
Train Large, Then Compress:

Rethinking Model Size for Efficient Training and Inference of Transformers

Zhuohan Li * 1 Eric Wallace * 1 Sheng Shen * 1 Kevin Lin * 1

Kurt Keutzer 1 Dan Klein 1 Joseph E. Gonzalez 1

Abstract

Since hardware resources are limited, the ob-

jective of training deep learning models is typ-

ically to maximize accuracy subject to the time

and memory constraints of training and inference.

We study the impact of model size in this set-

ting, focusing on Transformer models for NLP

tasks that are limited by compute: self-supervised

pretraining and high-resource machine transla-

tion. We first show that even though smaller

Transformer models execute faster per iteration,

wider and deeper models converge in significantly

fewer steps. Moreover, this acceleration in conver-

gence typically outpaces the additional computa-

tional overhead of using larger models. Therefore,

the most compute-efficient training strategy is to

counterintuitively train extremely large models

but stop after a small number of iterations. This

leads to an apparent trade-off between the training

efficiency of large Transformer models and the

inference efficiency of small Transformer mod-

els. However, we show that large models are

more robust to compression techniques such as

quantization and pruning than small models. Con-

sequently, one can get the best of both worlds:

heavily compressed, large models achieve higher

accuracy than lightly compressed, small models.

1. Introduction

In the current deep learning paradigm, using more compute

(e.g., increasing model size, dataset size, or training steps)

typically leads to higher model accuracy (Brock et al., 2019;

Raffel et al., 2019). This phenomenon is exacerbated by

the recent success of self-supervised pretraining (Devlin

et al., 2019; Hénaff et al., 2019), which allows training

*Equal contribution 1UC Berkeley. Correspondence to: Zhuo-
han Li <zhuohan@cs.berkeley.edu>.

Proceedings of the 37
th International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Train Small
Model

Optimal

Stop Training 
When Converged

Lightly
Compress

Train Large
Model

Stop Training 
Early

Heavily 
Compress

Common 
Practice

Figure 1. Under the usual presumption that models are trained to

convergence, only small models that are fast-to-execute are feasible

in resource-constrained settings. Our work shows that the most

compute-efficient training scheme is instead to train very large

models, stop them well short of convergence, and then heavily

compress them to meet test-time constraints.

to scale to massive amounts of unlabeled data and very

large neural models. Consequently, computational resources

are increasingly the critical constraint on improving model

accuracy. This constraint causes the (often implicit) goal of

model training to be maximizing compute efficiency: how

to achieve the highest model accuracy given a fixed amount

of hardware and training time.

Maximizing compute efficiency requires rethinking com-

mon assumptions about model training. In particular, there

is typically an implicit assumption that models must be

trained until convergence, which makes larger models ap-

pear less viable for limited compute budgets. We challenge

this assumption by demonstrating the opportunity to in-

crease model size at the cost of convergence. Concretely,

we show that the fastest way to train Transformer mod-

els (Vaswani et al., 2017) is to substantially increase model

size but stop training very early.

In our experiments, we vary the width and depth of Trans-

former models and evaluate their training time and accu-

racy on self-supervised pretraining (ROBERTA (Liu et al.,

2019b) trained on Wikipedia and BookCorpus) and machine

translation (WMT14 English→French). For these tasks, we

first show that larger models converge to lower validation

error in fewer gradient updates than smaller models (Sec-

tion 3). Moreover, this increase in convergence outpaces the

additional computational overhead of using larger models—

the most compute-efficient models are extremely large and

stopped well short of convergence (e.g., Figure 2, left). We

also show that this acceleration in wall-clock convergence



Rethinking Model Size for Efficient Training and Inference of Transformers

(a) (b)

Figure 2. Increasing Transformer model size results in lower validation error as a function of wall-clock time and better test-time accuracy

for a given inference budget. (a) demonstrates the training speedup for ROBERTA models of different sizes on the masked language

modeling pretraining task. In (b), we take ROBERTA checkpoints that have been pretrained for the same amount of wall-clock time and

finetune them on a downstream dataset (MNLI). We then iteratively prune model weights to zero and find that the best models for a given

test-time memory budget are ones which are trained large and then heavily compressed.

is largely a function of parameter count and only weakly

influenced by model width, depth, and batch size.

Although larger models train faster, they also increase the

computational and memory requirements of inference. This

increased cost is especially problematic in real-world appli-

cations, where the cost of inference dominates the cost of

training (Jouppi et al., 2017; Crankshaw et al., 2017; Metz,

2017). However, we show that for ROBERTA, this apparent

trade-off can be reconciled with compression: large models

are considerably more robust to compression as compared to

small models (Section 4). Thus, large, heavily compressed

models outperform small, lightly compressed models using

comparable inference costs (e.g., Figure 2, right).

