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Abstract—Background: Keypoint detection is important for many computer vision applications. Existing methods suffer from

insufficient selectivity regarding the shape properties of features and are vulnerable to contrast variations and to the presence of noise

or texture. Methods: We propose a trainable filter which we call Combination Of Shifted FIlter REsponses (COSFIRE) and use for

keypoint detection and pattern recognition. It is automatically configured to be selective for a local contour pattern specified by an

example. The configuration comprises selecting given channels of a bank of Gabor filters and determining certain blur and shift

parameters. A COSFIRE filter response is computed as the weighted geometric mean of the blurred and shifted responses of the

selected Gabor filters. It shares similar properties with some shape-selective neurons in visual cortex, which provided inspiration for

this work. Results: We demonstrate the effectiveness of the proposed filters in three applications: the detection of retinal vascular

bifurcations (DRIVE dataset: 98.50 percent recall, 96.09 percent precision), the recognition of handwritten digits (MNIST dataset:

99.48 percent correct classification), and the detection and recognition of traffic signs in complex scenes (100 percent recall and

precision). Conclusions: The proposed COSFIRE filters are conceptually simple and easy to implement. They are versatile keypoint

detectors and are highly effective in practical computer vision applications.

Index Terms—Feature detection, feature representation, medical information systems, object recognition, optical character

recognition, shape

Ç

1 INTRODUCTION

THE detection of perceptually salient features, often
referred to as keypoints or landmarks, is an important

task in many computer vision applications, such as image
registration, stereo camera calibration, object tracking, and
object recognition.

A substantial body of work has been done in this area
and several methods have been proposed for the detection,
description and matching of keypoints. These methods
characterize a keypoint by a specific data structure derived
from the image content in the surroundings of the
concerned point. In this sense, the terms keypoint and
landmark refer to a local pattern rather than a single point.
The typical patterns of interest range from simple edges to
corners and junctions, Fig. 1. The Harris detector [1], for
instance, detects corner-like structures and achieves rota-
tion invariance by using the eigenvalues of the Hessian
matrix. This detector, which aroused much interest, was
extended by including local gray-level invariants based on
combinations of Gaussian derivatives [2]. Later, scale-
invariant approaches were proposed by selecting keypoints
as the maxima points in a Laplacian [3] or Difference-of-
Gaussian (DoG) [4] scale space. The Laplacian-based scale
selection and the Harris detector were also combined into
the so-called Harris-Laplace operator [5].

A salient feature or keypoint is often characterized by a
local image descriptor, which may vary from a simple scalar
value to a rich description, such as a feature vector, a bag of
values, or some other data structure. An extensive survey of
local descriptors can be found in [6]. It compares a number
of descriptors, including derivatives of Gaussians [7],
moment invariants [8], complex features [9], responses of
steerable filters [10], phase-based local features [11], and
shows that the best performance is achieved with the SIFT
descriptor [12]. Various extensions of the SIFT descriptor
have been proposed, including the PCA-SIFT [13] and the
GLOH [6], which use principal component analysis for
dimensionality reduction. Nevertheless, the original SIFT
approach outperforms both mentioned variants and seems
to be the most popular keypoint descriptor currently.
Recently, another operator called SURF [14] has been
introduced which is somewhat similar to SIFT and speeds
up the efficiency of keypoint selection.

The detection of keypoints that are similar to some
keypoint which is selected as a prototype is typically done
by computing a similarity (or dissimilarity) measure that is
usually based on the euclidean (or some other) distance
between the respective keypoint descriptors. These methods
are not robust to contrast variations and as a result they suffer
from insufficient selectivity to the shape properties of
features. This issue is illustrated by Fig. 2. The pattern in
Fig. 2a that is formed by two lines that make a right-angle
vertex that is, as a shape, very different from a pattern that is
formed by just one of the constituent lines, Fig. 2b.
Approaches that are based on the dissimilarity between
keypoint descriptors such as the ones mentioned above may
find these two patterns similar to a considerable extent. On
theother hand, suchmethodsmight produce lower similarity
scores for patterns that are regarded as similar from the

490 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

. The authors are with the Johann Bernoulli Institute for Mathematics and
Computer Science, University of Groningen, The Netherlands.
E-mail: {g.azzopardi, n.petkov}@rug.nl.

Manuscript received 7 Dec. 2011; revised 5 Apr. 2012; accepted 26 Apr. 2012;
published online 8 May 2012.
Recommended for acceptance by T. Tuytelaars.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-12-0874.
Digital Object Identifier no. 10.1109/TPAMI.2012.106.

0162-8828/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society



aspect of shape by a human observer, but showdifferences in
contrast and/or contain texture, Figs. 2c, 2d.

In this paper, we are interested in the detection of
contour-based patterns. We introduce trainable keypoint
detection operators that are configured to be selective for
given local patterns defined by the geometrical arrangement
of contour segments. The proposed operators are inspired
by the properties of a specific type of shape-selective neuron
in area V4 of visual cortex which exhibit selectivity for parts
of (curved) contours or for combinations of line segments
[15], [16].

We call the proposed keypoint detector Combination Of
Shifted FIlter REsponses (COSFIRE) filter as the response of
such a filter in a given point is computed as a function of
the shifted responses of simpler (in this case orientation-
selective) filters. Using shifted responses of simpler filters—
Gabor filters in this study—corresponds to combining their
respective supports at different locations to obtain a more
sophisticated filter with a bigger support. The specific
function that we use here to combine filter responses is
weighted geometric mean, essentially multiplication, which
has specific advantages regarding shape recognition and
robustness to contrast variations. Such a model design
decision is mainly motivated by the better results obtained
using multiplication versus addition. It gets further support
by psychophysical evidence [17] that curved contour parts
are likely detected by a neural mechanism that multiplies
the responses of afferent subunits (sensitive for different
parts of the curve pattern). Due to the multiplicative
character of the output function, a COSFIRE filter produces
a response only when all constituent parts of a pattern of
interest are present.

A COSFIRE filter is conceptually simple and straightfor-
ward to implement: It requires the application of selected
Gabor filters, Gaussian blurring of their responses, shifting
of the blurred responses by specific, different vectors, and
multiplying the shifted responses. The questions of which
Gabor filters to use, how much to blur their responses, and
how to shift the blurred responses are answered in a
COSFIRE filter configuration process in which a local
pattern of interest that defines a keypoint is automatically
analyzed. The configured COSFIRE filter can then success-
fully detect the same and similar patterns. We also show
how the proposed COSFIRE filters can achieve invariance to
rotation, scale, reflection, and contrast inversion.

The rest of the paper is organized as follows: In Section 2,
we present the COSFIRE filter and demonstrate how it can
be trained and used to detect local contour patterns. In
Section 3, we demonstrate the effectiveness of the proposed
trainable COSFIRE filters in three practical applications: the
detection of vascular bifurcations in retinal fundus images,
the recognition of handwritten digits, and the detection and
recognition of traffic signs in complex scenes. Section 4
contains a discussion of some aspects of the proposed
approach and highlights the differences that distinguish it
from other approaches. Finally, we draw conclusions in
Section 5.

2 METHOD

2.1 Overview

The following example illustrates the main idea of our
method. Fig. 3a shows an input image containing three
vertices. We consider the encircled vertex, which is shown
enlarged in Fig. 3b, as a (prototype) pattern of interest and
use it to automatically configure a COSFIRE filter that will
respond to the same and similar patterns.

