
Train faster, generalize better: Stability of stochastic gradient descent

Moritz Hardt MRTZ@GOOGLE.COM

Benjamin Recht BRECHT@BERKELEY.EDU

Yoram Singer SINGER@GOOGLE.COM

Abstract

We show that parametric models trained by a

stochastic gradient method (SGM) with few it-

erations have vanishing generalization error. We

prove our results by arguing that SGM is algo-

rithmically stable in the sense of Bousquet and

Elisseeff. Our analysis only employs elemen-

tary tools from convex and continuous optimiza-

tion. We derive stability bounds for both con-

vex and non-convex optimization under standard

Lipschitz and smoothness assumptions.

Applying our results to the convex case, we pro-

vide new insights for why multiple epochs of

stochastic gradient methods generalize well in

practice. In the non-convex case, we give a

new interpretation of common practices in neural

networks, and formally show that popular tech-

niques for training large deep models are indeed

stability-promoting. Our findings conceptually

underscore the importance of reducing training

time beyond its obvious benefit.

1. Introduction

The most widely used optimization method in machine

learning practice is stochastic gradient method (SGM).

Stochastic gradient methods aim to minimize the empiri-

cal risk of a model by repeatedly computing the gradient of

a loss function on a single training example, or a batch of

few examples, and updating the model parameters accord-

ingly. SGM is scalable, robust, and performs well across

many different domains ranging from smooth and strongly

convex problems to complex non-convex objectives.

In a nutshell, our results establish that: Any model trained

with stochastic gradient method in a reasonable amount of

time attains small generalization error.

As training time is inevitably limited in practice, our re-
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sults help to explain the strong generalization performance

of stochastic gradient methods observed in practice. More

concretely, we bound the generalization error of a model

in terms of the number of iterations that stochastic gradient

method took in order to train the model. Our main analy-

sis tool is to employ the notion of algorithmic stability due

to Bousquet and Elisseeff (2002). We demonstrate that the

stochastic gradient method is stable provided that the ob-

jective is relatively smooth and the number of steps taken

is sufficiently small.

It is common in practice to perform a linear number of steps

in the size of the sample and to access each data point mul-

tiple times. Our results show in a broad range of settings

that, provided the number of iterations is linear in the num-

ber of data points, the generalization error is bounded by

a vanishing function of the sample size. The results hold

true even for complex models with large number of param-

eters and no explicit regularization term in the objective.

Namely, fast training time by itself is sufficient to prevent

overfitting.

Our bounds are algorithm specific: Since the number of

iterations we allow can be larger than the sample size, an

arbitrary algorithm could easily achieve small training er-

ror by memorizing all training data with no generalization

ability whatsoever. In contrast, if the stochastic gradient

method manages to fit the training data in a reasonable

number of iterations, it is guaranteed to generalize.

Conceptually, we show that minimizing training time is not

only beneficial for obvious computational advantages, but

also has the important byproduct of decreasing generaliza-

tion error. Consequently, it may make sense for practition-

ers to focus on minimizing training time, for instance, by

designing model architectures for which stochastic gradi-

ent method converges fastest to a desired error level.

1.1. Our contributions

Our focus is on generating generalization bounds for mod-

els learned with stochastic gradient descent. Recall that the

generalization bound is the expected difference between

the error a model incurs on a training set versus the er-

ror incurred on a new data point, sampled from the same
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distribution that generated the training data. Throughout,

we assume we are training models using n sampled data

points.

Our results build on a fundamental connection between the

generalization error of an algorithm and its stability proper-

ties. Roughly speaking, an algorithm is stable if the train-

ing error it achieves varies only slightly if we change any

single training data point. The precise notion of stability

we use is known as uniform stability due to (Bousquet &

Elisseeff, 2002). It states that a randomized algorithm A
is uniformly stable if for all data sets differing in only one

element, the learned models produce nearly the same pre-

dictions. We review this method in Section 2, and provide

a new adaptation of this theory to iterative algorithms.

In Section 3, we show that stochastic gradient is uniformly

stable, and our techniques mimic its convergence proofs.

For convex loss functions, we prove that the stability mea-

sure decreases as a function of the sum of the step sizes.

