
C. Baranauskas et al. (Eds.): INTERACT 2007, LNCS 4662, Part I, pp. 124–135, 2007.
© IFIP International Federation for Information Processing 2007

Trainable Sketch Recognizer for
Graphical User Interface Design

Adrien Coyette1, Sascha Schimke2, Jean Vanderdonckt1, and Claus Vielhauer2

1 Belgian Lab. of Computer-Human Interaction (BCHI), Information Systems Unit (ISYS)
Louvain School of Management, Université catholique de Louvain,

Place des Doyens 1, B−1348 Louvain-la-Neuve (Belgium)
{coyette,vanderdonckt}@isys.ucl.ac.be

http://www.isys.ucl.ac.be/bchi
2 Department of Computer Science/ITI,University Otto von Guericke,

Universitätsplatz 2, – D-39106 Magdeburg (Germany)
sascha.schimke@iti.cs.uni-magdeburg.de

Abstract. In this paper we present a new algorithm for automatic recognition of
hand drawn sketches based on the Levenshtein distance. The purpose for draw-
ing sketches in our application is to create graphical user interfaces in a similar
manner as the well established paper sketching. The new algorithm is trainable
by every user and improves the recognition performance of the techniques
which were used before for widget recognition. In addition, this algorithm ay
serve for recognizing other types of sketches, such as letters, figures, and com-
mands. In this way, there is no modality disruption at sketching time.

1 Introduction

Designing the right User Interface (UI) the first time is very unlikely to occur. In-
stead, UI design is recognized as a process that is [19] intrinsically open (new consid-
erations may appear at any time), iterative (several cycles are needed to reach an
acceptable stage), and incomplete (not all required considerations are available at de-
sign time). Consequently, means to support early UI design has been extensively re-
searched [20] to identify appropriate techniques such as paper sketching, prototypes,
mock-ups, diagrams, etc. Most designers consider hand sketches on paper as one of
the most effective ways to represent the first drafts of a future UI [1,10,13,14]. In-
deed, this approach presents many advantages over other techniques like editing in an
interface builder: sketches can be drawn during any design stage [14], it is fast to
learn and quick to produce [20], it lets the sketcher focus on basic structural issues in-
stead of unimportant details (e.g., exact alignment, typography and colors) [10], it is
very appropriate to convey ongoing, unfinished designs [12,16], it encourages creativ-
ity [10], sketches can be performed collaboratively between designers and end-users
[15], and last but not least, it is largely unconstrained [4]. This unconstraint character
turns to be a fundamental aspect to preserve in sketching tools: if for any reason, this
character is disrupted, the end user may be confused or disappointed. Van Duyne et
al. [20] reported that creating a low-fidelity UI prototype (such as UI sketches) is at
least 10 to 20 times easier and faster than its equivalent with a high-fidelity prototype

 Trainable Sketch Recognizer for Graphical User Interface Design 125

(such as produced in UI builders). What is also important is that lowering the design
fidelity to sketches does not reduce the design capabilities to discover usability prob-
lems. Furthermore, the end user may herself sketch to initiate the development
process and when the sketch is close enough to the expected UI, an agreement can be
signed between the designer and the end user, thus facilitating the contract and
validation.

The idea of developing a computer-based tool for sketching UIs naturally emerged
from these observations [8,15]. Such tools would extend the advantages provided by
sketching techniques by: easily creating, deleting, updating or moving UI elements,
thus encouraging typical activities in the design process [19] such as checking and re-
vision. Some research was carried out in order to propose an approach combining the
best of the hand-sketching and computer-assisted interface design, thus providing
mixed initiative support. Among these hybrid approaches we can identify two major
streams of research: sketching only (only a support of sketching activities is provided
without interpreting them) and sketching+interpreting (other tools do not want to
loose the effort and attempt to produce as reusable output some code). The first tools
category does not endanger the unconstraint character, but the second may introduce
some unexpected problems.

