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1German Research Center for Artificial Intelligence (DFKI), Berlin, Germany
2Technische Universität Berlin, Berlin, Germany

{firstname.lastname}@dfki.de

Abstract

Evaluating translation models is a trade-off be-

tween effort and detail. On the one end of

the spectrum there are automatic count-based

methods such as BLEU, on the other end lin-

guistic evaluations by humans, which arguably

are more informative but also require a dis-

proportionately high effort. To narrow the

spectrum, we propose a general approach on

how to automatically expose systematic dif-

ferences between human and machine trans-

lations to human experts. Inspired by adver-

sarial settings, we train a neural text classi-

fier to distinguish human from machine trans-

lations. A classifier that performs and general-

izes well after training should recognize sys-

tematic differences between the two classes,

which we uncover with neural explainability

methods. Our proof-of-concept implementa-

tion, DiaMaT, is open source. Applied to

a dataset translated by a state-of-the-art neu-

ral Transformer model, DiaMaT achieves a

classification accuracy of 75% and exposes

meaningful differences between humans and

the Transformer, amidst the current discussion

about human parity.

1 Introduction

A multi-dimensional diagnostic evaluation of per-

formance or quality often turns out to be more

helpful for system improvement than just consid-

ering a one-dimensional utilitarian metric, such as

BLEU (Papineni et al., 2002). This is exemplified

by, for instance, the pioneering work of Bahdanau

et al. (2014). The authors introduced the attention

mechanism responding to the findings of Cho et al.

(2014) who reported that neural translation qual-

ity degraded with sentence length. The attention

mechanism was later picked up by Vaswani et al.

(2017) for their attention-only Transformer model,

which still is state of the art in machine translation

(MT) (Bojar et al., 2018). Furthermore, while MT

output approaches human translation quality and

the claims for ”human parity” (Wu et al., 2016;

Hassan et al., 2018) increase, multi-dimensional

diagnostic evaluations can be useful to spot the

thin line between the machine and the human.

Diagnostic (linguistic) evaluations require

human-expert feedback, which, however, is very

time-consuming to collect. For this reason, there

is a need for tools that mitigate the effort, such as

the ones developed by Madnani (2011); Popović

(2011); Berka et al. (2012); Klejch et al. (2015).

In this paper we propose a novel approach for

developing evaluation tools. Contrary to the above

tools that employ string comparison methods such

as BLEU, implementations of the new approach

derive annotations based on a neural model of ex-

plainability. This allows both capturing of seman-

tics as well as focusing on the particular tenden-

cies of MT errors. Using neural methods for the

evaluation and juxtaposition of translations has al-

ready been done by Rikters et al. (2017). Their

method, however, can only be applied to attention-

based models and their translations. In contrast,

our approach generalizes to arbitrary machine and

even human translations. After first discussing the

abstract approach in the next section, we present a

concrete open-source implementation, “DiaMaT”

(from Diagnose Machine Translations).

2 Approach

The proposed approach consists of the three steps

(1) train, (2) sort, and (3) explain.

2.1 Step 1: Train

In a first step, inspired by generative adversar-

ial networks (Goodfellow et al., 2014; Wu et al.,

2017; Yang et al., 2017) we propose to train a

model to distinguish machine from human transla-

tions. The premise is that if the classifier general-

izes well after training, it has learned to recognize
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systematic or frequent differences between the two

classes (herinafter also referred to as “class evi-

dence”). Class evidence may be, for instance, style

differences, overused n-grams but also errors. The

text classifier can be implemented through various

architectures, ranging from deep CNNs (Conneau

et al., 2017) to recurrent classifiers built on top of

pre-trained language models (Howard and Ruder,

2018).

2.2 Step 2: Sort

In a second step, we suggest letting the trained

classifier predict the labels of a test set which con-

tains human and machine translations and then

sort them by classification confidence. This is

based on the assumption that if the classifier is

very certain that a given translation was produced

by a machine (translation moved to the top of the

list in this step), then the translation should con-

tain strong evidence for a class, i.e. errors typical

for only the machine. Furthermore, even if we are

dealing with a very human-like MT output, which

means that our classifier may only slightly perform

above chance, sorting by classification confidence

should still move the few systematic differences

that the classifier identified to the top.

positive output

hidden layer

contributions

word vector

contributions

Figure 1: Contributions propagated from output to in-

put space. Colors represent positive (red) and negative

(blue) contributions. The Figure is adapted from Kin-

dermans et al. (2018).