For strongly convex loss functions, we show that stochastic

gradient is stable, even if we train for an arbitrarily long

time. We can combine our bounds on the generalization er-

ror of stochastic gradient method with optimization bounds

quantifying the convergence of the empirical loss achieved

by SGM. In Section 5, we show that models trained for

multiple epochs match classic bounds for stochastic gradi-

ent (Nemirovski & Yudin, 1978; 1983).

More surprisingly, our results carry over to the case where

the loss-function is non-convex. In this case we show that

the method generalizes provided the steps are sufficiently

small and the number of iterations is not too large. More

specifically, we show the number of steps of stochastic

gradient can grow as nc for a small c > 1. This pro-

vides some explanation as to why neural networks can be

trained for multiple epochs of stochastic gradient and still

exhibit excellent generalization. In Section 4, we further-

more show that various heuristics used in practice, espe-

cially in the deep learning community, help to increase the

stability of stochastic gradient method. For example, the

popular dropout scheme (Krizhevsky et al., 2012; Srivas-

tava et al., 2014) improves all of our bounds. Similarly,

`2-regularization improves the exponent of n in our non-

convex result. In fact, we can drive the exponent arbitrar-

ily close to 1/2 while preserving the non-convexity of the

problem.

1.2. Related work

There is a venerable line of work on stability and gener-

alization dating back more than thirty years (Devroye &

Wagner, 1979; Kearns & Ron, 1999; Bousquet & Elisseeff,

2002; Mukherjee et al., 2006; Shalev-Shwartz et al., 2010).

The landmark work by Bousquet and Elisseeff (Bousquet

& Elisseeff, 2002) introduced the notion of uniform stabil-

ity that we rely on. They showed that several important

classification techniques are uniformly stable. In particu-

lar, under certain regularity assumptions, it was shown that

the optimizer of a regularized empirical loss minimization

problem is uniformly stable. Previous work generally ap-

plies only to the exact minimizer of specific optimization

problems. It is not immediately evident on how to com-

pute a generalization bound for an approximate minimizer

such as one found by using stochastic gradient. Subsequent

work studied stability bounds for randomized algorithms

but focused on random perturbations of the cost function,

such as those induced by bootstrapping or bagging (Elis-

seeff et al., 2005). This manuscript differs from this foun-

dational work in that it derives stability bounds about the

learning procedure, analyzing algorithmic properties that

induce stability.

Classic results by Nemirovski and Yudin show that the

stochastic gradient method produces is nearly optimal for

empirical risk minimization of convex loss functions (Ne-

mirovski & Yudin, 1978; 1983; Nemirovski et al., 2009;

Frostig et al., 2015). These results have been extended

by many machine learning researchers, yielding tighter

bounds and probabilistic guarantees (Hazan et al., 2006;

Hazan & Kale, 2014; Rakhlin et al., 2012). However, there

is an important limitation of all of this prior art. The derived

generalization bounds only hold for single passes over the

data. That is, in order for the bounds to be valid, each train-

ing example must be used no more than once in a stochas-

tic gradient update. In practice, of course, one tends to

run multiple epochs of the stochastic gradient method. Our

results resolve this issue by combining stability with op-

timization error. We use the foundational results to esti-

mate the error on the empirical risk and then use stability

to derive a deviation from the true risk. This enables us to

study the risk incurred by multiple epochs and provide sim-

ple analyses of regularization methods for convex stochas-

tic gradient. We compare our results to this related work

in Section 5. We note that Rosasco and Villa obtain risk

bounds for least squares minimization with an incremental

gradient method in terms of the number of epochs (Rosasco

& Villa, 2014). These bounds are akin to our study in Sec-

tion 5, although our results are incomparable due to various

different assumptions.

Finally, we note that in the non-convex case, the stochastic

gradient method is remarkably successful for training large

neural networks (Bottou, 1998; Krizhevsky et al., 2012).

However, our theoretical understanding of this method is

limited. Several authors have shown that the stochastic

gradient method finds a stationary point of nonconvex cost

functions (Kushner & Yin, 2003; Ghadimi & Lan, 2013).