We finally analyze when and why large models train fast

and compress well (Section 5). We show that the optimal

model size is closely linked to the dataset size. In particular,

large models perform favorably in big data settings where

overfitting is a limited concern. We then analyze why larger

models are more compressible by measuring the difference

in weights when using quantized or sparse weight matrices.

This error decreases as model size increases, i.e., greater

overparameterization leads to easy-to-compress weights.

2. Experimental Setup

2.1. Tasks, Models, and Datasets

We train state-of-the-art models for two NLP tasks: self-

supervised pretraining using masked language modeling and

high-resource machine translation. We chose these tasks

because accuracy continues to improve as models are made

larger (Shazeer et al., 2018), trained for more steps (Liu

et al., 2019b), and trained using larger batches (Raffel et al.,

2019). Thus, a critical factor in improving accuracy for these

tasks is to maximize the compute efficiency of training.

Self-supervised Pretraining (MLM) We closely follow

the pretraining setup and model from ROBERTA (Liu et al.,

2019b) with a few minor exceptions. We move the model’s

layer normalization layers (Ba et al., 2016) to the input

of every sub-layer (often called pre-norm). This slightly

improves results and stabilizes training (Wang et al., 2019b).

We also use an input sequence length of 128 and a batch

size of 8192, unless otherwise noted. For ROBERTA, we

vary the depth in {3, 6, 12, 18, 24}, and the hidden size in

{256, 512, 768, 1024, 1536}.

The dataset for pretraining ROBERTA is not publicly avail-

able. We instead follow BERT (Devlin et al., 2019) and con-

catenate the BookCorpus (Zhu et al., 2015) and a Wikipedia

dump to use for training. Since the BookCorpus is no longer

publicly available, we follow Devlin et al. (2019) and crawl

http://smashwords.com. Our final dataset is roughly 3.4

billion words in total. We hold out a random 0.5% of the

data for validation and report the masked language model-

ing (MLM) perplexity on this data. We also evaluate the

model by finetuning on MNLI (Williams et al., 2018) and

SST-2 (Socher et al., 2013). We found the variance in accu-

racy for these two tasks to be lower than the other GLUE

tasks (Wang et al., 2019a).



Rethinking Model Size for Efficient Training and Inference of Transformers

Machine Translation For machine translation (MT) we

train the standard Transformer architecture and hyperpa-

rameters on the WMT14 English→French dataset. We

use the standard dataset splits: 36M sentences for train-

ing, newstest2013 for validation, and newstest2014 for

testing. We follow standard practice and report tokenized

case-sensitive BLEU (Papineni et al., 2002) with compound

splitting (Vaswani et al., 2017). We vary the model depth in

{2, 6, 8} and hidden size in {128, 256, 512, 1024, 2048}.

2.2. Evaluation Metrics: FLOPs and Wall-Clock Time

Recent work on resource-constrained training uses the total

number of training steps (Li et al., 2020) or the total num-

ber of training FLOPs (Schwartz et al., 2019; Clark et al.,

2020) as the main evaluation metric. These metrics do not

adequately capture the true training time. In particular, re-

porting gradient steps does not account for the cost of using

bigger batches or models. Moreover, although reporting

FLOPs is useful for comparison as it is hardware-agnostic,

it neglects the fact that parallel operations are significantly

cheaper than sequential operations on modern hardware.

We instead directly report wall-clock time as our main eval-

uation metric.1 Since the runtime varies across machines

(the hardware setups are different, the jobs are not isolated,

etc.), we use a single machine to benchmark the time per

gradient step for each model size. In particular, we train

models and wait for the time per gradient step to stabi-

lize, and then we use the average time over 100 steps to

calculate the training duration. We conduct the timing on

one NVIDIA 16GB V100 GPU and use gradient accumu-

lation to fit larger models and batches. In order to be fair

to smaller models, we increase the batch size to the largest

size that fits in memory. This means that smaller models

use fewer gradient accumulation steps and thus take less

time per gradient step (which we confirmed empirically).

We use Tensor2Tensor (Vaswani et al., 2018) for MT and

fairseq (Ott et al., 2019) for RoBERTa. We train using a mix

of v3-8 TPUs and 8xV100 GPUs for both tasks.

3. Larger Models Train Faster

Wider and deeper Transformer models are more sample-

efficient than small models: they reach the same level of

performance using fewer gradient steps (Figures 3–5). More-

over, this increase in convergence outpaces the additional

computational overhead from increasing model size, even

though we need to use more steps of gradient accumulation.

Consequently, after adjusting for wall-clock time, the larger

models are faster to train than smaller models (Figures 4–5).

1We also report selected learning curves as a function of FLOPs
in Appendix A.1. These curves show that our conclusion that larger
models are faster to train is not specific to our hardware setup.

Figure 3. Deeper ROBERTA models converge faster than shallow

models with respect to the gradient steps (wall-clock time shown

in Figure 2, left).

