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ABSTRACT

Deep neural networks are widely used in machine learning applications. However,
the deployment of large neural networks models can be difficult to deploy on mobile
devices with limited power budgets. To solve this problem, we propose Trained
Ternary Quantization (TTQ), a method that can reduce the precision of weights in
neural networks to ternary values. This method has very little accuracy degradation
and can even improve the accuracy of some models (32, 44, 56-layer ResNet) on
CIFAR-10 and AlexNet on ImageNet. And our AlexNet model is trained from
scratch, which means it’s as easy as to train normal full precision model. We
highlight our trained quantization method that can learn both ternary values and
ternary assignment. During inference, only ternary values (2-bit weights) and
scaling factors are needed, therefore our models are nearly 16× smaller than full-
precision models. Our ternary models can also be viewed as sparse binary weight
networks, which can potentially be accelerated with custom circuit. Experiments on
CIFAR-10 show that the ternary models obtained by trained quantization method
outperform full-precision models of ResNet-32,44,56 by 0.04%, 0.16%, 0.36%,
respectively. On ImageNet, our model outperforms full-precision AlexNet model
by 0.3% of Top-1 accuracy and outperforms previous ternary models by 3%.

1 INTRODUCTION

Deep neural networks are becoming the preferred approach for many machine learning applications.
However, as networks get deeper, deploying a network with a large number of parameters on a small
device becomes increasingly difficult. Much work has been done to reduce the size of networks. Half-
precision networks (Amodei et al., 2015) cut sizes of neural networks in half. XNOR-Net (Rastegari
et al., 2016), DoReFa-Net (Zhou et al., 2016) and network binarization (Courbariaux et al.; 2015;
Lin et al., 2015) use aggressively quantized weights, activations and gradients to further reduce
computation during training. While weight binarization benefits from 32× smaller model size, the
extreme compression rate comes with a loss of accuracy. Hubara et al. (2016) and Li & Liu (2016)
propose ternary weight networks to trade off between model size and accuracy.

In this paper, we propose Trained Ternary Quantization which uses two full-precision scaling
coefficients W

p

l , Wn
l for each layer l, and quantize the weights to {−Wn

l , 0, +W
p

l } instead of
traditional {-1, 0, +1} or {-E, 0, +E} where E is the mean of the absolute weight value, which is
not learned. Our positive and negative weights have different absolute values W

p

l and Wn
l that are

trainable parameters. We also maintain latent full-precision weights at training time, and discard
them at test time. We back propagate the gradient to both W

p

l , Wn
l and to the latent full-precision

weights. This makes it possible to adjust the ternary assignment (i.e. which of the three values a
weight is assigned).

Our quantization method, achieves higher accuracy on the CIFAR-10 and ImageNet datasets. For
AlexNet on ImageNet dataset, our method outperforms previously state-of-art ternary network(Li &

∗Work done while at Stanford CVA lab.
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Liu, 2016) by 3.0% of Top-1 accuracy and the full-precision model by 1.6%. By converting most of
the parameters to 2-bit values, we also compress the network by about 16x. Moreover, the advantage
of few multiplications still remains, because W

p

l and Wn
l are fixed for each layer during inference.

On custom hardware, multiplications can be pre-computed on activations, so only two multiplications
per activation are required.

2 MOTIVATIONS

The potential of deep neural networks, once deployed to mobile devices, has the advantage of lower
latency, no reliance on the network, and better user privacy. However, energy efficiency becomes the
bottleneck for deploying deep neural networks on mobile devices because mobile devices are battery
constrained. Current deep neural network models consist of hundreds of millions of parameters.
Reducing the size of a DNN model makes the deployment on edge devices easier.

First, a smaller model means less overhead when exporting models to clients. Take autonomous
driving for example; Tesla periodically copies new models from their servers to customers’ cars.
Smaller models require less communication in such over-the-air updates, making frequent updates
more feasible. Another example is on Apple Store; apps above 100 MB will not download until you
connect to Wi-Fi. It’s infeasible to put a large DNN model in an app. The second issue is energy
consumption. Deep learning is energy consuming, which is problematic for battery-constrained
mobile devices. As a result, iOS 10 requires iPhone to be plugged with charger while performing
photo analysis. Fetching DNN models from memory takes more than two orders of magnitude more
energy than arithmetic operations. Smaller neural networks require less memory bandwidth to fetch
the model, saving the energy and extending battery life. The third issue is area cost. When deploying
DNNs on Application-Specific Integrated Circuits (ASICs), a sufficiently small model can be stored
directly on-chip, and smaller models enable a smaller ASIC die.