In order to produce the output, the system has to proceed to an analysis of the in-
formation provided; storing the input provided by the designer is then insufficient. To
this end, these tools proceed to an online recognition of the input and proceed to the
construction of the corresponding UI. Through the following section we will mainly
focus on this second category. We consider that current restriction on the technique
used in the existing tools are too strong and could be improved to unleash the power
of this approach, as the actual sketching tools do not take into account the sketcher’s
preferences: they impose the same sketching scheme, the same gestures for all types
of sketchers and a learning curve may prevent these users from learning the tool and
efficiently using it. This can appear a little bit in contradiction with the main state-
ment that would like this approach to be as easy as paper. This is also underlined in
two main goals of gesture-based tools [12]: “gestures should be reliably recognized
by the computer, gestures should be easy for people to learn and remember”.

In order to maximize the power of informal UI design based on sketches, the afore-
mentioned shortcomings should be addressed. It is therefore expected that UI sketching
will lead to its full potential, so as to offer the as much freedom as possible to the de-
signer. In this paper, we consider a new kind of approach applied to SketchiXML [4] for
the online processing based a combination of a multi-stroke gesture recognizer which has
been developed for this purpose and the CALI library [6]. Indeed, most sketching tools,
including SketchiXML, are based on a single recognition algorithm (typically, Rubine’s
algorithm [17]), using either a trainable gesture recognizer for gesture and shape primi-
tive recognition or fuzzy logic for shape primitives only.

2 State of the Art

Drafting tools are used to capture the general information needed to obtain global
comprehension of what is desired, keeping all the unnecessary details out of the
process. The most standard approaches for such prototyping are the “paper and pencil

126 A. Coyette et al.

technique”, the “whiteboard/blackboard and post-its approach” [20]. Such approaches
provide access to all the components, and prevent the designer from being distracted
from the primary task of design. Research shows that designers who work out concep-
tual ideas on paper tend to iterate more and explore the design space more broadly,
whereas designers using computer-based tools tend to take only one idea and work it
out in detail [8,15,19]. Many designers have reported that the quality of the discussion
when people are presented with a high-fidelity (Hi-Fi) prototype was different than
when they are presented with a low-fidelity (Lo-Fi) mock up. In Lo-Fi prototyping,
users tend to focus on the interaction or on the overall site structure rather than details
irrelevant at this level [20].

Lo-Fi prototyping offers a clear set of advantages compared to the Hi-Fi perspec-
tive [4], but at the same time suffers from a lack of assistance. For instance, if several
screens have a lot in common, it could be profitable to use copy and paste instead of
rewriting the whole screen each time. A combination of these approaches appears to
make sense, as long as the Lo-Fi advantages are maintained. This consideration re-
sults two families of software tools which support UI sketching and representing the
scenarios between them, one with and one without code generation.

DENIM [13,14] helps web site designers during early design by sketching informa-
tion at different refinement levels, such as site map, story board and individual page,
and unifies the levels through zooming views. DEMAIS [2] is similar in principle, but
aimed at prototyping interactive multimedia applications. It is made up of an interac-
tive multimedia storyboard tool that uses a designer's ink strokes and textual annota-
tions as an input design vocabulary. Both DENIM and DEMAIS use pen input as a
natural way to sketch on screen, but do not produce any final code or other kind of re-
usable output.

In contrast, SILK [10], JavaSketchIt [3], FreeForm [15,16], and SketchiXML [4] are
major applications for pen-input based interface design supporting code generation. SILK
uses pen input to draw GUIs and produce code for the OpenLook operating system.
JavaSketchIt proceeds in a slightly different way than Freeform, as it displays the shapes
recognized in real time, and generates Java UI code. JavaSketchIt uses the CALI library
[6] for the shape recognition, and widgets are formed on basis of a combination of vecto-
rial shapes. The recognition rate of the CALI library is very high and thus makes JavaS-
ketchIt easy to use, even for a novice user. This library is able to identify shapes of dif-
ferent sizes, rotated at arbitrary angles, drawn with dashed, continuous strokes or over-
lapping lines, and use fuzzy logic to associate degrees of certainty to recognized shapes
to overcome uncertainty and imprecision in shape sketches. FreeForm [15] only displays
the shapes recognized once the design of the whole interface is completed, and produces
Visual Basic 6 code. The technique used to build the user interface is based uses a train-
able single stroke recognizer based on Rubine’s algorithm [17] and dictionary for com-
bining simple strokes into Visual Basic widgets and words. SketchiXML is another
sketching tool based on the CALI library. It allows the designer to build the widgets in
the same manner as JavaSketchIt, but provide coverage for a large set of widgets, and
provide UI specifications instead of java. These specifications are written in UsiXML
(User Interface eXtensible Markup Language – http://www.usixml.org) which are plat-
form independent. This application is flexible and its behavior can be parameterized ac-
cording to designer’s preferences.