Increase Model Width and Sometimes Depth For the

masked language modeling task, the validation perplexity

weakly depends on the shape of the model. Instead, the

total number of model parameters is the key determiner of

the convergence rate. Thus, increasing either the width or

the depth is effective at accelerating model training. On the

other hand, the preferred way to scale models for MT is

to increase their width as wider models usually outperform

deep models in final performance (Vaswani et al., 2017;

Shazeer et al., 2018).

Increase Model Size, Not Batch Size Another factor that

affects the training efficiency is the batch size. In particu-

lar, there is a trade-off between using fast-to-execute small

batches and slow-but-accurate large batches. We study the

effect of scaling batch size because it provides an alternative

to scaling model size. In particular, what if we use gradi-

ent accumulation to increase the batch size rather than the

model size? We vary the batch size for the 12 layer, 768H

model and increase the learning rate as is common prac-

tice (Goyal et al., 2017; Liu et al., 2019b). We report the

best found learning rate values in Table 1 in Appendix A.

We show the training curves in Figure 13 in Appendix A.

Bigger batch sizes cause the model to converge in fewer

steps. However, when adjusting for wall-clock time, in-

creasing the batch size beyond a certain point only provides

marginal improvements.2 In particular, varying the batch

size has little impact when training with a batch size in the

2Note that our timing is done by accumulating gradients on a
single GPU machine. For multi-GPU setups, the cost of accumu-
lating gradients is lower as it naturally helps to balance out uneven
runtimes across workers (Ott et al., 2018). In this setup, the wall-
clock improvements from increasing batch sizes by accumulating
gradients may be slightly larger.



Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 4. Wider models converge faster than narrower models as function of both gradient steps (left plot) and wall-clock time (right plot).

range from 2048–16384. This aligns with the findings of

McCandlish et al. (2018): training efficiency is maximized

when models are trained near some critical batch size.

An additional downside of increasing the batch size is that

it requires simultaneously tuning the learning rate. On the

other hand, scaling model size provides improvements in

training efficiency without adjusting any hyperparameters.

Overall, our results show that one should increase the batch

size (and learning rate) until the critical batch size region is

reached and then to focus on increasing model size.

Larger Models Are Not Harder to Finetune Although

the larger models minimize validation MLM perplexity

faster, one concern is that they may not minimize down-

stream task error faster. For instance, larger models may

overfit on small downstream datasets. We investigate this by

training ROBERTA models of different sizes and stopping

them when they reach the same MLM perplexity (the larger

models have been trained for less wall-clock time). We

then finetune each model using the ROBERTA finetuning

hyperparameters (Liu et al., 2019b) on MNLI and SST-2.

We report the model accuracies in Table 2 in Appendix B.

All models reach comparable accuracies (in fact, the larger

models typically outperform the smaller ones), which shows

that larger models are not more difficult to finetune.

Returns Diminish As Size Increases For both RoBERTa

and MT, the largest models have reached the point where

they stop improving convergence with respect to wall-clock

time. For example, the largest model for MT (6L, 2048H)

starts to converge slower with respect to wall-clock time than

the second-largest model (6L, 1024H). These diminishing

returns occur because (1) the per-step convergence improve-

ments from using larger models decreases as the model gets

larger and (2) the computational overhead increases as our

hardware becomes increasingly compute-bound. We further

analyze when and why returns diminish in Section 5.

4. Larger Models Compress Better

Although the most compute-efficient training scheme is to

use larger models, this results in models which are less infer-

ence efficient. Here, we demonstrate how to get the best of

both worlds. In particular, we show that since large models

are more compressible than small models, they can outper-

form small models while using similar inference costs.

4.1. Compression Methodology and Evaluation

Compression Methods Model compression methods re-

duce the inference costs of trained models. For example,

model compression can reduce inference latency to enable

real-time applications like simultaneous MT (See et al.,

2016) or reduce memory usage to save energy for mobile de-

vices (Han et al., 2016). We focus on compression methods

which are fast to perform—methods which require signif-

icant amounts of compute will negate the speedup from

using larger models.3 In particular, we consider two com-

pression techniques: quantization (Section 4.2) and pruning

(Section 4.3), as well as their combination.4 Quantization

stores model weights in low precision formats to (1) accel-

erate operations when using hardware with reduced preci-

sion support and (2) reduce overall memory footprint (Han

et al., 2016; Dong et al., 2019). Pruning sets neural network

weights to zero to (1) remove operations and (2) reduce the

memory footprint when models are stored in sparse matrix

formats (LeCun et al., 1990; Han et al., 2015). We apply

both quantization and pruning post-hoc to the finetuned

models to limit the additional computational overhead.

3For example, we avoid using model distillation methods be-
cause they can add a significant computational overhead (Sanh
et al., 2019; Turc et al., 2019) or cause a significant degradation in
accuracy (Liu et al., 2019a; Sun et al., 2019).