The two ellipses shown in Fig. 3b represent the dominant
orientations in the neighborhood of the specified point of
interest. We detect such lines by symmetric Gabor filters.
The central circle represents the overlapping supports of a
group of such filters. The response of the proposed
COSFIRE detector is computed by combining the responses
of these Gabor filters in the centers of the corresponding
ellipses by multiplication. The preferred orientations of
these filters and the locations at which we take their
responses are determined by analyzing the local prototype
pattern used for the configuration of the COSFIRE filter
concerned. Consequently, the filter is selective for the
presented local spatial arrangement of lines of specific
orientations and widths. Taking the responses of Gabor
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Fig. 2. (a) Prototype pattern. (b) Test pattern which has 50 percent
similarity (computed by template matching) to the prototype. (c), (d) Test
patterns that have only 30 percent similarity to the prototype due to (c)
contrast differences and (d) presence of texture. From a shape detection
point of view, the patterns in (c) and (d) are more similar to the prototype
in (a) than the pattern in (b). This example shows the shortcomings of
other models that are based on distance or dissimilarity of descriptors.
The local image pattern is used as a descriptor in this example. Methods
that compute local descriptors only shift the problem to a feature space.

Fig. 3. (a) Synthetic input image (of size 256� 256 pixels). The circle
indicates a prototype feature of interest that is manually selected by a
user. (b) Enlargement of the selected feature. The ellipses represent the
support of line detectors that are identified as relevant for the concerned
feature.

Fig. 1. Examples of corners and junction patterns marked in
(a) photographic images and (b) their enlargements.



filters at different locations around a point can be
implemented by shifting the responses of these Gabor
filters by different vectors before using them for the pixel-
wise evaluation of a multivariate function which gives the
COSFIRE filter output.

In the next sections, we explain the automatic config-
uration process of a COSFIRE filter that will respond to a
given prototype feature of interest and similar patterns. The
configuration process determines which responses of which
Gabor filters in which locations need to be multiplied in
order to obtain the output of the filter.

2.2 Detection of Orientations by 2D Gabor Filters

We build the proposed COSFIRE filter using as input the
responses of Gabor filters, which are known for their
orientation selectivity.

We denote by g�;�ðx; yÞ the response of a Gabor filter of
preferred wavelength � and orientation � to a given input
image. Such a filter has other parameters, such as spatial
aspect ratio, bandwidth, and phase offset, that we skip here
for brevity. The responses of a symmetrical and an
antisymmetrical filter can be combined in a Gabor energy
filter. Surround suppression can also be applied to Gabor
(energy) filter responses to reduce responses to texture and
improve the detectability of object contours. For brevity of
presentation, we do not consider all these aspects of Gabor
filters here and we refer to [18], [19], [20], [21], [22], [23], [24]
for technical details and to our online implementation.1 We
normalize2 all Gabor functions that we use in such a way
that all positive values of such a function sum up to 1 and
all negative values sum up to �1.

We threshold the responses of Gabor filters at a given
fraction t1 (0 � t1 � 1) of the maximum response of g�;�ðx; yÞ
across all combinations of values ð�; �Þ used and all
positions ðx; yÞ in the image, and denote these thresholded
responses by jg�;�ðx; yÞjt1 . We comment on the choice of the
value of t1 in Sections 3 and 4.

2.3 Configuration of a COSFIRE Filter

A COSFIRE filter uses as input the responses of some Gabor
filters, each characterized by parameter values ð�i; �iÞ,
around certain positions ð�i; �iÞ with respect to the center
of the COSFIRE filter. A set of four parameter values
ð�i; �i; �i; �iÞ characterizes the properties of a contour part
that is present in the specified area of interest: �i=2
represents the width, �i represents the orientation, and
ð�i; �iÞ represents the location. In the following we explain
how we obtain the parameter values of such contour parts
around a given point of interest.

We consider the responses of a bank of Gabor filters
along a circle3 of a given radius � around a selected point of
interest, Fig. 4. In each position along that circle, we take the
maximum of all responses across the possible values of
ð�; �Þ used in the filter bank. The positions that have values
greater than the corresponding values of the neighboring
positions along an arc of angle �=8 are chosen as the points

that characterize the dominant orientations around the
point of interest. We determine the polar coordinates ð�i; �iÞ
for each such point with respect to the center of the filter.
For such a location ð�i; �iÞ we then consider all combina-
tions of ð�; �Þ for which the corresponding responses
g�;�ðx; yÞ are greater than a fraction t2 ¼ 0:75 of the
maximum of g�;�ðx; yÞ across the different combinations of
values ð�; �Þ used. For each value � that satisfies this
condition, we consider a single value of �, the one for which
g�;�ðx; yÞ is the maximum of all responses across all values
of �. For each distinct pair of (�; �) and for location ð�i; �iÞ
we obtain a tuple (�i; �i; �i; �i). Thus, multiple tuples can be
formed for the same location ð�i; �iÞ. In Section 4, we
provide further comment on the choice of the value of t2.

We denote by Sf ¼ fð�i; �i; �i; �iÞ j i ¼ 1 . . .nfg the set of
parameter value combinations which fulfill the above
conditions. The subscript f stands for the local prototype
pattern around the selected point of interest. Every tuple in
the set Sf specifies the parameters of some contour part in f .

For the point of interest shown in Fig. 4a, with two
values of the parameter � (� 2 f0; 30g), the selection method
described above results in four contour parts with para-
meter values specified by the tuples in the following set:

Sf ¼ f
ð�1 ¼ 8; �1 ¼ 0; �1 ¼ 0; �1 ¼ 0Þ;
ð�2 ¼ 8; �2 ¼ 0; �2 ¼ 30; �2 ¼ �=2Þ;
ð�3 ¼ 16; �3 ¼ �=2; �3 ¼ 0; �3 ¼ 0Þ;
ð�4 ¼ 16; �4 ¼ �=2; �4 ¼ 30; �4 ¼ �Þ:
g

The last tuple in Sf , ð�4 ¼ 16; �4 ¼ �=2; �4 ¼ 30; �4 ¼ �Þ,
for instance, describes a contour part with a width of
ð�4=2 ¼Þ 8 pixels and an orientation �4 ¼ �=2 that can be
detected by a Gabor filter with preferred wavelength �4 ¼
16 and orientation �4 ¼ �=2, at a position of �4 ¼ 30 pixels to
the left (�4 ¼ �) of the point of interest; this location is
marked by the label “b” in Fig. 4. This selection is the result
of the presence of a horizontal line to the left of the center of
the feature that is used for the configuration of the filter.
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Fig. 4. Configuration of a COSFIRE filter. (a) The gray level of a pixel
represents the maximum value superposition of the thresholded (at
t1 ¼ 0:2) responses of a bank of Gabor filters (five wavelengths � 2
f4; 4

ffiffiffi
2

p
; 8; 8

ffiffiffi
2

p
; 16g and eight orientations � 2 f�i

8
; i ¼ 0 . . . 7g) at that

position. The white cross indicates the location of the point of interest
selected by a user and the bright circle of a given radius (here � ¼ 30

pixels) indicates the locations considered around the point of interest.
(b) Values of the maximum value superposition of thresholded Gabor
filter responses along the concerned circle. The labeled black dots in (a)
mark the positions (relative to the center of the filter) at which the
respective strongest Gabor filter responses are taken. These two
positions correspond to the two local maxima in the plot in (b).

