}}{2} \right\rvert\,\right] \\
& -2 \tan \alpha_{I_{p}}\left[\ln \left|\cos \left(\pi-\alpha_{I_{p}}\right)\right|-\ln \left|\cos \left(\frac{\phi_{P}-1}{2}-\alpha_{I}\right)\right|\right. \\
& +\sum_{i=2}^{P}\left\{2 \tan \alpha_{i}\left\lfloor\ln \left|\sin \frac{\phi_{1}}{2}\right|-\ln \left|\sin \frac{\phi_{i-1}}{2}\right|\right\rfloor\right.
\end{aligned}
$$

ORIGINAI PASE:
 OF POOR QUALITY

68

$$
\begin{equation*}
\left.-2 \tan \alpha_{i}\left[\ln \left|\cos \left(\frac{\phi_{i}}{2}-\alpha_{i}\right)\right|-\ln \left|\cos \left(\frac{\phi_{i-1}}{2}-\alpha_{i}\right)\right|\right]\right\} \tag{3-130}
\end{equation*}
$$

Extracting the singular terms in the above expression and combining them as $S_{\text {Ia }}$ gives

$$
\begin{equation*}
S_{I_{a}}=-2 \tan \alpha_{1} \ln \left|\sin \frac{\varepsilon}{2}\right|+2 \tan \alpha_{I_{p}} \ln \left|\sin \left(\pi-\frac{\varepsilon}{2}\right)\right| \tag{3-131}
\end{equation*}
$$

Because $\left|\sin \left(\pi-\frac{\varepsilon}{2}\right)\right|=\left|\sin \frac{\varepsilon}{2}\right|$, the singular terms can be eliminated by requiring that

$$
\begin{equation*}
\alpha_{I_{p}}=\alpha_{1} \tag{3-132}
\end{equation*}
$$

The expression for I_{a} that remains is then simplified by incorporating additional terms under the summation such that

$$
\begin{align*}
I_{a}= & -2 \pi+\sum_{i=1}^{I_{p-1}}\left\{2 \tan \alpha_{i}\left[\ln \left|\sin \frac{\phi_{i}}{2}\right|-\ln \left|\cos \left(\frac{\phi_{i}}{2}-\alpha_{i}\right)\right|\right]\right. \\
& +2 \tan \alpha_{i+1}\left[\ln \left|\cos \left(\frac{\phi_{i}}{2}-\alpha_{i+1}\right)\right|-\ln \left|\sin \frac{\phi_{i}}{2}\right|\right. \tag{3-133}
\end{align*}
$$

To begin the evaluation of I_{b}, equation (3-125), recall that $w^{\prime}(\phi) / w(\phi)$ varies in a piecewise fashion with ϕ. Using the form of equation (3-56) to describe $w(\phi)$, and comparing that with equation (3-55), it is found that, on the upper surface,

$$
\begin{equation*}
W_{W}(\phi)=1+K\left(\frac{\cos \phi-\cos \phi_{W}}{1+\cos \phi_{W}}\right) \tag{3-134}
\end{equation*}
$$

$$
\begin{equation*}
W_{s}(\phi)=1-m\left(\frac{\cos \phi-\cos \phi_{s}}{1-\cos \phi_{s}}\right)^{2} \tag{3-135}
\end{equation*}
$$

while, on the lower surface,

$$
\begin{align*}
& \bar{W}_{w}(\phi)=1+\bar{K}\left(\frac{\cos \phi-\cos \bar{\phi}_{w}}{1+\cos \bar{\phi}_{w}}\right) \tag{3-136}\\
& \bar{W}_{s}(\phi)=1-m\left(\frac{\cos \phi-\cos \bar{\phi}_{s}}{1-\cos \bar{\phi}_{s}}\right) \tag{3-137}
\end{align*}
$$

With regard to the earlier discussion concerning the piecewise treatment given to the function described by equation (3-55), I_{b} is evaluated over the piecewise segments defined as follows:

$$
\begin{align*}
& \frac{W^{\prime}(\phi)}{W(\phi)}=-\mu \frac{W_{W}^{\prime}(\phi)}{W_{W}(\phi)}+K_{H} \frac{W_{s}^{\prime}(\phi)}{W_{s}(\phi)} \tag{3-138}\\
& \frac{W^{\prime}(\phi)}{W(\phi)}=-\mu \frac{W_{w}^{\prime}(\phi)}{W_{W}(\phi)} \tag{3-139}\\
& 0 \leqslant \phi \leqslant \phi_{s} \\
& \phi_{s} \leqslant \phi \leqslant \phi_{W} \\
& \frac{w^{\prime}(\phi)}{w(p)}=0 \\
& \phi_{w} \leqslant \phi \leqslant \bar{\phi}_{w} \\
& \bar{\phi}_{W}<\phi<\bar{\phi}_{s} \tag{3-141}\\
& \frac{W^{\prime}(\phi)}{W(\phi)}=-\bar{\mu} \frac{\bar{W}_{w}^{\prime}(\phi)}{\bar{W}_{W}(\phi)}+\bar{K}_{H} \frac{\bar{W}_{s}^{\prime}(\phi)}{\bar{W}_{s}(\phi)} \tag{3-142}\\
& \bar{\phi}_{8} \leqslant \ll 2 \pi \\
& \frac{w^{\prime}(\phi)}{w(\phi)}=\bar{\mu} \frac{\bar{W}_{w}^{\prime}(\phi)}{\bar{W}_{w}(\phi)}
\end{align*}
$$

ORIGINAL PAGE IS
 OF POOR QUALITY

Thus, for the most general case, the indefinite integral is given by

$$
\begin{equation*}
I_{b}=I_{b l}+I_{b 2} \tag{3-143}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{b 1}=2 \mu \int \frac{W_{w}^{\prime}(\phi)}{W_{w}(\phi)} \operatorname{ctn} \frac{\phi}{2} d \phi \tag{3-144}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{b 2}=-2 K_{H} \int \frac{W_{s}^{\prime}(\phi)}{W_{s}(\phi)} \operatorname{ctn} \frac{\phi}{2} d \phi \tag{3-145}
\end{equation*}
$$

In the following evaluation of I_{b}, only the notation for the upper surface will be used; however, the results are valid for the lower surface as well, if the upper surface quantities are replaced by their appropriate lower surface counterparts. In order to evaluate $I_{b l}$, let

$$
\begin{align*}
& g=\frac{K}{1+\cos \phi_{W}} \tag{3-146}\\
& f=1-g \cos \phi_{w} \tag{3-147}
\end{align*}
$$

so that

$$
\begin{equation*}
W_{W}(\phi)=f+g \cos \phi \tag{3-148}
\end{equation*}
$$

Thus, the integral becomes

$$
\begin{equation*}
I_{b l}=-2 \mu \int\left(\frac{g \sin \phi}{f+g \cos \phi}\right) \operatorname{ctn} \frac{\phi}{2} d \phi \tag{3-149}
\end{equation*}
$$

After some manipulation, it is found that

$$
\begin{equation*}
I_{b l}=-2 \mu \phi+\mu F(\phi, f, g) \tag{3-150}
\end{equation*}
$$

where

$$
\begin{align*}
& F=-\frac{2(g-f)}{\left(g^{2}-f^{2}\right)^{1 / 2}} \ln \left|\frac{(g-f) \tan \frac{\phi}{2}+\left(g^{2}-f^{2}\right)^{1 / 2}}{(g-f) \tan \frac{\phi}{2}-\left(g^{2}-f^{2}\right)^{1 / 2}}\right| \quad g^{2}>f^{2} \tag{3-151}\\
& F=-\frac{4(g-f)}{\left(f^{2}-g^{2}\right)^{1 / 2}} \tan ^{-1}\left[\frac{(f-g) \tan \frac{\phi}{2}}{\left(f^{2}-g^{2}\right)^{1 / 2}}\right] \quad f^{2}>g^{2} \tag{3-152}
\end{align*}
$$

In order to evaluate $I_{b 2}$, let

$$
\begin{align*}
& N_{1}=\frac{\gamma_{m}}{1-\cos \phi_{s}} \tag{3-153}\\
& a=1-\gamma_{m} \tag{3-154}\\
& b=1+\gamma_{m} \tag{3-155}
\end{align*}
$$

so that

$$
\begin{equation*}
W_{s}(\phi)=\left[a+N_{1}(1-\cos \phi)\right]\left[b-N_{1}(1-\cos \phi)\right] \tag{3-156}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{s}^{\prime}(\phi)=N_{L} \sin \phi\left[b-N_{L}(1-\cos \phi)\right]-N_{L} \sin \phi\left[a+N_{1}(1-\cos \phi)\right] \tag{3-157}
\end{equation*}
$$

The expression for $I_{b 2}$ may then be written as

$$
\begin{equation*}
I_{b 2}=I_{b 2 a}+I_{b 2 b} \tag{3-158}
\end{equation*}
$$

where

$$
\begin{align*}
& I_{b 2 a}=-2 K_{H} N_{1} \int \frac{\sin \phi}{\left[a+N_{1}(1-\cos \phi)\right]} \operatorname{ctn} \frac{\phi}{2} d \phi \tag{3-159}\\
& -_{b 2 b}=2 K_{H} N_{1} \int \frac{\sin \phi}{\left[b-N_{1}(1-\cos \phi)\right]} \operatorname{ctn} \frac{\phi}{2} d \phi \tag{3-160}
\end{align*}
$$

After performing the integration indicated in equation (3-159), $I_{b 2 a}$ becomes

$$
\begin{equation*}
I_{b 2 a}=2 K_{H} \phi-4 K_{H}\left(\frac{a+2 N_{1}}{a}\right)^{1 / 2} \tan ^{-1}\left[\left(\frac{a+2 N_{1}}{a}\right)^{1 / 2} \tan \frac{\phi}{2}\right] \tag{3-161}
\end{equation*}
$$

Evaluation of the expression f or $I_{b 2 b}$, equation (3-160), after some manipulation, gives

$$
\begin{equation*}
I_{b 2 b}=2 K_{H} \phi+4 K_{H} K_{F}\left(\phi, N_{1}, b\right) \tag{3-162}
\end{equation*}
$$

where

$$
\begin{align*}
& K_{F}=\frac{\left(2 N_{1}-b\right)}{\left(b^{2}-2 N_{1} b\right)^{l / 2}} \tan -1 \frac{\left(b-2 N_{1}\right) \tan \frac{\phi}{2}}{\left(b^{2}-2 N_{1} b\right)^{1 / 2}} \quad b>2 N_{1} \tag{3-163}\\
& K_{F}=\frac{\left(2 N_{1}-b\right)}{2\left(2 b N_{1}-b^{2}\right)^{1 / 2}} \ln \left\lvert\, \frac{\left(2 N_{1}-b\right) \tan \frac{\phi}{2}+\left(2 N_{1} b-b^{2}\right)^{1 / 2}}{\left(2 N_{1}-b\right) \tan \frac{\phi}{2}-\left(2 N_{1} b-b^{2}\right)^{1 / 2}} \quad b<2 N_{1}\right.
\end{align*}
$$

Combining equations (3-150), (3-158), (3-161), and (3-162) into the expression for I_{b}, equation (3-143), yields

$$
\begin{align*}
I_{b}= & -2 \mu \phi+\mu F(\phi, f, g)+4 K_{H} \phi+4 K_{H} K_{F}\left(\phi, N_{1}, b\right) \\
& -4 K_{H}\left(\frac{a+2 N_{1}}{a}\right)^{1 / 2} \tan ^{-1}\left[\left(\frac{a+2 N_{1}}{a}\right)^{1 / 2} \tan \frac{\phi}{2}\right] \tag{3-165}
\end{align*}
$$

Using this result, I_{b} can te evaluated at the appropriate integration limits for the given intervals so that

$$
\begin{align*}
I_{b} & =4 K_{H} \phi_{s}-4 K_{H}\left(\frac{a+2 N_{1}}{a}\right)^{1 / 2} \tan ^{-1}\left[\left(\frac{a+2 N_{1}}{a}\right)^{: / 2} \tan \frac{\phi_{s}}{2}\right) \\
& +4 K_{H} K_{F}\left(\phi_{s}, N_{1}, b\right)-2 \mu \phi_{W}+\mu F\left(\phi_{W}, f, g\right)+2 \bar{H}_{\phi_{W}} \\
& -\bar{\mu} \bar{F}\left(\bar{\phi}_{W}, \bar{f}, \bar{g}\right)-4 \pi \bar{\mu}+8 \pi \bar{K}_{H}-4 \bar{K}_{H} \bar{\phi}_{s}-4 \bar{K}_{H} \bar{K}_{F}\left(\bar{\phi}_{s}, \bar{N}_{1}, b\right) \\
& +4 \bar{K}_{H}\left(\frac{a+2 \bar{N}_{1}}{a}\right)^{1 / 2} \tan ^{-1}\left[\left(\frac{a+2 \bar{N}_{1}}{a}\right)^{1 / 2} \tan \frac{\bar{\phi}_{s}}{2}\right] \tag{3-166}
\end{align*}
$$

This result, combined with that obtained for I_{a}, equation (3-133), provides an analytical representation of the integral constraint. I_{4}, which must be satisfied in order to insure that the trailing edge pressure gradients of an airfoil are bounded.

At this point, there are four integral constraints and L_{p} matching conditions which must be solved for $\phi_{i, 1 e}, K_{H}, \bar{K}_{H}$, and the I_{p} unknown constants, the v_{i} 's. Thus, in order to satisfy a fourth constraint, an additional parameter mast be relaxed. Because for most applications of
interest, the specification of the upper surface velocity distribution is of greater consequence than the specification of the lower, both $\bar{\mu}$, and \bar{K}, which control the shape of the lower surface recovery, are candidates; however, as freeing $\bar{\mu}$ results in a more direct method of solution, it is chosen as the additional parameter to relax.

At this point, it is necessary to isolate $\boldsymbol{\phi}_{\text {i, le }}$ for solution in the expression for I_{a}, equation (3-133). To facilitate this, the terms not containing $\phi_{i, l e}$ are combined in a parameter, $K_{I a}$, such that I_{a} becomes

$$
\begin{align*}
I_{a} & =-2 \pi+K_{I a}+2 \tan \alpha_{1 e}\left\{\ln \left|\sin \frac{\phi_{i, 1 e}}{2}\right|-\ln \left|\cos \left(\frac{\phi_{1,1 e}}{2}-\alpha_{1 e}\right)\right|\right] \\
& -2 \tan \alpha_{1 e+1}\left[\ln \left|\sin \frac{\phi_{i, 1 e}}{2}\right|-\ln \left|\cos \left(\frac{\phi_{i, 1 e}}{2}-\alpha_{1 e+1}\right)\right|\right] \tag{3-167}
\end{align*}
$$

where $K_{\text {Ia }}$ is given by

$$
\begin{align*}
K_{I a} & =\sum_{i=1}^{\operatorname{le-1}}\left\{\left.2 \tan \alpha_{i}|\ln | \sin \frac{\phi_{i}}{2}|-\ln | \cos \left(\frac{\phi_{i}}{2}-\alpha_{i}\right) \right\rvert\,\right] \\
& \left.+2 \tan \alpha_{i+1}\left\{\ln \left|\cos \left(\frac{\phi_{1}}{2}-\alpha_{i+1}\right)\right|-\ln \left|\sin \frac{\phi_{i}}{2}\right|\right]\right\} \\
& +\sum_{i=1 e+1}^{I}\left\{2 \tan a_{i}\left[\ln \left|\sin \frac{\phi_{i}}{2}\right|-\ln \left|\cos \left(\frac{\phi_{i}}{2}-\alpha_{i}\right)\right|\right]\right. \\
& \left.+2 \tan \alpha_{i+1}\left[\ln \left|\cos \left(\frac{\phi_{1}}{2}-\alpha_{i+1}\right)\right|-\ln \left|\sin \frac{\phi_{i}}{2}\right|\right]\right\} \tag{3-168}
\end{align*}
$$