4We also experiment with parameter sharing (Lan et al., 2020;
Dehghani et al., 2019)—tying the weights of the Transformer lay-
ers together—and find that it slows convergence (see Appendix C).



Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 5. BLEU Scores on the English→French validation set (newstest2013) using models of different sizes. Larger models typically

converge faster as a function of both iterations (left plot) and wall-clock time (right plot). When models become too large (2048H, 6L),

they converge faster per iteration but their overhead on our limited hardware negates their convergence improvements.

Finetuning Setup and Compression Evaluation We fo-

cus on compressing the finetuned ROBERTA models as a

case study. We train models of different sizes for 1,000,000

seconds,5 finetune them on MNLI/SST-2, and then apply

quantization/pruning. For evaluation, even though pruning

and quantization will improve inference latency/throughput,

quantifying these improvements is challenging because they

are highly hardware-dependent. Instead, we follow past

work and report the memory needed to store the model

parameters (Thakker et al., 2019; Shen et al., 2020).

4.2. Larger Models Are More Robust to Quantization

We quantize every parameter, including the embedding ma-

trix, but keep the model activations at full precision. We use

floating point precisions in {4, 6, 8, 32} bits (using lower

than 4-bits resulted in severe accuracy loss). We apply quan-

tization post-hoc which adds no additional time.

We quantize uniformly: the range of floats is equally split

and represented by unsigned integers in {0, . . . , 2k − 1},

where k is the precision. We accomplish this by quantizing

the weights W as:

W ′ = Clamp(W, q0, q2k−1),

W I = ⌊
W ′ − q0

∆
⌉, where ∆ =

q2k−1 − q0
2k − 1

,

Quantize(W ) = ∆W I + q0,

where Clamp() clamps all elements to the min/max range,

W I is a set of integer indices, ⌊·⌉ is the round operator, ∆
is the distance between two adjacent quantized points, and

[q0, q2k−1] indicates the quantization range.

5We expect similar conclusions to hold for other budgets.

Results The quantization results for MNLI are shown on

the left of Figure 6 (SST-2 results are in Appendix D). We

plot each model’s accuracy at different quantization levels

as a function of its total memory usage. The larger models

are more robust to quantization than the smaller models (the

accuracy drop is smaller when the precision is reduced).

Hence, the models which are trained using large parame-

ter counts and then heavily quantized achieve the highest

accuracy for almost all memory budgets.

4.3. Larger Models Are More Robust to Pruning

We use iterative magnitude pruning (Ström, 1997; Han et al.,

2016): we iteratively zero out the smallest magnitude param-

eters and continue finetuning the model on the downstream

task to recover lost accuracy.

Concretely, we consider models with sparsity levels of 15%,

30%, 45%, 60%, 75%, and 90%. We first find the 15% of

weights with the smallest magnitude and set them to zero.6

We then finetune the model on the downstream task until

it reaches within 99.5% of its original validation accuracy

or until we reach one training epoch. We then repeat this

process—we prune another 15% of the smallest magnitude

weights and finetune—stopping when we reach the desired

sparsity level. The additional training overhead from this it-

erative process is small because the model typically recovers

its accuracy in significantly less than one epoch (sometimes

it does not require any retraining to maintain 99.5%). For

example, pruning to 45% can be done with one or two addi-

tional epochs of finetuning on MNLI.

6It also may be possible to remove entire attention heads in
addition to zeroing out weights (Michel et al., 2019; Voita et al.,
2019). This may further improve our compression results.



Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 6. We first pretrain ROBERTA models of different sizes for the same total wall-clock time (larger models are trained for fewer

steps). We then finetune each model on MNLI and compress them using quantization (left) and pruning (right). For most budgets (x-axis),

the highest accuracy models are the ones which are trained large and then heavily compressed. The labels above each point indicate the

compression amount (e.g., 4-bit quantization or 45% sparsity); we omit cluttered labels. SST-2 results are shown in Appendix D.

Results The pruning results for MNLI are shown in the

right of Figure 6. We report the model’s accuracy as a

function of the total number of nonzero parameters.7 The

larger models can be pruned more than the smaller models

without significantly hurting accuracy. Consequently, the

large, heavily pruned models provide the best accuracy-

efficiency trade-off. We find that deep networks are more

robust to pruning than wider networks, e.g., the 24 Layer,

768H model outperforms the 12 Layer, 1536H model at

most test budgets.

Combining Quantization and Pruning Results Pruning

and quantization are complementary techniques for com-

pressing Transformer models. We first prune models to

various sparsity levels (e.g., 15%, 30%, etc.) and then apply

varying amounts of quantization (e.g., 8-bit, 4-bit, etc.) to

each model. In Figure 7 we plot combinations of pruning

and quantization that lie at or near the Pareto frontier. Large

models that are heavily compressed still provide the best

trade-off between accuracy and efficiency when leveraging

both pruning and quantization. A particularly strong com-

pression method is to prune 30-40% of the weights and then

quantize the model to 6-8 bits.