Several previous works aimed to improve energy and spatial efficiency of deep networks. One
common strategy proven useful is to quantize 32-bit weights to one or two bits, which greatly reduces
model size and saves memory reference. However, experimental results show that compressed
weights usually come with degraded performance, which is a great loss for some performance-
sensitive applications. The contradiction between compression and performance motivates us to work
on trained ternary quantization, minimizing performance degradation of deep neural networks while
saving as much energy and space as possible.

3 RELATED WORK

3.1 BINARY NEURAL NETWORK (BNN)

Lin et al. (2015) proposed binary and ternary connections to compress neural networks and speed up
computation during inference. They used similar probabilistic methods to convert 32-bit weights into
binary values or ternary values, defined as:

wb ∼ Bernoulli(
w̃ + 1

2
)× 2− 1

wt ∼ Bernoulli(|w̃|)× sign(w̃)
(1)

Here wb and wt denote binary and ternary weights after quantization. w̃ denotes the latent full
precision weight.

During back-propagation, as the above quantization equations are not differentiable, derivatives of
expectations of the Bernoulli distribution are computed instead, yielding the identity function:

∂L

∂w̃
=

∂L

∂wb
=

∂L

∂wt
(2)

Here L is the loss to optimize.

For BNN with binary connections, only quantized binary values are needed for inference. Therefore
a 32× smaller model can be deployed into applications.
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3.2 DOREFA-NET

Zhou et al. (2016) proposed DoReFa-Net which quantizes weights, activations and gradients of neural
networks using different widths of bits. Therefore with specifically designed low-bit multiplication
algorithm or hardware, both training and inference stages can be accelerated.

They also introduced a much simpler method to quantize 32-bit weights to binary values, defined as:

wb = E(|w̃|)× sign(w̃) (3)

Here E(|w̃|) calculates the mean of absolute values of full precision weights w̃ as layer-wise scaling
factors. During back-propagation, Equation 2 still applies.

3.3 TERNARY WEIGHT NETWORKS

Li & Liu (2016) proposed TWN (Ternary weight networks), which reduce accuracy loss of binary
networks by introducing zero as a third quantized value. They use two symmetric thresholds ±∆l

and a scaling factor Wl for each layer l to quantize weighs into {−Wl, 0,+Wl}:

wt
l =







Wl : w̃l > ∆l

0 : |w̃l| ≤ ∆l

−Wl : w̃l < −∆l

(4)

They then solve an optimization problem of minimizing L2 distance between full precision and
ternary weights to obtain layer-wise values of Wl and ∆l:

∆l = 0.7×E(|w̃l|)

Wl = E
i∈{i|w̃l(i)|>∆}

(|w̃l(i)|)
(5)

And again Equation 2 is used to calculate gradients. While an additional bit is required for ternary
weights, TWN achieves a validation accuracy that is very close to full precision networks according
to their paper.

3.4 DEEP COMPRESSION

Han et al. (2015) proposed deep compression to prune away trivial connections and reduce precision
of weights. Unlike above models using zero or symmetric thresholds to quantize high precision
weights, Deep Compression used clusters to categorize weights into groups. In Deep Compression,
low precision weights are fine-tuned from a pre-trained full precision network, and the assignment of
each weight is established at the beginning and stay unchanged, while representative value of each
cluster is updated throughout fine-tuning.

4 METHOD

Our method is illustrated in Figure 1. First, we normalize the full-precision weights to the range
[-1, +1] by dividing each weight by the maximum weight. Next, we quantize the intermediate
full-resolution weights to {-1, 0, +1} by thresholding. The threshold factor t is a hyper-parameter
that is the same across all the layers in order to reduce the search space. Finally, we perform trained
quantization by back propagating two gradients, as shown in the dashed lines in Figure 1. We
back-propagate gradient1 to the full-resolution weights and gradient2 to the scaling coefficients.
The former enables learning the ternary assignments, and the latter enables learning the ternary
values.

At inference time, we throw away the full-resolution weights and only use ternary weights.

4.1 LEARNING BOTH TERNARY VALUES AND TERNARY ASSIGNMENTS

During gradient descent we learn both the quantized ternary weights (the codebook), and choose
which of these values is assigned to each weight (choosing the codebook index).
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Figure 1: Overview of the trained ternary quantization procedure.