Siailarly, the expression for I_{b}, equation (3-165), is rewritten to isolate the unknowns X_{H}, \bar{K}_{H}, and $\bar{\mu}_{\text {for }}$ solution. Thus,

$$
\begin{equation*}
I_{b}=K_{H} c_{1}+\bar{K}_{H} c_{2}+\bar{\mu} c_{3}+K_{I b} \tag{3-169}
\end{equation*}
$$

where the constant terms are:

$$
\begin{align*}
& c_{1}=4 \phi_{s}-4\left(\frac{a+2 N_{1}}{a}\right)^{1 / 2} \tan ^{-1}\left[\left(\frac{a+2 N_{1}}{a}\right)^{1 / 2} \tan ^{-1} \frac{\phi_{s}}{2}\right]+4 K_{F}\left(\phi_{s}, N_{1}, b\right) \\
& c_{2}=8 \pi-4 \bar{\phi}_{s}+4\left(\frac{a+2 \bar{N}_{1}}{a}\right)^{1 / 2} \tan ^{-1}\left[\left(\frac{a+2 \bar{N}_{1}}{a}\right)^{1 / 2} \tan \frac{\bar{\phi}_{s}}{2}\right] \\
& -4 \bar{K}_{F}\left(\bar{\phi}_{s}, \bar{N}_{1}, b\right) \tag{3-171}\\
& c_{3}=2 \vec{\phi}_{w}-\bar{F}\left(\bar{\phi}_{w}, \bar{f}, \bar{g}\right)-4 \pi \tag{3-172}\\
& K_{I b}=-2 \mu \phi_{w}+\mu F\left(\phi_{w}, f, g\right) \tag{3-173}\\
& \text { Using equations (3-123), (2.167), and (3-169), } I_{4} \text { can be expressed as } \\
& I_{4}=K_{H} c_{1}+\bar{K}_{H} c_{2}+\bar{\omega} c_{3}+J_{4}=0 \tag{3-174}
\end{align*}
$$

in which J_{4} is defined, using the notation of equation (3-65), as

$$
\begin{equation*}
J_{4}=a_{j}+b_{J} \ln (l e, 1 e)+c_{J} \ln (\operatorname{le}, \operatorname{le+1})+e_{J} \ln \left|\sin \frac{\phi_{1} \operatorname{le}}{2}\right| \tag{3-175}
\end{equation*}
$$

where the coefficients are given by

$$
\begin{equation*}
a_{J}=K_{I_{a}}+K_{I b} \tag{3-176}
\end{equation*}
$$

$$
\begin{equation*}
b_{J}=-2 \tan a_{1 e} \tag{3-177}
\end{equation*}
$$

$$
\begin{equation*}
c_{J}=2 \tan \alpha_{1 e+1} \tag{3-178}
\end{equation*}
$$

$$
\begin{equation*}
e_{J}=2\left(\tan \alpha_{1 e}-\tan \alpha_{1 e+1}\right) \tag{3-179}
\end{equation*}
$$

At this point, the integral constraint required for finite pressure gradients at the trailing edge has been written with the unknowns isolated appropriately for solution. It remains to rewrite the previously given constraint equations of the Eppler method to include $\bar{\mu}$ as an unknown parameter. To aid in this, the quantity $W_{\text {wolf }}$ is defined by

$$
\begin{equation*}
W_{W C I}=\int_{\bar{\phi}_{w}}^{2 \pi} \ln \bar{W}_{w}(\phi) \cos \phi d \phi \tag{3-180}
\end{equation*}
$$

and the equation resulting from the first closure constraint, equation (3-67), is written as

$$
\begin{equation*}
K_{H} W_{c l}+\bar{K}_{H} W_{c I}+\bar{\mu} W_{p \in E I}+J_{c}=0 \tag{3-181}
\end{equation*}
$$

where J_{c} is defined as before, equations (3-69)-(3-73), except that the expression given for ac, equation (3-70), no longer includes the term involving $\bar{\mu}$. Similarly, the equation resulting from the second closure constraint, equation (3-76), becomes

$$
\begin{equation*}
X_{H} w_{s 1}+\bar{X}_{H} W_{s I}+\bar{u} W_{W S I}+J_{s}=0 \tag{3-182}
\end{equation*}
$$

where

$$
\begin{equation*}
W_{\text {wsI }}=\int_{\Phi_{W}}^{? \pi} \ln \bar{W}_{w}(\phi) \sin \phi d \phi \tag{3-183}
\end{equation*}
$$

and the $\bar{\mu}$ term is no longer included in the expression for a_{s}, equation (3-78), which is used in defining J_{s}, equation (3-77). Finally, equation (3-82), obtained using the matching condition at the trailing edge, is rewritten as

$$
\begin{equation*}
-K_{H} \ln W_{s}(0)+\vec{K}_{H} \ln \bar{W}_{s}(2 \pi)-\bar{\mu} \ln \bar{W}_{w}(2 \pi)+J_{t}=0 \tag{3-184}
\end{equation*}
$$

and, as before, the $\bar{\mu}$ term is eliminated from the definition of a_{t}, equation (3-84), used in the expression for J_{t}, equation (3-82).

Equations (3-174), (3-181), (3-182), and (3-184) can be used to solve the four unspecified parameters of the design problem. in matrix notation, this system of equations is represented by
(3-185)
 t the form

$$
a+b \ln (1 e, 1 e)+c \ln (1 e, 1 e v!)+d l_{1,1 e}
$$

$$
\begin{equation*}
+e \ln \left|\sin -\frac{1,1 e}{2}\right|=0 \tag{3-186}
\end{equation*}
$$

As in the unmodified scheme, chis equation is soived by Regula falsi, after which, J_{C}, J_{s}, and J_{t} are calculated and K_{H}, \bar{K}_{H}, and $\bar{\mu}$ obtained by back substitution. At this point, it is still necessary to satisfy equation (3-116) in order for the resulting airfoil to have a finite complex cralling edge pressure gradient. In order to achieve this, the computational procedure allows the designer to choose one of several possible iteration schems which vasies one of the parameters, K, \bar{K}, u, or \bar{W}_{s}, until the condition of equation (3-116) is met.

Calculation of Trailing Edge Pressure Gradients in the Modified Eppler Method
Once all airfoil nas been designed having bounded trailing edge pressure gradients, it is of interest to know the values of those grailients. As z_{T} " is obtained 1. ..ancretion with the design process from equation (3-98), then, in reference $-a_{i} . .$. ion (3-28), the calculation of R_{T} further requires that $z_{i f}$ iv be deternined. While $z^{\text {iv }}$ is made finite by requicing continuite of $P^{\prime \prime}(\phi)$ at the crailing edge, the actual calculation of the value of z_{T} iv by further differentiating the sertes representations of $P(\phi)$ and $Q(\phi)$, in a manner similar to that used in obtaining $r_{T}{ }^{\prime \prime}$ ', would necessitate that $P^{\prime}(1)$ be continuous everywhere and that $P^{\prime \prime}(s)$ be piecewise continuous. As this would place severe rescrictions on the velocity distriburions allowable simply to facilitate the calculation of RT, an alternative method was developed to approximete the value of $\mathrm{E}_{\mathrm{T}} \mathrm{IV}^{\mathrm{y}}$. The acheme employed centers on expanding the transformation, $z(\zeta)$, in aglor saries about the trailing edge to ootain

$$
\begin{align*}
z(\zeta)=z_{T} & +z_{T}{ }^{\prime}\left(\zeta-\zeta_{T}\right)+\frac{1}{2!} z_{T}{ }^{\prime \prime}\left(\zeta-\zeta_{T}\right)^{2}+\frac{1}{3!} z_{T}^{\prime \prime \prime}{ }^{\prime \prime}\left(\zeta-\zeta_{T}\right)^{3} \\
& +\frac{1}{4!} z_{T}{ }^{i v}\left(\zeta-\zeta_{T}\right)^{4}+\ldots \tag{3-187}
\end{align*}
$$

in which, as determined previously,

$$
\begin{align*}
& z_{T}^{\prime}=0 \tag{3-188}\\
& \zeta_{T}=1 \tag{3-189}
\end{align*}
$$

and, as just noted, $z_{1} "$ is given by equation (3-98). In addition, because the airfoil satisfies the conditions for a finite complex trailing edge pressure gradient, the value of ${ }^{2} T$ " can be used in equation (3-2?) to solve for ${ }^{2} T^{\prime \prime \prime}$. By substituting a coordinate from near the trailing edge on the airfoil a.id the corresponding coordinate on the unit circle into equation (3-187), is possible to approximate $z_{T}{ }^{\text {iv }}$ using the Taylor series redresentation truncated to fourth-order terms.

In ictual applications, by comparison with exact values obtained using airfoils from the von Mises family, it was found that the most reliable values of z_{T} iv from the approximate method were obtained when tine upper surface coordinate nearest the trailing edge was subs-ituted into the truncated series and this result averaged with one obtained using a similar point on the lower surface. A value of R_{T} resulting from $a z_{T}{ }^{i v}$ obtained in this manner, however, must be viewed with some caution. The primary difficulty is that the calculation is $v \in r_{g}$ sensitive to the detailed geometry of the trailing edge region. For example, while it might be expected that the shape of the
trailing edge should not be altered significantly by increasing the number of points used to generate the airioil, it can happen that when the resolution is improved by increasing the number of points, what appeared to be a reasonable trailing edge shape is actually overlapped. While this geometrical alteration might be so s° ight that it is not evident in plotter results, the influence on R_{T} is very significant. Although better accuracy can be achieved by grearly increasing the number of points used to generate an airfoil, this is entirely un cessary with regard to the basic design problem. Thus, in light of the large number of computer runs dictated by the iterative natire of design, and because the need for higher accuracy has yet to be established, the maintenance of low-cost and minimal run time were considered more important than obtaining R_{T} to higher accuracy.

Finally, it should be noted that once the non-dimensional values of the trailing edge pressure gradients have been determined, they are resolved into components and denoted as $\mathrm{C}_{\mathrm{pST}}$ and $\mathrm{C}_{\mathrm{pNT}}$ in the output from the modified design code. The streamline flowing from the trailing edge is considered to be directed along the bisector of the trailing edge closure angle and $C_{p S T}$ is the non-dimensional pressure gradient with respect to that direction. The non-dimensional pressure gradient normal to the trailing edge streamine is given by $\quad \rightarrow N T$ •

Influence of the Conditions for Pinite Trailing Edge Pressure Gradients on Airfoils Designed Using the Eppler Method

In order to better understand the impact of the finite complex trailing edge pressure gradient conditions on the design of airfoils using the Eppler and Somers code $\{25\}$, it is instructive co compare results obtained using the original rode with examples generated using a version of the code which
incorporates the additional constraints. The airfoils to be considered in this comparison are only to did in the understanding of the influence of the additional conditions on the designs generated by the sode and are not necessarily intended as viahle design possibilities.

The airfoil and ve'ocity distribution shown in Figure 25 were obtained using the unmodified Eppler and Somers code. In this extreme case, none of the iteration schemes for achieving a particular trailing edge angle are implemented and the trailing edge geometry resulting from the specified input produces very steep velocity gradients in the trailing edge region, as well as a very low trailing edge velocity ratio. Using the same input design parameters in the modified version of the code, the value of \bar{j} is determined by the method such that the integral constraint required for finite trailing edge pressure gradients, equation (3-113), is satisfied. As seen in Figure 26, imposing this constraint causes the flow in the recovery region and in the vicinity of the trailing edge to be modified considerably. In particular, note that the extent of the steepened gradients due to the closure contribution has been lessened and that the trailing edge velocity ratio increased significantly. This airfoil does not satisfy all of the conditions for finite trailing pressure gradients, however, in that the requirement of equation (3-116) has not been met. Next, the unmodified code is used with the same input as before, except now the value of K is iterated to achieve $K_{s}=K_{H}$ $+\bar{K}_{H}=0$. The results of this case are shown in Figure 27. Clearly the final iterated value of K has produced an airfoil very dissimilar to that obtained Itsing the value initially specified. Last in this series of comparisons, Figure 28 presents the airfoil obtained by iterating the value of K from that used for the design of Figure 26 in order to satisfy equation (3-116). The
global influence, in particular the reduction in aft loading, which results from imposing the conditions for finite trailing edge pressure gradients should be noted.

It must be emphasized that the class of airfoils having finite trailing edge pressure gradients is a subset of the family of airfoils designable using the Eppler code. Thus, the utility of the modified method is to facilitate the determination of the appropriate parameters which allow the conditions for finite trailing edge pressure gradients to be satisfied. If after these values have been found they are input into the unmodifie? code, then the resulting airfoil would be the same as that generated by the modified scheme.

As the airfoils considered in the preceding examples are somewhat extreme, Figures 29 and 30 provide a comparison of designs which are more reasonable. The airfoil shown in Figure 29 is obtained using the unaltered code while that of Figure 30 is a result of the modified version. As before, the reduction in aft loading and the increase in trailing edge velocity ratio occurring in the case of the airfoil generated with the additional constraints In force should be noted.

Further appreciation of the behavior of the modified code is obtained by comparing the differences in the manner that the modified ani unmodified codes are used to design symmetrical airfoils. A symmetrical profile using the original Eppler and Somers code is obtained by setting corresponding upper and lower surface design parameters equal to one another. If iteration to a particular trailing edge closure angle is desired, a mode is chosen in which the selected upper and lower surface interating parameters are incremented in a manner that maintains the equality. Because the modified code solves for the value of $\bar{\mu}$ that allows the additional integral constraint to br satisfied,
its value cannot be specified equal to μ. A symmetrial airfoil will result, howner, if the uther corresponding upper and lower surface inputs are set equal, and the iteration mode selected to satisfy equation ((3-116) iterates on μ. Fulfilling the requirement that $w^{\prime \prime}(0)=w^{\prime \prime}(2 \pi)$ in this way forces μ to be equal to $\bar{\mu}$. As demonstrated, for example, by the result shown in Figure 31, this procedure yields a symmetrical airfoil having finite trailing edge pressure gradients.

DESIGN EXAMrLES AND APPI. JATIONS

To explore the characteristics and capabilities of the modified version of the Eppler code, the usage of which is described in Appendix C, the velocity distributions of several airfoils appearing in the literature were adjusted as necessary and used to generate comparative airfoils having finite trailing edge pressure gradients. The first airfoil to be considered in this manner is the design of Strand presented in Reference [34]. The inverse method developed by Strand, used to generate this airfoil, is a development of Arlinger's procedure [10] which, in turn, grew out of that of Lighthill [9]. In the formulation of this procedure, the constraints inposed by the inverse problem on the velocity distribution are satisfied by making adjustments t () the portion of th. desireu velocity distribution which occurs on the lower surface of the airfoil. The differences between the desired distribution and that achieved are minimized by making the required adjustments as small, in a least-squares sense, as possible. The design point potential flow velocity distribution for this airfoil, shown in Pigure 32, is calculated using the coordinates given by Strand [34] in the panel-method analysis procedure of the Eppler and Somers code [25]. At this angle of attack, the velocity distribution is intended to have a constant velocity rooftop followed by the appropriate Stratford recovery. The non-smooth appearance of the points on this calculated velocity distribution is largely a result of having an insufficient number of coordinates to describe the airfoil. Also shown in Figure 32 are the airfoil and velocity distribution obtained when the airfoil
is modified to have finite trailing edge pressure gradients. The two distributions are seen to be very similar except near the trailing edge. In fact, it was found that these $a_{\perp} f f e r e n c e s$ could be largely eliminated by splining in additional coordinates. A comparison of the original Strand airfoil with the modified one is not presented as the geometrical differences between them are almost imperceptible. In comparing the analysis results for the two airfoils at the design angle of attack and Reynolds number of 3×10^{6}, a lift coefficient of 1.32 is calculated for both airfoils. With natursl transition determined by the program, the lift-to-drag ratio of the original airfoil at the design point is found to be 197, while that of the modified profile is slightly better at 207.

Another example of a airfoil redesigned such that the trailing edge pressure gradients are bounded is that shown in Figure 33. The parent airfoil in this case is one developed by Liebeck and given the designation L1004 in Reference [12]. It is intended that this airfoil have a fully turbulent rooftop at the design Reynolds number of 3×10^{6}. Although details of the velocity distribution and airfoil coordinates are untivailable, points taken from the velocity distribution presented in Reference [12] are noted in Figure 33 for comparison with the distribution obtained for the modified version having finite trailing edge pressure gradients. While the design lift coefficients of 1.31 , as calculated using the code of Eppler and Somers [25], is slightly less than the value given of 1.35 given for the $\mathrm{LlON4}$ by Liebeck [12], the calculated 1 ift-to-drag ratio of 184 for the modified airfoil is a slight improvement over the value of 181 for the L1004.

Another example, from the same family as the preceding airfoil, is the Liebeck L1003, derigned to have a fully laminar rooftop at a Reynolds number
of 2×10^{5}. As evident in figure 34 , the redesigned velocity distribution is close to that ploted in Reference [12]. In this case, however, even after fixing transition at the appropriate location, the Eppler and Somers analysis indicates that the entire recovery region is separated. As noted by Liebeck [34], obtaining an unseparated recovery for this section is extremely dependent upon having particular flow conditions at the beginning of the pressure rise. Thus, it is likely that the separation problems resuit because of small differences in the flow conditions between the twn airfoils at the initiation of recovery.

