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Trained immunity in newborn infants of
HBV-infected mothers
Michelle Hong1,2, Elena Sandalova1, Diana Low3, Adam J. Gehring1, Stefania Fieni4, Barbara Amadei5,

Simonetta Urbani5, Yap-Seng Chong1,6, Ernesto Guccione3,7 & Antonio Bertoletti1,2,8

The newborn immune system is characterized by an impaired Th1-associated immune

response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought

to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance

that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV

exposure in utero triggers a state of trained immunity, characterized by innate immune cell

maturation and Th1 development, which in turn enhances the ability of cord blood immune

cells to respond to bacterial infection in vitro. These training effects are associated with an

alteration of the cytokine environment characterized by low IL-10 and, in most cases, high

IL-12p40 and IFN-a2. Our data uncover a potentially symbiotic relationship between HBV and

its natural host, and highlight the plasticity of the fetal immune system following viral

exposure in utero.
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I
nfants have higher susceptibility to severe infections than
adults due to functional differences in their immune system1,2.
Hepatitis B virus (HBV) infection is a serious global health

problem that causes liver inflammation and cancer in chronically
infected adults3. As a large part of HBV chronic infections are
acquired at birth, HBV is viewed as the prototypical pathogen
that is thought to hijack the immaturity of the neonatal immune
system and to establish a persistent infection through the
induction of an ‘immunotolerant state’ in the host. Data from
experimental animal models (that is, HBV-transgenic mice)
showing the presence of immunological defects that impair
T- and B-cell priming4–6 support this scenario.

However, the dogma of immune defects induced by HBV is at
odds with the efficacy of HBV vaccination in infants born to
HBVþ mothers4 and with observations obtained in malaria-HBV
co-infected young subjects in whom reduced parasitemia7 and an
increased incidence of cerebral malaria, a T-helper (Th)1-
mediated malaria complication8,9, were reported. Recent data
have also shown that chronically HBV-infected adolescents
labelled as ‘immunotolerant’ do not display any tolerogenic
T-cell features10.

In addition to these inconsistencies between experimental data
in HBV models and data obtained during natural infection, there
is an increased recognition that the neonatal immune system is not
defective11. Instead, it presents unique functional features11–13

and the functional maturation of neonatal immunity can be
modulated by external factors. For example, bacterial colonization
and vaccinations with live vaccines can decrease infant mortality
and protect them against unrelated pathogens by inducing an
increased functional efficiency of their innate immune system
that has been termed ‘trained immunity’14,15.

To directly characterize the impact of HBV exposure on the
newborn immune system, we performed a comprehensive
immunological analysis of the cord blood (CB) cells from
neonates of HBV chronically infected mothers. We report that
HBV exposure in utero does not induce generic immunological
defects but, on the contrary, is associated with a mature
immunological profile that enhances the ability of the neonatal
immune cells to respond to unrelated pathogens in vitro.

Results
Cytokine profile in HBV-exposed CB. We first analysed the
cytokine profile of the umbilical CB plasma of HBV-exposed
and healthy unexposed neonates of Asian origin (refer list of
subject materials in Supplementary Table 1). The production of
immunosuppressive cytokine (interleukin (IL)-10) was minimal
(o10 pgml� 1) and significantly lower in the CB plasma
of HBVþ mothers than controls (mean±s.e.m. in pgml� 1;
healthy, 9.6±4.2, HBV, 1.3±0.7; Fig. 1a), whereas Th2 cytokines
(IL-4, IL-5, IL-9 and IL-13) and pro-inflammatory cytokines
(IL-1a and IL-1b) were undetectable in the CB plasma of HBVþ

mothers and healthy controls (Supplementary Fig. 1). On the
contrary, neonates born to HBVþ mothers had significantly
higher plasma concentration of innate anti-viral cytokines
IL-12p40 and interferon-a2a (IFN-a2) than healthy controls
(mean±s.e.m. in pgml� 1; IL-12p40: 56.7±14.2 versus 18±5;
IFN-a2: 137.3±28.1 versus 48.4±3.8; Fig. 1a). The presence of
pro-inflammatory cytokines (IL-6, IL-8 and tumour necrosis
factor-a (TNF-a)), anti-inflammatory cytokine (IL-1ra), Th17-
related cytokine (IL-17) and neutrophil-related chemokines and
growth factors (eotaxin, granulocyte-colony stimulating factor,
granulocyte macrophage-colony stimulating factor and growth-
regulated oncogene (GRO)) was instead significantly lower in the
CB plasma of neonates of HBVþ mothers than controls (Fig. 1a).
No difference was observed in the plasma levels of monocyte- and

T-cell-attracting chemokines (MCP-1, MDC, MIP-1a, MIP-1b,
Rantes; Supplementary Fig. 1). The elevated levels of IL-12p40
and IFN-a2 in the majority of the CB plasma in neonates born to
HBVþ Asian mothers were unexpected, as the production of
these cytokines are often low or undetectable both during acute
HBV infection16 and during chronic HBV reactivation in
adults17.

Importantly, we confirm this unique cytokine pattern (high
IL-12p40 and low IL-10) in an independent cohort of CB samples
from Caucasian HBVþ mothers (refer Supplementary Table 1
and Supplementary Fig. 2a,b). HBV-exposed CB plasma had
increased IFN-a2 compared with healthy controls, although this
difference was not statistically significant. The production of the
pro-inflammatory cytokine IL-6 was minimal (o5 pgml� 1) and
no difference was observed in the level of TNF-a. Nevertheless,
HBV-exposed neonates of Caucasian HBVþ mothers showed
decreased production of IL-8 in their CB plasma than controls,
even though it was not statistically significant (Supplementary
Fig. 2a). As type-III IFN was recently reported as an innate
antiviral factor produced by human primary hepatocytes in
response to HBV infection18, we tested the production of IFN-l
together with other type-I IFN (that is, IFN-b) in the CB plasma.
Our data showed that although IFN-b was undetectable in all
the CB plasma of both Asian and Caucasian cohorts, IFN-l was
only detectable in 1 out of 18 HBV-exposed CB plasma
(Supplementary Figs 1 and 2a).