To learn the ternary value (codebook), we introduce two quantization factors W
p

l and Wn
l for positive

and negative weights in each layer l. During feed-forward, quantized ternary weights wt
l are calculated

as:

wt
l =







W
p

l : w̃l > ∆l

0 : |w̃l| ≤ ∆l

−Wn
l : w̃l < −∆l

(6)

Unlike previous work where quantized weights are calculated from 32-bit weights, the scaling coeffi-
cients W

p

l and Wn
l are two independent parameters and are trained together with other parameters.

Following the rule of gradient descent, derivatives of W
p

l and Wn
l are calculated as:

∂L

∂W
p

l

=
∑

i∈I
p

l

∂L

∂wt
l (i)

,
∂L

∂Wn
l

=
∑

i∈In
l

∂L

∂wt
l (i)

(7)

Here I
p

l = {i|w̃l(i) > ∆l} and Inl = {i|(i)w̃l < −∆l}. Furthermore, because of the existence
of two scaling factors, gradients of latent full precision weights can no longer be calculated by
Equation 2. We use scaled gradients for 32-bit weights:

∂L

∂w̃l

=



































W
p

l ×
∂L

∂wt
l

: w̃l > ∆l

1×
∂L

∂wt
l

: |w̃l| ≤ ∆l

Wn
l ×

∂L

∂wt
l

: w̃l < −∆l

(8)

Note we use scalar number 1 as factor of gradients of zero weights. The overall quantization process
is illustrated as Figure 1. The evolution of the ternary weights from different layers during training is
shown in Figure 2. We observe that as training proceeds, different layers behave differently: for the
first quantized conv layer, the absolute values of W

p

l and Wn
l get smaller and sparsity gets lower,

while for the last conv layer and fully connected layer, the absolute values of W
p

l and Wn
l get larger

and sparsity gets higher.

We learn the ternary assignments (index to the codebook) by updating the latent full-resolution
weights during training. This may cause the assignments to change between iterations. Note that
the thresholds are not constants as the maximal absolute values change over time. Once an updated
weight crosses the threshold, the ternary assignment is changed.

The benefits of using trained quantization factors are: i) The asymmetry of W
p

l 6= Wn
l enables

neural networks to have more model capacity. ii) Quantized weights play the role of "learning rate
multipliers" during back propagation.

4.2 QUANTIZATION HEURISTIC

In previous work on ternary weight networks, Li & Liu (2016) proposed Ternary Weight Networks
(TWN) using ±∆l as thresholds to reduce 32-bit weights to ternary values, where ±∆l is defined
as Equation 5. They optimized value of ±∆l by minimizing expectation of L2 distance between
full precision weights and ternary weights. Instead of using a strictly optimized threshold, we adopt
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Figure 2: Ternary weights value (above) and distribution (below) with iterations for different layers
of ResNet-20 on CIFAR-10.

different heuristics: 1) use the maximum absolute value of the weights as a reference to the layer’s
threshold and maintain a constant factor t for all layers:

∆l = t× max(|w̃|) (9)

and 2) maintain a constant sparsity r for all layers throughout training. By adjusting the hyper-
parameter r we are able to obtain ternary weight networks with various sparsities. We use the first
method and set t to 0.05 in experiments on CIFAR-10 and ImageNet dataset and use the second one
to explore a wider range of sparsities in section 5.1.1.

We perform our experiments on CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNet (Russakovsky
et al., 2015). Our network is implemented on both TensorFlow (Abadi & et. al o, 2015) and Caffe (Jia
et al., 2014) frameworks.

4.3 CIFAR-10

5 EXPERIMENTS

CIFAR-10 is an image classification benchmark containing images of size 32×32RGB pixels in
a training set of 50000 and a test set of 10000. ResNet (He et al., 2015) structure is used for our
experiments.

We use parameters pre-trained from a full precision ResNet to initialize our model. Learning rate is
set to 0.1 at beginning and scaled by 0.1 at epoch 80, 120 and 300. A L2-normalized weight decay
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Figure 3: ResNet-20 on CIFAR-10 with different weight precision.
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of 0.0002 is used as regularizer. Most of our models converge after 160 epochs. We take a moving
average on errors of all epochs to filter off fluctuations when reporting error rate.