1. http://matlabserver.cs.rug.nl.
2. This normalization ensures that the response to an image of constant

intensity is 0. Without normalization, this is true only for antisymmetrical
filters. It also ensures that the response to a line of width w will be largest
for a symmetrical filter of preferred wavelength � ¼ 2w. We mention this
explicitly because line detection is essential in one application that we
present in Section 3.

3. For � ¼ 0, we only consider the point of interest.



2.4 Blurring and Shifting Gabor Filter Responses

The above analysis of the considered local pattern of
interest f indicates that this pattern produces four strong
responses g�i;�iðx; yÞ of Gabor filters with parameters
ð�1 ¼ 8; �1 ¼ 0Þ, ð�2 ¼ 8; �2 ¼ 0Þ, ð�3 ¼ 16; �3 ¼ �=2Þ, and
ð�4 ¼ 16; �4 ¼ �=2Þ in the corresponding positions with
polar coordinates ð�i; �iÞ with respect to the filter center.
Next, we use these responses to compute the output of the
COSFIRE filter. Since the concerned responses are in
different positions ð�i; �iÞ with respect to the filter center,
we first shift them appropriately so that they come together
in the filter center. The COSFIRE filter output can then be
evaluated as a pixel-wise multivariate function of the
shifted Gabor filter responses.

Before these shift operations, we blur the Gabor filter

responses in order to allow for some tolerance in the position

of the respective contour parts. We define the blurring

operation as the computation of maximum value of the

weighted thresholded responses of a Gabor filter. For

weighting, we use a Gaussian functionG�ðx; yÞ, the standard
deviation � ofwhich is a linear function of the distance � from

the center of the COSFIRE filter,

� ¼ �0 þ ��; ð1Þ

where �0 and � are constants. The choice of the linear

function in (1) is explained in Section 4. The value of the

parameter � determines the orientation tuning of the

COSFIRE filter: The orientation bandwidth becomes broad-

er with an increasing value of �.
Next, we shift the blurred responses of each selected

Gabor filter ð�i; �iÞ by a distance �i in the direction opposite

to �i. In polar coordinates, the shift vector is specified by

ð�i; �i þ �Þ. In Cartesian coordinates, it is (�xi, �yi), where

�xi ¼ ��i cos�i, and �yi ¼ ��i sin�i. We denote by

s�i;�i;�i;�iðx; yÞ the blurred and shifted response of the Gabor

filter that is specified by the ith tuple ð�i; �i; �i; �iÞ in the

set Sf :

s�i;�i;�i;�iðx; yÞ ¼
def

max
x0;y0

fjg�i;�iðx� x0 ��xi; y� y0 ��yiÞjt1G�ðx0; y0Þg;
ð2Þ

where �3� � x0; y0 � 3�.
Fig. 5 illustrates the blurring and shifting operations for

this COSFIRE filter, applied to the image in Fig. 3a. For each

of the four contour parts detected in the prototype feature

pattern, we first compute the corresponding Gabor filter

responses and then we blur and shift these responses

accordingly.
In practice, the computation of one blurred response (for

the same values of the parameters �; �, and �), for instance

with s�;�;�;�¼0ðx; yÞ, is sufficient: The result of s�;�;�;�ðx; yÞ for
any value of � can be obtained from the result of the output

of s�;�;�;�¼0ðx; yÞ by appropriate shifting.

2.5 Response of a COSFIRE Filter

We define the response rSf ðx; yÞ of a COSFIRE filter as the

weighted geometric mean of all the blurred and shifted

thresholded Gabor filter responses s�i;�i;�i;�iðx; yÞ that corre-
spond to the properties of the contour parts described by Sf :

rSf ðx; yÞ ¼def
 
YjSf j

i¼1

�
s�i;�i;�i;�iðx; yÞ

�!i
!1

�PjSf j
i¼1

!i
�������

�������
t3

!i ¼ exp
�

�2
i

2�02 ; 0 � t3 � 1;

ð3Þ

where :j jt3 stands for thresholding the response at a fraction

t3 of its maximum across all image coordinates ðx; yÞ. For
1=�0 ¼ 0, the computation of the COSFIRE filter becomes

equivalent to the standard geometric mean, where the

s-quantities have the same contribution. Otherwise, for

1=�0 > 0, the input contribution of s-quantities decreases

with an increasing value of the correspondingparameter �. In

our experiments we use a value of the standard deviation �0

that is computed as a function of the maximum value of

the given set of � values: �0 ¼ ð��max
2=2 ln 0:5Þ1=2, where

�max ¼ maxi2f1...jSf jgf�ig. We make this choice in order to
achieve a maximum value ! ¼ 1 of the weights in the center

(for � ¼ 0), and a minimum value ! ¼ 0:5 in the periphery

(for � ¼ �max).
Fig. 5 shows the output of a COSFIRE filter which is

defined as the weighted geometric mean of four blurred

and shifted images from the responses of two Gabor filters.

Note that this filter responds at points where a pattern is

present which is identical or similar to the prototype

pattern f at and around the selected point of interest, which

was used in the configuration of the filter. In this example,

the COSFIRE filter reacts strongly in a given point to a local

pattern that contains a horizontal line to the left of that

point, a vertical line above it, together with a horizontal and

a vertical line at the point.
Fig. 6a shows a set of elementary features that are angles of

different acuteness and orientations. For the illustration in

Fig. 6,we configure aCOSFIRE filter using the enframed local
pattern in Fig. 6a where the point of interest is positioned on

the corner of the vertex. The structure of the filter is

determined by using three values of � (� 2 f0; 12; 30g).
Fig. 6b shows the responses of this COSFIRE filter where

the strength of themaximum filter response to a given feature

is rendered as a gray-level shading of that feature. The

maximum response is reached at or near the corner. In this

case, theCOSFIRE filter achieves the strongest response to the

local prototype pattern that was used to configure it, but it

also reacts, with less than the maximum response, to angles

that differ slightly in acuteness and/or orientation. This

example illustrates the selectivity and the generalization
ability of the proposed filter.

2.6 Achieving Invariance

In the following, we explain how we achieve invariance to

rotation, scale, reflection, and contrast inversion.

2.6.1 Rotation Invariance

Using the set Sf that defines the concerned filter, we form a
new set < ðSfÞ that defines a new filter, which is selective
for a version of the prototype feature f that is rotated by an
angle  :

< ðSfÞ ¼def fð�i; �i þ  ; �i; �i þ  Þj8ð�i; �i; �i; �iÞ 2 Sfg: ð4Þ
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For each tuple ð�i; �i; �i; �iÞ in the original filter Sf that
describes a certain local contour part, we provide a
counterpart tuple ð�i; �i þ  ; �i; �i þ  Þ in the new set
< ðSfÞ. The orientation of the concerned contour part and
its polar angle position with respect to the center of the filter
are offset by an angle  relative to the values of the
corresponding parameters of the original part.

Fig. 6c shows the responses r< ðSf Þ of the COSFIRE filter
that correspond to < ðSfÞ to the set of elementary features
shown in Fig. 6a. This filter responds selectively to a version
of the original prototype feature f rotated counterclockwise
at an angle of ( ¼ ) �=2. It is, however, configured by
manipulating the set of parameter value combinations,
rather than by computing them from the responses to a
rotated version of the original prototype pattern f .

A rotation-invariant response is achieved by taking the
maximum value of the responses of filters that are obtained
with different values of the parameter  :

r̂Sf ðx; yÞ ¼
def

max
 2�

fr< ðSf Þðx; yÞg; ð5Þ

where � is a set of n equidistant orientations defined as
� ¼ f2�n i j 0 � i < n g. Fig. 6d shows the maximum super-
position r̂Sf ðx; yÞ for n ¼ 16. The filter according to (5)
produces the same response to local patterns that are
versions of each other, obtained by rotation at discrete
angles  2 �.