IL-12p40 has been reported to act either as a single cytokine or
as a component of IL-23 or IL-12p70 (ref. 19), but we detected
modest level of IL-12p70 (mean±s.e.m. in pgml� 1; healthy,
6.8±1.4, HBV, 6.5±0.1) and the absence of IL-23 in the CB
plasma of neonates from HBVþ mothers (Supplementary Fig. 1),
suggesting that IL-12p40 in the CB was present as a single
agonistic cytokine19. Furthermore, we estimated the ratio of
IL-12p70/IL-10 as an indication of a Th1/Th2 balance. Our
data showed a significantly higher ratio of IL-12p70/IL-10 in
HBV-exposed CB plasma than controls (mean±s.e.m. ratio;
HBV, 4.3±2.9, healthy, 0.9±0.2) (Fig. 1b). This shift in Th1
cytokine balance was also observed in the independent cohort
of CB samples from neonates of Caucasian HBVþ mothers
(Supplementary Fig. 2b).

HBV exposure in utero enhances innate immune activation.
The detection of elevated levels of IL-12p40, combined with the
detection of low IL-10 and Th2 cytokines, does not support the
hypothesis that HBV induces a state of immune tolerance in
newborns. Furthermore, elevated levels of IL-12p40 has been
associated with sepsis control in newborns20, suggesting that this
cytokine might be linked with increased immunological maturity.
Therefore, we first analysed the frequency of different antigen-
presenting cells (APCs) in HBV-exposed and healthy CB
(Supplementary Fig. 3). The frequency of total APCs (or HLA-
DRþ cells) and of the various APC subsets was not affected by
HBV exposure in utero.

In contrast, the functional profile of CD14þ monocytes, the
most abundant population of innate immune cells present in the
CB, is significantly different in HBV-exposed CB as compared
with healthy controls. CD14þ monocytes were sorted directly
ex vivo from the CB of healthy (n¼ 4) or HBVþ Asian mothers
(n¼ 3; 2 HBeAg� , 1 HBeAgþ ; refer Supplementary Table 1),
and were analysed for the expression of 511 immune genes with
Nanostring technology21. There were no significant differences in
immune gene profile between CB monocytes of HBeAgþ and
HBeAg� mothers, but notably a total of 400 immune genes were
differentially expressed between HBV-exposed and healthy CB
monocytes (Fig. 2a). Non-supervised hierarchical clustering
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showed six gene clusters corresponding to genes uniquely
upregulated in healthy (cluster I, n¼ 104) and HBV-exposed
(cluster III, IV and V, n¼ 8, n¼ 195 and n¼ 47, respectively) CB
monocytes, as well as genes that were not distinctly enriched in
either populations (cluster II and VI, n¼ 32 and n¼ 14,
respectively) (Fig. 2a).

The differentially expressed genes between healthy and HBV-
exposed CB monocytes can be broadly grouped into six different
gene categories (Fig. 2b). Specifically, HBV-exposed CB mono-
cytes expressed higher levels of messenger RNA associated
with major histocompatibility complex class II processing and
presentation, complement components, Th1-related cytokines
(including IL-12p40 encoded by the mRNA IL12B, IFN-a2,
IFN-g and IL-15) and signalling molecules (Fig. 2b and
Supplementary Table 2). Furthermore, the chemokine CXCL13,
whose defect in HBV transgenic models has been recently

suggested to predispose to HBV chronicity6, was significantly
upregulated in HBV-exposed CB monocytes (Fig. 2c). On the
other hand, the mRNA expression of pro-inflammatory cytokines
(IL-1b, IL-6, IL-8 and TNF-a) was lower in HBV-exposed
CB monocytes than healthy CB monocytes (Fig. 2b and
Supplementary Table 2), further confirming the plasma
cytokine data (Fig. 1a). Interestingly, the immune gene profile
of HBV-exposed CB monocytes was more similar to the immune
profile of healthy adult peripheral blood monocytes than that of
the control CB monocytes, suggesting an increased immune
maturation state of HBV-exposed CB monocytes (Fig. 2a,b).
In addition, analysis of IFN-stimulated gene (ISG) expression
revealed significant increase in the expression of several ISGs in
HBV-exposed CB monocytes than controls (Supplementary
Fig. 4), in line with the enhanced production of IFN-a2 in this
cohort of HBV-exposed CB plasma (Fig. 1a).
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Figure 1 | High levels of IL-12p40 and IFN-a2, and low levels of IL-10 and pro-inflammatory cytokines in the CB of Asian HBVþ mothers.

(a) CB plasma cytokines were determined by multiplex assay in seven healthy controls and ten HBVþ mothers. Horizontal line represents the median.

(b) Ratio of Th1/Th2 cytokine (IL-12p70/IL-10) in healthy and HBV-exposed CB. P-values were calculated using Mann–Whitney test. *Po0.05, **Po0.01,

***Po0.001 and ****Po0.0001.
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The expression of some of these cytokines (that is, constitu-
tively lower levels of pro-inflammatory cytokines IL-6, IL-8 and
TNF-a, and the chemokines CCL3 and CCL4) was validated at
the protein level in the supernatant of ex vivo-sorted monocytes
(Supplementary Fig. 5). Direct ex vivo production of IL-12p40 or
IFN-a2 was not detectable (Supplementary Fig. 5), but after
activation with TLR8 agonist (ssRNA40)13 the production of
IL-12p40 was markedly upregulated and was significantly higher
in HBV-exposed CB monocytes than in controls (Fig. 2d).

Ex vivo phenotypic analysis confirmed the maturation and
activation status of HBV-exposed CB monocytes. The levels of
HLA-DR (HLA-class II presentation) and costimulation markers
(CD40, CD80 and CD86) were significantly higher in HBV-
exposed CB monocytes than in controls (Fig. 2e). Functionally,
HBV-exposed CB monocytes induced a higher level of prolifera-
tion of allogeneic peripheral blood mononuclear cells than
healthy CB monocytes (Fig. 2f).