In addition to resulting in abrupt stalling behavior, the use of a Stratford pressure recovery for practical airfoils is often criticized in that, with regard to the normal flowfield variations that occur in realistic applications, the attainment of the precise flow conditions required at the beginning of the pressure rise cannot be assured. Consequently, the consideration of designs incorporating Stratford distributions is often of an acadenic nature, as is the case of studies directed toward exploring ultimate possibilities in airfoil performance. Thus, an example of a more practical candidate for adaptation to an airfoil having finite trailing edge pressure gradients is provided by the well-proven and documented Wortmann FX 67-K-150, Reference [36]. The actual airfoil considered here, shown in Figure 35, is defined by the aerodynamically smoothed coordinates given by Somers [37]. Although this section is optimized for use with flaps, only the configuration having a neutral flap setting will be treated. The lack of steep gradients near the trailing edge in the velocity distribution examples considerad up to now has permitted the conditions for a finite complex trailing edge pressure gradient to be applied to the existing designs with only minor alterations
necessary. Hence, the goal has been to obtain an airfoil with bounded trailing edge pressure gradients that has a velocity distribution as close as possible to that of the parent section. The Wortmann section, however, is unlike those al ready considered in that, due to the significant differential between velocities on the upper and lower surfaces near the trailing edge, a steep adverse pressure gradient is present over the aft portion of the velocity distribution. Consequently, the concern in this case is to obtain an airfoil with finite trailing edge pressure gradients which, although having a somewhat altered velocity distribution, embodies the same design philosophy and achieves comparable performance. With this in mind, consider the result shown in Figure 37 and note that the use of the modified code has changed the velocity distribution such that the upper surface aft loading present on the Wortmann section, causing the steep adverse pressure gradient near the trailing edge, has heen eliminated. It should be pointed out that there is a drag penalty associated with the steep lower surface favorable pressure gradient that is a result of the closure contribution on the newly designed airfoil. While it was found that the drag could be reduced considerably by beginning the lower surface closure contribution sooner, and thereby lessen the gradient, the distribution shown was retained as it is more like that of the Wortmann section. In addition, in order to contrul separation problems chat were introduced by the veloiity distribution changes at the trailing edge, some modifications were made to the shape of the upper surface recovery distribution. Although the elimination of the upper surface aft loading results in a loss of lift as calculated by potential flow methode, this is more than offset by the increased value of $\mathrm{V}_{\mathrm{TE}} / \mathrm{U}$ which allows the lower surfach to carty areater amount of aft loading. A comparison of the overall
aerodynamic performance of the two airfoils is provided ty the viscous analysis results obtained using the Eppler and Somers code and presented in Figures 36 and 38. The finite trailing edge pressure gradients airfoil has been designed such that the maximum lift-to-drag ratio occurs near the design angle of attack dictated by equation (3-111). Both airfoils exhibit best lift-to-drag ratios at a lift coefficient near unity. A more detafled comparison reveals that the drag polars of the new profile are roughly equivalent to those of the original section over most of the usable performance range; however, the performance of the section generated with the modified code is extended considerably in the direction of higher lift coefficients.

While the imaginary part of the condition necessary for an airfoil to have finite trailing edge pressure gradients can only be satisfied at a single angle of attack, as equation (3-27) reveals, the results of the Eppler and Somers code viscous analysis of such airfoils indicates nothing particularly special about the eerodynamic characteristics at that angle of attack. This fact, however, should be to some degree expected in that the analysis makes ase of conventional boundary layer theory in which normal pressure gradients through the 'Jundary layer, as well as all wake influenceb, are assumed to be unimportant. As has been discussed, this assumption breaks down near the trailing edge where the inviscid pressure gradients are generally unbounded. It should be no surprise, then, that the results of calculation based on conventional boundary layer theory do not indicate any characteristics attributable to the presence of finite crailing edge pressure gradients. Thus, a thorough evaluation of the effect of such factors on airfoil performance would require a fairly extensive investigation that makes use af a
theoretical model having a more detailed description of the flow in the vicinity of the trailing edge. To demonstrate what such a nodel might Indicate, consider the application of the GRUMFOIL code [21] to the two airfoils just presented. The results of this inalysis for the FX 67-K-150 are given in figures $39-41$, and those for the corresponding finite trailing edge pressure gradient airfoil in Figures 42-44. The analysis of the latter section was perfcomed at its design angle of attack and that of the Wortmann at an angle of attack which resulted in the lift coefficients matching. The Reynolds number used was 2×10^{6} and the Mach number was set to zero. The aerodynami: characteristics calculated using GRUMFOIL are somewhat different from those obtained with the Eppler and Somers code. In general, the lift coefficients calculated by GRUMFOIL are slightly greater than those of the Eppler and Somers code, while the drag coefficients, even though transition predictions agree fairly well, are notably less.

The fully viscous GRUMPOIL pressure distributions for the two airfoils are given in Figure 39 and 42. In considering the viscous pressure distribution for the Wortmann section, Figure 39 , the pressure spike near the leading edge which is not present in the Eppler and Sowns potential flow results warrants explanation. Based on distributions obtained at lower angles of attack, it was concluded that the peak is due to a lack of smoothness in one of the coordinates rather than from the angle of attack under consideration being too large. It has been found that only a very small Inconsistency in the given coordinates can be responsible for such a result. In further considering the viscous pressure distribution of the Wortann design, it should be observed that the sceep upper surface gradients near the tralling edge present 1 : the potential flow resulte are largely elimi ted by
the saoothing action of viscous influences. As seen in Figure 42 for the airfoll having finite trailing edge pressure gradients, on the other hand, the inviscid calculations are lirtle impacted by the inclusion of viscid-inviscid iterations.

Further differences in the trailing edge region flow behavior are well demonstrated by comparing the boundary luyer characteristics of the two airfoils. In the case of the Wortmann profile, Figures 40 and 41 readily demonstrate the singular behavior at the trailing edge of the displacement thickness, form facror, and the equivalent surface source velocicy. It should be noted that these results conform very well to those found experimentally. such as in the work of Preston, et. al., [29]-[31]. In remarkable contrast, as seen in Figures 43 and 44 , the slope discontinuities are eliminated for the airfoil with bounded trailing edge pressure gradients. The ramifications of these results are aignificant. In addition to any performance benefits arising from smooth flow off the airfoil and into the wake, the application of the condition for finjte trailing edge pressure gradients has produced a class of airfoils for which the strong viscid-inviscid interactions, bey ad that of the displacement thickness, con be neglected. That is, conve …ial boundary layer theory remains valid in the region of the trailing eis is. uch alrfoils and is sufficient for the prediction of their aerway ". . characteristics. Furthermore, as the influences de to viscosity, i ainimized, the results calculated using potential fiow design wh in shoult be mors reliable than those generally obtained.

Because the iaginary part of the condition required for achieving finite trailing edge pressure gradients can only be atisfied at aingle angle of attack, equation (3-27), it is of interest to examine the importance of this
limitation by considering the off-design boundary layer behavio: as calcu!ated using GRUMFOIL. First, however, it should be noted that becaus of differences in the zero-lift angle of attack prediction, it is likely that the "orrespondence between the angles of attack calculated by the Eppler and Somers code and those used in GRUMFOIL is not exact. Thus, in all probability, the case already presented represents a slightly off-design situation. In any esent, to further consider the flowfield behavior of fdesign, Figures 45 to 47 summarize the GRUMFOIL output for the Wortmann based finite trailing edge pressure gradients airfoil at an angle of attack of approximately four degrees less than the design value. From these results, it is apparent that strong singular boundary layer characterisrics at the trailing edge do not dramatically appear when the airfoil is operated at conditions other than those of the design point. It is evident f-om Figure 45, however, that the streamise change of pressure along the wake centerline in the vicinity of time trailing edge, and consequently its effect on the inviscid flow, has increased over chan seen in figure 42. In addition, although certainly not discontinuous, the slopes in the immediate vicinity of the trailing edge on the boundary layer property distributions do appear slightly steeper than those present at the design angle of attack. alchough addi:ional verification is warranted, on the besis of these off-design GRUMFOIL results, it can be concluded that if any aerodyname bentits arc realized by the presence of finite trailing edge pressure gradients, then chese tenefi's are not liaited to the desion angle of attack but are present to some extent olst an operational range of angles. Thus, in addition ts being of acsdenic interest, this allows airfolls designed with finite trating adge pressure gridients to erit consideration for practical application.
The potential flow sol ttion for any airfoil having norizzero trailing edge loading is characterized by the presence af unbounded pressure gradients at -he trailing edge. Although in a real fluid the pressure gradients are somewhat softened by viscous affects, those in the trailing edge region do ' ideed becone extremeiy steep resuiting in, among other things, the slope of the displacement thick. 38 distribution being discontis:uns at the wailirig edge. Considering the near critical nature of many of the velocity dictributions prescribed for maximum lift or minimum drag, the en ounter vímer such a disturbance could be sufficient to cause severe upstream sepaiation problems. Thus, the goal of separation free $f 1 \mathrm{cw}$ should benefit by the removal of this disturbance to allor the fluid on the airfoli to flow into the wake as smoothly as pesaible. of additional conco:n in chis regard, the presence of strong adverse pressure gradients in the vicinity of the trailing ecige, as seen in many maximu performance design efforts, may result in upstresm separation problems. Thus, to help ensure that the hisit perfornance levels promised by potential flow methode are realized in practice, A procedure has been developed to design airfoils for which the trailing edge presure grad'ents are finite and the flows on the upper and lower surfaces approach the crailing edge ree of strong adverse prossure gradients. The ability to spacifically configure the trailing adge region of an Ifroil to achiave finite pressure gradients has been made possible by the unique capsbility of the Eppler method which allows different sagments of an
airfoil to be designed for different angles of attack. As the removal of the trailing edge pressure gradient singularities requires that no load be carried by the trailing edge, the method is able to adapt the aft portions of the airfoil such that this no-load requirement is met. To some extent, the resulting airfoil can be thought of as one in which the trailing edge region behaves locally like a flat plate at zero angle of attack although, in the flat f'ate case, \therefore. ${ }^{\prime}$ gradients are not only finite but zero. By eliminating the unocunded trailing edge pressure gradients, it is possible to specify a velocity distribution on an airfoil which pushes boundary layer performance to its critical limits as is the case, for example, in specifying a Stratford recovery, or in choosing a distribution for which the trailing edge velocity ratio is maximized.

In the formulation of conventional boundary layer theory, normal pressure gradients through the boundary layer are ignored and only the influence of the displacement thickness on the inviscid results is considered. Thus, because of the unbounded pressure gradients that generally occur at the trailing edge In the potential flow solution, conventional boundary layer theory is invalid in the vicinity of the trailing edge. In regard to this limitation, Melnik, et. al. [33] demonstrated that the potential flow solution singularities give rise to additional viscid-inviscid interactions, each having an effect as fmportant as that of the displacement thickness. Thus, by allowing for the influences caused by the normal pressure gradients in the trailing edge region, wake thickness, and wake curvature, Melnik and his coworkers developed a self-consistent boundary layer theory able to account for the strong viscous interactions due to the singularities in the inviscid flow solution. Although the formulation is distinctly different, the removal of the trailing edge
singularities can be considered an alternative approach to the same problem. In this light, airfoils having finite trailing edge pressure gradients represent a class for which the strong viscid-inviscid interactions in the trailing edge region have been minimized. Consequently, conventional boundary layer theory is sufficient for the viscous analysis of such airfoils. Furthermore, because the corrections necessary to the inviscid solution due to viscous effects are minimal, potential flow design methods are likely to yield more reliable results than they otherwise would.

Considering the nature of the flow behavior in the region of the trailing edge, airfoils designed to have finite trailing edge pressure gradients may be ideally suited to aid in the development and calibration of improved aerodynamic prediction methods for airfoils. For example, in the theoretical formulation used in the GRUMFOIL code [33], the local trailing edge region is modeled as unseparated flow over a flat plate at angle of attack. Thus, the class of airfoils having bounded pressure gradients at the trailing edge are much more consistent with this model than is generally the case. Such airfoils should, theretore, provide useful development tools and calibration cases. In a similar application, because the rapid growth of the displacement thickness at the trailing edge that generally occurs leads to numerical divergence problems, the development of viscous analysis metuods in which potential flow-boundary layer iteration is employed should benefit from the well-behaved growtin in displacement thickness at the trailing edge on airfoils having finite trailing edge pressure gradients.

Finally, if imposing the requirement for finite trailing adge pressure gradients does indeed minimize the viscous interactions and allow potential flow predictions to be more fully realized, then this situation clearly
suggests that an improvement in airfoil performance is possible. In the examples that were considered, the design effort was directed at matching the characteristics of previously defined velocity distributions. Consequently, it remains to explore the potential of exploiting the use of finite trailing edge pressure gradients to enhance airfoil aerodynamics. Encouragement that gains might be made, however, is provided by the results of the GRUMFOIL analysis from which, for example, the employment of the finite trailing edge pressure gradients condition yields an airfoil having a thinner displacement thickness and wake than otherwise occurs. If such performance benefits are indeed found to exist then, as the GRUMFOIL results indicate that reasonable off-design capability is present, airfoils having finite trailing edge pressure gradients become candidates for practical application.

APPENDIX A

LIMITING COEFFICIENT VALUES OF THE GENERAL TRANSFORMATION FOR MAPPING A CIRCLE TO AN AIRFOIL

Consider the general transformation which maps a circle centered at the origin of the ζ-plane into an airfoil in the $z-p l a n e$ as given by

$$
\begin{equation*}
z=\zeta+\sum_{n=1}^{\infty} \frac{c_{n}}{\zeta^{n}} \tag{A-1}
\end{equation*}
$$

where $c_{n}=a_{n}+i b_{n}$. In this transformation, depicted in Figure 48, it is assumed that $|\zeta| \geqslant r$ and $r \geqslant 1 . G$ ven that the origin of the $z-p l a n e$ lies within the profile, the area enclosed by the boundary of the airfoil is

$$
\begin{equation*}
A=\frac{1}{2} \int_{c} R^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi} R^{2} \frac{\partial \theta}{\partial \phi} d \phi \tag{A-2}
\end{equation*}
$$

and, from the Cauchy-Riemann equations,

$$
\begin{equation*}
\frac{\partial \theta}{\partial \phi}=\frac{r}{R} \frac{\partial R}{\partial r} \tag{A-3}
\end{equation*}
$$

Substitution of equation (A-3) into (A-2) yields

$$
\begin{align*}
A=\frac{r}{2} \int_{0}^{2 \pi} R \frac{\partial R}{\partial r} d \phi & =\frac{r}{4} \frac{\partial}{\partial r}\left\{\int_{0}^{2 \pi} R^{2} d \phi\right\} \\
& =\frac{r}{4} \frac{\partial}{\partial r}\left\{\int_{0}^{2 \pi}\left|z\left(r e^{1 \phi}\right)\right|^{2} d \phi\right\} \tag{A-4}
\end{align*}
$$

Noting that

$$
\begin{align*}
& z\left(r e^{i \phi}\right)=r e^{i \phi}+\sum_{n=1}^{\infty} \frac{c_{n}}{r^{n} e^{i}: \bar{\phi}} \tag{A-5}\\
& \overline{2\left(r e^{i \phi}\right)}=r e^{-i \phi}+\sum_{n=1}^{\infty} \frac{\overline{c_{n}}}{r^{n} e^{-i n \phi}} \tag{A-6}
\end{align*}
$$

the integral in equation (A-4) yields

$$
\begin{align*}
\int_{0}^{2 \pi}\left|z\left(r e^{i \phi}\right)\right|^{2} d \phi & \left.=\int_{0}^{2 \pi} z\left(r e^{i \phi}\right) \overline{z\left(r e^{i \phi}\right.}\right) d \phi \\
& =\int_{0}^{2 \pi}\left[r e^{i \phi}+\sum_{n=1}^{\infty} \frac{c_{n}}{r^{n} e^{i n \phi}}\right]\left[r e^{-i \phi}+\sum_{n=1}^{\infty} \frac{\bar{c}_{n}}{r^{n} e^{-i n \phi}}\right] d \phi \\
& =2 \pi\left[r^{2}+\sum_{n=1}^{\infty} \frac{\left|c_{n}\right|^{2}}{r^{2 n}}\right] \tag{A-7}
\end{align*}
$$

Thus, equation ($A-4$) becomes

$$
A=\frac{\pi r}{2} \frac{\partial}{\partial r}\left[r^{2}+\sum_{n=1}^{\infty} \frac{\left|c_{n}\right|^{2}}{r^{2 n}}\right]=\frac{\pi r}{2}\left[2 r-\sum_{n=1}^{\infty} \frac{2 n\left|c_{n}\right|^{2}}{r^{2 n+}}-1\right.
$$

which can be rearranged to give

$$
\begin{equation*}
\frac{A}{\pi}=r^{2}-\sum_{n=1}^{\infty} \frac{n\left|c_{n}\right|^{2}}{r^{2 n}} \tag{A-8}
\end{equation*}
$$

Since the area of the airfoil cannot be negative, it follows that

$$
\begin{equation*}
r^{2}>\sum_{n=1}^{\infty} \frac{n\left|c_{n}\right|^{2}}{r^{2 n}} \tag{A-9}
\end{equation*}
$$

As the expression is valid for all values of r between one and infinity, it must hold for r equal to one. Thus,

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left|c_{n}\right|^{2}=\sum_{n=1}^{\infty} n\left(a_{n}^{2}+b_{n}^{2}\right) \leqslant 1 \tag{A-10}
\end{equation*}
$$

An immediate consequence of this result is that

$$
\begin{equation*}
\left|c_{1}\right|=\left(a_{1}^{2}+b_{1}^{2}\right)^{1 / 2} \leqslant 1 \tag{A-11}
\end{equation*}
$$

To examine these results further, consider the case for which the equality in equation ($A-11$) holds, ie., when $\left|c_{1}\right|$ is unity. Observe from equation $(A-10)$, that for this to be true all of the other transformation coefficients must be zero. Thus, for this case, the transformation becomes

$$
\begin{equation*}
z=\zeta+\frac{c_{1}}{\zeta} \tag{A-12}
\end{equation*}
$$

where $\left|c_{l}\right|=1$. Writing the transformation coefficient as

$$
c_{1}=e^{2 i \gamma}
$$

where $0<Y<2 \pi$, the mapping function becomes

$$
\begin{equation*}
z(\zeta)=\zeta+\frac{e^{2 i \gamma}}{\zeta} \tag{A-13}
\end{equation*}
$$

For the case of mapping the unit circle, tits gives

$$
\begin{align*}
z\left(e^{i \phi}\right) & =e^{i \phi}+e^{2 i \gamma} e^{-i \phi}=e^{i \gamma}\left[e^{i \phi} e^{-i \gamma}+e^{-i \phi} e^{+i \gamma}\right] \\
& =e^{i \gamma}\left[e^{i(\phi-\gamma)}+e^{i(-\phi+\gamma)}\right]=e^{i \gamma}[2 \cos (\phi-\gamma)] \\
& =2 e^{i \gamma} \cos (\phi-\gamma) \tag{A-14}
\end{align*}
$$

Hence, as shown in Figure 49 , if ζ describes the unit circle chen its conformal image, z, describes both sides of a flat plate oriented to the positive real axis at the angle γ. Thus, $\left|c_{1}\right|$ can be equal to unity only for functions mapping the unit circle to a flat plate. Note that without loss of generality, the trailing edge of the profile generated can be assumed to be located on the real axis. For the example given, this results in the orientation of the $f 1$ at plate being along the real axis with $\gamma=0$. Thus, a_{1} is unity and all the other $a_{n} ' s$ and $b_{n} ' s$ mast be zero. This case is equivalent to that of the Joukowsky flat plate at zero angle of attack.