As to the response of the filter to patterns that are rotated
at angles of intermediate values between those in �, it
depends on the orientation selectivity of the filter Sf that is
influenced by the orientation bandwidth of the involved
Gabor filters and by the value of the parameter � in (1).
Fig. 7 illustrates the orientation selectivity of the COSFIRE
filter, which is configured with the enframed local proto-
type pattern in Fig. 6a using � ¼ 0:1. A maximum response
is obtained for the local prototype pattern that was used to
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Fig. 5. (a) Input image (of size 256� 256 pixels). The enframed inlay images show (top) the enlarged prototype feature of interest, which is the vertex
encircled in the input image and (bottom) the structure of the COSFIRE filter that is configured for this feature. This filter is trained to detect the
spatial local arrangement of four contour parts. The ellipses illustrate the wavelengths and orientations of the Gabor filters, and the bright blobs are
intensity maps for Gaussian functions that are used to blur the responses of the corresponding Gabor filters. The blurred responses are then shifted
by the corresponding vectors. (b) Each contour part of the input pattern is detected by a Gabor filter with a given preferred wavelength �i and
orientation �i. Two of these parts (i ¼ f1; 2g) are detected by the same Gabor filter and the other two parts (i ¼ f3; 4g) are detected by another Gabor
filter; therefore, only two distinct Gabor filters are selected from the filter bank. (c) We then blur the thresholded (here at t1 ¼ 0:2) response
g�i;�i ðx; yÞ
�� ��

t1
of each concerned Gabor filter and subsequently shift the resulting blurred response images by corresponding polar coordinate vectors

ð�i; �i þ �Þ. (d) Finally, we obtain the output of the COSFIRE filter by computing the weighted geometric mean (here �0 ¼ 25:48) of all the blurred and
shifted thresholded Gabor filter responses. The � marker indicates the location of the specified point of interest. The two local maxima in the output
of the COSFIRE filter correspond to the two similar vertices in the input image.



configure this filter. The response declines with the

deviation of the orientation of the local input pattern from

the optimal one and practically disappears when this

deviation is greater than �=8. When the deviation of the

orientation is �=16, the response of the filter is approxi-

mately half of the maximum response. This means that the

half-response bandwidth of this COSFIRE filter is �=8. Thus,

n ¼ 16 distinct preferred orientations (in intervals of �=8)

ensure sufficient response for any orientation of the feature

used to configure the filter.
As demonstrated by Fig. 6d, when the concerned filter is

applied in rotation-invariant mode (n ¼ 16), it responds
selectively to the prototype pattern, a right angle, indepen-
dently of the orientation of the angle.

2.6.2 Scale Invariance

?twb=0pc2.58>Scale invariance is achieved in a similar way.

Using the set Sf that defines the concerned filter, we form a

new set T	ðSfÞ that defines a new filter which is selective for

a version of the prototype feature f that is scaled in size by a

factor 	:

T	ðSfÞ ¼def fð	�i; �i; 	�i; �iÞj 8 ð�i; �i; �i; �iÞ 2 Sfg: ð6Þ
For each tuple ð�i; �i; �i; �iÞ in the original filter Sf that

describes a certain local contour part, we provide a
counterpart tuple ð	�i; �i; 	�i; �iÞ in the new set T	ðSfÞ.
The width of the concerned contour part and its distance to
the center of the filter are scaled by the factor 	 relative to the
values of the corresponding parameters of the original part.

A scale-invariant response is achieved by taking the
maximum value of the responses of filters that are obtained
with different values of the parameter 	:

~rSf ðx; yÞ ¼
def

max
	2�

frT	ðSf Þðx; yÞg; ð7Þ

where � is a set of 	 values equidistant on a logarithmic
scale defined as � ¼ f2i

2ji 2 ZZg.

2.6.3 Reflection Invariance

As to reflection invariance, we first form a new set �Sf from
the set Sf as follows:

�Sf ¼def fð�i; �� �i; �i; �� �iÞj 8 ð�i; �i; �i; �iÞ 2 Sfg; ð8Þ

The new filter which is defined by the set �Sf is selective

for a reflected version of the prototype feature f about the

y-axis. A reflection-invariant response is achieved by taking

the maximum value of the responses of the filters Sf and �Sf :

�rSf ðx; yÞ ¼def maxfrSf ðx; yÞ; r �Sf ðx; yÞg: ð9Þ
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Fig. 7. Orientation selectivity of a COSFIRE filter that is configured with a
right-angle vertex.

Fig. 6. (a) A set of elementary features. The enframed feature is used as a prototype for configuring a COSFIRE filter. (b) Responses of the
configured filter rendered by shading of the features. (c) Responses of a rotated version ( ¼ �

2
) of the filter obtained by manipulation of the filter

parameters. (d) Rotation-invariant responses for 16 discrete orientations.



2.6.4 Combined Invariance to Rotation, Scale, and

Reflection

A combined rotation-, scale-, and reflection-invariant

response is achieved by taking the maximum value of the
rotation- and scale-invariant responses of the filters Sf and
�Sf that are obtained with different values of the

parameters  and 	:

�rSf ðx; yÞ ¼
def

max
 2�;	2�

fr̂< ðT	ðSf ÞÞðx; yÞ; r̂< ðT	ð �Sf ÞÞðx; yÞ
�
: ð10Þ

2.6.5 Invariance to Contrast Inversion

Next to the above geometric invariances, we can achieve
invariance to contrast inversion by using Gabor filters with
inverse polarity.

We do not elaborate further on this possibility because
we do not use it in the applications presented below.

2.7 Detection of More Complex Patterns

The filter considered above is selective for a local pattern
that consists of two lines forming an angle. However, in the

configuration of the COSFIRE filter we made no assump-
tions about the specific type of local pattern it should detect.
The configuration result is determined by the local

prototype pattern presented.
Next, we illustrate the configuration of a filter that can

detect a bifurcation pattern formed by three lines of different

orientations, Figs. 8a, 8b. In Fig. 8c, we show the rotation-
invariant response of the concerned COSFIRE filter for the

input image in Fig. 8a. Besides the original local prototype

pattern that was used to configure this filter, it correctly
detects the presence of another two similar features: one in a
vertical orientation and the other pattern in a horizontal
orientation.

3 APPLICATIONS

In the following, we demonstrate the effectiveness of the
proposed COSFIRE filters by applying them in three
practical applications: the detection of vascular bifurcations
in retinal fundus images, the recognition of handwritten
digits, and the detection and recognition of traffic signs in
complex scenes.

3.1 Detection of Retinal Vascular Bifurcations

Retinal fundus images give a unique possibility to take a
noninvasive look at the state of the vascular system of a
person. The vascular geometrical structure in the retina is
known to conform to structural principles which are related
to certain physical properties [25], [26], [27], [28]. The
analysis of the geometrical structure is important as
deviations from the optimal principles may indicate
(increased risk of) some cardiovascular diseases, such as
hypertension [29] and atherosclerosis [30]; a comprehensive
analysis is given in [31]. The identification of vascular
bifurcations is one of the basic steps in this analysis. There
are no state-of-the-art automatic techniques yet, and hence a
time-consuming manual process is usually adopted [30].
Automating the identification of vascular bifurcations is an
essential step in the description of the vascular tree that is
needed for further analysis.