The aim of this work is thus to produce an improved version of SketchiXML so as
to enable the construction of more complex widgets. Indeed the actual version based

 Trainable Sketch Recognizer for Graphical User Interface Design 127

on the CALI library restraints the type of shape to be considered to a small set of
shape primitive such as circle, rectangle, etc… Even if the number of widgets recog-
nized is quite high due the possibility to build widget using a combination of more
than 2 shape primitives, some widgets are still hardly “sketchable” in a natural man-
ner. To this end we intend to develop a second type of recognition processing provid-
ing custom representations for the different kind of widget or part of widgets.

3 New Sketch Recognition Algorithm

As explained, additional to the shape recognizer based on the CALI library, we build
a new, trainable recognizer to solve some of the problems of the existing recognizer,
that were mentioned above. The main idea of the new sketch recognizer is to divide a
hand drawn input into a sequence of line segments with a particular direction and to
compare two of these sequences using the so called string edit distance. A similar ap-
proach has been successfully suggested in biometric user authentication, e.g. in [18].

3.1 Raw Data

The drawing input from a TabletPC, i.e. the information about the pen movement, is
available as a sequence of 3-tuples (xi, yi, pi), where xi and yi are the coordinates and pi
is the binary pen pressure. In our environment, the coordinates are available in units
of screen pixels; the binary pressure is set to 1, if the pen tip is touching the drawing
surface and set to 0, if the pen is lifted. While using the mouse instead of pen as draw-
ing input device, the pen-down is simulated by pressing the left button.

3.2 Feature Extraction

The features to be extracted from the raw data are based on the idea, described in [7].
The drawing plane is superimposed with a grid and the freehand drawing input is
quantized with respect to the grid nodes (Fig. 1). Each grid node has eight adjacent
grid nodes and for each pair of adjacent nodes one out of eight directions can be
given. So, from the sequence of successive grid nodes, a sequence of directions can be
derived. This sequence can be coded using an alphabet {0-7}, each value representing
one direction. This approach was first presented by Freeman in 1974 [7], where it was
used for a compressed storage of line drawings. We utilize the sequence-like repre-
sentation as our basis for sketch recognition, because it is a short description and loca-
tion invariant description of complex drawing inputs. For each raw sampling point (xi,
yi) (i∈[1,…,n] for a sequence of n raw sampling points) that closest grid node (qxi,
qyi) is selected by the following equations:

qxi = round(xi / wg) and
qyi = round(yi / wg), where wg is the grid width (Fig. 1).

From the sequence of successive grid nodes (qxj, qyj) resulting from sketch input, a
string of directions (coded as words out of {0…7}*) of adjacent grid nodes is build. If
two or more successive raw sampling points are quantized as the same grid node
point, then this grid node appears only once in the sequence. Depending on the grid
width wg and on the distance of the successive raw sampling points, it is possible for

128 A. Coyette et al.

the respective grid nodes not to be direct adjacent to each other. In this case the gap
can be filled by using the line algorithm of Bresenham [2].

The gap between two drawing partitions, i.e. the delay between a pen-up and the
subsequent pen-down event can be coded with respect to the relative position of the
last grid node (qxj, qyj) before the pen-up and the first grid node (qxj+1, qyj+1) after the
pen-down. Dependent of the distance and the angle between (qxj, qyj) and (qxj+1,
qyj+1), a different coding can be used to indicate the kind of gap. Using this method, it
is possible to extract features from hand drawn inputs, which are represented as
strings, consisting of codes, which describe the local direction of line segments in
chronological order and the characteristic of gaps between drawing partitions.