In addition to monocytes, we have also analysed other
components of innate immunity with anti-viral properties,
including CD123þ plasmacytoid dendritic cells (pDCs) and
natural killer (NK) cells (see Supplementary Table 1 for list of
tested subjects). HBV-exposed CB pDCs were more activated
than controls, characterized by significantly higher mRNA
expression of several ISGs (Supplementary Fig. 6a) and higher
production of IFN-a2 after stimulation with TLR9 agonist

(CpG ODN2216; Supplementary Fig. 6b). There were no
significant differences in the frequencies of NK subsets between
healthy and HBV-exposed CB (Supplementary Fig. 7a). However,
HBV-exposed CB NK cells displayed a more activated profile, as
shown by increased frequencies and expression of TNF-related
apoptosis-inducing ligand (mean±s.e.m. in percentages; CD56br:
healthy 4.7±1.5, HBV 16.9±5.6; CD56dim: healthy 0.2±0.1,
HBV 0.8±0.3) and the activation marker CD69 (mean±s.e.m. in
percentages; CD56dim: healthy 13.5±1, HBV 18.1±1.2). HBV-
exposed CB NK cells also had increased production of IFN-g
after incubation with recombinant IL-12p70 and IL-18 compared
with healthy controls (mean±s.e.m. in pgml� 1; healthy
651.5±414.8, HBV 3,477±1,464) (Supplementary Fig. 7b–d).

HBV exposure in utero induces robust Th1-polarized response.
Newborn T cells produce IL-8 but are defective in Th1 cytokine
production11. As IL-12p40 has been shown to increase IFN-g
production in adult T cells, we analysed the ability of CB T cells
to produce Th1 and other important T-cell cytokines (that is,
IL-17, IL-21 and IL-22).

Figure 3a shows the frequency of CB CD3þT cells producing
the indicated cytokines after polyclonal stimulation, in compar-
ison with CD3þT cells present in healthy or HBV-infected young
adults (12–30 years). As expected, both HBV-exposed and
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were incubated with 1 mgml� 1 ssRNA40 (TLR8 agonist) for 18 h and IL-12p40 in the supernatant measured using luminex. Data show mean±s.e.m. of

each group. (e) The median fluorescence intensity (MFI) expression of HLA-DR, CD40 and CD80/CD86 on CD14þ monocytes from healthy (n¼ 5) and
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healthy CB T cells produced higher levels IL-8 but lower levels of
IFN-g, IL-2 and TNF-a, compared with young adults’ T cells. The
ability to produce IL-8 was similar in HBV-exposed CB T cells
compared with controls, while a significantly higher frequency of
T cells producing Th1 cytokines was detected in HBV-exposed
CB (mean±s.e.m. in percentages; IFN-g: 2.4±0.4 versus
1.1±0.3; IL-2: 10.2±2.8 versus 1.6±0.2; TNF-a: 5.8±0.9 versus
2.2±0.5). A representative fluorescence-activated cell sorting
(FACS) dot plot of Th1 cytokine production by CB T cells is
shown in Fig. 3b. Analysis of the Th1 (IFN-g, IL-2 and TNF-a)
double- and triple-producer T cells showed that B25% of HBV-
exposed CB Th1 T cells were polyfunctional (mean±s.e.m. in
percentages; single: 73.1±6.2, double: 25±6, triple: 2±1;
Fig. 3c).

The increased Th1 maturation in HBV-exposed CB was
confirmed by direct ex vivo analysis of T cells expressing T-bet,
the transcriptional regulator of Th1 differentiation (Fig. 3d). No
differences were found between CB T cells of HBV-exposed or
healthy controls in their ability to produce IL-17, IL-22 and IL-21
(Fig. 3a), even though decreased IL-21 production has been
implicated in HBV vertical infection and chronicity22.

Despite having a more Th1-polarized response, HBV-exposed
neonates do not seem to harbour any HBV-specific T cells.

Various attempts to detect HBV-specific T cells in HBV-exposed
CB were unsuccessful. CB cells were analysed directly ex vivo with
HBV-specific HLA tetramers or after in vitro expansion with
peptides covering the whole HBV proteome. However, we were
not able to detect any clear population of HBV-specific T cells in
the CB of HBV-exposed neonates (Supplementary Fig. 8).

HBV exposure in utero triggers a state of trained immunity.
We next analysed whether the enhanced immune maturation
detected in HBV-exposed CB could result in a better ability of the
neonatal immune cells to respond to unrelated pathogens.

We tested CB mononuclear cells against Pseudomonas
aeruginosa, a bacteria that can cause severe infections in
underweight neonates23, as well as other bacteria known to be
involved in neonatal sepsis in the clinics, such as uropathogenic
Escherichia coli (UPEC), Salmonella typhimurium, Acinetobacter
baumanii and Listeria monocytogenes. Cytokine production in the
supernatant was measured after 18 h of bacteria stimulation and
we detected a strong Th1 cytokine signature (IFN-g, IL-12p40
and TNF-a) in bacterial-stimulated HBV-exposed CB compared
with healthy controls (Fig. 4). Specifically, the production of
IFN-g was increased significantly when HBV-exposed CB cells
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Figure 3 | HBV exposure in utero induces a robust Th1-polarized response in the CB. (a) CB mononuclear cells were stimulated overnight with

phorbol myristate acetate (PMA)/ionomycin and the cytokine production by CD3þT cells was measured using intracellular cytokine staining. Dot plots

show the percentages of cytokine-producing CD3þTcells from healthy (HC; n¼6) or HBV-exposed (HBV; n¼ 11) CB. Cytokine production by CD3þTcells

from the peripheral blood of pediatric and young adult patients with chronic HBV (HBV; n¼ 10) and age-matched healthy controls (HC; n¼ 33) were

included for comparison. Horizontal line represents the median. (b) Representative FACS dot plots of Th1 cytokine (TNF-a, IFN-g and IL-2) production from

healthy and HBV-exposed CB T cells after PMA/ionomycin stimulation. (c) Graphical representation of single-, double- and triple-producer Th1 cells and

their respective percentages in mean±s.e.m. in HBV-exposed CB. (d) Percentage of T cells expressing the Th1 marker, T-bet, in CB of healthy (n¼4) and