Beyond asymptotic convergence to stationary points, little

is known about finding models with low training or gener-

alization error in the nonconvex case. There have recently
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been several important studies investigating optimal train-

ing of neural nets. For example Livni et al. show that

networks with polynomial activations can be learned in a

greedy fashion (Livni et al., 2014). Janzamin et al. (Jan-

zamin et al., 2015) show that two layer neural networks

can be learned using tensor methods. Arora et al. (Arora

et al., 2015) show that two-layer sparse coding dictionar-

ies can be learned via stochastic gradient. Our work com-

plements these developments: rather than providing new

insights into mechanisms that yield low training error, we

provide insights into mechanisms that yield low generaliza-

tion error. If one can achieve low training error quickly on

a nonconvex problem with stochastic gradient, our results

guarantee that the resulting model generalizes well.

2. Stability of randomized iterative

algorithms

Consider the following general setting of supervised learn-

ing. There is an unknown distribution D over exam-

ples from some space Z. We receive a sample S =
(z1, . . . , zn) of n examples drawn i.i.d. from D. Our goal

is to find a model w with small population risk, defined

as: R[w]
def
= Ez⇠D f(w; z) . Here, where f is a loss func-

tion and f(w; z) designates the loss of the model described

by w encountered on example z.

Since we cannot measure the objective R[w] directly, we

instead use a sample-averaged proxy, the empirical risk,

defined as RS [w]
def
= 1

n

Pn
i=1 f(w; zi) ,

The generalization error of a model w is the difference

RS [w]�R[w]. (2.1)

When w = A(S) is chosen as a function of the data by a

potentially randomized algorithm A it makes sense to con-

sider the expected generalization error

✏gen
def
= ES,A[RS [A(S)]�R[A(S)]] , (2.2)

where the expectation is over the randomness of A and the

sample S.

In order to bound the generalization error of an algorithm,

we employ the following notion of uniform stability in

which we allow randomized algorithms as well.

Definition 2.1. A randomized algorithm A is ✏-uniformly

stable if for all data sets S, S0 2 Zn such that S and S0

differ in at most one example, we have

sup
z

EA [f(A(S); z)� f(A(S0); z)]  ✏ . (2.3)

Here, the expectation is taken only over the internal ran-

domness of A. We will denote by ✏stab(A, n) the infimum

over all ✏ for which (2.3) holds. We will omit the tuple

(A, n) when it is clear from the context.

We recall the important theorem that uniform stability im-

plies generalization in expectation. The proof is based on

an argument in Lemma 7 of (Bousquet & Elisseeff, 2002)

and very similar to Lemma 11 in (Shalev-Shwartz et al.,

2010).

Theorem 2.2. Let A be ✏-uniformly stable. Then,

|ES,A [RS [A(S)]�R[A(S)]]|  ✏ .

Theorem 2.2 proves that if an algorithm is uniformly stable,

then its generalization error is small. We now turn to some

properties of iterative algorithms that control their uniform

stability.

2.1. Properties of update rules

We consider general update rules of the form G : Ω ! Ω

which map a point w 2 Ω in the parameter space to another

point G(w). The most common update is the gradient up-

date rule G(w) = w � ↵rf(w) , where ↵ � 0 is a step

size and f : Ω ! R is a function that we want to optimize.

The canonical update rule we will consider in this

manuscript is an incremental gradient update, where

G(w) = w � ↵rf(w) for some convex function f . We

will return to a detailed discussion of this specific update in

the sequel, but the reader should keep this particular exam-

ple in mind throughout the remainder of this section.

The following two definitions provide the foundation of our

analysis of how two different sequences of update rules di-

verge when iterated from the same starting point. These

definitions will ultimately be useful when analyzing the sta-

bility of stochastic gradient descent.

Definition 2.3. An update rule is ⌘-expansive if for all

v, w 2 Ω, kG(v)�G(w)k  ⌘kv�wk. It is �-bounded if

kw �G(w)k  � .

With these two properties, we can establish the following

lemma of how a sequence of updates to a model diverge

when the training set is perturbed.