Fig. 1. Square grid quantization of freehand shapes

3.3 String Edit Distance

To compare two strings, a common technique is the so called string edit distance, as a
measure of their dissimilarity. The idea behind this distance is, to transform one string
into another string using the basic character wise operations delete, insert and replace.
The minimal number of these operations for the transformation of one string into an-
other one is called the edit distance or Levenshtein distance [Lev65]. The smaller the
minimal number of needed edit operations for a transformation from string A to string
B, the smaller is the distance between these strings. Instead of only using the number
of operations, in some cases it is advantageous to use weights for the different opera-
tions. One possibility to determine the edit distance between two strings s and t, with
m and n being the respective lengths, is to fill a matrix D of the size m+1 × n+1 as
follows [11]:

D0, 0 = 0,

Di, 0 = Di-1, 0 + wD(si),

D0, j = D0, j-1 + wI(tj) and

Di, j = min {Di-1, j + wD(si), Di, j-1 + wI(tj), Di-1, j-1 + wR(si, tj) },

where si and tj are the ith and jth elements of the strings s and t. wD(si) is the weight for
removing operation of a code si, wI(tj) is the weight for inserting a code tj and wR(si, tj)

 Trainable Sketch Recognizer for Graphical User Interface Design 129

is the weight for replacing a code si by tj. If si and tj are equal, then wR(si, tj) is zero.
The value Dm, n is the weighted edit distance of the strings s and t. For a better under-
standing of the procedure of this computation, we illustrate the resulting matrix in Fig.
2. It is obvious, that the complexity of the straight forward computation of the edit
distance is O(m⋅n). For each matrix element Di, j, the three adjacent elements at the left
side and on top (marked in Fig. 2 by bold border) are required. In practice it can be
shown, that the most relevant elements of the matrix D are those around the main di-
agonal, so the complexity can be reduced, if the grey fields are pre-initialized with an
infinite value, so the min-clause of the calculation procedure considers stronger the
more relevant elements around the main diagonal. Therefore, the computational com-
plexity can be reduced to O(b⋅max{m, n}), where b is a constant factor.

Fig. 2. Matrix D for computation of edit distance

3.4 Sketch Recognition Using String Edit Distance

As outlined above, the string edit distance can be utilized for the purpose of shape
recognition using direction-based feature strings, extracted from hand drawn inputs.
The idea is to have a repository, containing a set of reference shapes. For recognition,
the unknown shape is compared with all shapes in the repository, i.e. the edit distance
between the feature strings of the unknown shape and all reference shapes are calcu-
lated. The type of that reference shape, having the smallest edit distance to the
unknown shape, is assumed to be the type of the unknown shape. Further, to avoid er-
roneous recognition of unknown shapes without a representation in the reference
repository, a threshold for the maximal allowed edit distance has to be defined.

Due to the nature of string edit distance, the distance value at an average is de-
pendant on the lengths of the strings s and t – the longer the strings, the higher is the
average distance value. Therefore a kind of normalization is required. The best solu-
tion for considering the lengths m and n in the calculation of edit distance Dm, n of two
strings s and t is the following:

dist(s, t) = Dm, n / max {m, n}

130 A. Coyette et al.

A second method to normalize the string length impact is to “penalize” large dif-
ferences in lengths of the two feature strings. It can be assumed, that only if a shape S
is different from another shape T, the lengths m and n of the respective feature strings
s and t are different. (The inversion is not true – equal lengths of m and n do not imply
the equality of the shape types!) By introduction of the string length difference com-
pensation factor the adapted distance could be calculated as follows:

dist(s, t) = d(m, n) ⋅ Dm, n / max {m, n} with d(m, n) = max{m, n} / min{m, n}

The effect of d(m, n) is to increase the edit distance by the degree of relative differ-
ence of string lengths. Finally, as a third improvement, it is possible to “penalize” the
operations replace, insert and delete for the gap symbol. The idea is that normally the
trained sketches in the repository have the same number of strokes (and consequently
the same number of gaps) as the actual drawn shape. So, by using a large weight fac-
tor for these “gap operations”, an amount of misrecognitions can be avoided.