We compare our model with the full-precision model and a binary-weight model. We train a a full
precision ResNet (He et al., 2016) on CIFAR-10 as the baseline (blue line in Figure 3). We fine-tune
the trained baseline network as a 1-32-32 DoReFa-Net where weights are 1 bit and both activations
and gradients are 32 bits giving a significant loss of accuracy (green line) . Finally, we fine-tuning the
baseline with trained ternary weights (red line). Our model has substantial accuracy improvement
over the binary weight model, and our loss of accuracy over the full precision model is small. We
also compare our model to Tenary Weight Network (TWN) on ResNet-20. Result shows our model
improves the accuracy by ∼ 0.25% on CIFAR-10.

We expand our experiments to ternarize ResNet with 32, 44 and 56 layers. All ternary models are
fine-tuned from full precision models. Our results show that we improve the accuracy of ResNet-32,
ResNet-44 and ResNet-56 by 0.04%, 0.16% and 0.36% . The deeper the model, the larger the
improvement. We conjecture that this is due to ternary weights providing the right model capacity
and preventing overfitting for deeper networks.

Model Full resolution Ternary (Ours) Improvement

ResNet-20 8.23 8.87 -0.64
ResNet-32 7.67 7.63 0.04
ResNet-44 7.18 7.02 0.16
ResNet-56 6.80 6.44 0.36

Table 1: Error rates of full-precision and ternary ResNets on Cifar-10

5.1 IMAGENET

We further train and evaluate our model on ILSVRC12(Russakovsky et al. (2015)). ILSVRC12 is a
1000-category dataset with over 1.2 million images in training set and 50 thousand images in validation
set. Images from ILSVRC12 also have various resolutions. We used a variant of AlexNet(Krizhevsky
et al. (2012)) structure by removing dropout layers and add batch normalization(Ioffe & Szegedy,
2015) for all models in our experiments. The same variant is also used in experiments described in
the paper of DoReFa-Net.

Our ternary model of AlexNet uses full precision weights for the first convolution layer and the last
fully-connected layer. Other layer parameters are all quantized to ternary values. We train our model
on ImageNet from scratch using an Adam optimizer (Kingma & Ba (2014)). Minibatch size is set to
128. Learning rate starts at 10−4 and is scaled by 0.2 at epoch 56 and 64. A L2-normalized weight
decay of 5 × 10−6 is used as a regularizer. Images are first resized to 256 × 256 then randomly
cropped to 224× 224 before input. We report both top 1 and top 5 error rate on validation set.

We compare our model to a full precision baseline, 1-32-32 DoReFa-Net and TWN. After around
64 epochs, validation error of our model dropped significantly compared to other low-bit networks
as well as the full precision baseline. Finally our model reaches top 1 error rate of 42.5%, while
DoReFa-Net gets 46.1% and TWN gets 45.5%. Furthermore, our model still outperforms full
precision AlexNet (the batch normalization version, 44.1% according to paper of DoReFa-Net) by
1.6%, and is even better than the best AlexNet results reported (42.8%1). The complete results are
listed in Table 2.

Error Full precision
1-bit

(DoReFa)
2-bit

(TWN)
2-bit

(Ours)

Top1 42.8% 46.1% 45.5% 42.5%
Top5 19.7% 23.7% 23.2% 20.3%

Table 2: Top1 and Top5 error rate of AlexNet on ImageNet

1https://github.com/BVLC/caffe/wiki/Models-accuracy-on-ImageNet-2012-val
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Figure 4: Training and validation accuracy of AlexNet on ImageNet

We draw the process of training in Figure 4, the baseline results of AlexNet are marked with dashed
lines. Our ternary model effectively reduces the gap between training and validation performance,
which appears to be quite great for DoReFa-Net and TWN. This indicates that adopting trainable W

p

l

and Wn
l helps prevent models from overfitting to the training set.

We also report the results of our methods on ResNet-18B in Table 3. The full-precision error rates are
obtained from Facebook’s implementation. Here we cite Binarized Weight Network(BWN)Rastegari
et al. (2016) results with all layers quantized and TWN finetuned based on a full precision network,
while we train our TTQ model from scratch. Compared with BWN and TWN, our method obtains a
substantial improvement.

Error Full precision
1-bit

(BWN)
2-bit

(TWN)
2-bit

(Ours)

Top1 30.4% 39.2% 34.7% 33.4%
Top5 10.8% 17.0% 13.8% 12.8%

Table 3: Top1 and Top5 error rate of ResNet-18 on ImageNet

6 DISCUSSION

In this section we analyze performance of our model with regard to weight compression and inference
speeding up. These two goals are achieved through reducing bit precision and introducing sparsity.
We also visualize convolution kernels in quantized convolution layers to find that basic patterns of
edge/corner detectors are also well learned from scratch even precision is low.