To examine the relationship of the transformation coefficients to the maxima possible trailing edge velocity, VTE, consider the expression for the trailing edge velocity for an airfoil obtained from a mapping of the unit circle as given by

$$
\begin{equation*}
V T E=\frac{2 U \cos \alpha}{\left|z_{T}{ }^{W}\right|} \tag{A-15}
\end{equation*}
$$

where, for the case of the trailing edge fixed on the real axis,

ORIGINAL PAGE IE OF POOR QUALITY

$$
\begin{equation*}
\left|z_{T} \cdot\right|=\left[\left(\sum_{n=1}^{\infty} n(n+1) a_{n}\right)^{2}+\left(\sum_{n=1}^{\infty} n(n+1) b_{n}\right)^{2}\right]^{1 / 2} \tag{A-16}
\end{equation*}
$$

Clearly, the maximum value of $V T E / U$ is obtained when $\left|z_{T}\right|$ is minimized. This occurs when the second term on the right is zero as accomplished when all of the b_{n} 's are zero. Although there are non-zero values of the b_{n} 's which can achieve the same result, there are none which can result in a higher value of VTE/U. Consequently, the symmetrical airfoil that results when the b_{n} 's are iero has a trailing edge velocity ratio which is at least as great as any nonsymmetrical airfoil generated using the same set of a_{n} 's.

APPENDIX B

COEFFICIENTS OF THE INEQUALITY EXPRESSION FOR POSITIVE THICKNESS

The expression which is developed to insure that physically realizable airfoils will result from a six term vo Mses transformation, equation (2-58), is

$$
\begin{equation*}
A f^{4}+B f^{3}+C f^{2}+D f+E \geqslant 0 \tag{B-1}
\end{equation*}
$$

the coefficients terms for this expression are given by

$$
\begin{align*}
A= & 16 r^{4}(r-1)^{5} \\
B= & 8 r^{3}\left[5(r-1)^{4}-a_{1}(r-1)^{4}+a_{2}(r-1)^{3}-a_{3}(r-1)^{2}\right. \\
& \left.+a_{4}(r-1)-a_{5}\right] \tag{8-3}\\
C= & 4 r^{2}\left[\left(10-4 a_{1}-2 a_{2}\right)(r-1)^{3}+\left(3 a_{2}+3 a_{3}+a_{3} r\right)(r-1)^{2}\right. \\
& \left.-\left(2 a_{3}+4 a_{4}+2 a_{4} r\right)(r-1)+\left(a_{4}+5 a_{5}+3 a_{5} r\right)\right] \tag{8-4}\\
D= & 2 r\left[\left(10-6 a_{1}-6 a_{2}-3 a_{3}\right)(r-1)^{2}+\left(3 a_{2}+6 a_{3}+6 a_{4}\right.\right. \\
& \left.+2 a_{3} r+4 a_{4} r\right)(r-1)-\left(a_{3}+4 a_{4}+10 a_{5}+2 a_{4} r\right. \\
& \left.\left.+10 a_{5} r+a a_{5} r^{2}\right)\right] \tag{B-5}
\end{align*}
$$

(t)

$$
\begin{aligned}
E= & \left(5-4 a_{1}-6 a_{2}-6 a_{3}-4 a_{4}\right)(r-1)+\left(a_{2}+3 a_{3}\right. \\
& \left.+6 a_{4}+10 a_{5}+a_{3} r+4 a_{4} r+10 a_{5} r\right)
\end{aligned}
$$

APPENDIX C

USAGE OF THE EPPLER CODE INCORPORATING THE CONDITIONS FOR FINITE TRAILING EDGE PRESSURE GRADIENTS AND LISTING OF PROGRAM MODIFICATIONS

In making modifications to the Eppler and Soners code [25] in order to facilitate the design of airfoils having finite trailing edge pressure gradients, the effort was made to leave as much of the existing code and its data input as unchanged as possible. Thus, the discussion included in this appendix should be considered in conjunction with the code description and operating instructions presented in Reference [25].

While the primary purpose of the modified code is the design of airfoil: having finite trailing edge pressure gradients, it might also be of use in the design of airfoils in which the upper and lower velocity distributions merge smoothly at the trailing edge without the nearby presence of steep gradients. In either case, the integral constraint of equation (3-113) is satisfied. Because this condition eliminates the pressure loading at the trailing edge, the shape of the aft portion the alrfoll is largely governed by the zero closure angle which reaults. Thus, although control remains over the extent that this zero closure angle is allowed to influence the overall shape of the rear of the profila, much of the bility to iterate to desired closure angle that is present in the original code is lost.

With reference to Eppler and Somers [25], the input to the modified code differs from that of the original as follows:

1. On the TRAl card, although aseumed internally ty the modificd code, a_{1} should be eat equal to a_{1} as required by equation (3-132).
2. The value of \bar{u} is no longer specified by the F_{10} word on the TRA2 card, but determined by the program such that the fourth integral constraint is satisfied. In its place, however, the quantity IWPPM is designated to select the mode of iteration used to achieve the requirement that $P^{\prime \prime}(0)=\rho^{\prime \prime}(2 \pi)$, equation (3-116). The iteration mode possibilities are as follows:

IWPPM $=0 \quad-\quad$ No iteration is performed and $P^{\prime \prime}(0)$ will, in general, not be equal to $P^{\prime \prime}\left({ }^{\circ} \cdot\right)$.
$I W P P M=1 \quad-\quad K$ is replaced by $K+\Delta K$
IWPPM $=2-\bar{K}$ is replaced by $\bar{K}+\Delta K$
IWPPM $=3-\mu$ is replaced by $\mu+\Delta \mu$
IWPPM $=4 \quad-\quad \vec{\lambda}$ is replaced by $\vec{\lambda}+\Delta \lambda$, unless that result is calculated to be less than zero or greater than $\bar{\lambda}$. In that case, the program switches to IWPPM $=1$.
3. Aiso on the TRAZ cerd, $\mathrm{F}_{8}=\mathrm{RMS} \mathrm{lg}_{\mathrm{s}}$, which deteruines the Interpretation of F_{9} and F_{10}, mist be set to zero. Consequently, . F_{9} is always interpreted as \bar{K}.
4. While gtill active in the code, it should be noted that the specification of ITMOD equal to 5 or $6, F_{11}$ on the TRA2 card, will generally not result in convergence to the specified value of K. This is because in these modes, \bar{K} is iterated and the calculated iteration increment, $\Delta \bar{K}$, is suparseded by the code determination of $\overline{1}$ shich, in turn, alters the value of \bar{x}.

A sample inpit set for the modifiad code is precenced in Figure 50 . The result of this input is the airfoil having finite trailing adge pressure gradients shown in Figure 37.
It should be noted that that it is not intended that the modified code be run with ITMOD $\neq 0$ and IWPPM $\neq 0$ simultaneously. The design of airfoils having finite trailing edge pressure gradients is carried out with ITi.JD vo and IWPPM $\# 0$. The design of airfoils in which it is only desired that velocity distribution be free of steep adverse gradients in the vicinity of the trailing edge can be accomplished with ITM. $\dot{y} * 0$ and IWPPM $=0$. In designing airfoils having finite pressure gradients, it is sometimes advantageous to begin the process with one of the ITMOD modes and switching to one of the IWPPM options when close to the desired velocity distribution. For example, a symmetrical airfoil can be obtained by first setting ITMOD - 6 or 9, IWPPM $=0$, and specifying the additional inputs as described Pe Eppler arid Somera [25] such that the upper and lower surface velocity distribution specification quantities are equivalent. In the case of using the modified code, however, the program will solve for a value of $\bar{\mu}$ which is different from that specified fir u. Now, inputting the results from this run and changing to ITMOD $=0$ and IWPPM $=3$, u will be iterated until it agrees with $\bar{\mu}$ and a symmetrical profile having finite trailing edge pressure gradients will result.
A listing of the modifications made to the Epplar and Sowers code [25] will follow. Only the main program and modified subroutines, in addition tc several newly added abroutines, will be presented. The reader is again referred to Reference [25] for a listing of the original code.

ORIGINA' :AGE E
 OF POOR QUALITY

```
    PROGRAM EPPLER3 (INPUT,OUTPUT,TAPE4,TAPE5=INPUT,TAPE6=OUTPUT)
    DIMENSION XF(121),YF(121),BETAF(121)
    DTMENSION AM(7,7),AV(7)
    DIMENSION V(14),MARKEN(20),ALCA(14),CAE(2)
    DIMENSION RE(5),MA(5),MU(5),T(42)
    DIMENSION TM(5),ALS(5),RER(5),MUR(5)
    DIMENSION TST(5),BANT(5),CW(5,2,14),SU(5,2,14),SA(5,2,14)
    COMMON P1(121),P(121, ,XP(121),YP(121),PUFF(14),AGAM(14),X(121),
    1Y(121),DS(122),VF(121),ARG(121),ANI(28),ALFA(29),IZZ,KFU,NQ,NUPRO,
    2JAB,JST,CM,ETA, ABFA,PI,BOGEN,DARG,PURES(13),FUW(60,7),RS(60)
    COMMON XTF,SMA,XFL(10),GAMMA(121,2),AMAT(120,120)
    COMMON 'GRZK/CDK,AA(7),BB(7)
    COMMON/PRAL/DLT,DLTU,ALN,ALV (14),NsiL,ITP,NAMP(12),CML(14),CRL(14)
    1 ,CPV(2),ALTX(4,2),DARF,ITIT1,ITIT2
    COMMON/PLTM/MPL,MGC,XZEH,Y2EH,MSPLI
    COMMON/EA/ILES,IDRU,ISTA,NNESE
    COMMON/TRIT/DLV,SUMP,XTRI(4),NU,ND
    COMMON /LINING/BROKL(12),NLINE(5),NPAR(5),JNEW
    EQUIVALENCE(XF(1),\operatorname{FUW}(1,1)),(\operatorname{MF}(1),\operatorname{FUW}(3,3)),(\operatorname{BETAF}(1),\operatorname{FUW}(5,5))
    EQUIVALENCE (CW(1,1,1),P1(1)),(SA(1,1,1),P(20)),
    1 (SU(1,1,1),XP(39))
    DATA ILES,IDRU,ISTA,NNESE/5,6,4,1H1/
    DATA MARKEN/4HTRA1,4HTRA2,4HALFA,4HAGAM, 4HABSZ,4HSTRK,4HENDE,
    14HDIAG,4HRE ,4HSTRD,4HFLZW,4HPLWA,4HPLW ,4HTRF ,4HAPPR,4HCDCL,
    24HPAN ,4HFXPR,4HFLAP,4HPUXY/
    DATA CPV/9HVELOCITY ,9HPRESSURE /,ALTX/4H 2ER,4H0-LI,4HFT L,
    * 4HINE ,4H CHO,4HRD L,4HINE ,4H /,KBLT/1H /
    DATA MGC,ISTIFT,MXZ,CDK/0,1,-1,.01/
    DATA ZAEH,DICHTE/13.6E-6,.12533/
    MPL=0
    PI = 3.141592654
    BOGEN = 0.0174532925199
    ABFA = 1.0
    AGAM(2)=1.
    AGAM(3)=1.
    AGAM(6)=1.
    AGAM(8)=0.
    AGAM(10)=1.
9 MTR=0
11 READ(ILES,2)MARKE,NUPA,NUPE,NUPI,NUPU,PUFF
    2 FORMAT(A4,3I1,I3,14F5.2)
    DO 12 I=1,20
    IF (MARKE.EQ.MARKEN(I)) GO TO 13
12 CONTINUE
14 WRITE(IDRU,3) MARKE
    3 FORMAT (11H INCORRECT ,A4,5H CARD)
        GO TO il
    C TRA1TRAZALFAAGAMABSZSTRKENDEDIAGRE STRDFLZWPLWAPLW TRF APPRCDCL
    C PAN FXPRFLAPPUXY
13 GO TO(15,22,333,14,142,90,150,104,30,112,30,71,60,14,14,160,
    * 170,180,190,106),I
```

C TRA 1 CARD
15 NUPRO=NUPU +1000 *NUPI
IF(MTR.EQ.0) JST=0
$\mathrm{I}=0$
$18 \mathrm{I}=\mathrm{I}+1$
ANRI=RUND (PUFF(I)ABFA, 1000.)
IF(ANRI.NE.O.)GO TO 20
IF(JST.NE.O)GO TO 21
$\mathrm{JST}=\mathrm{MTR}+1$
$20 \mathrm{MTR}=\mathrm{MTR}+1$
ANI (MTR) =ANRI
$I=I+1$
ALFA(MTR) $=\operatorname{PUFF}(\mathrm{I})$
IF(I.NE.14)GO TO 18
$21 \mathrm{JAB}=\mathrm{MTR}$
GOTO 11
C TRA2 CARD
22 DO $23 \mathrm{I}=1,13$
$23 \operatorname{PURES}(I)=\operatorname{RUND}(\operatorname{PUFF}(I), 1000$.
MSPLI=0
ITP $=0$
I22=INT(PUFF(14))
CALL TRAPRO
$\mathrm{XDA}=0$.
YDA=0.
DEFLG=0.
GO TO 9
C RE CARD
25 IF(PUFF(2).EQ.O.) GO TO 28
DO $27 \mathrm{~J}=1,5$
RERX $=\operatorname{PUFF}\left(2^{* J}\right)$
IF(RERX.EQ.O.)GO TO 26
RE (J) $=1 . E 5{ }^{2}$ RERX
$\operatorname{IPU}=\operatorname{INT}(\operatorname{PUFF}(2 \oplus \mathrm{~J}-1))$
MA(J) $=$ IPU/100
$\mathrm{MU}(\mathrm{J})=\mathrm{IPU} / 10-10 \mathrm{MMA}(\mathrm{J})$
$27 \mathrm{JR}=\mathrm{J}$
26 DO $29 \mathrm{~J}=1,4$
$29 \operatorname{XTAI}(\mathrm{~J})=\operatorname{PUFF}(\mathrm{J}+10)=.01$
$2{ }^{2}$ CALL GRP(NAL,RE,MU,JR,ISTIFT)
MSPLI $=0$
JP = JR
GOTO 11
C FL2H CARD
$30 \operatorname{IF}($ NUPA. EQ.0) GO TO 31
agam (6) afLoat (NUPE)
AGAM(8) = FLOAT(NUPI)
$31 \operatorname{IF}(\mathrm{I} . \mathrm{EQ} .9) 60 \mathrm{TO} 25$
$\operatorname{IF}(\operatorname{PUFF}(2) . E Q .0$.$) GOTO 36$
GDF = PUPR(1)
VMAX $=\operatorname{PUFF}(2)$
IF(PUFF(3).NE.0.) DICHTE $=.1$ PUFF(3)/9.806

```
```