HBVþ (n¼4) mothers. P-values were calculated using Mann–Whitney test.*Po0.05.
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were challenged with UPEC, IL-12p40 production was signifi-
cantly higher after exposure to P. aeruginosa, UPEC and
L. monocytogenes, and TNF-a production was significantly
elevated on exposure to UPEC, A. baumanii and
L. monocytogenes, compared with controls. Similar trend for

higher production of Th1 cytokines was observed after exposure
to S. typhimurium. Therefore, our data demonstrates that HBV
exposure in utero increased the nonspecific production of Th1
cytokines towards unrelated pathogen challenge in vitro.

HBV-induced immunological changes are neonatal in origin.
The increased immune maturation state detected in HBV-
exposed CB cells could be due to either functional changes of
neonatal monocytes/T cells or increased frequency of maternal
immune cells in HBV-exposed CB. Immune cells of the mother
are known to cross the placenta24, but whether HBV infection
might have an effect on the degree of CB micro-chimerism is not
known. We therefore quantified the frequency of maternal cells in
HBV-exposed CB using two alternative methods. We first used
fluorescence in situ hybridization (FISH) to quantify the number
of maternal cells (expressing XX chromosomes) among bulk cells
or sorted cells (CD14þ monocytes or CD3þT cells) from healthy
and HBV-exposed CB of male neonates (n¼ 2 per group). No
significant differences in the frequencies of maternal cells between
HBV-exposed and healthy CB were detected (Fig. 5a,b). The
mean frequencies of maternal cells in healthy and HBV-exposed
CB, respectively, were 0.52% versus 0.75% (bulk), 0.64% versus
1% (CD3þT cells) and 0.49% versus 0.5% (CD14þ monocytes;
Fig. 5a).

We then used quantitative PCR on single cells to measure the
expression of genes selectively expressed only by maternal
(female) cells (XIST long noncoding RNA)25 or male neonates
(XKRY and TTY1 genes)26 as an alternative method to confirm
that HBV-exposed CB was not preferentially enriched with
maternal cells. A total of 136 CD14þ cells from one HBV-
exposed CB male neonate were analysed and we did not detect
any maternal cells (0/136; Fig. 5c). This gave us a frequency of
maternal cell in CD14þ monocytes of HBV-exposed CB to be
o0.7%, which is in line with the data obtained with FISH analysis
(Fig. 5a) and with the reported frequency of maternal cells in
healthy CB27. These results demonstrate that the immunological
changes observed in HBV-exposed CB is unlikely to be due to an
increase in maternal cell contamination, but probably due to
genuine maturation of the neonatal immune cells.

HBV-induced immune maturation is associated with HBsAg.
Conventionally, prenatal HBV infection is thought to occur in a
minority of cases, as HBV-DNA, a sign of active HBV replication,
is only detected in the CB of a few HBeAgþ mothers28. On the
other hand, HBV can translocate efficiently through intact
trophoblastic barrier at early gestation29, but as the liver
develops only after 12 weeks of gestation30 HBV infection and
replication in hepatocytes might not occur.

To better understand the mechanisms responsible for the
functional maturation of the immune cells present in the CB of
neonates born to HBVþ mothers, we tested whether HBV or
HBV products can be traced in their CB plasma or mononuclear
cells. HBV-DNA was detected in only two of the four CB plasma
of neonates born to HBeAgþ mothers (Supplementary Table 1)
and was undetected in all the other CB plasma of HBeAg�

mothers. In addition, we were unable to detect the presence of
HBV-DNA in the CB mononuclear cells from healthy (n¼ 2),
HBeAg� (n¼ 2) and HBeAgþ (n¼ 1) mothers (Supplementary
Table 1), despite the latter being tested positive for HBV-DNA in
the CB plasma.

However, as in woodchuck HBV model the woodchuck
HBV can persist selectively in the blood of offspring of animals
with very low level of viral replication31, we used
immunofluorescence32 to test whether HBV or HBV products
can be found in populations of purified CB immune cells.
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Figure 4 | HBV exposure in utero triggers a state of ‘trained immunity’

against unrelated bacterial challenge. CB mononuclear cells from healthy

(n¼ 3) or HBVþ (n¼ 3) mothers were incubated with the bacteria

P. aeruginosa, UPEC, S. typhimurium, A. baumanii or L. monocytogenes

(multiplicity of infection (MOI) 1) for 18 h and the cytokine production in

the supernatant was analysed using multiplex assay. Bar graphs show the

mean±s.e.m. of each data set. P-values were calculated using two-way

analysis of variance and multiple comparisons were done using uncorrected

Fisher’s least significant difference test. *Po0.05 and **Po0.01.
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We purified CB CD2� cells (enriched for APCs), stained them
for hepatitis B surface antigen (HBsAg) and the number of
HBsAgþ cells was then quantified in ten random fields at � 20
magnification (Fig. 6a). Despite most of the neonatal plasma of
HBVþ mothers were negative for HBV-DNA, HBsAgþ cells
were detectable in CD2� cells (APC-enriched cells) but not in
CD2þ (T and NK) cells at a mean frequency of 0.6±0.2%
(Fig. 6b). No positive immunostaining for HBsAg was detected in
healthy CB (Fig. 6a,b).

Thus, despite their low quantity, the presence of HBsAgþ cells
in the CB of neonates of HBVþ mothers indicates that their
immune system has been in contact with the virus or viral
products before birth.