Lemma 2.4 (Growth recursion). Fix an arbitrary sequence

of updates G1, . . . , GT and another sequence G0
1, . . . , G

0
T .

Let w0 = w0
0 be a starting point in Ω and define �t =

kw0
t � wtk where wt, w

0
t are defined recursively through

wt+1 = Gt(wt) w0
t+1 = G0

t(w
0
t) . (t > 0)

Then, we have the recurrence relation �0 = 0,

�t+1 

8

>

<

>

:

⌘�t Gt = G0
t is ⌘-expansive

min(⌘, 1)�t + 2�t Gt and G0
t are �-bounded,

Gt is ⌘ expansive

3. Stability of Stochastic Gradient Method

Given n labeled examples S = (z1, . . . , zn) where zi 2
Z, consider a decomposable objective function f(w) =
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1
n

Pn
i=1 f(w; zi), where f(w; zi) denotes the loss of w

on the example zi. The stochastic gradient update for this

problem with learning rate ↵t > 0 is given by wt+1 =
wt � ↵trwf(wt; zit) . Stochastic gradient method (SGM)

is the algorithm resulting from performing stochastic gra-

dient updates T times where the indices it are randomly

chosen. There are two popular schemes for choosing the

examples’ indices. One is to pick it uniformly at random

in {1, . . . , n} at each step. The other is to choose a random

permutation over {1, . . . , n} and cycle through the exam-

ples repeatedly in the order determined by the permutation.

Our results hold for both variants.

In parallel with the previous section the stochastic gradient

method is akin to applying the gradient update rule defined

as follows.

Definition 3.1. For a nonnegative step size ↵ � 0 and

a function f : Ω ! R, we define the gradient update rule

Gf,↵ as Gf,↵(w) = w � ↵rf(w) .

3.1. Proof idea: Stability of stochastic gradient method

In order to prove that the stochastic gradient method is sta-

ble, we will analyze the output of the algorithm on two

data sets that differ in precisely one location. Note that if

the loss function is L-Lipschitz for every example z, we

have E |f(w; z)� f(w0; z)|  LE kw � w0k for all w and

w0. Hence, it suffices to analyze how wt and w0
t diverge

in the domain as a function of time t. Recalling that wt is

obtained from wt�1 via a gradient update, our goal is to

bound �t = kwt � w0
tk recursively and in expectation as a

function of �t�1.

There are two cases to consider. In the first case, SGM

selects the index of an example at step t on which is iden-

tical in S and S0. Unfortunately, it could still be the case

that �t grows, since wt and w0
t differ and so the gradients

at these two points may still differ. Below, we will show

how to control �t in terms of the convexity and smoothness

properties of the stochastic gradients.

The second case to consider is when SGM selects the one

example to update in which S and S0 differ. Note that

this happens only with probability 1/n if examples are se-

lected randomly. In this case, we simply bound the increase

in �t by the norm of the two gradient rf(wt�1; z) and

rf(w0
t�1; z

0). The sum of the norms is bounded by 2↵tL
and we obtain �t  �t + 2↵tL. Combining the two cases,

we can then solve a simple recurrence relation to obtain a

bound on �T .

This simple approach suffices to obtain the desired result in

the convex case, but there are additional difficulties in the

non-convex case. Here, we need to use an intriguing sta-

bility property of stochastic gradient method. Specifically,

the first time step t0 at which SGM even encounters the

example in which S and S0 differ is a random variable in

{1, . . . , n} which tends to be relatively large. Specifically,

for any m 2 {1, . . . , n}, the probability that t0  m is

upper bounded by m/n. This allows us to argue that SGM

has a long “burn-in period” where �t does not grow at all.

Once �t begins to grow, the step size has already decayed

allowing us to obtain a non-trivial bound.

We now turn to making this argument precise.

3.2. Expansion properties of stochastic gradients

Let us now record some of the core properties of the

stochastic gradient update. The gradient update rule is

bounded provided that the function f satisfies the following

common Lipschitz condition.

Definition 3.2. We say that f is L-Lipschitz if for all points

u in the domain of f we have krf(x)k  L. This implies

that |f(u)� f(v)|  Lku� vk .
Lemma 3.3. Assume that f is L-Lipschitz. Then, the gra-

dient update Gf,↵ is (↵L)-bounded.

We now turn to expansiveness. As we will see shortly, dif-

ferent expansion properties are achieved for non-convex,

convex, and strongly convex functions.

Definition 3.4. A function f : Ω ! R is �-strongly convex

if for all u, v 2 Ω we have f(u) � f(v) + hrf(v), u �
vi+ �

2
ku� vk2 .

We say f is convex if it is 0-strongly convex. The following

standard notion of smoothness leads to a bound on how

expansive the gradient update is.

Definition 3.5. A function f : Ω ! R is �-smooth if for all

for all u, v 2 Ω we have krf(u)�rf(v)k  �ku� vk .