 IF(PUFF(4).NE.0.)2AEH = PUFF(4)*1.E-6
 IF(PUFF(5).EQ.0.) GO TO 50
 D = 0.
 DO 34 J = 1,5
 JZ = 2#
 IF(PUFF(JZ).EQ.O.) GO TO 36
 TM(J)=PUFF(JZ)
 ALS(J)=PUFF(JZ+1)
 MUR(J) = NUPU
 34 JT = J
36 IZT=NZPZ(2,6*NAL+2)
JP=JT
WRITE(IDRU,37)IZT,NAMP,(ALTX(J,ITIT2),J=1,4)
37 FORMAT (A1,36HAIRCRAFT-ORIENTED SUMMARY AIRFOIL ,12A1,3X,
*31HANGLE OF ATTACK RELATIVE TO THE,4A4)
IVMAX = INT(VMAX* 3.6)+1
IZT=NZPZ(2,0)
WRITE(IDRU,38)IZT,GDF,IVMAX,DICHTE,2AEH
38 FORMAT (A1,6H W/S =,F6.2,8H KG/SQ.M,3X,7HV MAX =,I4,5H KM/H,3X,
5HRHO =,F5.3,13H KG*S E2/M E4,3X,4HNU =,F10.8,7H SQ.M/S)
IZT=NZPZ(2,0)
WRITE(IDRU,40)IZT, (KBLT,TM(J),ALS(J),J=1,JT)
40 FORMAT (A1,5X,5(A1,4X,3HC =,F5.2,8H THETA =,F5.2))
41 V1 = SQRT(2.*GDF/DICHTE)
DO 48 I= 1,NAL
IVS = -I
DO 46 J = 1,JT
IF(ALV(I)-ALS(J))42,44,42
42 VALF = V1/SQRT(.11*ABS(ALV(I)-ALS(J)))
IF(VALF - VMAX)46,46,44
44 VALF = VMAX
46 RER(J) = VALF*TM(J)/ZAEH
48 CALL GRP(IVS,RER,MUR,JT,ISTIFT)
MSPLI=0
49 IF(D)72,50,72
50 GO TO 11
C PLW CARD
60 IF(PUFF(1))62,68,62
62 DST = PUFF(1)*.01
GST = PUFF(2)
DGF = PUFF(3)
CWSF = PUFF(4).001
DO 66 J = 1,5
JZ = 2m}3+
IF(PUFF(JZ))64,68,64
64 TST(J) = PUFF(JZ)
BANT(J) = PUFF(JZ+1)
MUR(J) = NUPU
66 JT = J
68 BF=0.
FST = 0.
NF=0

```
CALL DIA (X,Y,NQ,D)
IF'DST.LT.O.) DST = D
DO \(70 \mathrm{~J}=1, \mathrm{JT}\)
\(T M(J)=T S T(J) \cdot D S T / D\)
ALS(J) \(=0\).
\(B F=B F+B A N T(J)\)
\(70 \mathrm{FST}=\mathrm{FST}+\operatorname{BANT}(\mathrm{J}) \mathrm{TST}(\mathrm{J})\)
\(\mathrm{FF}=\mathrm{FST}{ }^{*} \mathrm{DST} / \mathrm{D}\)
GEW = GST + (FF-FST) \({ }^{4}\) DGF
\(G D F=G E W / F F\)
GO TO 36
C PLWA CARD
71 NAN = NUPU
CWSFU =CWSF
FAU \(=\mathrm{FF}\)
GAU \(=\) GEN
DO \(88 \mathrm{NF}=1\), NAN
\(F F=F F+\operatorname{PUFF}(1)\)
GEW = GEW+PUFF(2)
CWSF \(=\) CWSF +.001 PUFF (3)
V1 = SQRT(2.*GEN/(DICHTE*FF))
72 IZT=NZPZ (3,NAL+10)
WRITE(IDRU, 74)IZT, NAMP
74 FORMAT (A1,25HAIRCRAFT POLAR AIRFOIL, 12A1)
CWS = CWSF/FF
IZT=NZPZ \((2,0)\)
WRITE (IDRU,76)IZT
76 FORMAT (A1,39H \(B(M) \quad S(S Q . M) S^{*}(S Q \cdot M) W(K G) \quad W^{*}(K G)\),
-3X,3HT/C, 3X,6H(T/C) , 2X, 8HAP (SQ.M), 2X, 3HCDP)
I2T=N2PZ (1,0)
WRITE(IDRU, 78) IZT, BF, FF, FST, GEN,GST,D,DST,CWSF,CWS
78 FORMAT ( 1 , F6. 2,2 F8.2,2F8.0,4F8.4)
IZT \(=\mathrm{NZPZ}(2,0)\)
WRITE (IDRU,80) IZT
80 FORMAT (A1,54H ALPHA CL CDP CDT V(KM/H) VS(M/S) L
* \(/ D\)
DO \(84 I=1\), NAL
\(C A=0\).
CWP \(=0\).
DO \(82 \mathrm{~J}=1, \mathrm{JT}\)
BATF=BANT (J) TST (J)/FST
CALL VISC(I.J,CANT,CWNT,CMDU)
CACA+CANT*BATF
82 CNP =CWP + CNNT BATF
CWGES \(=\mathrm{CWP}+\mathrm{CWS}+1.03^{*} \mathrm{CA}^{*} \mathrm{CA}^{*} \mathrm{FF} /\left(\mathrm{PI}{ }^{*} \mathrm{BF}^{-} \mathrm{BF}\right)\)
IP(ABS (CA).LT..01)CAz. 01
VRMH \(=3.6^{*} \mathrm{~V} 1 /\) SQRT(ABS(CA))
VS = VOMH CHOES/ (3.6*ABS(CA))
GLTZ = CA/CWEES
IZT=NZPZ (1,0)
84 WRITE(IDRU,86) IZT,ALV(I),CA,CWP,CWGES,VKMH,VS,GLTZ
86 FORMAT (A1,F6.2,F8.3,2F8.4,F8.1,F9.3,F8.2)
```


ORIGINAL PAGE IS OF POOR QUALITY

IF (NF.EQ.0) GO TO 50
88 CONTINUE
CWSF = CWSFU
$F F=F A U$
GEW = GAU
GO TO 50
C STRK CARD
$30 \operatorname{IF}($ NUPU) $94,100,92$
$92 \mathrm{NT}=0$
$94 \mathrm{DO} 98 \mathrm{~J}=1,14$
IF(PUFF(J)) 96, 100,96
$96 \mathrm{NT}=\mathrm{NT}+1$
$68 \mathrm{~T}(\mathrm{NT})=\operatorname{PUFF}(\mathrm{J}) * 10$.
IF(IABS(NUPU).GT.14) GO TO 11
1: 0 CALL STRDR(T,NT)
IF(NUPI.NE.O) GO TO 11
DO $102 \mathrm{I}=1, \mathrm{NT}$
102 CALL STRAAK (T(I), RUA,YBL,MXZ, ISTIFT)
GO TO 11
C DIAG CARD
104 CALL DIAGR(ISTIFT,NUPU,NUPI)
GO TO 11
C PIUXY CARD
106 CALL PUDECK
GO TO 11
C STRD CARD
112 IF(NUPU.NE.0) MXZ = NUPU
IF(PUFF(1).NE.O.) YBL $=100 . * \operatorname{PUFF}(1)$
IF(PUFF(2).NE.O.) RUA $=100 . \operatorname{PUFF}(2)$
GO TO 11
C ABSZ CARD
142. IF(NUPA.NE.0) AGAM(3)=FLOAT(NUPE)

I: (PUFF(2).NE.O.) ABFA=PUFF(2)
GO TO 11
C ENDE CARD
150 IF(MGC.NE.0) CALL GCLOSE
IF (MPL.NE.0)CALL FINISH
SIOP
C CDCL CARD
160 IF(NUPA.EQ.ن)GO TO 166
BL1 = PUFE: 1) -.005
BL2 $=F L P E(2)+.005$
DO $162 \mathrm{~K}=1,5$
NINE $\operatorname{IK})=\operatorname{INT}(B L 1 *(10 . * *(K-3)))-10^{*} \operatorname{INT}(B L 9 *(10 . * *(K-4)))$

DO $164 \mathrm{~K}=1,12$
164 BYOKL $(K)=\operatorname{PUFF}(K+2)$
GO TO 11
166 CALL CDCL_(NUPU,JP,ISTIFT)
GO TO : 1
C FX:P CARD
$180-\mathrm{ZP}=$ NUPU

CALL FIXLES MSPLI=0
C PAN CARD
170 IF(MSPLI.EQ.0)CALL SPLITZ (X,Y,NQ,XP)
IF (NUPA.NE.0) AGAM (10) =FLOAT(NUPE)
IF(NUPA.EQ.9) GO TO 11
DO $17 \times I=1,14$
IF(PUFF(I).EQ.O.)GO TO 172
MEIG=INT(PUFF(I))
MEI =MEIG/ 10
KEI $\pm M E I G-10^{4} \mathrm{MEI}$
$\mathrm{XSTX}=\mathrm{ABS}(\operatorname{PUFF}(I)-F L O A T(M E I G))$
CALL PADD ($X, Y, X P, N Q, M E I, K E I, X S T X)$
172 CONTINUE
DO $174 I=1$,NQ
$X F(I)=X(I)$
$Y F(I)=Y(I)$
$174 \operatorname{BETAF}(I)=X P(I)$
DLTR=DLT
DLTUR=DLTU
$X D A=0$.
YDA=0.
FLCH=0.
DEFLG=0.
NQRS $=$ NQ
176 NKR=NQ-1
CALL PANEL(NKR, AMAT,GAMMA,CAE)
DARG = ALN
GO TO 11
C FLAP CARD
190 CHORD $=X F(1)$
FLCH = PUFF (1)
XDA $=\left(1 . \ldots .01\right.$ FLCH) ${ }^{\text {* }}$ CHORD
YDA = 01*PUFF (2) CHORD
ARCL=.01*PUFE(3) CHORD
DEFLG= PUFF(4)
DLT=DLTR + DEFL O
DLTU=DLTUR-DEFLG
DEFL=DEFLG*BOGEN
ARCLU=.01*PUFF(5)* ${ }^{*}$ CHORD
MSPLI=1
CALL FLAP (XF ,YF, BETAF,NQRS ,XDA,YDA, ARCL , ARCLU ,DEFL, $X, Y, X P, N Q)$
GO TO 176
C ALFA CARD
333 IF(NUPA.EQ.0) GO TO 330
MOMAGENUPA
AGAM (2) aFLOAT (NUPE)
IF(NUPA.EQ.1) MGAM (10) IFLOAT (NUPE+1)
330 IF(NUPU.EQ.0) GO TO 335
DO $331 I=1,14$
331 ALCA (I) = PUPF(I)
328 ITIT1 $\times N U P I / 2+1$

ORIGINAL PRELE: :-
ITIT2=NUPI-2*ITIT1+3 OF POOR QUALITY
DARF $=0$.
$\operatorname{IF}(\operatorname{ITIT} 2 . N E .1) D A R F=1$.
NAL=IABS(NUPU)
IF(NAL.GT. 14)NAL=4
335 DO $334 \mathrm{I}=1$,NAL
PA=ALCA(I)
IF(PA.LE.-99.) $P A=R S(30+I)$
IF(PA.GT.-99.) PA=PA+DARF*DARG
$334 \operatorname{ALV}(\mathrm{I})=\mathrm{PA}$
CALL MOMENT (X,Y,NQ,XDA,YDA,DEFLG,MOMAG)
IF(AGAM(2).EQ.O.)GO TO 11
$N Z F=N Q+3$
$\operatorname{IF}(\operatorname{ITP} \cdot E Q \cdot 2 \cdot \operatorname{AND} \cdot \operatorname{AGAM}(10) \cdot E Q \cdot 1) N 2 F=$.
CALL DIA $(X, Y, N Q, T H K)$
THKP $=100$. THK
D0341 N=1,NQ
$N D=\mathrm{N}-1$
$X D R=X(N)$
$Y D R=Y(N)$
DO $340 \mathrm{M}=1$,NAL
$V(M)=\operatorname{ABS}(V P R(N, M))$
$V Q=1 .-V(M) W V(M)$
$\operatorname{IF}(\operatorname{ITIT} 1 . E Q \cdot 2) V(M)=V Q$
340 CONTINUE
NZT = NZPZ(1,NZF)
IF (NZT.NE.NNESE.AND.N.NE.1)GO TO 341
NZF=0
DO $339 \mathrm{M}=1$,NAL
$339 \mathrm{P}(\mathrm{M})=\operatorname{ALV}(\mathrm{M})-\mathrm{DARF}^{*}$ DARG
332 IF(ITP.EQ.1)WRITE (IDRU, 337)NZT, NUPRO, THKP, (P(M), $M=1$,NAL)
337 FORMAT (A1,8HAIRFOIL ,I4,F8.2,1H8,F9.2,13F8.2)
IF (ITP.EQ.2)WRITE (IDRU, 336)NZT,NAMP, THKP,FLCH,DEFLG, (P(M) ,M=1,NAL)
336 FORMAT (A1,8HAIRFOIL , 12A1,F8.2,11H\% THICKNESS,F10.2,6H\% FLAP,
*F8.2,19H DEGREES DEFLECTION/23X,14F8.2)
IF(ITP.EQ.2)NZT=NZPZ(1,0)
NZT =NZPZ $(1,0)$
WRITE(IDRU,338)NZT,CPV(ITIT1),(ALTX(M,ITIT2), M=1,4)
338 FORMAT (A1,3H N,7X,1HX,8X,1HY,5X,A9,6OHDISTRIBUTIONS FOR THE ABOV
*e angles of attack relative to the,4a4)
NZT=NZPZ $(1,0)$
341 WRITE(IDRU,342)ND,XDR ,YDR , ($V(M), M=1, N A L)$
342 FORMAT (I4,F10.5,F9.5,14F8.3)
IF(ITP.EQ.2)GO TO 11
NZT =NZPZ $(1,0)$
WRITE(IDRU, 344)NZT, DARG, CM, ETA
344 FORMAT (A1,8HALPHAO $=, F 5.2,8 \mathrm{H}$ DEGREES, $3 \mathrm{X}, 5 \mathrm{HCMO}=, F 7.4,3 \mathrm{X}$,
-5HETA =,F6.3)
GOTO 11
STOP
END


```
    SUBROUTINE TRAPRO
    DIMENSION FLS(2),FLA(2),\RAK(2),DRAM(2),AC(5,4),D(4),
    1WSI(2),WCI(2),FINT(3),A(5),HK(2),R(3),FKERN(30)
    DIMENSION CFP(2),AKK(2),PHIS(2),PHIW(2),AKN1(2),F(2),G(2)
    DIMENSION XRT(2),YRT(2)
    COMMON/EA/ILES,IDRU,ISTA,NNESE
    COMMON/PRAL/DLT,DLTU,ALN,AiSV (14),NAL,ITP,NAMP (12),CML(14),CRL(14)
    1 , CPV(2),ALTX(4,2),DARF,ITIT1,ITIT2
    COMMON P1(121),P(121),XP(121),YP(121),PUFF(14),AGAM(14),X(121),
    1Y(121),DS(122),VF(121),ARG(121),ANI(28),ALFR(29),IZ2,KFU,NQ,NUPRO,
    2JAB,JST,CM,ETA,ABFA,PI,BOGEN,DARG,PURES(13),GAP(450),ALFA(29)
    DATA ABSZ/O./
    CALL WANDEL(NUPRO,NAMP, 12,5)
    ALFR (JAB+1) =0.
    ABZT=ANI (JAB)
    IF(ABS(ABZT-ABSZ).LT..1) GO TO 14
    IB=INT(. 25*ABZT+. 1)
    MQ=2*IB
    NKR=2mMQ
    ABSZ=FLOAT(NKR)
    ABGR=360./ABSZ
    HABGR=.5^ABGR
    PURES(8)=0.0
    DO }8\textrm{M}=1,I
    ARI=FLOAT(MQ+1-2#M)*HABGR
    8 FKERN(M)=ABGR*COSG(ARI)/(SING(ARI)*PI)
14 MAGAM=INT(AGAM(3))
    NQ=NKR+1
    IF(MAGAM.EQ.O) GO TO 22
    NZT=NZPZ(3,0)
    WRITE(IDRU,82)N2T
    MCT=0
22 DO 23 I= 1,29
23 ALFA(I)=ALFR(I)
    I=1
    J=1
24 FLS(J)= PURES(I)*ABFA
    4 \text { CALL DRAH(WC,HS,WL, .6,-1.,FLS(J),ABGR,1)}
        CALL DRAH(WCI(J),WSI(J),WLI,-.6,-1.,FLS(J),ABGR,1)
    WCI}(J)=\operatorname{WCI}(J)+W
    WSI(J)= WSI(J)+WS
    WLI = WLITWLL
    C4aWLI
    C5s-WLI
    FLA(J) = PURES(I+1) ABFA
    IF(FLA(J))25,25,26
25 DRAK(J)=0
    DRAM(J)= 1.
    30T0 34
26 IF(J.EQ.2) GO TO 401
    WI = COSG(ABGR*FLA(J))
```