4.4. Convergence Does Not Affect Compressibility

Although larger Transformer models are more compress-

ible, there is a confounding factor that our larger models

are also less converged on the pretraining task. Is it the

larger model size or the lack of convergence that causes the

enhanced compressibility? We investigate this by finetun-

7Since the reduction in memory from storing sparse matrices is
highly dependent on the data structure used, we follow past work
and report the number of nonzero model parameters (Luo et al.,
2017; Li et al., 2017).

ing ROBERTA models starting from different pretraining

checkpoints (e.g., 3 epochs, 6 epochs, etc.) on MNLI. We

then quantize the models to 4-bits.

Figure 8 shows the results. Quantization is hardly affected

by pretraining convergence—the drop in accuracy between

the full precision and the 4-bit precision MNLI models is

comparable as the pretrained model becomes more con-

verged. Instead, the factor that determines compressibility

is model size—the drop in accuracy is very large when

compressing smaller models and vice versa.

5. When and Why Are Larger Models Better?

This section presents results and discussion on why larger

Transformer models train faster and compress better.

5.1. Better Sample Efficiency With Larger Models

For larger models to train faster, they must converge faster

(w.r.t. test error) per iteration. While there is a robust

literature studying why larger models achieve better final

test accuracy,8 there is considerably less work exploring

if and why larger models converge faster. One initial step

in this direction is Arora et al. (2018a), who show that for

deep linear neural networks, increasing depth can promote

movement along directions already taken by the optimizer.

8Chiefly, this work seeks to reconcile the conflict between
modern deep learning practice and the classical bias-variance trade-
off. For instance, it studies forms of implicit regularization (Zhang
et al., 2017; Belkin et al., 2018), characterizes the expressivity of
deep models (Raghu et al., 2017; Lu et al., 2017), and bounds the
neural network generalization error (Du et al., 2019; Arora et al.,
2018b).



Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 7. We combine pruning and quantization and find their gains

to be complementary. The models which are trained large and then

compressed are the best performing for each test-time budget.

Fast Minimization and the Role of Overfitting One em-

pirical reason for the acceleration in convergence is that

larger Transformer models minimize the training error faster.

And, since the generalization gap is small for our tasks due

to very large training sets, the larger models also converge

faster w.r.t test error. In fact, the challenge in the MLM task

is not overfitting, but instead, it is fitting the data—even 8

billion parameter models do not overfit to large pretraining

corpora (Shoeybi et al., 2019).

When overfitting is a concern, larger models start to con-

verge slower (w.r.t test error). We demonstrate this by ran-

domly subsampling our pretraining dataset to 5% and 1%

of its original size and training ROBERTA models of var-

ious sizes. When subsampling the data to 5% (top row of

Figure 14 in Appendix A), the largest models do not im-

prove on the training time of the smaller models (e.g., 12

layer ROBERTA trains just as fast as a 24 layer ROBERTA).

Moreover, when the data is subsampled to 1% (bottom row

of Figure 14), the largest models are worse in terms of

perplexity due to overfitting. Thus, although our main con-

clusion that increasing model size accelerates convergence

still holds for the smaller models (e.g., the 12 layer model

outperforms the 3 layer one), overfitting causes it to break

down for the largest models.

5.2. Manageable Compute Costs for Large Models

For larger models to train faster with respect to wall-clock

time, their convergence improvements must not be negated

by their slowdown in per-iteration time. Fortunately, par-

allel hardware (e.g., GPUs, TPUs) is usually not compute

bound when training deep learning models. Instead, mem-

ory storage/movement is the limiting factor in image classi-

fication (Gomez et al., 2017), semantic segmentation (Chen

Figure 8. We disentangle whether model size or pretraining con-

vergence causes the enhanced compressibility of larger models.

We finetune ROBERTA models starting from different pretrain-

ing checkpoints on MNLI. We then quantize the models to 4-bits.

Quantization is hardly affected by convergence—the drop in MNLI

accuracy due to quantization is comparable as the pretrained model

becomes more converged. Instead, the factor that determines com-

pressibility is model size—the drop in accuracy is very large when

compressing smaller models and vice versa.

et al., 2017), language modeling (Kitaev et al., 2020), and

other tasks (Jain et al., 2020). Thus, larger models will

more fully utilize the available compute, causing their slow-

down to be sublinear. Moreover, when larger models cause

hardware to run out of memory, gradient accumulation can

trade-off memory for compute while still preserving the

gains of large models, as shown in our experiments.

5.3. Smaller Compression Error for Larger Models

Large transformer models are more compressible than small

transformer models.9 Here, we present initial experiments

to better understand why this occurs.