In general, smoothness will imply that the gradient updates

cannot be overly expansive. When the function is also con-

vex and the step size is sufficiently small the gradient up-

date becomes non-expansive. When the function is addi-

tionally strongly convex, the gradient update becomes con-

tractive in the sense that ⌘ will be less than one and u and

v will actually shrink closer to one another. The majority

of the following results can be found in several textbooks

and monographs. Notable references are Polyak (Polyak,

1987) and Nesterov (Nesterov, 2004). We include proofs

in the appendix for completeness.

Lemma 3.6. Assume that f is �-smooth. Then, Gf,↵ is

(1+↵�)-expansive. If f is in addition convex, then for any

↵  2/�, the update Gf,↵ is 1-expansive. If f is in addition

�-strongly convex, then for ↵  2
�+�

, Gf,↵ is
⇣

1� ↵��
�+�

⌘

-

expansive.

Henceforth we will no longer mention which random se-

lection rule we use as the proofs are almost identical for

both rules.
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3.3. Convex optimization

We begin with a simple stability bound for convex loss min-

imization via stochastic gradient method.

Theorem 3.7. Assume that the loss function f(· ; z) is

�-smooth, convex and L-Lipschitz for every z. Suppose

that we run SGM with step sizes ↵t  2/� for T
steps. Then, SGM satisfies uniform stability with ✏stab 
2L2

n

PT
t=1 ↵t .

Proof. Let S and S0 be two samples of size n differing

in only a single example. Consider the gradient updates

G1, . . . , GT and G0
1, . . . , G

0
T induced by running SGM on

sample S and S0, respectively. Let wT and w0
T denote the

corresponding outputs of SGM.

We now fix an example z 2 Z and apply the Lipschitz

condition on f(· ; z) to get

E |f(wT ; z)� f(w0
T ; z)|  LE [�T ] , (3.1)

where �T = kwT �w0
T k. Observe that at step t, with prob-

ability 1 � 1/n, the example selected by SGM is the same

in both S and S0. In this case we have that Gt = G0
t and

we can use the 1-expansivity of the update rule Gt which

follows from Lemma 3.6 using the fact that the objective

function is convex and that ↵t  2/�. With probability

1/n the selected example is different in which case we use

that both Gt and G0
t are ↵tL-bounded as a consequence of

Lemma 3.3. Hence, we can apply Lemma 2.4 and linear-

ity of expectation to conclude that for every t, E [�t+1] 
�

1� 1
n

�

E [�t] +
1
n
E [�t] +

2↵tL
n

= E [�t] +
2L↵t

n
. Unrav-

eling the recursion gives E [�T ]  2L
n

PT
t=1 ↵t . Plugging

this back into equation (3.1), gives the desired result. ⇤

We refer the reader to the full version (?) for our results on

strongly convex optimization.

3.4. Non-convex optimization

In this section we prove stability results for stochastic gra-

dient methods that do not require convexity. We will still

assume that the objective function is smooth and Lipschitz

as defined previously.

The crux of the proof is to observe that SGM typically

makes several steps before it even encounters the one ex-

ample on which two data sets in the stability analysis dif-

fer.

Theorem 3.8. Assume that f(·; z) 2 [0, 1] is an L-

Lipschitz and �-smooth loss function for every z. Suppose

that we run SGM for T steps with monotonically non-

increasing step sizes ↵t  c/t. Then, SGM has uniform

stability with

✏stab  1 + 1/�c

n� 1
(2cL2)

1
βc+1T

βc
βc+1

In particular, omitting constant factors that depend on �,

c, and L, we get ✏stab / T 1−1/(βc+1)

n
.

4. Stability-inducing operations

In light of our results, it makes sense to analyse for op-

erations that increase the stability of the stochastic gradi-

ent method. We show in this section that pleasingly sev-

eral popular heuristics and methods indeed improve the

stability of SGM. Our rather straightforward analyses both

strengthen the bounds we previously obtained and help to

provide an explanation for the empirical success of these

methods.

Weight Decay and Regularization. Weight decay is a

simple and effective method that often improves general-

ization (Krogh & Hertz, 1992).

Definition 4.1. Let f : Ω ! Ω, be a differentiable function.

We define the gradient update with weight decay at rate µ
as Gf,µ,↵(w) = (1� ↵µ)w � ↵rf(w).