IL-12p40 and IFN-a2 induce CB immune cell maturation. The
low frequency of HBsAgþ immune cells detected in the CB of
HBV-exposed neonates suggests that it is unlikely that HBV
antigens can directly cause the maturation of monocytes in
HBV-exposed CB. We hypothesize that the altered cytokine
environment detected in the CB plasma of HBV-exposed
neonates could be responsible for the induction of monocyte/
T-cell maturation.

Thus, to mimic the altered cytokine environment, we incubated
CB cells from healthy mothers (n¼ 3) overnight with
different concentrations of recombinant human (rh) IFN-a2
(0.0004–4 ngml� 1) and rhIL-12p40 (0.1–1,000 ngml� 1), alone
or in combination, and analysed the activation of T cells and
monocytes by flow cytometry. The data for one representative CB
sample is shown in Fig. 7a,b. Specifically, rhIFN-a2 alone
(4 ngml� 1) was able to promote Th1 development and
monocyte maturation of healthy CB cells compared with no

cytokine controls, while high dose of rhIL-12p40 alone
(1,000 ngml� 1) had modest effects. However, a combination of
both rhIFN-a2 (4 ngml� 1) and rhIL-12p40 (1,000 ngml� 1)
further increased the frequency of T-bet expressing CD4þ and
CD8þ T cells than either rhIFN-a2 or rIL-12p40 alone. At lower
doses of rhIL-12p40 (1–10 ngml� 1), in combination with high
dose of rhIFN-a2 (4 ngml� 1), the median fluorescence intensity
of HLA-DR, CD40 and CD80/CD86 on CB monocytes was
upregulated compared with using both cytokines at high doses
(mean median fluorescence intensity; 1 ngml� 1 rhIL-12p40;
HLA-DR, 5,542 versus 5,294; CD40, 276 versus 235; CD80/CD86,
21,623 versus 19,571). There was a clear dose effect for rhIFN-a2
in Th1 development (with fixed concentration of rhIL-12p40 at
1,000 ngml� 1) and this effect was abolished at 0.004 ngml� 1 of
rhIFN-a2. For rhIL-12p40, there was a trend for increased
monocyte activation with decreasing rhIL-12p40 (with fixed
concentration of rhIFN-a2 at 4 ngml� 1) and this effect peaked at
B1 ngml� 1 of rhIL-12p40. Most importantly, the increase in
T-betþ T cells and the enhanced activation of monocytes were
observed when CB cells (n¼ 2) were incubated with rhIFN-a2
and rhIL-12p40 at concentrations observed in the HBV-exposed
CB plasma (rhIFN-a2–0.4 ngml� 1 and rhIL-12p40–0.1 ngml� 1;
Fig. 7c).

Discussion
The concept of trained innate immune responses has been
documented in plants33,34, invertebrates35–37, mice38–40 and,
more recently, in vaccinated humans41. However, no such
evidence has been demonstrated so far in newborns during the
course of a natural viral infection. In this work, we demonstrated
that HBV exposure in utero induces a state of trained immunity
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characterized by enhanced innate immune cell maturation and
increased Th1 development. Importantly, this immune system
maturation results in a better ability of the neonatal immune cells
to respond to unrelated pathogen exposure.

Additional immunological changes observed in HBV-exposed
neonates were the higher production of IL-12p40 and lower
production of IL-10 and pro-inflammatory cytokines (IL-6, IL-8
and TNF-a) in the CB plasma than controls. This immunological
pattern (high Th1-related/low IL-10 and pro-inflammatory
cytokines) was also observed in HBV-exposed CB monocytes.
Therefore, HBV exposure in utero induced complex changes in
the newborn’s immune system that were not exclusively
stimulatory in nature but were generally compatible with an
advanced immune maturation state. Indeed, during the first year
of life12, the infant’s immune system does not only acquire a more
pronounced Th1 T-cell profile but also decrease its ability to
produce IL-10 and pro-inflammatory cytokines.

A further alteration induced by HBV exposure was the
detection of higher levels of IFN-a2 that were only statistically
significant in the CB plasma of Asian but not Caucasian HBVþ

mothers. Whether such differences could be explained by
different HBV genotypes infecting the two cohorts (HBV
genotypes B/C in Asian patients versus HBV genotype D in
Caucasian patients) will require further analysis.

Epidemiological, clinical and experimental evidences have
already raised doubts about the concept of immunological
tolerance during HBV infection42. Indeed, our data show that
HBV, a virus thought to exploit the immaturity of the neonatal
immune system to establish chronic infection, was unexpectedly
inducing a state of ‘trained immunity’ with a more pronounced
Th1 profile. However, in contrast to the evidences of global
immune system maturation, we were not able to detect any HBV-
specific T-cell response in the CB of HBV-exposed neonates. This
is in contrast to the data obtained in human cytomegalovirus43

and human immunodeficiency virus infections44, where virus-
specific T cells can be detected in neonates. A possible scenario is
that HBV has evolved a special relationship with its human host:
although the defective priming of HBV-specific T cells can
predispose to HBV chronicity, the induction of a trained
immunity profile with a skewed Th1 response and suppression
of pro-inflammatory events might have the advantage of
decreasing mortality from exposure to unrelated pathogens.

Nonetheless, more data need to be gathered to fully understand
the impact of vertical HBV infection on its host. A limitation of
our study is that as HBV-exposed neonates must be vaccinated
and treated within 24 h of birth, we were unable to investigate the
consequences of the establishment of a persistent HBV infection
after birth. It could be possible that the establishment of chronic
HBV infection in neonates may be associated with a more robust
and persistent Th1 response and a better ability to control
unrelated pathogens, or it may be associated with defects in the
priming of adaptive immunity, as shown in HBV-transgenic
mice6. We posit that the evidences of trained immunity shown
here are more in line with our recent demonstration that young
CHB-infected patients present a fully normal Th1 T-cell profile
and do not show any increased defects in HBV-specific T-cell
repertoire compared with HBV-infected adults10, but certainly a
more precise evaluation of the immunological events that are
occurring in the early phases of HBV infection is needed.