In the following, we show how trainable COSFIRE filters
of the type introduced above can be configured to detect
vascular bifurcations in retinal fundus images.

Figs. 9a, 9b show a retinal fundus image and its
segmentation in blood vessels and background, which are
both taken from the DRIVE dataset [32]. The latter image
contains 107 blood vessel features, shown encircled, which
present Y- or T-form bifurcations or cross overs.

We apply to the binary segmentation image a bank of
symmetric Gabor filters with eight equidistant orientations
(� 2 f�i

8
j i ¼ 0 . . . 7g) and five wavelengths equidistantly

spaced on a logarithmic scale (� 2 f4ð2i
2Þji ¼ 0 . . . 4g) and

threshold the results at t1 ¼ 0:2 of the maximum possible
response. This threshold value is sufficient to preserve all
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Fig. 8. (a) Synthetic input image (of size 256� 256 pixels). (b) The
structure of a COSFIRE filter that is configured using the encircled
pattern in (a) with three values of � (� 2 f0; 12; 30g) and �0 ¼ 2:5. (c)
Rotation-invariant response brSf of the COSFIRE filter (here �0 ¼ 25:48).

Fig. 9. Example of a retinal fundus image from the DRIVE dataset. (a) Original image (of size 564� 584 pixels) with filename 21_training.tif. (b) Binary
segmentation of vessels and background (also from DRIVE). The typical widths of blood vessels vary between 1 and 7 pixels. This range of width
values determines our choice of the values of the wavelength � used in the bank of Gabor filters. The circles surround Y- and T-formed vessel
bifurcations and crossings. (c), (d) Superposition of the responses of a bank of symmetric Gabor filters with a threshold (c) t1 ¼ 0 and (d) t1 ¼ 0:2.



junction regions and suppress the undesirable responses of
Gabor filters, Fig. 9d.

Next, we select a vascular bifurcation that we use to
configure a COSFIRE filter. In practice, the selection is done
by specifying a region of appropriate size centered at
the concerned feature. Fig. 10a illustrates the selection of
one such region that is shown enlarged in Fig. 10b. In the
following, we denote this prototype feature by f1. Fig. 10c
shows the structure of a COSFIRE filter Sf1 that is configured
for the specified feature. For the configuration of this filter,
we use three values of the radius � (� ¼ f0; 4; 10g).

Fig. 11 shows the results that are obtained by the
application of filter Sf1 (�

0 ¼ 8:49) in different modes to the
binary retinal fundus image shown in Fig. 10a. For this filter,
we use a threshold value of t3 ¼ 0:21 as it produces the
largest number of correctly detected bifurcations and no
falsely detected features. The encircled regions4 are centered
on the local maxima of the filter response and if two such
regions overlap by 75 percent, only the one with the stronger
response is shown.

When no invariance is used (Fig. 11a), the filter Sf1
detects four vascular bifurcations, one of which is the
prototype pattern that was used to configure this filter.
When the filter is applied in a rotation-invariant mode
( 2 f�i

8
j i ¼ 0 . . . 7g) it detects 24 features. With the addi-

tion of scale invariance (	 2 f2�1
2; 1; 2

1
2g) the filter detects

34 features, and with the inclusion of reflection invariance
the COSFIRE filter Sf1 detects 67 bifurcations. These results
illustrate how invariance to such geometric transformations
can be used to boost the performance of a COSFIRE filter. It
also shows the strong generalization capability of this
approach because 62.62 percent (67 out of 107) of the
features of interest are detected by one filter.

As to the remaining features that are not detected by the
filter corresponding to feature f1, we proceed as follows:
We take one of these features that we denote by f2 (Fig. 12)
and train a second COSFIRE filter Sf2 using it. With this
second filter we detect 50 features of interest of which 35
overlap with features detected by the filter Sf1 and 15 are
newly detected features (t3ðSf2Þ ¼ 0:25). Applying the two
filters together results in the detection of 82 distinct
features. We continue adding filters that are configured
using features that have not been detected by the previously
trained filters. By configuring another two COSFIRE filters,

Sf3 and Sf4 (Fig. 12), and using them together with the other
two filters we achieve 100 percent recall and 100 percent
precision for the concerned image. This means that all
107 features shown in Fig. 9b are correctly detected and that
there are no false responses of the filters.

We use an individual threshold value t3ðSfiÞ for each
COSFIRE filter Sfi by setting it to the smallest number for
which the precision is still 100 percent for the training image.

We apply the same four COSFIRE filters on a dataset
(DRIVE) of 40 binary retinal images5 and evaluate the
obtained results with the ground truth data6 that was
defined by the authors of this paper. The recall R and the
precision P that we achieve depend on the values of the
threshold parameters t3ðSfiÞ: P increases and R decreases
with increasing values of t3ðSfiÞ. For each COSFIRE filter we
add to (or subtract from) the corresponding learned thresh-
old value t3ðSfiÞ the same offset value. With the referred
four COSFIRE filters, the harmonic mean ð2PR=ðP þRÞÞ of
the precision and recall reaches a maximum at a recall R of
95.58 percent and a precision P of 95.25 percent when each
t3ðSfiÞ is offset by the same amount of þ0:05 from the
corresponding learned threshold value. We extend our
experiments by configuring up to eight COSFIRE filters of
which the new four filters are configured for four prototype
features taken from the same retinal image with filename
04_manual1.gif. We achieve the best results for six filters
(Fig. 12) and show them together with the results for four
filters in Fig. 13. With six filters the maximum harmonic
mean is reached at a recall R of 98.50 percent and a
precision P of 96.09 percent when the corresponding
learned t3ðSfiÞ values are offset by the same amount of
þ0:07. We made this application available on the Internet.7

The optimal results for four and six COSFIRE filters are
reached for a very small value of the offset: þ0:05 and
þ0:07, respectively. This shows that the learned threshold
values that are determined individually for each filter give
results near to the optimal that may be expected.

In principle, all vascular bifurcations can be detected if a
sufficient number of filters are configured and used.
Furthermore, the precision can be improved by performing
additional morphological analysis of the features that are
detected by the filters. Even without these possible
improvements, our results are better than those achieved
in [33] where a recall of 95.82 percent was reported on a
small dataset of five retinal images only.

3.2 Recognition of Handwritten Digits

Handwritten digit recognition is a challenging task in the
community of pattern recognition which has various com-
mercial applications, such as bank check processing and
postal mail sorting. It has been used as a benchmark for
comparing shape recognition methods. Feature extraction
plays a significant role in the effectiveness of such systems. A
detailed reviewof the state-of-the-artmethods is given in [34].

In the following, we show how the proposed trainable
COSFIRE filters can be configured to detect specific parts of
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Fig. 10. Configuration of a COSFIRE filter. (a) The circle indicates a
bifurcation feature f1 selected for the configuration of the filter.
(b) Enlargement of the selected feature. (c) Structure of the COSFIRE
filter Sf1 configured for the specified bifurcation. The ellipses illustrate
the involved Gabor filters and the positions in which their responses
are taken.

4. The radius of the circle is the sum of the maximum value of the radial
parameter � and blur radius used at this value of �.

5. Named in DRIVE 01_manual1.gif, ..., 40_manual1.gif.
6. The ground truth data (coordinates of bifurcations and cross overs)

can be downloaded from http://www.cs.rug.nl/~imaging/databases/
retina_database.