It is easy to verify that the above update rule is equivalent

to performing a gradient update on the `2-regularized ob-

jective g(w) = f(w) + µ
2
kwk2.

Lemma 4.2. Assume that f is �-smooth. Then, Gf,µ,↵ is

(1 + ↵(� � µ))-expansive.

The above lemma shows as that a regularization parame-

ter µ counters a smoothness parameter �. Once r > �, the

gradient update with decay becomes contractive. Any the-

orem we proved in previous sections that has a dependence

on � leads to a corresponding theorem for stochastic gradi-

ent with weight decay in which � is replaced with � � µ.

Gradient Clipping. It is common when training deep

neural networks to enforce bounds on the norm of the gra-

dients encountered by SGD. This is often done by either

truncation, scaling, or dropping of examples that cause an

exceptionally large value of the gradient norm.

Consider for example gradient clipping. In this pro-

cedure, a stochastic gradient rf(w; z) is replaced with

rcf(w; z) = clip(rf(w; z)) where clip(x) = x if kxk 
B and B/kxk otherwise.

Lemma 4.3. If f is �-smooth, then krcf(w; z)k  B and

krcf(v; z)�rcf(w; z)k  �kv � wk.

Similar arguments would apply to the different variants of

gradient warping. Any such heuristic where the warping

operation is Lipschitz directly leads to a bound on the Lip-

schitz parameter L that appears in our bounds. It is also

easy to introduce a varying Lipschitz parameter Lt to ac-

count for possibly different values.
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Dropout. Dropout (Srivastava et al., 2014) is a popular

and effective heuristic for preventing large neural networks

from overfitting. Here we prove that, indeed, dropout im-

proves all of our stability bounds generically.

At each iteration of dropout SGD, we sample a random di-

agonal matrix P with precisely s diagonal entries equal to

1 and the rest equal to 0. Instead of taking a stochastic gra-

dient step rf(w; z) we instead update with the perturbed

gradient rdf(w; z) := Prf(Pw; z). The dropout up-

date is both more bounded and smoother than the standard

stochastic gradient update.

Lemma 4.4. Assume that f is L-Lipschitz and �-smooth.

Then, the dropout gradient rdf(w; z) with dropout rate

s has norm bounded by L and satisfies EP krdf(v; z) �
rdf(w; z)k  (

p

s/d)�kv � wk.

5. Convex risk minimization

We now outline how our generalization bounds lead to

bounds on the population risk achieved by SGM in the con-

vex setting. We restrict our attention to the convex case

where we can contrast against known results. The main

feature of our results is that we show that one can achieve

bounds comparable or perhaps better than known results

on stochastic gradient for risk minimization by running for

multiple passes over the data set.

The key to the analysis in this section is to decompose the

risk estimates into an optimization error term and a stabil-

ity term. The optimization error designates how closely we

optimize the empirical risk or a proxy of the empirical risk.

By optimizing with stochastic gradient, we will be able

to balance this optimization accuracy against how well we

generalize. These results are inspired by the work of Bous-

quet and Bottou who provided similar analyses for SGM

based on uniform convergence (Bottou & Bousquet, 2008).

However, our stability results will yield sharper bounds.

Throughout this section, our risk decomposition works as

follows. We define the optimization error to be the gap

between the empirical risk and minimum empirical risk

in expectation: ✏opt(w)
def
= E

⇥

RS [w]�RS [w
S
? ]
⇤

where

wS
? = argminw RS [w]. By Theorem 2.2, the expected

risk of a w output by SGM is bounded as E[R[w]] 
E[RS [w]] + ✏stab  E[RS [w

S
? ]] + ✏opt(w) + ✏stab. In

general, the optimization error decreases with the number

of SGM iterations while the stability increases. Balancing

these two terms will thus provide a reasonable excess risk

against the empirical risk minimizer. Note that our analysis

involves the expected minimum empirical risk which could

be considerably smaller than the minimum risk. However,

as we now show, it can never be larger.

Lemma 5.1. Let w? denote the minimizer of the popula-

tion risk and wS
? denote the minimizer of the empirical risk

given a sampled data set S. Then E[RS [w
S
? ]]  R[w?].

To analyze the optimization error, we will make use of a

classical result due to Nemirovski and Yudin (Nemirovski

& Yudin, 1983).