IF (PURES $(I+2)-1.) 27,30,29$
URIGINAL PAES:.:
OF POOR QUALITY
27 DRAK $(J)=.1 * \operatorname{PURES}(I+3)$
$28 \operatorname{DRAM}(J)=.1$ PURES $(I+4)$
GOTO 34
$29 \operatorname{DRAK}(\mathrm{~J})=((.1 * \operatorname{PURES}(\mathrm{I}+4)) * *(-10 . / \operatorname{PURES}(I+3))-1) *.(1 .+W I) /(1 .-W I)$
$\operatorname{DRAK}(J)=\operatorname{RUND}(\operatorname{DRAK}(J), 1000$.
$\operatorname{DRAM}(J)=.1$ PURES $(I+3)$
GO TO 34
$30 \mathrm{AA}=.05^{*}(1 .-W I) \operatorname{PURES}(I+3)$
WILN $=$ ALOG (. 1*PURES $^{*}(I+4)$)
FMIT $=.5$
MIT $=0$
$31 F M=-W I L N / A L O G(A A / F M I T+1$.
$M I T=M I T+1$
IF(ABS (FM-FMIT)-1.E-6) 33,32,32
32 FMIT $=\mathrm{FM}$
GO TO 31
$33 \operatorname{DRAM}(J)=\operatorname{RUND}(F M, 1000$.
DRAS $=.05^{*}$ PURES $(I+3) *(W I+1.) / F M$
DRAX (J) $=$ RUND(DRAS, 1000.)
GO TO 34
$401 \operatorname{DRAK}(J)=.1 * \operatorname{PURES}(I+3)$
$\operatorname{DRAM}(J)=1.0$
$34 I=I+5$
$\mathrm{J}=\mathrm{J}+1$
IF (J-3) 24, 38, 38
38 MER = 0
WSI (2) $=-\operatorname{WSI}(2)$
IWPPM $=$ INT (PURES (10))
ITMOD=INT(PURES(11))
$R U F=100$.
IF (ITMOD.GE.4. AND. ITMOD.LE.6)RUF $=1000$.
ITMR = ITMOD
SHKS = . 1 MPURES (12)
HKST = . 1 ABS (PURES(13))
35 DO $36 \mathrm{~J}=1,4$
$36 A C(1, J)=0$.
$\operatorname{ALFA}(J A B)=A L F A(1)$
ALIV $=0$.
SINAI $=0$.
COSAI $=1$.
FNI $=0$.
TNAI $=0$.
37 CSAIP $=\operatorname{COSG}\left(2 .{ }^{* A L F A(J))}\right.$
SNAIP = SING(2.-ALFA(J))
TNAIP $=$ TMG (ALFA (J))
IF(J-JST-1)40,39,40
$39 \operatorname{AC}(2,1)=$ SINAI
$\operatorname{AC}(2,2)=-1 .-\operatorname{COSAI}$
$\operatorname{AC}(2,3)=+1$.
$\operatorname{AC}(3,1)=-\operatorname{SNAIP}$

```
    AC}(3,3)=-1
    AC(4,1) = COSAI-CSAIP
    AC}(4,2)= SINAI-SNAI
    AC}(4,3)=0
    AC}(5,1)=0
    AC}(5,2)=0
    AC}(5,3)=0
    AC}(2,4)=-2. WNAI
    AC}(3,4)=2. TTNAI
    AC(4,4)=0.
    AC(5,4)=2.*(TNAI-TNAIP)
    ALIS = ALIV
    ALISP = ALFA(J)
    GOTO 41
40 FII = CSLG(HABGR*FNI-90.,ALIV)
    FIIP = CSLG(HABGR"FNI-90.,ALFA(J))
    PB=FNI*HABGR*BOGEN
    AC(1, 1) =-FIIP*SNAIP+FII*SINAI+(COSAI-CSAIP)*PB +AC(1, 1)
    AC(1,2) =-FII* (1.+COSAI)+FIIP*(1.+CSAIF; + (SINAI-SNAIP)*PB+AC(1, 2)
    AC(1,3)=-FIIP + FII + AC(1,3)
    JCK=J-1
    JMI=J-JAB-1
    IF(JCK.EQ.O.OR.JMI.EQ.O) GO TO 402
    FSI=SNLG(HABGR*FNI)
    AC(1,4)=FSI"(2.*TNAI-2."TNAIP)-2.*TNAI*FII+2.*TNAIP*FIIP+AC(1,4)
4 0 2 ~ C O N T I N U E ~
    41 IF(J-JAB-1)42,43,43
    42 ALIV =ALFA(J)
    SINAI=SNAIP
    COSAI=CSAIP
    TNAI=TNAIP
    FNI = ANI(J)
    J=J+1
    GO TO 37
    4 3 \mathrm { J } = 1
    IF(FLA(J)) 47,47,49
    49 CALL DRAW(WC,WS,WL,DRAK(J),DRAM(J),FLA(J),ABGR,0)
    AC}(1,1)=WC+AC(1,1
    AC(1,2) = WS +AC(1,2)
    AC(1,3) =WL +AC(1,3)
47 J=2
    WWC6=0.0
    WWS6=0.0
    C6:0.0
    IP(PLA(J)) 410,410,411
411 CALL DRAW(HC,WS,WL,DRAK(J),1,0,FLA(J),ABGR,0)
    WHC6aWC
    WWS6=-WS
    C6z-WL
410 CONTINUS
PHIS(1)=FLS(1)/ABOR-BOGEN
```

 \(\operatorname{AC}(3,2)=1 .+\operatorname{CSAIP}\)
    ```
    PHIW(1)=FLA(1)*ABGR*BOGEN
    PHIS (2) = (3000.-FLS (2)*ABGR)*BOGEN
    PHIW (2) = (360.-FLA(2)*ABGR)*BOGEN
    DO 425 J=1,2
    G(J)=DRAK(J)/(1.0+COS(PHIW(J)))
    F(J)=1.0-G(J)*COS(PHIN(J))
    IF(G(J)*2-F(J)*2) 420,421,422
420 TARG=((F(J)-G(J))*TAN(PHIW(J)/2.))/SQRT(F(J)**2-G(J)**2)
    TARG 1=ATAN(TARG)
    CFP(J)=-((4.*(G(J)-F(J)))/SQRT(F(J)*2-G(J)*2))*TARG1
    GO TO 425
421\operatorname{CFP}(J)=0.0
    SO TO 425
422GFLN2=SQRT(G(J)**2-F(J)**2)
    GFLN1=(G(J)-F(J))/TAN(PHIW(J)/2.)
    GFLN=ALOG(ABS((GFLN1+GFLN2)/(GFLN1-GFLN2)))
    COEFF=-(2.*(G(J)-F(J))/SQRT(G(J)**2-F(J)**2))
    CFP(J)=COEFF*GFLN
425 CONTINUE
    SRM=. }
    AK=1.0-SRM
    BK=1.0+SRM
    DO 450 J=1,2
    AKN1(J)=SRM/(1.0-COS(PHIS(J)))
    IF(BK-2.*AKN1(J)) 430,431,432
430 AKSR=SORT(2.*BK*AKN1(J)-BK**2)
    AKT1=2.*AKN1(J)-BK
    COEFK=AKT 1/(2."AKSR)
    AKLN1=AKT1*TAN(PHIS(J)/2.)
    AKLN=ALOG (ABS((AKLN1+AKSR)/(AKLN1-AKSR)))
    AKK(J)=COEFK AKLN
    GO TO 450
431 AKK(J)=0.
    GO TO 450
432 AKSR1=SORT(BK**2-2.*AKN1(J)*BK)
    AKT2a2.0AKN1(J)-BK
    AKT3=BK-2.0AKN1(J)
    AKTAN=(AKT3*TAN(PHIS(J)/2.))/AESR1
    AKATAN=ATAN(AKTAN)
    AKK(J) = (AKT2/AKSR1)"AKATAN
450 CONTINUE
    AC1z-2. ©DRAM(1)*PHIW(1)
    AC2=DRAM(1)*CFP(1)
    AC(1,4) =AC(1,4)+AC1+AC2
    C 1A=SORT((AK+2.*AKN1(1))/AK)
    C1C=4."C1A"ATAN(C1A"TAN(PHIS(1)/2.))
    C184.0%PHIS(1)-C1C+4.0^AKK(1)
    C2A=SQRT((AK+2.*ARN1(2))/AK)
    C2C=4.*C2A"ATAN(C2A"TAN(PHIS(2)/2.))
    C2=8.0*PI-4.0*PHIS(2)+C2C-4.0.AKK(2)
    C3:2.0*PHIN(2)-CFP(2)-4.0^PI
```



```
    D(2)=-(WCI(1)*(C3*C5-C2*C6)-WCI(2)*(C3*C4-C1*C6)+WWC6*(C2*C4-C1*C5
1))
    D(3)=WCI(1)*(C3*WSI(2)-C2*WWS6)-WCI (2)*(C3*WSI(1)-C1*WWS6)+WWC6*(C
12*WSI(1)-C1*WSI(2))
    D(4)=-(WCI(1)*(C6WWSI(2)-C5*WWS6)-WCI(2)*(C6*WSI(1)-C4*WWS6)+WWC6*
1(C5*WSI(1)-C4*WSI(2)))
    A(1) =D(1)*AC}(1,1)+D(2)*AC(1,2)+D(3)*AC(1,3)+D(4)*AC(1,4
    A(2) =D(1)*AC}(2,1)+D(2)*AC(2,2)+D(3)*AC(2,3)+D(4)*AC (2,4
    A(3)=D(1)*AC}(3,1)+D(2)*AC(3,2)+D(3)*AC (3,3)+D(4)* AC (3,4
    A(4)=D(1)`AC(4,1)+D(2)|AC}(4,2
    A(5) =D(4) AC (5,4)
```

C SOLUTION OF TRANSCENDENTAL EQUATION
$53 \mathrm{I}=0$
$F V=9.59$
PHISH $=\quad .5$ (ALIS+ALISP)
60 ESLI $=$ CSLG(PHISH,ALIS)
CSLIP = CSLG(PHISH,ALISP)
SNLI =SNLG (PHISH+90.)
$F P=A(1)+A(2){ }^{*} \operatorname{CSLI}+A(3){ }^{*} \operatorname{CSLIP}+A(4){ }^{*} \operatorname{BOGEN}^{*}(90 .+\mathrm{PHISH})+A(5) * \operatorname{SNLI}$
IF(I.GE.20) GO TO 66
IF(ABS (FP)-ABS (FV).LT.-.5E-9) GO TO 62
$I=20$
PHISH = PHISH - PDIF
GO 5060
62 FDIFz-FP/(A(2)/(PHISH-ALIS) $+(A(3) /($ PHISH-ALISP) $)+A(5) \oplus P H I S H)$
$I=I+1$
65 FV xp?
PHISH = PHISH + PDIF
IF (PHISH.LT.ALIS.AND.PHISH.GT.ALISP) GO TO 60
WRITE (IDRU, 64)MER, ITMOD
64 FORMAT (66HOTRANSCENDENTAL EQUATION HAS DIVERGED. CHECR TRAI AND
-TRA2 CARDS.,12H ITERATION,I2,8H MODE ,I1)
STOP
$66 \mathrm{ANI}(J S T)=(\mathrm{PHISH}+90$.$) / HABGR$
AJCaAC $(1,1)+A C(2,1){ }^{\circ} \operatorname{CSLI}+A C(3,1) \operatorname{CSLIP}+A C(4,1)=B O 0 E N($ PHISH +90.$)$

$A J T=A C(1,3)+A C(2,3)^{-} C S L I+A C(3,3){ }^{\circ} C S L I P$
$A J 4=A C(1,4)+A C(2,4)^{\circ} C S L I+A C(3,4)^{\circ} C S L I P+A C(5,4)^{\circ} \operatorname{SMLI}$

1(1) ${ }^{*}$ C5-WSI (2) ${ }^{*}$ C4)

1° (WSI (1) ${ }^{4}$ C5-WSI (2) ${ }^{\circ}$ C4))/DD

1~4SI (2)-AN3 $\left.{ }^{\circ} \mathrm{C} 5\right)$)/DD

1C4-WSI(1) AJT))/DD
HIES $=\operatorname{HP}(1)+\operatorname{HIS}(2)$
WPPMNE (DRAM(1) MRAK (1))/WPPMUD
HPPSJe (1.12504R (1))/(1.0-COS(PHIS(1)))
WPPUsWPPMU+WPPSN

WPPWLD $=(1.0+$ DRAK (2) $+(1.0-\operatorname{DRAK}(2)) * \operatorname{COS}($ PHIW (2)))
WPF: $\mathrm{L}=(\mathrm{DRAM}(2)$ DRAK (2))/WPPNLD
WPPSL $=(1.125 \mathrm{HK}(2)) /(\mathrm{i} .0-\operatorname{COS}(\operatorname{PHIS}(2)))$
WPPL=WPPWL+WPPSL
C
IF(ITMOD.EQ.O.OR.ABS(HKS-SHKS).LT.HKST) GO TO 74
IF(MAGAM.LT.2.AND.MAGAM-MER.NE.1) GO TO 100
GO TO 76
74 ITMOD $=0$
IF (MAGAM.EQ.0) GO TO 300
$76 \mathrm{NZT}=\mathrm{NZP2}(2, \mathrm{JAB}+4)$
WRITE (IDRU, 7T) NZT, NUPRO, MER, ITMK
77 FORMAT (A1,42hTRANSCENDENTAL EQUATION RESULTS AIRFOIL, I4, -12H ITERATION,I2,8H MODE, I1) NZT $=\mathrm{N} 2 \mathrm{P} 2(1,0)$
WRITE(IDRU,78)N2T
78 format (a1,69h nu alpha" omega' omega K mu K h

- Lambda lambda")
$\mathrm{JH}=1$
DO $85 \mathrm{JN}=1$, JAB
79 NZT:NZPZ (1,0)
IF(JN.NE. $1 . A N D . J N . N E . J A B)$ GO TO 83
$\mathrm{XI}_{1}=.5(1 .+\operatorname{COSG}(\mathrm{FLA}(\mathrm{JH}) \mathrm{ABCR}))$
WHK $=(1 .+\operatorname{DRAK}(\mathrm{JH}) \cdot(1 .-\mathrm{X} 1) / \mathrm{X} 1) \cdot(-\operatorname{DRAM}(\mathrm{JH}))$
WSTR $=\operatorname{DRAM}(\mathrm{JH}){ }^{\text {mand }}(\mathrm{JH}) / \mathrm{X}$)
WRITE(IDRU, 82) NZT, ANI (JN), ALFA(JN), WSTR, WHK , DRAR (JH) ,DRAM (JH), HK (J
1H), FLA(JH), FLS (JH)
82 FORMAT (A1,F6.2,F8.2,F8.3,F7.3,F9.4,F9.4,F8.3,F8.2,F7.2)
$\mathrm{JH}=2$
GO TO 85
83 WRITE(IDRU, 82)NZT, ANI(JN), ALFA(JN)
85 CONTINUE
c
WRITE (IDRU, 2000) WPPU:WPPL, IWPPM,MCT

21OHITERATIONz,I2/)
C
IF(ITMOD.EQ.0) GO TO 300
100 IF (MER) 103, 102, 103
102 DAL $=.1$
GO TO 104
103 IF(HKS-HKSV.EQ.O.)GO 5074
DAL $=$ (SHKS-HKS) DAL/ (HKS-HKSV)
DALD=DAL
IF(ITP.EO.O)DAL=RUND(DAL, RUF)
IF(MAGAM.ED.O.)GO TO 1004
HZT:N2PZ(2,0)
WRITE(IDRU, 1003)N2T, MER, HKS, DALD, DAL

- $3 x$, GHROUNDED $2, F 6.2$)

1004 IF(DAL.EQ.O.) 10 TO 74
IF (MER.GE.3.AND.ABS(DALV).LE.ABS(DAL))CO TO 74

104 DALV =DAL
IF(ITMOD.GE.4)GO TO 113
DO $111 \mathrm{Jz} 1, \mathrm{JAB}$
IF(ITMOD.NE.2.AND.J.LE.JS') ALFA(J)=ALFA(J)+DAL
IF(ITMOD.NE. 1.AND.J.GT.JST) ALFA(J)=ALFA(J)-DAL
111 CONTINUE
GO TO 112
113 IF(ITMOD.GE.7)GO TO 114
IF (ITMOD.NE. 5) DRAR (1) = DRAK (1) + DAL
IFVITMOD.NE. 4)DRAK (2)=DRAK (2) + DAL
GO TO 112
114 IF (ITMOD.NE.8)ALFA(JST) $=A L F A(J S T)+D A L$
IF (ITMOD.NE.7)ALFA (JST +1) 2 ALFA (JST +1)-DAL
112 HKSV =HKS
MER =MER +1
GOTO 35
C
300 DWPPaWPPU-WPPL
CFUNC=ABS (DWPP)
WPPTOL .001
IF(CFUNC.LE.WPPTOL) GO TO 301
IF (IWPRM.EQ.0) GO TO 301
IF(MCT.GT.15) GO TO 301
IF(MCT.NE.0) CO TO 19
DELz. 1
60 TO 20
19 DELE-DWPPVDEL/(DWYP-DWPPV)
IF(DEL.BO.O.) GO TO 301
20 IF(IWPPM.EQ.4) 60 TO 7
IF(INPPM.EQ.3) GO TO 6
IF (IHPPM. 2 Q .2) 60 TO 9
$15 \operatorname{DRAK}(1)=\operatorname{DRAK}(1)+\operatorname{DEL}$
605021
9 DRAK (2) = DAAK (2) + DEL
GO TO 21
6 DRAM (1) = DRAM (1) + DEL
00 TO 21
7 PLSHaFLS(2)+DEL
IF (FLSN.LT.O.O.OR.FLSN.GT.PLA(2)) GO TO 12
PLS(2) 5 FLSN
DELVaDEL
DNPPVADNPP
MCT $\times M C T+1$
I $=6$
Js2
00704
12 ITPME 1
DELE. 1
607015
21 DELVEDEL
DIRPY =DMPP
MEN AFIENT 1