6.1 SPATIAL AND ENERGY EFFICIENCY

We save storage for models by 16× by using ternary weights. Although switching from a binary-
weight network to a ternary-weight network increases bits per weight, it brings sparsity to the weights,
which gives potential to skip the computation on zero weights and achieve higher energy efficiency.

6.1.1 TRADE-OFF BETWEEN SPARSITY AND ACCURACY

Figure 5 shows the relationship between sparsity and accuracy. As the sparsity of weights grows
from 0 (a pure binary-weight network) to 0.5 (a ternary network with 50% zeros), both the training
and validation error decrease. Increasing sparsity beyond 50% reduces the model capacity too far,
increasing error. Minimum error occurs with sparsity between 30% and 50%.

We introduce only one hyper-parameter to reduce search space. This hyper-parameter can be
either sparsity, or the threshold t w.r.t the max value in Equation 6. We find that using threshold
produces better results. This is because fixing the threshold allows the sparsity of each layer to vary
(Figure reffig:weights).
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6.1.2 SPARSITY AND EFFICIENCY OF ALEXNET

We further analyze parameters from our AlexNet model. We calculate layer-wise density (complement
of sparsity) as shown in Table 4. Despite we use different W

p

l and Wn
l for each layer, ternary weights

can be pre-computed when fetched from memory, thus multiplications during convolution and inner
product process are still saved. Compared to Deep Compression, we accelerate inference speed using
ternary values and more importantly, we reduce energy consumption of inference by saving memory
references and multiplications, while achieving higher accuracy.

We notice that without all quantized layers sharing the same t for Equation 9, our model achieves
considerable sparsity in convolution layers where the majority of computations takes place. Therefore
we are able to squeeze forward time to less than 30% of full precision networks.

As for spatial compression, by substituting 32-bit weights with 2-bit ternary weights, our model is
approximately 16× smaller than original 32-bit AlexNet.

6.2 KERNEL VISUALIZATION

We visualize quantized convolution kernels in Figure 6. The left matrix is kernels from the second
convolution layer (5× 5) and the right one is from the third (3× 3). We pick first 10 input channels
and first 10 output channels to display for each layer. Grey, black and white color represent zero,
negative and positive weights respectively.

We observe similar filter patterns as full precision AlexNet. Edge and corner detectors of various
directions can be found among listed kernels. While these patterns are important for convolution
neural networks, the precision of each weight is not. Ternary value filters are capable enough
extracting key features after a full precision first convolution layer while saving unnecessary storage.

Furthermore, we find that there are a number of empty filters (all zeros) or filters with single non-zero
value in convolution layers. More aggressive pruning can be applied to prune away these redundant
kernels to further compress and speed up our model.

Layer
Full precision Pruning (NIPS’15) Ours

Density Width Density Width Density Width

conv1 100% 32 bit 84% 8 bit 100% 32 bit
conv2 100% 32 bit 38% 8 bit 23% 2 bit
conv3 100% 32 bit 35% 8 bit 24% 2 bit
conv4 100% 32 bit 37% 8 bit 40% 2 bit
conv5 100% 32 bit 37% 8 bit 43% 2 bit

conv total 100% - 37% - 33% -

fc1 100% 32 bit 9% 5 bit 30% 2 bit
fc2 100% 32 bit 9% 5 bit 36% 2 bit
fc3 100% 32 bit 25% 5 bit 100% 32 bit

fc total 100% - 10% - 37% -

All total 100% - 11% - 37% -

Table 4: Alexnet layer-wise sparsity
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Figure 6: Visualization of kernels from Ternary AlexNet trained from Imagenet.

7 CONCLUSION

We introduce a novel neural network quantization method that compresses network weights to ternary
values. We introduce two trained scaling coefficients W l

p and W l
n for each layer and train these

coefficients using back-propagation. During training, the gradients are back-propagated both to the
latent full-resolution weights and to the scaling coefficients. We use layer-wise thresholds that are
proportional to the maximum absolute values to quantize the weights. When deploying the ternary
network, only the ternary weights and scaling coefficients are needed, which reducing parameter size
by at least 16×. Experiments show that our model reaches or even surpasses the accuracy of full
precision models on both CIFAR-10 and ImageNet dataset. On ImageNet we exceed the accuracy of
prior ternary networks (TWN) by 3%.
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