Quantization Error is Smaller for Larger Models We

first measure the quantization error—the difference between

the full-precision and low-precision weights—for the 4-bit

ROBERTA models. On the left of Figure 9, we plot this

value for models of varying depths (6, 12, and 24 layers)

averaged across different Transformer modules (e.g., in-

projection matrix of the self-attention). The mean and vari-

ance of the quantization error are smaller for deeper models.

Pruning Error is Smaller for Larger Models Similarly,

we measure the pruning error—the difference between the

9Similar findings hold for large but sparse audio synthesis
models (Kalchbrenner et al., 2018) and convolutional models for
computer vision (Zhu & Gupta, 2018; Elsen et al., 2019; Evci et al.,
2020; Kusupati et al., 2020).



Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 9. We finetune ROBERTA models of different sizes (6 layers, 12 layers, and 24 layers) on MNLI. We then quantize models to 4-bits

or prune models to 60% sparsity. We plot the difference between the weights of the original and the quantized/pruned models averaged

across different modules in the Transformer. The mean and variance of the weight difference after quantization (left) is consistently lower

for the deeper models compared to the shallower models. The same holds for the difference after pruning (right). This shows that the

larger model’s weights are naturally easier to approximate with low-precision / sparse matrices than smaller models.

original weights and the sparse weights—for the 60% sparse

ROBERTA models. The mean and variance of the pruning

error are smaller for deeper models (Figure 9, right).

These two results show that the larger model’s weights are

more easily approximated by low-precision or sparse matri-

ces. Interestingly, this phenomenon naturally occurs without

directly optimizing for it; an area for future work is to study

why these weight patterns emerge in larger models.

Connection to the Lottery Ticket Hypothesis Our com-

pression findings have deep connections to recent conjec-

tures such as the lottery ticket hypothesis (Frankle & Carbin,

2019). The lottery ticket hypothesis argues that larger mod-

els are preferable as they have a higher chance of finding a

lucky initialization in one of their subnetworks. Our work

shows that, for certain accuracies, as models become in-

creasingly large, they contain increasingly small subnet-

works which achieve that accuracy.

6. Related Work

Improving Training Speed and Efficiency There is a

large body of work on accelerating model training, tradi-

tionally accomplished via improved optimizers (Nesterov,

1983; Kingma & Ba, 2015). More recent work improves

training efficiency by modifying loss functions (Clark et al.,

2020), model structures/sparsities (Louizos et al., 2018;

Gong et al., 2019; Tan & Le, 2019), backpropagation stor-

age requirements (Gruslys et al., 2016), or learning rate

schedules (Loshchilov & Hutter, 2017; Li et al., 2020). We

study the impact of model size, which is largely orthogonal

to these other training efficiency improvements.

Scaling Model Training Another line of work scales model

training to large amounts of distributed hardware and ad-

dresses the associated systems and machine learning chal-

lenges (Goyal et al., 2017; Ott et al., 2018; You et al., 2020).

Our work instead looks to choose the optimal model size

for a fixed (small) hardware budget. Future work can study

whether our conclusion that large models are more compute-

efficient also holds in this highly-distributed setting, where

the “budget” is extremely large.

Hyperparameter Tuning and AutoML In our work, we

have an initial setting for the hyperparameters and optimize

the model size. However, good initial models and hyper-

parameters are unknown when approaching new problems.

For these cases, the optimal training strategy must consider

the cost of experimenting with different architectures and

hyperparameters; future work can study the effect of model

size in this setting. More generally, our findings may impact

the design of automated methods for solving/optimizing

machine learning problems (Feurer et al., 2015; Zoph & Le,

2017; Jaderberg et al., 2017). In particular, the compute-

efficiency of these methods may improve by following our

train large, then compress methodology.

Training Efficiency of Large Models Recent and concur-

rent work also considers the impact of model size on the

compute efficiency of training. Raffel et al. (2019) show that

training a 4x larger Transformer model is a good usage of 4x

more compute. Ardalani et al. (2019) show that larger RNN

models take fewer gradient iterations to converge but do not

consider that larger models are faster when adjusting for

wall-clock time. In concurrent work, Kaplan et al. (2020)

study the impact of model size on the training efficiency of

Transformer language models. They make similar conclu-

sions that large, undertrained models are superior to small,

well-trained models. Our work differs in that we study ma-

chine translation and the impact of training large models on

downstream tasks (model finetuning and compression).



Rethinking Model Size for Efficient Training and Inference of Transformers

7. Conclusion and Future Work

We studied the impact of Transformer model size on the

efficiency of training and inference. We show that increasing

model width and depth accelerates convergence in terms of

both gradient steps and wall-clock time. Moreover, even

though large models appear less efficient during inference,

we demonstrate that they are more robust to compression.

Therefore, we conclude that the best strategy for resource-

constrained training is to train large models and then heavily

compress them.