```
                    ORIGINAL PHEER IE
                    OF POOR QUALITY
        IF(ITMOD.EQ.0) MER=0
        MCT=MCT+1
        GO TO 35
C
301 AK1=.5*(COSG(PHISH-ALFA(JST+1))/SING(PHISH-ALFA(JST+1))
    1 -COSG(PHISH-ALFA(JST))/SING(PHISH-ALFA(JST)))
        AKP =AK 1*180.19.8696044
        PHIM = 0.
        NU=1
        I= 1
        ANU =0.
        JH=0
        VI= 0.
302 JH=JH+1
    FF1 = - OSG(ABGR*FLA(JH))
    FF2 = \nuRAK(JH)/(1.+FF1)
    FG1 = COSG(ABGR*FLS(JH))
    FG3 = .6/(FG1-1.)
304 VI= VI - CSLG(PHIM-90., ALFA(I))
    GO TO 310
306 ARGN = ANU
    IF(ANU.GT..5" ABSZ)ARGN = ABSZ - ANU
    CSP = COSG(ARGN*ABGR)
    F1=0.0
    IF(ARGN.LT.FLA(JH))F1=DRAM(JH)*ALOG((CSP-FF1)*FF2+i.)
    G1=0.
    IF(ARGN.LT.FLS(JH))G1=-HK(JH)*ALOG(1.-((CSP-FG1)*FG3)**2)
    P(NU)=F1+G1+CSLG(ANU*HABGR-90.,ALFA(I)) + VI
    P1(NU)=P(NU)-AK1*ABS(SING((ANU*HABGR - 90.) - PHISH))
    NU = NU + 1
    ANU= ANU+ 1.
310 LF(ANU-ANI(I))306,306,312
312 IF(ANU- ABSZ) 314,320,320
314 PHIM = ANI(I)*HABGR
    VI=VI+CSLG(PHIM-90.,ALFA(I))
    I = I+1
    IF(I-1-JST) 304,302,304
320 PS=0.
    e2=0.
    DO 324 I=1,NKR
    PS=PS+P(I)
    BI = 2"(I-1)
324 B2 = B2 + SING(BI*ABGR)*P(I)
    V1 = 2.*EXP(PS/ABSZ)
    SXI =.00000000
    SY=0.
    D0328 N=1,NQ
    Q=0.
    D0326 M=1,IB
    MN = N + 1 + MQ - 2*M
    MM = 2"N - MN
    IF(MN.GT.NKR)MN = MN - NKR
```

$\operatorname{IF}(M M . L T .1) M M=M M+N K R$
OF POOR QUALIIY
326 Q $=$ Q $+\operatorname{FKERN}(M) *(P 1(M N)-P 1(M M))$
$\mathrm{AVU}=\mathrm{N}-1$
ZP = ANU*HABGR - 90.
ZL $=\operatorname{COSG}(2 \mathrm{P}-\mathrm{PHISH})$
ZL $=\operatorname{ABS}((1 .-2 L) /(1 .+Z L))$
IF (2L.NE.0.) ZL=ALOG(ZL)
$\operatorname{ARG}(N)=Q-A K P{ }^{*} \operatorname{SING}(Z P-P H I S H) * Z L+2 P$
$\mathrm{VF}(\mathrm{N})=\mathrm{V} 1 \operatorname{ExP}(-\mathrm{P}(\mathrm{N}))$
$W V=\operatorname{Cosg}(2 P) / V F(N)$
$\mathrm{XP}(\mathrm{N})=W V^{*} \operatorname{SING}(\operatorname{ARG}(\mathrm{~N}))$
$Y P(N)=-W V{ }^{*} \operatorname{COSG}(\operatorname{ARG}(N))$
$S X I=S X I+X P(N)$
328 SY = $3 Y+Y P(N)$
SX $=$ SXI
$X P K=S X /(A B S Z-1$.
YPK $=S Y /($ PBSZ - 1.$)$
DO $329 \mathrm{~N}=2$, NKR
$X P(N)=X P(N)-X P K$
$329 Y P(N)=Y P(N)-Y P K$
CALL CINT(XP,X,NQ,IZZ)
CALL CINT(YP,Y,NQ,IZZ)
RQV $=0$.
DO $330 \mathrm{~N}=2$, NKR
$R Q=X(N) X(N)+Y(N)=Y(N)$
IF(RQ.GT.RQV)L=N
$330 \mathrm{RQV}=\mathrm{RQ}$
DO $327 \mathrm{I}=1,3$
IEPPL $=L-2+I$
$327 R(I)=\operatorname{SQRT}(X($ IEPPL $) X($ IEPPi $)+Y($ IEPPL $) ~ Y(I E P P L)) ~$
333 TAU $=(R(3)-R(1)) /(4 . \quad(R(2)+R(2)-R(1)-R(3 j))$
XNAS $=X(L)+$ TAU $(X(L+1)-X(L-1)+2$. TAU $(X(L+1)+X(L-1)-X(L)-X(L)))$

SQ = XNAS*XNAS + YNAS*YNAS
AT=XNAS/SQ
$B=$ YNAS $/ S Q$
STREF = 1./SQRT(SQ)
ETA = ABSZ"STREF/PI
CM = . 5"ETA"STREF*B2
DARG $=19.09859$ (3."YNAS/XNAS - (YNAS/XNAS)**)
IF(ABS(SX)+ABS(SY).LT. .0001*ABSZ) GO TO 335
SX=STREF- SX 200 .
SY=STREF*SY*200.
NZT=NZPZ $(2,0)$
WRITE (IDRU,334) NZT,SX,SY
334 FORMAT (A1,14KNARNING - SX $=, F 6.3,3 X, 4 \mathrm{HSY}=, \mathrm{F} 6.3$)
335 CONTINUE
IF(IWPPM.EC.0) GO TO 605
CHORD= (4.0^PI)/(ABSZ*STREF)
PHIN1sCOSG(FLA (1)ABGR)
PHIS $1=\operatorname{COSS}$ (FLS (1)ABGR)

ORIGINAL P:CR: :
OF POOR QUALI:
122

```
    PHIWF=1.0+DRAK(1)((1.0-PHIW1)/(1.0+PHIW1))
    NO=(PHIWF**(-DRAM(1)))*(.64)**HK (1)
    APO=-ALOG(V1)-ALOG(W0)+ALOG(2.0)
    QO=(ARG(1)+90.)*(PI/180.)
    ALFA1=ALFA(1)*(PI/180.)
    DELTE=.5*(ATAN(Y(2)/X(2))+ATAN(Y(NKR)/X(NKR)))
    GAMMA=ALFA 1.-DELTE
C
    6 0 5 ~ D O ~ 3 3 1 ~ N = 2 , N Q ~
        XR=X(N)
        X(N)= 1.-B* ('N)-AT* XR
        Y(N)= B*XR -AT*Y(N)
        ARG(N) = ARG(N) - DARG
        WQ = (XP(N)+XP(N-1)-XPK-XPK)**2 + (YP(N)+YP(N-1)-YPK-YPK)**2
    331 DS(N-1) = STREF*SQRT(WQ)*(1.+.6666667*((XP(N)*YP(N-1)
        1-XP(N-1)*YP(N))/WQ)**2)
        NHKW=NQ/12
        DLT = Y(NHKW)/(BOGEN*(1.-X(NHKW)))
        NHKW=NQ -NHKW+1
        DLTU =-Y(NHKW)/(BOGEN*(1.-X(NHKW)))
        X(1) = 1.
    332 ARG(1) = ARG(1) - DARG
    346 ITP=1
C
IF(IWPPM,EQ.0) GO TO 606
\(X T=X(1){ }^{*} C H O R D\)
\(\mathrm{YT}=\mathrm{Y}(1){ }^{*} \mathrm{CHORD}\)
XRT (1) \(=\mathrm{X}(2)\) CHORD
XRT(2) \(=\mathrm{X}(\) NKR \()\) CHORD
YRT (1) \(=\mathbf{Y}(2)\) * \({ }^{\text {CHORD }}\)
YRT (2) \(=Y\) (NKR) CHORD
CALL RCAL(XT,YT,XRT,YRT,APO,QO,ALFA1,PXT,PYT,NKR)
PST \(=\) PXT* \(\operatorname{COS}\) (GAMMA) + PYT* SIN (GAMMA)
PNT \(=-P^{*}\) SIN (GAMMA) + PYT COS (GAMMA)
CPST \(=2.0\) CHORD*PST
CPNT = 2.0*CHORD*PNT
WRITE(IDRU,602)
602 FORMAT(n0n, 11X,45hthe trailing edge pressure gradient is finite)
WRITE(IDRU,603) ALFA(1)
603 format ( \(15 \mathrm{X}, 25 \mathrm{HWHE}\) the angle of attack \(=\), F4.1,1X,7HDEGREES)
WRITE (IDRU,604) CPST,CPNT
604 FORMAT( \(8 \mathrm{X}, 19 \mathrm{HIN}\) that CASE, CPST \(=\),F10.3,7X,5HCPNT=,F10.3)
C
606 ALN=DARG
IF(PURES(13).GE.O.)GO TO 11
PURES( 12) \(=10\). \({ }^{\text {HRS }}\)
PURES( 13) \(=.00001\)
11 RETURN
END
```

FUNCTION TNG(A)
TNG=SING (A)/COSG(A) RETURN
END

FUNCTION SNLG(A)
SNLG=ALOG(ABS(SING(A)))
RETURN
END