The question of how HBV exposure is inducing trained
immunity is still open. The low frequency of HBsAgþ monocytes
detected in the CB of HBV-exposed neonates does not support
the scenario of a direct HBV infection of the neonates triggering
trained immunity. It is perhaps more likely to be that the cause of
induction of trained immunity lies with the cytokine environment
detected in the HBV-exposed newborns, characterized by an

increase production of IL-12p40 and, at least in some cases, IFN-
a2. Both IL-12p40 and IFN-a2 have been shown to skew T-cell
development towards Th1 maturation19,45–47, and incubation of
CB cells with these recombinant cytokines in our in vitro study
supports such a possibility. Epigenetic-mediated functional
reprogramming of immune cells has been reported as one of
the mechanisms mediating trained immunity41, but whether such
epigenetic events are occurring in HBV-exposed neonates
requires further investigations. Certainly, our in vitro assays are
a profound approximation of the events that are occurring during
the natural development of the newborn immune system and a
clear answer to this question will probably require the use of the
woodchuck hepatitis B animal model wherein viral transmission
from mother to offspring can occur even in the presence of
extremely low quantity of virus31.

The source of IL-12p40, the cytokine that was found to be
consistently elevated in the CB plasma of HBV-exposed neonates,
is also at the moment unknown. Ex vivo production of IL-12p40
in sorted monocytes from HBV-exposed CB was not detectable,
suggesting that despite the natural contact with HBV products,
the circulating monocytes were not directly responsible for this
cytokine production. A possibility is that the high levels of
IL-12p40 detected in the HBV-exposed CB may be produced by
other types of haematopoietic phagocytic cells, such as myeloid
DCs or neutrophils. Alternatively, the placenta, which consists of
multiple layers of cell barriers with precise immune function and
has been shown to harbour HBV and HBV products48, might
actually be the source of IL-12p40 production in response to
HBV. Pregnancy is known to modulate the natural history of
HBV infection, but whether placental cells can actually play a
direct role in the modulation of maternal or neonatal infections
remains unknown.

Despite these limitations, our data clearly show a novel
interaction between HBV and its human host. The evidences of
immune system maturation in the newborns as a result of HBV
exposure in utero suggests the presence of a symbiotic relation-
ship between HBV and humans, similar to that demonstrated in
mice with persistent herpes simplex virus infection49. This
symbiotic host–virus interaction could be the explanation as to
why HBV has been so efficient in co-existing in a large part of the
human population from its dawn50.

Methods
Patients and blood samples. Umbilical CB was obtained from two independent
cohort of patients: the first cohort consists of 20 neonates born to HBV-ser-
opositive women (HBV-exposed group) and 7 neonates born to HBV-seronegative
women (non-exposed control group). The deliveries occurred at the National
University Hospital, Singapore, and all women were of Asian ethnicity (Chinese or
Malay). The second cohort consists of eight neonates born to HBVþ women and
four neonates born to HBV� women. The deliveries occurred at the Dipartimento
Materno Infantile, Azienda Ospedaliero Universitaria di Parma, Italy, and the
women were of Caucasian ethnicity. None of the HBV-infected mothers in both
cohorts received antiviral treatment before delivery. Basic clinical and demographic
data were collected at the time of delivery (Supplementary Table 1). Maternal
serum was tested for HBsAg, HBeAg and HBV DNA level (a few patients). All
mothers in the HBV group were positive for HBsAg and negative for human
immunodeficiency virus. At delivery, CB was collected from the umbilical vein
using a direct dripping method into tubes containing heparin. Subsequently,
plasma was separated from whole blood and stored at � 20 �C and CB mono-
nuclear cells were isolated by density-gradient centrifugation on Ficoll-Hypaque.
The study in Singapore was approved by the Domain Specific Review Board at
National University Hospital, which was in accordance with the guidelines of the
Singapore National Healthcare Group. The study in Italy was approved by the
Comitato Etico Azienda Ospedaliero Parma (Protocol 6274) and was in accordance
with the guidelines of the Italian Minister of Health. Blood samples from 10
pediatric and young adult CHB patients (12–30 years old) and 33 age-matched
healthy controls used for the Th1 T-cell analysis were obtained from a viral
hepatitis clinic at The Royal London Hospital, UK. Ethics approval was obtained
from Barts and The London NHS Trust Ethics Review Board. All donors gave
written informed consent.
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Antibodies and reagents. Monoclonal anibodies (mAbs) of anti-human-CD3-
eFluor 605NC (clone OKT3, 3:100), anti-CD4-eFluor 650NC (RPA-T4, 3:100), anti-
CD7-FITC (4H9, 2.5:100), anti-CD11c eFluor 450 (3.9, 1.25:100), anti-HLA-DR-
Alexa Fluor 700 (LN3, 5:100) or –eFluor 605NC (LN3, 2:100) and anti-T-bet
(eBio4B10, 1:100) were obtained from eBioscience (San Diego, CA). Anti-CD3-
FITC (HIT3a, 2.5:100), anti-CD11b-PE-Cy7 (ICRF44, 5:100), anti-CD16-APC-Cy7
(3G8, 2.5:100) or –BV711 (3G8, 5:100), anti-CD19-FITC (HIB19, 2.5:100),
anti-CD20-FITC (2H7, 2.5:100), anti-CD56-FITC (HCD56, 2.5:100), anti-CD86-
APC (IT2.2, 6:100) and anti-CD123-PerCP-Cy5.5 (6H6, 2.5:100) were obtained
from Biolegend (San Diego, CA). Anti-CD3-PE-Cy7 (SK7, 2:100), anti-CD8-V500
(RPA-T8, 1:100), anti-CD11c-V450 (B-Ly6, 1.25:100), anti-CD14-PE-Cy7 (M5E2,
2.5:100), anti-IL17a-V450 (N49-653, 4:100), anti-CD40-Alexa Fluor 700 (5C3,
6:100), anti-CD45-V500 (HI30, 2:100), anti-CD56-V450 (B159, 2:100), anti-CD80-
PE (L307.4, 6:100), anti-IFNg-V450 (B27, 6:100) or -PerCP-Cy5.5 (B27, 6:100),
anti-IL-2-PerCP-Cy5.5 (MQ1-17H12, 4:100), anti-IL-4-FITC (MP4-25D2, 4:100),
anti-IL-8-PE (G265-8, 2:100), anti-IL-10-APC (JES3-19F1, 6:100), anti-IL-21-PE
(3A3-N2.1, 6:100), anti-MIP-1b-PE-Cy7 (D21-1351, 4:100), anti-TNF-related
apoptosis-inducing ligand-PE (RIK-2, 6:100) and anti-TNF-a-PE-Cy7 (MAb11,
6:100) were obtained from Becton Dickinson (BD, San Jose, CA). mAbs of anti-IL-
22-APC (142928, 10:100) and anti-MIP-1a-FITC (93342, 4:100) were obtained
from R&D Systems (Minneapolis, MN). mAbs of anti-CD3-eFluor 605NC
(UCHT1, 6:100) was obtained from Molecular Probes (Carlsbad, CA). mAb of anti-
CD14-ECD (RMO52, 2.5:100) was obtained from Beckman Coulter (Brea, CA).
Live/Dead Fixable Dead Cell Stain Kits (yellow and aqua, 1:1,000 in 1� PBS) were
obtained from Invitrogen. Agonists for human TLR4 (E. coli K12 LPS, 1 mgml� 1),
TLR8 (ssRNA40, 1 mgml� 1) and TLR9 (CpG ODN2216, 5mM) were obtained from
Invivogen (San Diego, CA). Phorbol myristate acetate (2 ngml� 1) and ionomycin
(1mgml� 1) were obtained from Sigma-Aldrich (Saint Louis, Missouri).