2.3 Step 3: Explain

Arras et al. (2016, 2017a,b) demonstrated the data

exploratory power of explainability methods in

Natural Language Processing (NLP). This is why

in a third step, we propose to apply an explain-

ability method to uncover and visualize the class

evidence on which the classifier based its deci-

sions. Our definition of an explanation follows

Montavon et al. (2018), who define it as “the col-

lection of features of the interpretable domain, that

have contributed for a given example to produce

a decision (e.g. classification or regression).”1 In

our case the interpretable domain is the plain text

space. There exist several candidate explainability

methods, one of which we present in the following

as an example.

Figure 2: A heatmap of contribution scores in word

vector space over a sequence of tokens. Red means

positive contribution (score > 0), blue means negative

contribution (score < 0).

2.3.1 Explainability and Interpretability

Methods for Data Exploration

In their tutorial paper, Montavon et al. (2018)

discuss several groups of explainability methods.

One group, for instance, identifies how sensitively

a model reacts to a change in the input, others

extract patterns typical for a certain class. Here,

we discuss methods that propagate back contribu-

tions.

The contribution flow is illustrated in Fig. 1. At

the top, the depicted binary classifier produced a

positive output (input classified as class one). The

classification decision is based on the fact that in

the previous layer, the evidence for class one ex-

ceeded the evidence for class zero: The left and

the right neuron contributed positively to the de-

cision (reddish), whereas the middle neuron con-

tributed negatively (blueish). Several explainabil-

ity methods, such as Layerwise Relevance Prop-

agation (Bach et al., 2015) or PatternAttribution

(Kindermans et al., 2018), backtrack contributions

layer-wise. The methods have to preserve coher-

ence over highly non-linear activation functions.

Eventually, contributions are projected into the in-

put space where they reveal what the model con-

siders emblematic for a class. This is what we ex-

ploit in step 3.

1Montavon et al. (2018) distinguish between explainabil-
ity and interpretability. Interpretability methods also hold po-
tential for the approach. For brevity, we limit ourselves to
explainability methods here.
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Figure 3: Screenshot of demonstrative results in DiaMaT. Filters that allow the user to analyse the corpus are not

shown. The bold label is the true label. The activations of the machine neuron are shown in brackets; on the left

the unnormalized logit activation, on the right the softmax activation. Positive logits and softmax probabilities

greater 0.5 indicate machine evidence, as do tokens highlighted in red. Consequently, blue indicates evidence for

the human. The more intense the colour, the stronger the evidence.

Explainability methods in NLP (Arras et al.,

2016, 2017a,b; Harbecke et al., 2018) are typi-

cally used to first project scores into word-vector

space resulting in heat maps as shown in Fig. 2.

To interpret them in plain text space, the scores

are summed over the word vector dimensions to

compute RGB values for each token, resulting in

plain text heatmaps as shown in Fig. 3.

3 Implementation

For step 1 (training phase), DiaMaT2 deploys a

CNN text classifier, the architecture of which is

depicted in Fig. 4. The classifier consumes three

embeddings: the embedding of a source and two

translations of the source, one by a machine and

one by a human. It then separately convolves

over the embeddings and subsequently applies

max pooling to the filter activations. The concate-

nated max features are then passed to the last layer,

a fully connected layer with two output neurons.

The left neuron fires if the machine translation was

passed to the left input layer, the right neuron fires

if the machine translation was passed to the right

input layer. Note that this layer allows the model

to combine features from all three inputs for its

classification decision.

For step 2 (sorting phase), DiaMaT offers to sort

by unnormalized logit activations or by softmax

activations. Furthermore, one can choose to use

2Source code, data and experiments are available at
https://github.com/dfki-nlp/diamat.

the machine neuron activation or the human neu-

ron activation as the sorting key.

For step 3 (explaining phase), DiaMaT employs

the iNNvestigate toolbox (Alber et al., 2018) in

the back-end that offers more than ten explainabil-

ity methods: Replacing one method with another

only requires to change one configuration value in

DiaMaT, before repeating step 3 again. In step

3, DiaMaT produces explanations in the form of

(token, score) tuple lists that are consumed by

a front-end server which visualizes the scores as

class evidence (see Fig. 3).3

Translation Source Translation

Conv Conv Conv

Max Pooling & Concatenation

FC2×F

Figure 4: Architecture of the text classifier.