The actual recognition of hand drawn inputs can be done by parallel using a set of
different grid widths for the quantization while features string extraction. Here, for
each single grid width setting, that shape from the reference repository is obtained
having the smallest edit distance to the features in the corresponding grid size of the
unknown input. So, for a set of different grid widths, a number of decisions for possi-
ble types of shape references can be achieved. From this set of decisions a degree of
certainty can be derived by dividing the number of matches for each reference type by
the number of decisions at all.

4 Integration into the Existing System

4.1 Implementation

As presented in [4], the SketchiXML’s architecture is based on a set of collaborative
agents where each agent is in charge of a specific part of the recognition/interpretation
process. In order to meet previously elicited requirements, we have thus developed a
new set of agents for the shape recognition process. Indeed, this role was held by a
single agent in the first version. The new version is more sophisticated as several
agents are participating in the process. A minimum of four agents are now participat-
ing in this process, two agents are providing the shape recognition for the shapes
primitives and the gestures, a third agent is dedicated to coordination and the integra-
tion of the result of these two agents, and the last agent is responsible for dispatching
this information to the system. The role of such agents is defined in [5] with the vir-
tual mediator pattern definition. The virtual mediator defined in [5] is responsible for
the following action:

• Decomposing the client request into sub requests, and then…
• Sending each of these sub requests to the relevant Service Providers.

When receiving the answer coming from each service provider, the mediator is re-
sponsible for:
• Integrating answers from the Service Providers to formulate final result, and

then…
• Sending this result back to the Client.

 Trainable Sketch Recognizer for Graphical User Interface Design 131

Fig. 3. i* representation of Virtual Mediator

In SketchiXML, the mediator would then be responsible to handle the data pro-
vided by the shape recognizer (agent collecting the raw data online) and to decide
which agent to invoke. Even if both agents can be called simultaneously, the me-
diator can decide that only one of the agents is likely to provide the answer. As an
example, if the designer is using a tablet pc and draws a sketch with the pen button
pressed, then this sketch must be considered as command, and commands are only
associated with gesture, it’s thus useless to recognize it with the vectorial shape
recognizer.

Another possible situation is the reception of a sketch to recognize by the me-
diator, but as a part of the current user interface. In this situation the mediator does
not know the type in advance, as the sketch can be a vectorial shape or a widget.
Then, the mediator sends a request to both agent and wait for their answers. If the
answer provided by the first agent to reply has a very high degree a certainty then
the mediator does not wait for the reply of the other agent and provide the result
directly to the interpreter agent, otherwise the mediator wait for all the answers
and select be most appropriate answer.

Fig. 4. Management of user trainable shape references

132 A. Coyette et al.

Fig. 4. (continued)

Moreover, the role of the gesture recognizer agent consists in three different tasks.
Firstly the agent is responsible for managing the reference repository of hand drawn
GUI widgets, geometric primitives and command gestures. To this aim the agent dis-
plays a training module (Fig. 4) allowing the designer to add, remove and visualize
the current repository. The second task consists in processing the gesture recognition.

 Trainable Sketch Recognizer for Graphical User Interface Design 133

So the agent is responsible for feature string extraction of hand drawn inputs from us-
ers, comparison of the feature strings with those in the reference repository. The last
task of the agent consists listing all the widgets and shapes candidate, annotated with
a degree of confidence. This list is then send to the mediator agent presented previ-
ously in order to compare the results with the results of the shape recognizer agent,
based on geometric primitives. This mediator implements a fusion strategy for the
outputs of these two different recognizer modules.