```
    SUBROUTINE RCAL(XT,YT,X,Y,APO,QO,ALFA1,PXT,PYT,NKR)
    DIMENSION PX(4),PY(4),X(2),Y(2),THETA1(2)
    COMPLEX CEXP,CMPLX,CONJG,ZETA,EIA,EMIA,ZTEXP,
12ETA2,W2,2T2P,ZT3P,WTP,WT2P,2ETA1,Z,ZT4P,2T,
2ZT2PC,PTCAL,C(2),2ETA1P(2),WT3P,WTPC,PTCOEF
    PI=3.141592653589
    ANKR=FLOAT(NKR)
    THETDEG=360./ ANKR
    THETA1(1)=THETTEG
    THETA1(2) = jÓO.-THETDEG
    ZT EXP =CMPLX(APO,QO)
    ZT2P=CEXP(2TEXP)
    COSA=COS(ALFA1)
    .INA=SIN(ALFA1)
    IIA=CMPLZ(COSA,SINA)
    EMIA =CMPLX(COSA,-SINA)
    WTP = (EIA+EMIA )
    WT2P=(-4.0*EIA-2.0*EMIA)
    WTPC=CONJG(WTP)
    WT3P=6.0*(3.0*EIA+EMIA)
    2T3P=2T2P*(WT2P/WTP)
    2T=CMPLX(XT,YT)
    2T4P=0.0
    M=1
    DO 20 I=1,2
    Z=CMPLX(X(I),Y(I))
    THETA=THETA1(I)*(PI/180.)
    XI=COS(THETA)
    ETA=SIN(THETA)
    2ETA=CMPLX(XI,ETA)
    ZETA1P(M)=( ZETA-1.0)
    C(M)=(120./2ETA1P(M)**4)*(Z-2T-.5*ZT2P*2ETA1P(M)**2
    1-(2T3P/6.)*ZETA1P(M)**3)
    M=2
20 CONTINUE
    2T4P=.10*(C(1)+C(2))+2T4P
    2T2PC=CONJG(2T2P)
    PTCOEF=-(WTPC)/(3.0*2T2PC ZT2P**3)
    PTCAL=CONJG (PTCOEF* (ZT2P*WT3P-2T4P*WTP))
    PXT=REAL(PTCAL)
    PYT=AIMAG(PTCAL)
    RETURN
    END
```


REFERENCES

1. Wortmann, F. X., "A Contribution to the Design of Laminar Profiles for Gliders and Helicopters," Ministry of Aviation Translation TlL/T 4903, February 1960. (Translated from Z. Flugwiss, Vol. 3, 1955, pp. 333-345).
2. Wortmann, F. X., "Progress in the Design of Low Drag Airfoils," Boundary Layer and Flow Control, edited by G. V. Lachmann, Pergamon Press, London, 1961, Pp. 748-770.
3. Wortmann, F. X., "A Critical Review of the Physical Aspects of Airfoil Design at Low Mach Number," Motorless Flight Research - 1972, edited by J. L. Nash-Weber, NASA CR-2315, November 1973, pp. 179-196.
4. Wortmann, F. X., "The Quest for High Lift," AIAA Paper No. 74-1018, Second International Symposium on Technology and Science of Low Speed and Motorless Flight, September 1974.
5. Eppler, R., "Direct Calculation of Airfoils From Pressure Distribution," NASA TT F-15,417. 1974. (Translated from Ingenieur-Archiv., Vol. 23, No. 1,1957 , pp. 32-57).
6. Eppler, R., "Laminar Airfoils for Reynolds Numbers Greater Than 4×10^{6}," B-819-35, April 1969. (Available from NTIS as N69-28178) (Translated from Ingenieur-Archiv., Vol. 38, 1969, pp. 232-240).
7. Eppler, R., "Some New Airfoils," Science and Technology of Low Speed and Motorless Flight, NASA CP-2085, Part 1, 1979, pp. 131-153.
8. Miley, S. J., "An Analysis of the Design of Airfoil Sections for Low Reynolds Numbers," Ph.D. Dissertation, Mississippi State College, 1972.
9. Lighthill, M. J., "A New Method of Two-Dimensional Aerodynamic Design," R \& M 2112, Aeronautical Research Council, London, April 1945.
10. Arlinger, B., "An Exact Method of Two-Dimensional Airfoil Design," TN-67, Saab, Linkoping, Sweden, October 1970.
11. Smith, A.M.O., "High-Lift Aerodynamics," Wright Brothers Lecture, AIAA Paper No. 74-939, August 1974.
12. Liebeck, R. H., "On the Design of Subsonic Airfoils for High Lift," AIAA Paper No. 76-406, July 1976.
13. Liebeck, R. H. and Ormsbee, A. I., "Optimization of Airfoils for Maximum Lift," Journal of Aircraft, Vol. 7, No. 5, September-October 1970, pp. 409-415.
14. Stratford, B. S., "The Prediction of Separation of the Turbulent Boundary Layer," Journal of Fluid Mechanics, Vol. 5, 1959, pp. 1-16.
15. Ormsbee, A. I. and Chen, A. W., "Multiple Element Airfoils Optimized for Maximum Lift Coefficients," Journal of Aircraft, Vol. 10, No. 12, December 1972, pp. 1620-1624.
16. Abbott, I. H. and von Doenhoff, A. E., Theory of Wing Sections, Dover, New York, 1959.
17. Edwards, T. E., "An Approximate Numerical Method for the Optimization of Flap Design for Maximum Lift Coefficients," Ph.D. Thesis, University of Illinois, Urbana, 1975.
18. Kennedy, J. L. and Marsden, D. J., "The Development of High Lift, SingleComponent Airfoil Sections," Aeronautical Quarterly, February 1979, pp. 343-359.
19. Thompson, W. G., "Design of High Lift Airfoils with a Stratford Distribution by the Eppler Method," University of Illinois Technical Report AAE 75-5, Urbana, June 1975.
20. Nonweiler, T., "The Design of Wing Sections," Aircraft Engineering, July 1956, pp. 216-227.
21. Mead, H. R. and Melnik, R. E., "GRUMFOIL - A Computer Code for the Viscous Transonic Flow Over Airfoils," Grumman Research Department Report, March 1980.
22. McMasters, J. H. and Henderson, M. L., "Low-Speed Single-Element Airfoil Synthesis," Science and Technology of Low Speed and Motorless Flight, NASA CP-2085, Part 1, 1979, pp. 1-31.
23. Sivier, K. R., Ormsbee, A. I. and Awker, R. W., "Low Speed Aerodynamic Characteristics of a 13.1 Percent Thick, High-Lift Airfoil," SAE Paper Number 740366, April 1974.
24. Moore, W. A., "The Experimental Evaluation of a Maximized-Lift Single Element Airfoil," M.S. Thesis, University of Illinois, Urbana, 1979.
25. Eppler, R. and Somers, D. M., "A Computer Program for the Design and Analysis of Low-Speed Airfoils," NASA TM 80210, August 1980.
26. Karamcheti, K., Principles of Ideal Fluid Aerodynamics, Wiley, New York, 1966.
27. Sapuppo, J. and Archer, R. D., "Fully Laminar Flow Airfoil Sections," Journal of Aircraft, Vol. 19, No. 5, May 1982, Pp. 406-409.
28. Tolstov, G. P., Fourier Series, Dover, New York, 1976.
29. Preston, J. H. and Sweeting, N. E., "The Experimental Determination of the Boundary Layer and Wake Characteristics of a Simple Joukowsky Aerofoil with Particular Reference to the Trailing Edge Region," R\&M1998, Aeronautical Research Council, London, March 1943.
30. Preston, J. H., "The Effect of the Boundary Layer and Wake on the Flow Past a Symmetrical Aerofoil at Zero Incidence," R\&M2107, Aeronautical Research Council, London, July 1945.
31. Preston, J. H., "The Calculation of Lift Taking Account of the Boundary Layer," R \& M 2725, Aeronautical Research Council, London, November 1949.
32. Cebeci, T. and Bradshaw, P., Momentum Transfer in Boundary Layers, McGrawHill, New York, 1977.
33. Melnik, R. E., Chow, R. R., Mead, H. R. and Jameson, A., "An Improved Viscid/Inviscid Interaction Procedure for Transonic Flow Over Airfoils," Gruman Research Department Report, February 1980.
34. Strand, T., "Exact Method of Designing Airfoils With Given Velocity Distribution in Incompressible Flow," Journal of Aircraft, Vol. 10, No. 11, November 1973, pp. 651-659.
35. Liebeck, R. H., "A Class of Airfoils Designed for High-Lift in Incompressible Flow," Journal of Aircraft, Vol. 10, No. 10, October 1973, pp. 610-617.
36. Wortmann, F. X., "On the Optimization of Airfoils with Flaps," Soaring, May 1970, pp. 23-27.
37. Somers, D. M., "NASA Research Related to Sailplane Airfoils," Proceedings of the 1981 Soaring Society of America National Convention, Phoenix, Arizona, January 1981, pp. 99-109.

ORIGINAL PAGR W

OF POOR QUALITY

Figure 1. Form of the velocity distribution for maximum lift on a single-element airfoil.

Figure 2. Kennedy and Sarsen nigh Lift Airfoil and Design Velocity Distribution [18]. $25=1 \times 10^{6}$.

ORIGINAL FAM.:
OF POOR QUALITY

Figure 3. Kennedy and Marsden airfoil potential flow velocity distribution (Eppler panel method code) compared with viscous analysis (GRUMFOIL code) and experimental results [18]. ALPGA - 4.2 DEG (relative to chord-line), $\mathbf{R E}=1 \times 10^{6}$.

$$
z(\xi)=f(\xi)
$$

Figure 5. Conformal transformation of the flow around an infinite circular cylinder into the flow around an airfoil.

ORIGINAL PAGE :S OF FOOR QUALITY

| $Z T=1.000$ | 0.000 | $Z 2=-1.000$ | -0.330 |
| :--- | :--- | :--- | :--- |
| $Z 3=0.283$ | -0.142 | $Z 4=-0.283$ | 0.472 |
| $Z 5=0.000$ | 0.000 | $Z 6=0.000$ | 0.000 |
| $C 1=0.90416$ | 0.15624 | $C 2=0.08312$ | -0.16284 |
| $C 3=-0.02347$ | 0.05648 | $C 4=0.00000$ | 0.00000 |
| $C 5=0.00000$ | 0.00000 | $U R M A X=-0.027$ | |
| $R=1.131$ | $U R=-0.131$ | $U I=0.000$ | $V T E=0.87305$ |

Figure 7. Example von Mises airfoil generated using a four-term transformation.

ORIGINAL PGE:C is
OF POOR QUALITY

ORIUINAL PAGE IS
OF POOR QUALITY

| $Z T=1.000$ | 0.000 | $Z 2=-1.000$ | -0.240 |
| :--- | :--- | ---: | :--- |
| $Z 3=0.300$ | -0.150 | $Z 4=-0.400$ | 0.300 |
| $Z 5=0.150$ | 0.090 | $Z 6=-0.050$ | 0.000 |
| $C 1=1.04840$ | 0.08850 | $C 2=0.03719$ | -0.10349 |
| $C 3=-0.04847$ | 0.04072 | $C 4=0.00530$ | -0.00079 |
| $C 5=0.00029$ | -0.00010 | $U R M A X=-0.118$ | |
| $R=1.118$ | $U R=-0.118$ | $U I=0.000$ | $V T E=0.96515$ |

Figure 9. Example von Mises airfoil generated using a six-term transformation and a mapping circle radius equal to the minimum allowable for a physically realizable airfoil.

ORIGINAL PAGE:
 OF POOR QUALITY

| $Z T=1.000$ | 0.000 | $Z 2=-0.744$ | 0.000 |
| :--- | :--- | :--- | :--- |
| $Z 3=-0.461$ | 0.000 | $Z 4=0.205$ | 0.000 |
| $Z 5=0.000$ | 0.000 | $Z 6=0.000$ | 0.000 |
| $C 1=0.90415$ | 0.00000 | $C 2=0.08313$ | 0.00000 |
| $C 3=-0.02347$ | 0.00000 | $C 4=0.00000$ | 0.00000 |
| $C 5=0.00000$ | 0.00000 | $U R M A X=-0.011$ | |
| $R=1.131$ | $U R=-0.131$ | $U I=0.000$ | $V T E=0.87307$ |

Figure 10. Symmetrical vo Miss airfoil having real transformation coefficients equal to those of the airfoil shown in Figure 7.

ORIGINAL PACE :
 OF POOR QUALITY

| $Z T=1.000$ | 0.000 | $Z 2=-1.000$ | -0.240 |
| :--- | :--- | :--- | :--- | :--- |
| $Z 3=0.300$ | -0.150 | $Z 4=-0.400$ | 0.300 |
| $Z 5=0.150$ | 0.090 | $Z 6=-0.050$ | 0.000 |
| $C 1=1.04840$ | 0.08850 | $C 2=0.03719$ | -0.10349 |
| $C 3=-0.04847$ | 0.04072 | $C 4=0.00530$ | -0.00079 |
| $C 5=0.00029$ | -0.00010 | $U R M R X=-0.118$ | |
| $R=1.040$ | $U R=-0.040$ | $U I=0.000$ | $V T E=1.03779$ |

Figure 11. Von Mises airfoil generated with a mapping circle radius less than the minimum allowable for a physically realizable airfoil.

ORIGINAL FAG: OF FOOR OUALITY

| $Z T=1.000$ | 0.000 | $Z 2=-1.000$ | 0.000 |
| :--- | :--- | :--- | :--- |
| $Z 3=0.000$ | 0.000 | $Z 4=0.000$ | 0.000 |
| $Z 5=0.000$ | 0.000 | $Z 6=0.000$ | 0.000 |
| $C 1=1.00000$ | 0.00000 | $C 2=0.00000$ | 0.00000 |
| $C 3=0.00000$ | 0.00000 | $C 4=0.00000$ | 0.00000 |
| $C 5=0.00000$ | 0.00000 | $U R M A X=0.000$ | |
| $R=1.000$ | $U R=0.000$ | $U I=0.000$ | $V T E=1.00000$ |

Figure 13. Flat plate airfoil generated by simplifying the von Mises transformation to that of Joukowsky.

ORIGINAL PROS TAT OF POOR QUALITY

| $Z T=1.000$ | 0.000 |
| :--- | :--- |
| $Z 3=0.100$ | 0.000 |
| $Z 5=0.000$ | 0.000 |
| $C 1=1.11000$ | 0.00000 |
| $C 3=0.00000$ | 0.00000 |
| $C 5=0.00000$ | 0.00000 |

$z 2=-1.100 \quad 0.000$
$z 4=0.000$
0.000
$Z 6=0.000$
0.000
$C 1=1.11000$
$C 2=-0.055000 .00000$
$C 4=0.00000$
0.00000

URMAX $=-0.062$
$R=1.062 \quad U R=-0.062 \quad U I=0.000 \quad V T E=0.99661$

Figure 14. Von Mises airfoil resulting from small perturbation of zero locations giving the flat plate result.

> ORIGINAL BSE: OF POOR QUALIIT,

| $Z T=1.000$ | 0.000 | $Z 2=-0.900$ | 0.000 |
| :--- | :--- | :--- | :--- |
| $Z 3=-0.100$ | 0.000 | $Z 4=0.000$ | 0.000 |
| $Z S=0.000$ | 0.000 | $Z 6=0.000$ | 0.000 |
| $C 1=0.91000$ | 0.00000 | $C 2=0.04500$ | 0.00000 |
| $C 3=0.00000$ | 0.00000 | $C 4=0.00000$ | 0.00000 |
| $C 5=0.00000$ | 0.00000 | $U R M A X=0.041$ | |
| $R=0.959$ | $U R=0.041$ | $U I=0.000$ | $V T E=0.99814$ |

Figure 15. Von Mises airfoil resulting from small perturbation of zero locations giving tie flat plate result.

Figure 16. Vo Moses airfoil having largest VTE attainable for the given real parts of the transformation coefficients.

| $Z T$ | $=1.000$ | 0.000 | $Z 2=-0.6 G 0$ | 0.000 |
| :--- | :--- | :--- | :--- | :--- |
| $Z 3=-0.120$ | 0.000 | $Z 4=-0.080$ | 0.000 | |
| $Z 5=-0.100$ | 0.000 | $Z 6=-0.100$ | 0.000 | |
| $C I=0.70040$ | 0.00000 | $C 2=0.12996$ | 0.00000 | |
| $C 3=0.01241$ | 0.00000 | $C 4=0.00060$ | 0.00000 | |
| $C 5=0.00001$ | 0.00000 | $U R M A X=0.137$ | | |
| $R=0.863$ | $U R=0.137$ | $U I \sim 0.000$ | $V T E=0.98958$ | |

Figure 17. Von Mises airfoil resulting from the small perturbation of the zero locations used in generating the airfoil of Figure 16.

Figure 20. Approximate relationship between the maximum trailing edge velocity ratio and the thickness ratio for reasonable symatrical airfoils.

$$
\begin{aligned}
& \text { ORIGINAL PAGE IS } \\
& \text { OF POOR QUALITY }
\end{aligned}
$$

$$
z=f(\xi)
$$

Figure 21. Transformation of unit circle at angle of attack into an airfoil.

ORIGINAL PAGE:
 OF POCK QUALITY

Figure 22. Vo Moses airfoil having finite trailing edge pressure gradients, CPXT $=-1.37$, CPYT $=0.0$.
ζ-plane

z-plane

Figure 23. Segmentation of the interval $(0,2 \pi)$ in the circle and airfoil planes.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 24. Typical pressure recovery distribution.

ORIGINAL PAGEE IS OF POOR QUALITY

Figure 25. Airfoil obtained using Eppler and Somers code [25] in which no iteration is performed for achieving a desired trailing edge closure angle. ALPHA $=8.0$ DEG (relative to zerolift line).

Figure 26. Airfoil obtained using the modified Eppler and Comers code in which the integral constraint required for finite trailing edge pressure gradients is satisfied. ALPEA = 8.0 DEG (relative to zero-lift line).

ORIGINAL PAGE IS OF POOR QUALITY

Figure 27. Airfoil resulting from Eppler and Somers code in which K is iterated to achieve a desired trailing edge angle. ALPHA = 8.0 DEG (relative to zero-lift line).

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IE OF POOR QUALITY

Figure 29. Ai:foil obtained from Eppler and Somers code in which K is iterated to achieve the desired trailing edge closure angle ALPHA - 12.0 DEG (relative to zero-lift line). closure angle.

Figure 30. Airfoil having finite trailing edge pressure gradients obtained using modified Eppler and Sowers code. ALPHA = 12.0 DEG (relative to zero-lift line).

CYST = - $12.6 \quad$ CPNT $=-72.4$

ORIGINAL PAGİ is
OF POOR QUALITY

Figure 31. Symetrical airfoil having finite trailing edge pressure gradients. CPST $=-.71$, CPNT $=0.0$, ALPHA $=0.0$ DEG.

ORIGINAL PAGE MG OF POOR QUALITY

Figure 32. Potential flow velocity distribution of Strand airfoil, Reference [34], calculated using the panel method analysis capability of the Eppler and Soars code, show along with the finite trailing edge pressure gradient airfoil and its design velocity distribution. ALPHA $=12.0$ DEG (relative to zero-lift line).

Figure 33. liebeck Li004 airfoil redesigned to have finite trailing edge pressure gradients. $\mathrm{CL}=1.31, \mathrm{CD}=.00 \% 1, \mathrm{Cl}=-.0276$ CYST $=-38$, CPNT $=-227$, ALPHA $=8.9$ DEG

 flow on upper surface. ${ }^{225, ~ A L P H A ~-~} 11.3$ DEG. Separated

ORIGINAL PAGE IS OF POOR QUALITY

[^0]

ORIGINAL PAGE FE OF POOR QUALITY

Figure 37. Velocity distribution at the design point and finite trailing edge pressure gradients airfoil based on FX 67-K-150 of Wortmann. ALPHA $=10.0$ DEG (relative to zero-lift line).

ORIGINAL PAGE IS OF POOR QUALITY
ORIGINAL. PAGE FE
OF POOR QUALITY

Figure 39. Pressure distribution from GRUMFOIL analysis. Wortmann FX 67-K-150. CL $=1.1676$
ORIGINAL PACS ITY
OF POOR QUALITY

Figure 41. Local boundary layer form factor, H_{12}, and equivalent surface source velocity distribution to account for displacement thickness. Wortmann FX 67-K-150.

ORIGINAL PALE
OF POOR QUALITI

004000080

Local boundary layer form factor, H_{12}, ana equivalent surface source velocity
distribution to account for displacement thickness. Airfoil based on Workman FX 67-K-150 but having finite trailing edge pressure gradients.
Figure 44. distribution to account for displacement thickness. Airfoil based on Workman

ORIGINAL PAS: ". OF POOR QUALIT:

ORIGINAL PAS: of POOR OUALIT;

Figure 48. General transformation of a circle to an airfoil.

Figure 49. Mapping of the unit circle using the trams formation of equation ($A-13$).
Figure 30. Sample input to modified Eppler and Somers code which yields an airfoil based on
the Wortmann $F X$ 67-K-150 but having finite trailing edge pressure gradients.

| ABS? 180 | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRA 1 | 9030 | 950 | 1000 | 1 5 5 | 2400 | 1150 | 2400 | 1250 | 2400 | 1350 | 1600 | 1450 | -800 | | |
| TRA1 | 9030 | 1650 | 400 | 1750 | 700 | 1850 | 800 | 1950 | 850 | 2050 | 900 | 1450 | -800 | | -100 |
| tral | 9030 | 2950 | 1125 | 000 | 1150 | 3250 | 450 | 3350 | 500 | 4050 | | 2450 | 1000 | 2750 | 1075 |
| tra 1 | 9030 | 4850 | 1200 | 4950 | 1600 | 5045 | 2000 | 5C50 | 2400 | 6000 | 500 | 4450 | 500 | 4750 | 800 |
| traz | 9030 | 30 | 940 | 000 | 100 | 6000 | 550 | 940 | 000 | 6000 | 300 | | | | |
| DIAG | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | |
| $\begin{aligned} & \mathrm{RE} \quad 100 \\ & \mathrm{CDCL} \end{aligned}$ | | 03 | 10000 | | 20000 | | 3000 | | | | | | | | |
| CDCL ENDE | | | | | | | | | | | | | | | |

Chth:1.1nmy Technical Report Number

AAE 77-16
UILU-ENG 770516
AAE 77-17
UILU ENG 770517
AAE 78-1
UILU ENG 78

AAE 78-2
USO1
UILU ENG 78
cOSO 86 SNG nTIn
$\varepsilon-8 \angle \mathrm{BV}$
UAE 78-4
UILU ENG 780504
AAE 78-5
UILU ENG . 30505
AAE 78-6
UILU ENG 780506
AAE 78-7
UILU ENG 780507
UILU ENG 780508
(continued)

Author REPORTS (continued)
RECENT AERONAUTICAL AND ASTRONAUTICAL ENGINEERING DEPARTMENT TECHNICAL REPORTS (continued)
d)
Journal
Publication
Author
L. H. Sentman
P. Schmidt
A. L. Hale
L. V. Warren
A. L. Hale
G. A. Rahn
L. H. Sentman
P. Schmidt
L. H. Sentman
M. H. Nayfeh
L. H. Sentman
P. F. Schmidt
G. M. Marinos
L. H. Sentman
P. Renzoni
S. Tonsend
M. H. Nayfeh
K. K. King
A. L. Hale
L. A. Bergman
Finite Element Model for Nonaxisymmetric Structure A. R. Zak
With Rate Dependent Yield Conditions
Nonlinear Interactions Between the Pumping Xinetics, L. H. Sentman
Fluid Dynamics and Optical Resonator of cw Fluid
Flow Lasers
Finite Element Model for Nonaxisymmetric Structure A. R. Zak
With Rate Dependent Yield Conditions
Nonlinear Interactions Between the Pumping Xinetics, L. H. Sentman
Fluid Dynamics and Optical Resonator of cw Fluid
Flow Lasers
Finite Element Model for Nonaxisymmetric Structure A. R. Zak
With Rate Dependent Yield Conditions
Nonlinear Interactions Between the Pumping Xinetics, L. H. Sentman
Fluid Dynamics and Optical Resonator of cw Fluid
Flow Lasers
Title
MNORO3: An Efficient Rotational Nonequilibrium
cw HF Chemical Laser Model
Concepts of a General Substructuring System for Structural Dynamics Analyses
Approximate Modal Controi of Distributed-
Parameter Structures
Users Guide for Program MNORO3
Nonlinear Interactions Between the Pumping
Kinetics, Fluid Dynamics and Optical Resonator of cw Fluid Flow Lasers
Effects of the HF Rate Package and the Optical Resonator on CW HF Chemical Laser Performance
The Effects of Cavity Losses on the Performance of a Subsonic cw HF Chemical Laser
The Dynamic Synthesis of General Nonconservative Models Models
Finite Element Model for Nonaxisymmetric Structure A. R. Zak
With Rate Dependent Yield Conditions
Nonlinear Interactions Between the Pumping Xinetics, L. H. Sentman
Fluid Dynamics and Optical Resonator of cw Fluid
Flow Lasers

5
$\stackrel{5}{7}$
$\stackrel{4}{4}$

0
0
0
t

[^0]: Figure 35. Aerodynamically smoothed Wortmann FX 67-K-150 airfoil, Reference [37], and calculated velocity distribution. ALPHA = 10.0 DEG (relative to zero-lift line).