In the future, we will examine these conclusions on more

domains such as computer vision. Moreover, we look to

answer the questions that are raised by our results: why

do larger transformer models train fast and compress well,

how does model size impact overfitting and hyperparameter

tuning, and more generally, what other common design deci-

sions should be rethought in the compute-efficient setting?

Acknowledgements

This research was supported by the Berkeley RISE Lab.

We would like to thank the Google Cloud TPU team for

their hardware support. We are also grateful to Shi Feng,

Yang Liu, Suchin Gururangan, Nelson Liu, the members of

Berkeley NLP, and the members of the Berkeley RISE Lab

for their valuable feedback.

References

Ardalani, N., Hestness, J., and Diamos, G. Empirically char-

acterizing overparameterization impact on convergence.

OpenReview: S1lPShAqFm, 2019.

Arora, S., Cohen, N., and Hazan, E. On the optimization of

deep networks: Implicit acceleration by overparameteri-

zation. In ICML, 2018a.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger

generalization bounds for deep nets via a compression

approach. In ICML, 2018b.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

In NeurIPS, 2016.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling

modern machine learning and the bias-variance trade-off.

In PNAS, 2018.

Brock, A., Donahue, J., and Simonyan, K. Large scale GAN

training for high fidelity natural image synthesis. In ICLR,

2019.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and

Yuille, A. L. DeepLab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and

fully connected CRFs. In TPAMI, 2017.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D.

ELECTRA: Pre-training text encoders as discriminators

rather than generators. In ICLR, 2020.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gon-

zalez, J. E., and Stoica, I. Clipper: A low-latency online

prediction serving system. In NSDI, 2017.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and

Kaiser, Ł. Universal transformers. In ICLR, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:

Pre-training of deep bidirectional transformers for lan-

guage understanding. In NAACL, 2019.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and

Keutzer, K. HAWQ: Hessian aware quantization of neural

networks with mixed-precision. In ICCV, 2019.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient

descent provably optimizes over-parameterized neural

networks. In ICLR, 2019.

Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. Fast

sparse convnets. arXiv preprint arXiv:1911.09723, 2019.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen, E.

Rigging the lottery: Making all tickets winners. In ICML,

2020.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.,

Blum, M., and Hutter, F. Efficient and robust automated

machine learning. In NeurIPS, 2015.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:

Finding sparse, trainable neural networks. In ICLR, 2019.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The

reversible residual network: Backpropagation without

storing activations. In NeurIPS, 2017.

Gong, L., He, D., Li, Z., Qin, T., Wang, L., and Liu, T.

Efficient training of BERT by progressively stacking. In

ICML, 2019.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,

Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,

K. Accurate, large minibatch SGD: Training ImageNet

in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gruslys, A., Munos, R., Danihelka, I., Lanctot, M., and

Graves, A. Memory-efficient backpropagation through

time. In NeurIPS, 2016.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both

weights and connections for efficient neural network. In

NeurIPS, 2015.



Rethinking Model Size for Efficient Training and Inference of Transformers

Han, S., Mao, H., and Dally, W. J. Deep compression:

Compressing deep neural networks with pruning, trained

quantization and huffman coding. In ICLR, 2016.

Hénaff, O. J., Srinivas, A., Fauw, J. D., Razavi, A., Doer-

sch, C., Eslami, S. M. A., and van den Oord, A. Data-

efficient image recognition with contrastive predictive

coding. arXiv preprint arXiv:1905.09272, 2019.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,

Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,

I., Simonyan, K., et al. Population based training of

neural networks. arXiv preprint arXiv:1711.09846, 2017.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,

Keutzer, K., Stoica, I., and Gonzalez, J. E. Checkmate:

Breaking the memory wall with optimal tensor remateri-

alization. In MLSys, 2020.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,

G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,

A., et al. In-datacenter performance analysis of a tensor

processing unit. In ISCA, 2017.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S.,

Casagrande, N., Lockhart, E., Stimberg, F., Oord, A.

v. d., Dieleman, S., and Kavukcuoglu, K. Efficient neural

audio synthesis. In ICML, 2018.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,

Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and

Amodei, D. Scaling laws for neural language models.

arXiv preprint arXiv:2001.08361, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. In ICLR, 2015.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The

efficient transformer. In ICLR, 2020.

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M.,

Jain, P., Kakade, S., and Farhadi, A. Soft threshold weight

reparameterization for learnable sparsity. In ICML, 2020.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,

and Soricut, R. ALBERT: A lite BERT for self-supervised

learning of language representations. In ICLR, 2020.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain

damage. In NeurIPS, 1990.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.

Pruning filters for efficient convnets. In ICLR, 2017.

Li, M., Yumer, E., and Ramanan, D. Budgeted training:

Rethinking deep neural network training under resource

constraints. In ICLR, 2020.