HBV DNA detection. HBV DNA was isolated from CB plasma or CB mono-
nuclear cell lysates using the High Pure Viral Nucleic Acid Kit (Roche Applied
Science). For the CB mononuclear cells, the cells were lysed in RLT buffer (Qiagen)
and the lysate was passed through a blunt 20-gauge needle (0.9mm diameter) fitted
to an RNase-free syringe. The lysate was centrifuged and the supernatant collected
for HBV DNA extraction. Five microlitres of internal control (HBV RG/TM IC)
from the Artus HBV RG PCR kit (Qiagen) was added to the mixture of sample
material and lysis buffer to control for the purification process. HBV DNA was
quantified using the Artus HBV RG PCR kit (Qiagen) on a Rotor-Gene Q platform,
according the manufacturer’s protocol. The 95% HBV DNA detection limit of the
assay was 20 IUml� 1 or 108 copies per ml.

HBsAg detection by immunofluorescence. CD2� cells (non-T non-NK cells)
were negatively isolated using CD2 microbeads (Miltenyi Biotec), according to
manufacturer’s protocol. Subsequently, CD2� cells were incubated for 2 h with or
without recombinant HBsAg (10 mgml� 1; adr subtype) at 37 �C incubator and
antigen uptake was stopped by two times cold wash in PBS. Cells were fixed and
stained for HBsAg, using a two-step biotin–strepavidin staining protocol as
previously described32. Cells were cytospinned onto Superfrost Plus slides (Thermo
Scientific) using CYTO-TEK Cytocentrifuge (Sakura Finetek), sealed with ProLong
Gold Antifade Reagent with DAPI (4,6-diamidino-2-phenylindole; Invitrogen) and
HBsAg staining was visualized using TissueFAXS system (TissueGnostics). The
exposure time for fluorescein isothiocyanate (FITC) filter (for HBsAg staining) on
the microscope was adjusted based on the negative controls (healthy CB cells) and
positive controls (healthy CB cells incubated with recombinant HBsAg), to
minimize autofluorescence/background staining without compromising signal. The
total number of HBsAgþ cells and the total number of DAPI-stained nuclei were
manually counted in ten random high power fields (� 20 magnification).

Immunophenotyping. CB mononuclear cells were washed in PBS and stained with
Live/Dead Fixable Dead Cell Stain. The cells were then washed in staining buffer
(PBS, 1% BSA (Roche, Basel, Switzerland) and 0.1% sodium azide (Sigma-
Aldrich)), stained for expressed cell surface molecules and analysed on a BD
FACSAria or LSR II cytometer. T-bet staining for Th1 cells was performed using
Human FoxP3 Buffer Set (BD), according to manufacturer’s protocol. Following
overnight stimulation with phorbol myristate acetate (2 ngml� 1) and ionomycin
(1mgml� 1) in the presence of brefeldin A (2 mgml� 1), surface-stained cells were
fixed and permeabilized (Cytofix/Cytoperm; BD) before being stained for produced
cytokines. Cells were then washed in staining buffer with 0.1% saponin (Sigma-
Aldrich) before acquisition on LSR II cytometer. Data were analysed using
FACSDiva software (BD).

Cell sorting/gating strategy. APCs were sorted/gated based on lineage markers
(CD3/CD7/CD56/CD19/CD20) and HLA-DR expression: CD14þ monocytes
(lineage�HLA-DRþCD14þCD16low) and pDCs (lineage�HLA-DRþCD14�

CD16�CD11c�CD123þ ). T cells were gated based on CD3þ expression.

Human immunology gene expression analysis. Cell lysates from 50,000 sorted
CD14þ monocytes/pDCs were analysed using the preassembled nCounter GX

Human Immunology Kit and the nCounter system (NanoString Technologies,
Seattle, WA), according to the manufacturer’s instructions. Data analysis was
performed as previously described51. Briefly, a cutoff of two times the mean of the
negative controls supplied in the kit was used to discriminate against nonspecific
probe binding (noise). Samples were then normalized based on the geometric
means of both the positive controls supplied in the kit and the panel of
housekeeping genes, as recommended by the manufacturer. The coefficient of
variation (s.d. of the normalized counts across all samples/mean normalized counts
across all samples, expressed as a percentage) of each gene was calculated and the
mean coefficient of variation of the housekeeping genes was used as a cutoff to filter
out genes that remain stable across all samples analysed.