4.2 Interpretation

Previously, when a new shape was recognized, the sketch was replaced by its corre-
sponding vectorial shape if the recognition was enabled. But the extension to cover ges-
ture is not straightforward. Indeed, with the previous version of SketchiXML it was
quite natural to replace the sketch by its corresponding vectorial shape, as the sketch
was supposed to be similar to its corresponding shape. But, using the gesture recognizer,
such an approach does not hold. Even if there is no reason to provide a gesture for the
triangle, that is completely different from a triangle, it is possible and the decision be-
longs to the designer. Another example that is more likely to happen, is a situation
where the designer provides a gesture representation for a widget, then it is not possible
to replace the sketch by its equivalent in term of vectorial shapes since this sketch may
not contain any vectorial shape. The solution would be then to replace, the sketch by its
corresponding widget or an informal representation of the widget. But on the other hand
we want to keep the informal and unfinished aspect of the user interface, so as to en-
courage checking and revision. We have thus opted for an alternate solution that just
consists in using the sketch provided without any transformation.

The leftmost part of Fig. 5 gives an illustration of a checkbox representation, where
we can see that the shape recognized as vectorial shape look very sharp (the last wid-
get) while the representation provided for the three first widgets look imprecise since
they are based on the sketch provided by the designer. It is important to maintain this
level of uncertainty in order not to give the impression to the end user that it is already
a final UI. In contrast, the unconstraint character should be maintained throughout the
recognition process without giving the impression that the level of fidelity suddenly
changed. Fig. 5 shows other levels of fidelity for the same example.

Check box

Identification label
Degree of fidelity

Low Medium High Final

Check box

Identification label

Check box

Identification label
Degree of fidelity

Low Medium High Final

Fig. 5. Sketched widget and related textual label

Another problem faced with the interpretation of such gesture lies in their geomet-
rical properties. When a new shape is handled the interpreter agent extract all the pos-
sible candidates from its knowledge set, in order to evaluate if a new widget can be

134 A. Coyette et al.

built using this new shape. But, since the gestures do not have the same properties, the
constraints set had to be extended so as to cover the entire possible situations. Obvi-
ously, the solution adopted is less precise than the situation where only vectorial
shapes are used. As an example, if a text area is recognized as a gesture and is dis-
played on the screen, then if the designer draws a horizontal line inside this widget,
then the system should consider the line as a part of the text area rather than a new la-
bel. But, as long as the designer is free to define a custom representation of this com-
ponent, we cannot predict the geometric properties of the widget, we have thus no
other choice than to consider an approximation using bounding boxes coupled with
Monte Carlo simulations.

5 Conclusion

Through this paper, we have presented an innovative contribution to the domain of
sketch based design tools. Most of the existing tools only allow using mono-stroke
gestures, and introducing, as a matter of fact, a strong constraint on the number of
possible representations. We have proposed in this paper an alternative allowing to
recognize multi-stroke gesture combined with the CALI library. Even, if a larger scale
study would be appropriate to evaluate the benefit, the results observed shows better
results, in any cases, than the previous version of SketchiXML based on the CALI li-
brary. Indeed, if the CALI library fails to recognize a scribble, the gesture recognizer
may be able to recognize it since its processing is completely different.

Acknowledgements

We gratefully acknowledge the support of the SIMILAR network of excellence
(http://www. similar.cc), the European research task force creating human-machine
interfaces similar to human-human communication of the European Sixth Framework
Programme (FP6-2002-IST1-507609) and the ReQuest project, funded by the Wal-
loon Region (WIST 1).

References

[1] Bailey, B.P., Konstan, J.A.: Are Informal Tools Better? Comparing DEMAIS, Pencil and
Paper, and Authorware for Early Multimedia Design. In: CHI’2003. Proc. of the ACM
Conf. on Human Factors in Computing Systems, pp. 313–320. ACM Press, New York
(2003)

[2] Bresenham, J.E.: Algorithm for Computer Control of a Digital Plotter. IBM Systems Jour-
nal 4(1), 25–30 (1965)

[3] Caetano, A., Goulart, N., Fonseca, M., Jorge, J.: JavaSketchIt: Issues in Sketching the
Look of User Interfaces. In: Proc. of the 2002 AAAI Spring Symposium - Sketch Under-
standing, Palo Alto, March 2002, pp. 9–14. AAAI Press, California, USA (2002)