Liu, L., Wang, H., Lin, J., Socher, R., and Xiong, C. Atten-

tive student meets multi-task teacher: Improved knowl-

edge distillation for pretrained models. arXiv preprint

arXiv:1911.03588, 2019a.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,

Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.

RoBERTa: A robustly optimized BERT pretraining ap-

proach. arXiv preprint arXiv:1907.11692, 2019b.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient

descent with warm restarts. In ICLR, 2017.

Louizos, C., Welling, M., and Kingma, D. P. Learning

sparse neural networks through L0 regularization. In

ICLR, 2018.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expres-

sive power of neural networks: A view from the width.

In NeurIPS, 2017.

Luo, J.-H., Wu, J., and Lin, W. ThiNet: A filter level pruning

method for deep neural network compression. In ICCV,

2017.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.

An empirical model of large-batch training. arXiv

preprint arXiv:1812.06162, 2018.

Metz, C. Building an AI chip saved Google from building a

dozen new data centers. Wired, 2017.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads

really better than one? In NeurIPS, 2019.

Nesterov, Y. A method of solving a convex programming

problem with convergence rate O(1/k2). In Soviet Math-

ematics Doklady, 1983.

Ott, M., Edunov, S., Grangier, D., and Auli, M. Scaling

neural machine translation. In WMT, 2018.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N.,

Grangier, D., and Auli, M. Fairseq: A fast, extensible

toolkit for sequence modeling. In NAACL Demo, 2019.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU:

a method for automatic evaluation of machine translation.

In ACL, 2002.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,

Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring

the limits of transfer learning with a unified text-to-text

transformer. arXiv preprint arXiv:1910.10683, 2019.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Dick-

stein, J. S. On the expressive power of deep neural net-

works. In ICML, 2017.



Rethinking Model Size for Efficient Training and Inference of Transformers

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,

a distilled version of BERT: smaller, faster, cheaper and

lighter. In NeurIPS EMC2 Workshop, 2019.

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green

AI. arXiv preprint arXiv:1907.10597, 2019.

See, A., Luong, M.-T., and Manning, C. D. Compression

of neural machine translation models via pruning. In

CoNLL, 2016.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani,

A., Koanantakool, P., Hawkins, P., Lee, H., Hong, M.,

Young, C., et al. Mesh-TensorFlow: Deep learning for

supercomputers. In NeurIPS, 2018.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,

Mahoney, M. W., and Keutzer, K. Q-BERT: Hessian

based ultra low precision quantization of BERT. In AAAI,

2020.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,

and Catanzaro, B. Megatron-LM: Training multi-billion

parameter language models using GPU model parallelism.

arXiv preprint arXiv:1909.08053, 2019.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,

C. D., Ng, A., and Potts, C. Recursive deep models for

semantic compositionality over a sentiment treebank. In

EMNLP, 2013.

Ström, N. Sparse connection and pruning in large dynamic

artificial neural networks. In EUROSPEECH, 1997.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge

distillation for BERT model compression. In EMNLP,

2019.

Tan, M. and Le, Q. V. EfficientNet: Rethinking model scal-

ing for convolutional neural networks. In ICML, 2019.

Thakker, U., Beu, J., Gope, D., Zhou, C., Fedorov, I., Dasika,

G., and Mattina, M. Compressing RNNs for IOT de-

vices by 15-38x using kronecker products. arXiv preprint

arXiv:1906.02876, 2019.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K. Well-

read students learn better: The impact of student ini-

tialization on knowledge distillation. arXiv preprint

arXiv:1908.08962, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention

is all you need. In NeurIPS, 2017.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez,

A. N., Gouws, S., Jones, L., Kaiser, Ł., Kalchbrenner,

N., Parmar, N., et al. Tensor2Tensor for neural machine

translation. In AMTA, 2018.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.

Analyzing multi-head self-attention: Specialized heads

do the heavy lifting, the rest can be pruned. In ACL, 2019.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and

Bowman, S. R. GLUE: A multi-task benchmark and

analysis platform for natural language understanding. In

ICLR, 2019a.

Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F.,

and Chao, L. S. Learning deep transformer models for

machine translation. In ACL, 2019b.

Williams, A., Nangia, N., and Bowman, S. R. A broad-

coverage challenge corpus for sentence understanding

through inference. In NAACL, 2018.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,

S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-

J. Large batch optimization for deep learning: Training

BERT in 76 minutes. In ICLR, 2020.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.

Understanding deep learning requires rethinking general-

ization. In ICLR, 2017.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring

the efficacy of pruning for model compression. In ICLR

Workshop Track, 2018.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-

sun, R., Torralba, A., and Fidler, S. Aligning books and

movies: Towards story-like visual explanations by watch-

ing movies and reading books. In CVPR, 2015.

Zoph, B. and Le, Q. V. Neural architecture search with

reinforcement learning. In ICLR, 2017.