Theorem 5.2. Assume we run stochastic gradient descent

with constant stepsize ↵ on a convex function R[w] =
Ez[f(w; z)] . Assume further that krf(w; z)k  L and

kw0 � w?k  D for some minimizer w? of R. Let w̄T de-

note the average of the T iterates of the algorithm. Then

we have R[w̄T ]  R[w?] +
1
2
D2

T↵
+ 1

2
L2↵ .

The upper bound stated in the previous theorem is known

to be tight even if the function is �-smooth (Nemirovski &

Yudin, 1983).

Theorem 5.2 directly provides a generalization bound for

SGM that holds when we make a single pass over the data.

The theorem requires fresh samples from the distribution in

each update step of SGM. Hence, given n data points, we

cannot make more than n steps, and each sample must not

be used more than once.

Corollary 5.3. Let f be a convex loss function satisfying

krf(w, z)k  L and let w? be a minimizer of the popu-

lation risk R[w] = Ez f(w; z). Suppose we make a single

pass of SGM over the sample S = (z1, . . . , zn) with fixed

step size ↵ = D
L
p
n

starting from a point w0 that satis-

fies kw0 � w?k  D. Then, the average w̄n of the iterates

satisfies E[R[w̄n]]  R[w?] +
DLp
n
.

We now contrast this bound with what follows from our

results.

Proposition 5.4. Let S = (z1, . . . , zn) be a sample of

size n. Let f be a �-smooth convex loss function satisfy-

ing krf(w, z)k  L and let wS
? be a minimizer of the

empirical risk RS [w] =
1
n

Pn
i=1 f(w; zi). Suppose we run

T steps of SGM with step size

↵ =
D

L
p
n

 

n

T
·

r

T

n+ 2T

!

from a starting point w0 that satisfies kw0 � wS
? k 

D. Then, the average w̄T over the iterates satisfies

E[R[w̄T ]]  E[RS [w
S
? ]] +

DLp
n

q

n+2T
T

.

Note that the bound from our stability analysis is not di-

rectly comparable to Corollary 5.3 as we are comparing

against the expected minimum empirical risk rather than

the minimum risk. Lemma 5.1 implies that the excess risk

in our bound is at most worse by a factor of
p
3 compared

with Corollary 5.3 when T = n. Moreover, the excess risk

in our bound tends to a factor merely
p
2 larger than the

Nemirovski-Yudin bound as T goes to infinity. In contrast,

the classical bound does not apply when T > n.
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6. Experimental Evaluation

The goal of our experiments is to isolate the effect of train-

ing time, measured in number of steps, on the stability of

SGM. We evaluated broadly a variety of neural network ar-

chitectures and varying step sizes on a number of different

datasets.

To measure algorithmic stability we consider two proxies.

The first is the Euclidean distance between the parameters

of two identical models trained on the datasets which dif-

fer by a single example. In all of our proofs, we use slow

growth of this parameter distance as a way to prove stabil-

ity. Note that it is not necessary for this parameter distance

to grow slowly in order for our models to be algorithmi-

cally stable. This is a strictly stronger notion. Our second

weaker proxy is to measure the generalization error directly

in terms of the absolute different between the test error and

training error of the model.

We analyzed four standard machine learning datasets each

with their own corresponding deep architecture. We stud-

ied the LeNet architecture for MNIST, the cuda-convnet

architecture for CIFAR-10, the AlexNet model for Ima-

geNet, and the LSTM model for the Penn Treebank Lan-

guage Model (PTB). Full details of our architectures and

training procedures can be found below.

In all cases, we ran the following experiment. We choose a

random example from the training set and remove it. The

remaining examples constitute our set S. Then we create a

set S0 by replacing a random element of S with the element

we deleted. We train stochastic gradient descent with the

same random seed on datasets S and S0. We record the Eu-

clidean distance between the individual layers in the neural

network after every 100 SGM updates. We also record the

training and testing errors once per epoch.

Our experiments show four primary findings:

Step size dependence. Doubling the step size no more

than doubles the generalization error (see Figure 1). This

behavior is fairly consistent for both generalization error

defined with respect to classification accuracy and cross en-

tropy (the loss function used for training). It thus suggests

that there is at most a linear dependence on the step size in

the generalization error.