Clustering. Log2 normalized counts were used for clustering analysis. Data were
normalized (mean centering of genes) and hierarchical clustering of genes was
generated using Cluster 3.0 (similarity metric: Euclidean distance, clustering
method: Average linkage) and visualized in TreeView.

Mixed lymphocyte reaction. Pan T cells (105 cells per well from a single healthy
donor) were labelled with carboxyfluorescein succinimidyl ester (CFSE) and seeded
in 96-well round-bottom plate with sorted CD14þ monocytes (ET¼ 1). Pan T
cells incubated with anti-CD3/CD28-coupled beads (Invitrogen, 1:1 bead per cell
ratio) were used as positive control. After 7 days, cells were stained with anti-CD3-
Horizon V450 (BD Biosciences) and acquired on a BD LSR-II flow cytometer.
T-cell proliferation was assessed by CFSE dilution. Proliferation index was
calculated using Flowjo software.

Bacterial stimulation. CB mononuclear cells were seeded in 96-well U-bottom
plate at 105 cells per well in AIM-V media (Life Technologies) supplemented with
2% AB serum (Invitrogen). The number of monocytes was assumed at 10% of total
cells. P. aeruginosa, L. monocytogenes, UPEC, S. typhimurium and A. baumanii
were added to the culture at a multiplicity of infection 1 per monocyte and
incubated overnight. Cell supernatant was collected and analysed for cytokine
production with the multiplex assay (Luminex).

Cytokine multiplex bead-based assay and ELISA. Cytokine concentrations in
plasma samples and in supernatants of cultured cells were measured using
MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel—Premixed
42 Plex (Millipore, Billerica, MA), according to manufacturer’s protocol. Analyte
concentrations were determined by interpolation from a standard curve. ELISA of
IL-12 and IL-23 (R&D Systems), as well as of IFN-b and IFN-l (PBL Assay
Science) were performed according to the manufacturer’s instructions.

Recombinant cytokine stimulation. Healthy CB cells were seeded in 96-well
U-bottom plate at 2� 105 cells per well in AIM-V media (Life Technologies)
supplemented with 2% AB serum (Invitrogen). rhIL-12p40 (BD) and/or rhIFN-a2
(PBL, Piscataway, NJ) were added either alone or in different combinations of
concentrations for 24 h and the activation of T cells and monocytes analysed using
FACS (BD). The concentrations of rhIL-12p40 tested were 0.1–1,000 ngml� 1 and
0.0004–4 ngml� 1 for rhIFN-a2.

Nuclei preparation and FISH analysis. Nuclei were prepared for FISH analysis by
resuspending the cells in 7ml of 0.075mol l� 1 KCl and incubating them at 37 �C
water bath for 15min. Two milliliters of 3:1 methanol:acetic acid was added to the
cells, centrifuged and the pellet was resuspended and washed twice with 7ml of
methanol:acetic acid solution. Samples were stored at least overnight at � 20 �C
until slides were prepared. Nuclei were dropped onto methanol-cleaned slides and
air dried overnight on a 56 �C hot plate.

Slides pretreatment was performed in the following order: 1� PBS at room
temperature for 5min, pepsin/HCl solution at 37 �C for 5min, 1� PBS at room
temperature for 5min, 1% formaldehyde at room temperature for 10min, 1� PBS
at room temperature for 5min and dehydrated in successive washes of 70%, 80%
and 100% ethanol at room temperature for 2min each and allowed to air dry.
Poseidon Chromosome X and Y Satellite Enumeration Probes were obtained from
Kreatech (the Netherlands) and used according to manufacturer’s protocol. Nuclei
were counterstained with DAPI solution. Post-hybridization washes were
performed as per manufacturer’s instructions. Images were visualized and captured
using the Isis Fluorescence Imaging System with the Nikon Eclipse 80i microscope.
The number of maternal cells were manually counted in 20 random high-power
fields and expressed as a percentage of total nuclei.

High-throughput single-cell quantitative PCR. Cells were first sorted into
5 ml lysis buffer in 96-well plates (CellsDirect Resuspension and Lysis Buffer,
Invitrogen) and snap-frozen with dry ice. Right before reverse transcription,
samples were heated at 65 �C for 90 s and immediately snap chilled on ice for
5min. Reaction buffer (1.4 ml) and 0.7 ml enzyme (Maxima First Strand cDNA
Synthesis Kit, Thermo Scientific) were added to each sample and reverse tran-
scription was performed with the following protocol: 10min 25 �C, 15min 50 �C,
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5min 85 �C. Sequence-specific pre-amplification was performed using TaqMan
PreAmp Master Mix (Invitrogen, PN 4391128) by activating the enzyme at 95 �C
for 10min, denaturing at 96 �C for 5 s, then annealing and amplification at 60 �C
for 4min for 20 cycles. Unincorporated primers were inactivated by Exonuclease I
by digesting at 37 �C for 30min and inactivation at 80 �C for 15min. The resulting
complementary DNA was diluted fivefold in DNA Suspension Buffer (10mM Tris,
pH 8.0, 0.1mM EDTA; TEKnova, PN T0221) before analysis with 2� Sso Fast
EvaGreen Supermix With Low ROX (Bio-Rad Laboratories, PN 172-5211) with
nested primers in 48:48 Dynamic Arrays on a Biomark System (Fluidigm).
Ct values were calculated from the system’s software (Biomark Real-time PCR
analysis, Fluidigm). The list of primers used is shown in Supplementary Methods.

Raw data treatment and visualization. All Raw Ct values were normalized to the
assumed detection Ct level of 30, following recommendation from Fluidigm
technical support. For visualization purposes, heatmaps were produced using
custom scripts and ggplot package in R.

Statistical analysis. The non-parametric Mann–Whitney U-test was used to
determine the statistical significance of differences, unless otherwise stated, and
P-values were denoted by *Po0.05, **Po0.01, ***Po0.001 and ****Po0.0001.
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