7. http://matlabserver.cs.rug.nl/RetinalVascularBifurcations.



handwritten digits. Consequently, the collective responses
of multiple such filters can be used as a shape descriptor of
a given handwritten digit. We use the well-known modified
NIST (MNIST) dataset [35] to evaluate the performance of
this approach. This dataset comprises 60,000 training and
10,000 test digits8 where each digit is given as a grayscale
image of size 28� 28 pixels, Fig. 14.

In the configuration step, we choose a random subset of
digit images from each digit class. For each such digit image
we choose a random location in the image and use the local
stroke pattern around that location to configure a COSFIRE
filter. We use a given randomly selected location for the
configuration of a COSFIRE filter only if that filter consists of
at least four tuples; otherwise, we choose a different location.
We impose this restriction in order to avoid the selection of
small digit fragments as prototype patterns, which may
consequently result in filters with low discriminative power.
We provide further comments on the discriminative abilities
of these COSFIRE filters in Section 4. For this application, we
use three values of � (� 2 f0; 3; 8g), t2 ¼ 0:75, �0 ¼ 0:83,
� ¼ 0:1, and a bank of antisymmetric Gabor filters with
16 equidistant orientations (� 2 f�i

8
ji ¼ 0 . . . 15g) and one

wavelength of (� ¼ 2
ffiffiffi
2

p
). Fig. 15 illustrates the configuration

of four such COSFIRE filters using local prototype patterns
(parts of digits) that are randomly selected from four
handwritten digits.

We perform a number of experiments with different
values of the threshold parameter t1 (t1 2 f0; 0:05; 0:1; 0:15g).
The values of the other parametersmentioned above are kept
fixed for all experiments. For each value of t1, we run an
experiment by configuring up to 500 COSFIRE filters per
digit class. We repeat such an experiment five times and
report the average recognition rate. Repetition of experi-
ments is necessary in order to compensate for the random
selection of training digit images and the random selection of
locations within these images that are used to configure the
concerned filters.

After the configuration of a certain number of COSFIRE
filters, every digit to which the set of these filters is applied
can be described by a vectorwhere each element corresponds
to the maximum response of a COSFIRE filter across all
locations in the input image. For instance, with 500 filters per
digit class and 10 digit classes, a digit image to which this set
of 5,000 COSFIRE filters is applied is described by a vector of
5,000 elements. For this application, the responses of the

concerned Gabor filters provide equal contribution
(1=�0 ¼ 0) to the output of the corresponding COSFIRE filter.

The feature vectors obtained for the digit images of the
training set are then used to train an all-pairsmulticlass (with
majority vote) support vector machine (SVM) classifier with
a linear kernel. In Fig. 16a, we plot the recognition rates that
we achieve for different values of the threshold t1 and for
different numbers of COSFIRE filters used. We achieve a
maximum recognition rate of 99.40 percent with 4,500
COSFIRE filters, where the filters are used in a noninvariant
mode, i.e., without compensation for possible pattern
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Fig. 13. Precision-recall plots obtained with four and six COSFIRE filters.
For each plot the threshold parameter t3 of each filter is varied by adding
the same offset (ranging between �0:1 and 0:1) to the corresponding
learned threshold value. The precision P increases and the recall R
decreases with an increasing offset value. The harmonic mean (often
used as a single measure of performance) of R and P reaches a
maximum at R ¼ 98:50 percent and P ¼ 96:09 percent with six filters and
at R ¼ 95:58 percent and P ¼ 95:25 percent for four filters. These points
are marked by circle and square markers, respectively.

Fig. 11. Results of using the filter Sf1 in different modes: (a) noninvariant, (b) rotation-invariant, (c) rotation- and scale-invariant, and (d) rotation-,
scale-, and reflection-invariant. The number of correctly detected features (TP—true positives) increases as the filter achieves invariance to such
geometric transformations.

8. The MNIST dataset is available online: http://yann.lecun.com/exdb/
mnist.

Fig. 12. (Top row) A set of six bifurcations and (bottom row) the
structures of the corresponding six COSFIRE filters. The first four
bifurcations are taken from the binary retinal image shown in Fig. 10a
with filename 21_manual1.gif and the last two bifurcations are extracted
from the retinal image with filename 04_manual1.gif. The following are
the learned threshold values: t3ðSf1 Þ ¼ 0:21, t3ðSf2 Þ ¼ 0:25, t3ðSf3 Þ ¼
0:36, t3ðSf4 Þ ¼ 0:29, t3ðSf5 Þ ¼ 0:17, and t3ðSf6 Þ ¼ 0:25.



reflection, rotation, and scaling ( ¼ 0, 	 ¼ 1). In Fig. 14, one
can observe, however, that some of the handwritten digits
given in the MNIST dataset differ slightly in orientation. We
consider this fact and repeat the five experiments for the
threshold t1 ¼ 0 (that contributed to the best performance so
far), but this time applying the same COSFIRE filters in a
partially rotation-invariant mode with five values of the
rotation tolerance angle ( 2 f� �

4
;� �

8
; 0; �

8
; �
4
g). The plots in

Fig. 16b show that the performance that is achieved with the
partially rotation-invariant filters is improved to amaximum
recognition rate of 99.48 percent with 4,000 filters. This
means that the error rate is decreased by 13.33 percent and
that 500 less filters are required.

The recognition rate of 99.48 percent that we achieve is
comparable to the best results obtained with other
approaches9 applied on the MNIST dataset. In particular,
our method outperforms the shape context approach
(99.37 percent [36]) and three other approaches (94.2 percent
[37], 97.62 percent [38], and 98.73 percent [39]) that use
biologically inspired features combined with a multilayer
perceptron (MLP) [37] and a linear SVM classifier [38], [39].
The highest recognition rate achieved to date is 99.61 percent
[40]. The approach used to achieve that result extends
the original training dataset by elastically distorting the
training images.

Notable is the fact thatwe achieve the above resultwithout
any optimization regarding the COSFIRE filters and the
parameters used. Moreover, we do not perform any pre-
processing and/or postprocessing operations, neither do we
use an extended training dataset with elastic distortion. The
fact thatwe achieve a result that is very close to the best result
ever achieved is remarkable because our method is versatile
and has not been developed with the specific handwritten
digit recognition application inmind,while the bestmethods
are results of long-lasting research effort in which elaborate
application-specific techniques have been developed.

3.3 Detection and Recognition of Traffic Signs

The detection and recognition of specific objects in complex
scenes is one of the most challenging tasks in computer
vision. Here, we showhow the proposedCOSFIRE filters can
be used for the detection of traffic signs in complex scenes.

We use a public dataset10 of 48 color images (of size
360� 270 pixels) that was originally published in [41]. Each
of these images contains (at least) one of three possible
traffic signs illustrated in Figs. 17a, 17b, 17c.

For this application, we configure filters for patterns that
aremore complex than the ones involved in the previous two

applications.We configure one COSFIRE filter for each of the
three traffic signs, Figs. 17d, 17e, 17f. We use a bank of
antisymmetric Gabor filterswith onewavelength (� ¼ 4) and
16 equidistant orientations (� 2 f�i

8
ji ¼ 0 . . . 15g), and thresh-

old their responses with t1 ¼ 0:1. The reference traffic signs
that are used to configure the filters and the signs embedded
in the complex scenes have approximately the same view-
point and their sizes differ only by at most 10 percent. For
such rigid objects, it is more appropriate to configure
COSFIRE filters that achieve high selectivity. With this
requirement in mind, we choose to configure the filters with
a large number of � values (� 2 f0; 2; 4; 7; 10; 13; 16; 20; 25g)
and a small value of the parameter � (� ¼ 0:04) that allows
little tolerance in the position of the involved edges.