4 Datasets and Experiments

We tested DiaMaT on a corpus translated by an

NMT Transformer engine (Vaswani et al., 2017)

3The front-end was inspired by the demo LRP server
of the Fraunhofer HHI insitute https://lrpserver.

hhi.fraunhofer.de/text-classification, last
accessed 2019-01-31.

https://github.com/dfki-nlp/diamat
https://lrpserver.hhi.fraunhofer.de/text-classification
https://lrpserver.hhi.fraunhofer.de/text-classification
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conforming to the WMT14 data setup (Bojar et al.,

2014). The NMT model was optimized on the test-

set of WMT13 and an ensemble of 5 best models

was used. It was trained using OpenNMT (Klein

et al., 2017), including Byte Pair Encoding (Sen-

nrich et al., 2015) but no back-translation, achiev-

ing 32.68 BLEU on the test-set of WMT14.

Next, we trained the CNN text classifier

sketched in Fig. 4 for which we randomly drew

1M training samples (human references and ma-

chine translations alongside their sources) from

the WMT18 training data (Bojar et al., 2018), ex-

cluding the WMT14 training data. The valida-

tion set consisted of 100k randomly drawn sam-

ples from the same set and we drew another 100k

samples randomly for training the explainability

method of choice, PatternAttribution, which learns

explanations from data. All texts were embed-

ded using pre-trained fastText word vectors (Grave

et al., 2018).

We evaluated the classifier on around 20k sam-

ples drawn from the official test sets, excluding

WMT13. On this test set, the classifier achieved

an accuracy of 75%, which is remarkable, consid-

ering the ongoing discussion about human parity

(Wu et al., 2016; Hassan et al., 2018). We also

used this test set for steps 2 and 3. Thus, neither

the translation model, nor the text classifier, nor

the explainability method encountered this split

during training. For step 2, the machine transla-

tion was always passed to the right input layer and

contributions to the right output neuron were re-

trieved with PatternAttribution.4 We then sorted

the inputs by the softmax activation of the machine

neuron, which moved inputs for which the clas-

sifier is certain that it has identified the machine

correctly to the top.

5 Demonstration and Observations

We observed that the top inputs frequently con-

tained sentences in which DiaMaT considered the

token after a sentence-ending full stop strong ev-

idence for the human (Fig. 3, top segment). We

take this as evidence that DiaMaT correctly rec-

ognized that the human generated multiple sen-

tences instead of a single one more often than the

machine did. At this point, we cannot, however,

offer an explanation for why the token preceding

the punctuation mark is frequently considered ev-

4In order to visualize evidence for the human (blue), pos-
itive contributions in the left input needed to be inverted.

idence for the machine.

Furthermore, DiaMaT also regarded reduced

negations (“n’t”) as evidence for the human (see

Fig. 3, middle segment) which again is reflected in

the statistics. The machine tends to use the unre-

duced negation more frequently.

The last segment in Fig. 3 shows how DiaMaT

points to the fact that the machine more often pro-

duced sentence end markers than the human in

cases where the source contained no end marker.

The claims above are all statistically significant in

the test set, according to a χ2 test with α = 0.001.

6 Future Work

The inputs in Fig. 3 contain easily readable evi-

dence. There is, however, also much evidence that

is hard to read. In general, we can assume that with

increasing architectural complexity, more com-

plex class evidence can be uncovered, which may

come at the cost of harder readability.

In the future, it is worth exploring how different

architectures and model choices affect the quality,

complexity and readability of the uncovered ev-

idence. For instance, one direction would be to

to train the classifier on top of a pretrained lan-

guage model (Howard and Ruder, 2018; Devlin

et al., 2019) which could improve the classifica-

tion performance. Furthermore, other explainabil-

ity methods should also be tested.

7 Conclusion

We presented a new approach to analyse and juxta-

pose translations. Furthermore, we also presented

an implementation of the approach, DiaMaT. Dia-

MaT exploits the generalization power of neural

networks to learn systematic differences between

human and machine translations and then takes

advantage of neural explainability methods to un-

cover these. It learns from corpora containing mil-

lions of translations but offers explanations on sen-

tence level. In a stress test, DiaMaT was capa-

ble of exposing systematic differences between a

state-of-the-art translation model output and hu-

man translations.
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