[4] Coyette, A., Vanderdonckt, J.: A Sketching Tool for Designing Anyuser, Anyplatform,
Anywhere User Interfaces. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005.
LNCS, vol. 3585, pp. 550–564. Springer, Heidelberg (2005)

 Trainable Sketch Recognizer for Graphical User Interface Design 135

[5] Do, T.T.: A Social Patterns Framework for Designing Multiagent Architectures, Ph.D.
thesis, Université catholique de Louvain, IAG, Louvain-la-Neuve (June 2005)

[6] Fonseca, M.J., Jorge, J.A.: Using Fuzzy Logic to Recognize Geometric Shapes Interac-
tively. In: Proc. of the 9th Int. Conf. on Fuzzy Systems FUZZ-IEEE’00, San Antonio, pp.
191–196. IEEE Computer Society Press, Los Alamitos (2000)

[7] Freeman, H.: Computer Processing of Line-Drawing Images. ACM Computing Sur-
veys 6(1), 57–97 (1974)

[8] Hong, J.I., Li, F.C., Lin, J., Landay, J.A.: End-User Perceptions of Formal and Informal
Representations of Web Sites. In: CHI’2001. Proc. of ACM Conf. on Human Aspects in
Computing Systems, Extended Abstracts, pp. 385–386. ACM Press, New York (2001)

[9] Kolp, M., Giorgini, P., Mylopoulos, J.: An Organizational Perspective on Multi-agent Ar-
chitectures. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333,
Springer, Heidelberg (2002)

[10] Landay, J.A., Myers, B.A.: Sketching Interfaces: Toward More Human Interface Design.
IEEE Computer 34(3), 56–64 (2001)

[11] Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Doklady Akademii Nauk SSSR 163(4), 845–848 (1965) [in Russian]. English translation
in Soviet Physics Doklady 10(8) , 707–710 (1966)

[12] Long, A.C., Landay, J.A., Rowe, L.A.: Implications For a Gesture Design Tool. In:
CHI’2001. Proc. of ACM Conf. on Human Factors in Computing Systems, Seattle, pp.
40–47. ACM Press, New York (2001)

[13] Lin, J., Newman, M.W., Hong, J.I., Landay, J.A.: Denim: Finding a Tighter Fit Between
Tools and Practice for Web Site Design. In: CHI’2000. Proc. of ACM Conf. on Human
Factors in Computing Systems, The Hague, April 2000, pp. 510–517. ACM Press, New
York (2000)

[14] Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: Denim: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Computer Interaction 18, 259–324
(2003)

[15] Plimmer, B.E., Apperley, M.: Software for Students to Sketch Interface Designs. In: Proc.
of Interact’2003, pp. 73–80. IOS Press, Amsterdam (2003)

[16] Plimmer, B.E., Apperley, M.: Interacting with Sketched Interface Designs: An Evaluation
Study. In: Proc. of CHI’2004, pp. 1337–1340. ACM Press, New York (2004)

[17] Rubine, D.: Specifying Gestures by Example. Computer Graphics 25(3), 329–337 (1991)
[18] Schimke, S., Vielhauer, C., Dittmann, J.: Using Adapted Levenshtein Distance for On-

Line Signature Authentication. In: Proc. of ICPR’04 (2004)
[19] Sumner, T., Bonnardel, N., Kallag-Harstad, B.: The Cognitive Ergonomics of Knowl-

edge-based Design Support Systems. In: CHI’97. Proc. of ACM Conf. on Human Aspects
in Computing Systems, Atlanta, April 1997, pp. 83–90. ACM Press, New York (1997)

[20] van Duyne, D.K., Landay, J.A., Hong, J.I.: The Design of Sites: Patterns, Principles, and
Processes for Crafting a Customer-Centered Web Experience. Addison-Wesley, New
York (2002)

	Trainable Sketch Recognizer for Graphical User Interface Design
	Introduction
	State of the Art
	New Sketch Recognition Algorithm
	Raw Data
	Feature Extraction
	String Edit Distance
	Sketch Recognition Using String Edit Distance

	Integration into the Existing System
	Implementation
	Interpretation

	Conclusion
	References