We use the three COSFIRE filters to detect and recognize
the corresponding traffic signs in the entire dataset of

AZZOPARDI AND PETKOV: TRAINABLE COSFIRE FILTERS FOR KEYPOINT DETECTION AND PATTERN RECOGNITION 499

Fig. 16. Experimental results achieved on the MNIST dataset. (a) The
four plots show the recognition rates achieved for different values of
the threshold t1 as a function of the number of COSFIRE filters used.
The filled-in circle represents the maximum recognition rate of 99.40
percent achieved for t1 ¼ 0 with 4,500 filters. In these experiments, the
COSFIRE filters are used in rotation-noninvariant mode. (b) Perfor-
mance comparison between the same set of COSFIRE filters and t1 ¼ 0
that are first applied in rotation-noninvariant mode and then in a partially
rotation-invariant mode. Here partial rotation-invariance is based on five
values of the rotation tolerance angle  ( 2 f� �

4
;� �

8
; 0; �

8
; �
4
g). The

performance improves with partial rotation-invariant filters that achieve a
maximum recognition rate of 99.48 percent (shown as a filled-in circle)
with 4,000 filters.

Fig. 14. Examples of handwritten digits from the MNIST dataset.

Fig. 15. Example of the configuration of four COSFIRE filters, one for
each of the handwritten digits 0, 4, 8, and 9. (a)-(d) The “+” markers
show the randomly selected locations. The ellipses around the marked
locations represent the support of the Gabor filters that are determined
in the configuration of the concerned COSFIRE filters. (e)-(h) The
corresponding reconstructions of the local patterns that are illustrated as
a superposition of the thresholded (t1 ¼ 0:1) Gabor filter (inverted)
responses, which contribute to the responses of the respective COS-
FIRE filters.

9. A list of results obtained by state-of-the-art approaches is maintained
at http://yann.lecun.com/exdb/mnist/.

10. Traffic sign dataset is online: http://www.cs.rug.nl/~imaging/
databases/traffic_sign_database/traffic_sign_database.html.



48 images. For each color image, we first convert it to
grayscale and subsequently apply the filters. The antisym-
metric Gabor filters that we use to provide inputs to the
COSFIRE filters are applied with isotropic surround sup-
pression [42] (using an inhibition factor of 2) in order to
reduce responses to the presence of texture in these complex
scenes. Rather than using the parameter t3 to threshold the
filter responses at a given fraction of the maximum filter
response, we choose to threshold the responses at a given
absolute value. Moreover, we also threshold responses that
are smaller than a fraction of the maximum value of all the
responses produced by the three filters. We call this thresh-
old validity ratio. For an absolute threshold of 0.04 and a
validity ratio of 0.5, we obtain perfect detection and
recognition performance for all the 48 traffic scenes. This
means that we detect all the traffic signs in the given images
with no false positives and correctly recognize every
detected sign. Fig. 18 illustrates the detection and recognition
of two different traffic signs, shown encircled, in one of the
input images. For this application, we apply the COSFIRE
filters in a noninvariant mode ( ¼ 0, 	 ¼ 1) and compute
their output by a weighted geometric mean of the concerned
Gabor filter responses (�0 ¼ 21:23).

4 DISCUSSION

When presenting the method in Section 2, we indicated that
a prototype feature used for the configuration of a COSFIRE
filter is selected by a user. The detection of vascular
bifurcations and the detection and recognition of traffic
signs presented in Sections 3.1 and 3.3, respectively, are
examples of such applications. The method is, however, not
restricted by this aspect: There exists the possibility that a
system “discovers” patterns to be used for configuration
and Section 3.2 provides an example of such an application.

We use Gabor filters for the detection of lines and edges.
Gabor filters, however, are not intrinsic to the proposed
method and other orientation-selective filters can also be
used.

The configuration of a COSFIRE filter is based on the
spatial arrangement of contour parts that lies along
concentric circles of given radii around a specified point

of interest. In the first two applications that we present we
choose to configure COSFIRE filters with three values of the
radius parameter � as they provide sufficient coverage of
the corresponding features. However, for the third applica-
tion we use nine values of the parameter � in order to
configure COSFIRE filters that are selective for more
complex patterns. The choice of the number of � values is
related to the size and complexity of the local prototype
pattern that is used to configure a filter. The number of
� values used also controls the tradeoff between the
selectivity and generalization ability of a filter: A COSFIRE
filter becomes more selective and more discriminative with
an increasing number of � values.

A COSFIRE filter uses three threshold parameters: t1, t2,
and t3. The value of parameter t1 depends on the contrast of
the image material involved in a given application and the
presence of noise. It controls the level at which the response
of a Gabor filter is supposed to indicate the presence of a
line or an edge at a given position. For the first application,
which concerns binary input images, we achieved good
results for t1 ¼ 0:2. Yet, for the second and third applica-
tions, which use grayscale input images, we obtained the
best results for t1 ¼ 0 and t1 ¼ 0:1, respectively. The
threshold parameter t2, which is used only in the config-
uration phase, is application-independent. It implements a
condition that the selected responses are significant and
comparable with the strongest possible response. We fix the
value of this threshold to ðt2 ¼Þ 0:75. The parameter t3 is
optional. It may be used to suppress the responses of the
COSFIRE filter that are below a given fraction of the
maximum response value across all locations of the input
image. For instance, in the first application we evaluate the
performance of the COSFIRE filters with different values of
the parameter t3, while for the second application we do not
threshold (t3 ¼ 0) the responses. In the third application
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Fig. 18. (a) Input image with filename crossing_004.png. (b) Super-
position of thresholded responses (t1 ¼ 0:1) of a bank of antisymmetric
Gabor filters (� ¼ 4 and � 2 f�i

8
ji ¼ 0 . . . 15g) with isotropic surround

suppression (inhibition factor is 2). (c) Superposition of the thresholded
responses of the three COSFIRE filters. (d) Correct detection and
recognition of two traffic signs. The cross markers indicate the locations
of the two local maxima responses, each surrounded with a circle that
represents the support of the corresponding COSFIRE filter (the
continuous circle represents the intersection sign and the dashed circle
represents the pedestrian crossing sign).

Fig. 17. Three reference traffic signs: (a) an intersection, (b) compulsory
giveway for bikes, and (c) a pedestrian crossing. (d)-(f) The structures of
the corresponding COSFIRE filters determined by the following
parameter values: � 2 f0; 2; 4; 7; 10; 13; 16; 20; 25g, �0 ¼ 0:67, � ¼ 0:04,
� ¼ 4, and � 2 f�i

8
ji ¼ 1 . . . 15g.



we threshold the responses at a given absolute value rather
than use this threshold parameter.

The proposed COSFIRE filters can be applied in various
modes. For the detection of vascular bifurcations in retinal
images we applied COSFIRE filters in rotation-, scale-, and
reflection-invariant mode, while for the recognition of hand-
written digitswe onlymade use of partial rotation invariance
and for the detection and recognition of traffic signs in
complex scenes we used noninvariant COSFIRE filters.