Parameter distance. We evaluate the normalized Eu-

clidean distance
p

kw � w0k2/(kwk2 + kw0k2) between

the parameters w and w0 of two models trained on two

copies of the data differing in a random substitution. We

observe that the parameter distance grows sub-linearly even

in cases where our theory currently uses an exponential

bound. This shows that our bounds are pessimistic.

Parameter distance verus generalization. There is a

close correspondence between the parameter distance and

generalization error. A priori, it could have been the case

that the generalization error is small even though the pa-

rameter distance is large. Our experiments show that these

two quantities often move in tandem and seem to be closely

related.

Late substitution. When measuring parameter distance

it is indeed important that SGM does not immediately

encounter the random substitution, but only after some

progress in training has occurred. If we artificially place the

corrupted data point at the first step of SGM, the parameter

distance can grow significantly faster subsequently. This

effect is most pronounced in the ImageNet experiments, as

displayed in Figure 2.

Experiments. We evaluated convolutional neural net-

works for image classification on three datasets: MNIST,

Cifar10 and ImageNet. Starting with Cifar10, we chose

a standard model consisting of three convolutional lay-

ers each followed by a pooling operation. This model

roughly corresponds to that proposed by Krizhevsky et

al. (Krizhevsky et al., 2012) and available in the “cuda-

convnet” code1. However, to make the experiments more

interpretable, we avoid all forms of regularization such

as weight decay or dropout. The learning rate was fixed

at 0.01. We also do not employ data augmentation even

though this would greatly improve the ultimate test accu-

racy of the model. Additionally, we use only constant step

sizes in our experiments. With these restrictions the model

we use converges to below 20% test error. While this is

not state of the art on Cifar10, our goal is not to optimize

test accuracy but rather a simple, interpretable experimen-

tal setup.

The situation on MNIST is largely analogous to what we

saw on Cifar10. We trained a LeNet inspired model with

two convolutional layers and one fully-connected layer.

The first and second convolutional layers have 20 and 50

hidden units respectively. This model is much smaller and

converges significantly faster than the Cifar10 models, typ-

ically achieving best test error in five epochs. We trained

with minibatch size 60. As a result, the amount of overfit-

ting is smaller. In the case of MNIST, we also repeated

our experiments after replacing the usual cross entropy ob-

jective with a squared loss objective. The results are in the

full version on arxiv. It turned out that this does not harm

convergence at all, while leading to somewhat smaller gen-

eralization error and parameter divergence.

On ImageNet, we trained the standard AlexNet architec-

ture (Krizhevsky et al., 2012) using data augmentation, reg-

ularization, and dropout. Unlike in the case of Cifar10,

we were unable to find a setting of hyperparameters that

yielded reasonable performance without using these tech-

1https://code.google.com/archive/p/cuda-convnet
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Figure 1. Experimental results on Cifar. Top: Generalization er-

ror. Middle: Parameter divergence. Bottom: Comparison of train,

test, and generalization eror with parameter divergence.

niques. However, for Figure 2 (bottom), we did not use

data-augmentation to exaggerate the effects of overfitting

and demonstrate the impact scaling the model-size. This

figure demonstrates that the model-size appears to be a

second-order effect with regards to generalization error,

and step-size has a considerably stronger impact.

6.1. Recurrent neural networks with LSTM

We also examined the stability of recurrent neural net-

works. Specifically, we looked at an LSTM architecture

for language modeling (Zaremba et al., 2014). We focused

on word-level prediction experiments using the Penn Tree

Bank (PTB) (Marcus et al., 1993), consisting of 929,000

training words, 73,000 validation words, and 82,000 test

words. PTB has 10,000 words in its vocabulary2. Follow-

2Data source: http://www.fit.vutbr.cz/

˜imikolov/rnnlm/simple-examples.tgz
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Figure 2. Experiments on ImageNet. Top left: Parameter diver-

gence with early substitution. Top right: Late substitution. Bot-

tom: Generalization error for varying model size.

ing Zaremba et al., we trained regularized LSTMs with two

layers that were unrolled for 20 steps. We initialize the hid-

den states to zero. We trained with minibatch size 20. The

LSTM has 200 units per layer and its parameters are initial-

ized to have mean zero and standard deviation of 0.1. We

did not use dropout to enhance reproducibility. Dropout

would only increase the stability of our models. The re-

sults are displayed in Figure 3.
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Figure 3. Training on PTB dataset with LSTM architecture.
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