In the following, we highlight three main aspects in
which the proposed COSFIRE filters can be distinguished
from other keypoint detectors. First, a COSFIRE filter gives
a response only when all parts of the filter-defining
prototype feature are present. In contrast, dissimilarity-
based approaches also give responses to parts of the
prototype pattern. Second, while a COSFIRE filter combines
the responses of Gabor filters at different scales, typical
scale-invariant approaches, such as SIFT, use the same
scale, the one at which the concerned keypoint is an
extremum in a given scale space. Third, the area of support
of a COSFIRE filter is adaptive. It is composed of the
support of a number of orientation-selective filters whose
geometrical arrangement around a point of interest is
learned from a given local contour prototype pattern. On
the contrary, the area of support of other operators is
typically related to the appropriate scale rather than to the
shape properties of the concerned pattern. To the best of our
knowledge the proposed filters are the first ones which
combine the responses of orientation-selective filters with
their main area of support outside the point of interest. The
presence of added noise around a pattern of interest has
little or no effect on a COSFIRE filter response. For other
operators, any added noise in the surroundings of a pattern
of interest results in a descriptor that may differ substan-
tially from the descriptor of the same but noiseless pattern.

The computational cost of the configuration of a COSFIRE
filter is proportional to the maximum value of the given set
of � values and to the size of the bank of Gabor filters used. In
practice, for the parameter values that we used in the three
applications, a COSFIRE filter is configured in less than half
of a second for a Matlab implementation that runs on a
3 GHz processor. The computational cost of the application
of a COSFIRE filter depends on the computations of the
responses of a bank of Gabor filters and their blurring and
shifting. In practice, in the first application a retinal fundus
image of size 564� 584 pixels is processed in less than
45 seconds on a standard 3 GHz processor by six rotation-,
scale-, and reflection-invariant COSFIRE filters. For the
second application, a handwritten digit of size 28� 28 pixels
is described by 5,000 rotation-noninvariant COSFIRE filters
in less than 10 seconds on a computer cluster.11 Finally, in the
third application, a complex scene of size 360� 270 pixels is
processed in less than 10 seconds on the same standard
3 GHz processor by three noninvariant COSFIRE filters. For
this application we achieve the same performance as

reported in [41] but with a much lower computational cost.
We used Matlab implementation12 for all the experiments.

The application of the proposedmethod to the recognition
of handwritten digits contains an interesting aspect from a
machine learning point of view. In traditional machine
learning, the features to be used are fixed in advance and the
machine learning aspect concerns the classification of
observed feature vectors. If traditional machine learning is
concerned with features at all, this is typically limited to the
selection of predefined features or using them to derive
“new” features as (linear) combinations of the original ones.
Examples are principle component analysis and generalized
matrix learning vector quantization [43]. Traditional ma-
chine learning is typically not concernedwith the question of
how the original features are defined. This aspect of the
problem is, however, crucial for the success: Almost any
machine learning method will perform well with good
features. The interesting aspect we would like to point out is
that in the proposed approach the appropriate prototype
features are learned in the filter configuration processwhen a
feature of interest is presented.

In our experiments, we do not analyze the discriminative
ability of the individual COSFIRE filters because in this
work we are not concerned with the optimization of the
filters, but rather with showing their versatility. As a
consequence, some of the configured filters that we used for
the handwritten digit application might be redundant due
to being selective for correlated patterns or for patterns with
low distinctiveness. One way of dealing with such
redundancy is to compute a dissimilarity measure between
the prototype patterns used for the configuration of
different COSFIRE filters. Moreover, a prototype feature
selection method may also be incorporated in a machine
learning algorithm, such as relevance learning vector
quantization [44] or a support feature machine [45], to
identify the most relevant COSFIRE filters.

The COSFIRE filters that we propose are inspired by the
properties of one class of shape-selective neuron in area V4
of visual cortex [15], [16], [46], [47]. The selectivity that is
exhibited by a COSFIRE filter which we configured in
Section 2 to a dataset of elementary features (Fig. 6) is
qualitatively similar to the selectivity of some V4 neurons
studied in [15]. The way we determine the standard
deviation of the blurring function in (1) is also motivated
by neurophysiological evidence that the average diameter
of receptive fields13 of V4 neurons increases with the
eccentricity [48]. Since there is a considerable spread in the
behavior across neurons of the concerned type, different
computational models may be needed to adequately cover
the diversity of functional properties in that empirical
space. In this respect, the proposed COSFIRE filter can be
considered as a computational model of shape-selective V4
neurons that is complementary to other models [49], [50],
[51], [52], [53].

The specific type of function that we use to combine the
responses of afferent (Gabor) filters for the considered
applications is weighted geometric mean. This output
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11. We executed the experiments for the MNIST dataset on a computer
cluster of 255 multicore nodes (http://www.rug.nl/cit/hpcv/faciliteiten/
HPCCluster/). We split the MNIST dataset of 70,000 images (60,000 training
and 10,000 test digits) into 250 batches of 280 images each, and processed
the 250 batches in parallel. In this way, the digit descriptors of one
experiment using 5,000 rotation-noninvariant COSFIRE filters takes
approximately (9.5 seconds � 280 images =) 45 minutes. An experiment
with 5,000 partial rotation-invariant COSFIRE filters (five values of the
parameter  ) takes five times as much.

12. Matlab scripts for the configuration and application of COSFIRE
filters can be downloaded from http://matlabserver.cs.rug.nl/.

13. In neurophysiology a receptive field refers to an area in the visual
field which provides input to a given neuron. Its mathematical counterpart
is the support of an operator.



function proved to give better results than various forms of
addition. Furthermore, there is psychophysical evidence
that human visual processing of shape is likely performed
by multiplication [17]. In future work, we plan to experi-
ment with functions other than (weighted) geometric mean.

The proposed COSFIRE filters are particularly useful due
to their versatility and selectiveness, in that a COSFIRE filter
can be configured by any given local feature and is built on
top of other—here orientation-selective—simpler filters.
Elsewhere, we have used other types of simple filters
(Mexican hat operators) to build a contour operator, which
we call Combination of Receptive Fields (CORF) [54].We use
the terms COSFIRE and CORF for the same design principle
in an engineering and neuroscience context, respectively.

There are various directions for future research. One
direction is to apply the proposed trainable COSFIRE filters
in other computer vision tasks, such as geometric stereo
calibration, image retrieval, the recognition of handwritten
characters, architectural symbols, and pedestrians. Another
direction is to enrich the properties of a COSFIRE filter by
including information about the color and texture distribu-
tion in a given local prototype pattern. A third direction is
to extend the proposed approach to 3D COSFIRE filters that
can be applied, for instance, to tubular organ registration
and bifurcation detection in X-ray computed tomography
medical images or to video sequences.

5 CONCLUSIONS

Wedemonstrated that the proposed COSFIRE filters provide
effective machine vision solutions in three practical applica-
tions: the detection of vascular bifurcations in retinal fundus
images (98.50 percent recall and 96.09 percent precision), the
recognition of handwritten digits (99.48 percent correct
classification), and the detection and recognition of traffic
signs in complex scenes (100 percent recall and precision).
For the first application, the proposed COSFIRE filters
outperform other methods previously reported in the
literature. For the second, it is close to the performance of
the best application-specific method. For the third, it gives
the same performance as another method which has much
higher computational complexity.

The novel COSFIRE filters are conceptually simple and
easy to implement: The filter output is computed as the
product of blurred and shifted Gabor filter responses. They
are versatile detectors of contour related features as they
can be trained with any given local contour pattern and are
subsequently able to detect identical and similar patterns.
The COSFIRE approach is not limited to the combination of
Gabor filter responses: More generally, it can be applied to
the responses of filters that provide information about
texture, color, contours, and motion.
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