
494

TRAINING A 3-NODE NEURAL NETWORK

IS NP-COMPLETE

Avrim Blum'"

MIT Lab. for Computer Science

Cambridge, Mass. 02139 USA

Ronald L. Rivest t

MIT Lab. for Computer Science

Cambridge, Mass. 02139 USA

ABSTRACT

We consider a 2-layer, 3-node, n-input neural network whose nodes

compute linear threshold functions of their inputs. We show that it

is NP-complete to decide whether there exist weights and thresholds

for the three nodes of this network so that it will produce output con

sistent with a given set of training examples. We extend the result

to other simple networks. This result suggests that those looking for

perfect training algorithms cannot escape inherent computational

difficulties just by considering only simple or very regular networks.

It also suggests the importance, given a training problem, of finding

an appropriate network and input encoding for that problem. It is
left as an open problem to extend our result to nodes with non-linear

functions such as sigmoids.

INTRODUCTION

One reason for the recent surge in interest in neural networks is the develop

ment of the "back-propagation" algorithm for training neural networks. The

ability to train large multi-layer neural networks is essential for utilizing neural

networks in practice, and the back-propagation algorithm promises just that.

In practice, however, the back-propagation algorithm runs very slowly, and the

question naturally arises as to whether there are necessarily intrinsic compu

tational difficulties associated with training neural networks, or whether better

training algorithms might exist. This paper provides additional support for the

position that training neural networks is intrinsically difficult.

A common method of demonstrating a problem to be intrinsically hard is to

show the problem to be "NP-complete". The theory of NP-complete problems

is well-understood (Garey and Johnson, 1979), and many infamous problems

such as the traveling salesman problem-are now known to be NP-complete.

While NP-completeness does not render a problem totally unapproachable in

·Supported by an NSF graduate fellowship.

tThis paper was prepared with support from NSF grant DCR-8607494, ARO Grant

DAAL03-86-K-0l71, and the Siemens Corporation.

Training a 3-Node Neural Network is NP-Complete 495

practice, it usually implies that only small instances ofthe problem can be solved

exactly, and that large instances can at best only be solved approximately, even

with large amounts of computer time.

The work in this paper is inspired by Judd (Judd, 1987) who shows the following

problem to be NP-complete:

"Given a neural network and a set of training examples, does there

exist a set of edge weights for the network so that the network pro

duces the correct output for all the training examples?"

Judd also shows that the problem remains NP-complete even if it is only required

a network produce the correct output for two-thirds of the training examples,

which implies that even approximately training a neural network is intrinsically

difficult in the worst case. Judd produces a class of networks and training ex

amples for those networks such that any training algorithm will perform poorly

on some networks and training examples in that class. The results, however,

do not specify any particular "hard network"-that is, any single network hard

for all algorithms. Also, the networks produced have a number of hidden nodes

that grows with the number of inputs, as well as a quite irregular connection

pattern.

We extend his result by showing that it is NP-complete to train a specific very

simple network, having only two hidden nodes and a regular interconnection

pattern. We also present classes of regular 2-layer networks such that for all

networks in these classes, the training problem is hard in the worst case (in

that there exists some hard sets of training examples). The NP-completeness

proof also yields results showing that finding approximation algorithms that

make only one-sided error or that approximate closely the minimum number

of hidden-layer nodes needed for a network to be powerful enough to correctly

classify the training data, is probably hard, in that these problems can be related

to other difficult (but not known to be NP-complete) approximation problems.

Our results, like Judd's, are described in terms of "batch"-style learning algo

rithms that are given all the training examples at once. It is worth noting that

training with an "incremental" algorithm that sees the examples one at a time

such as back-propagation is at least as hard. Thus the NP-completeness result

given here also implies that incremental training algorithms are likely to run

slowly.

Our results state that given a network of the classes considered, for any training

algorithm there will be some types of training problems such that the algorithm

will perform poorly as the problem size increases. The results leave open the

possibility that given a training problem that is hard for some network, there

might exist a different network and encoding of the input that make training

easy.

496 Blum and Rivest

1 2 3 4 n

Figure 1: The three node neural network.

THE NEURAL NETWORK TRAINING PROBLEM

The multilayer network that we consider has n binary inputs and three nodes:

Nt, N2, Na. All the inputs are connected to nodes Nl and N2. The outputs

of hidden nodes Nl and N2 are connected to output node Na which gives the

output of the network.

Each node Ni computes a linear threshold function Ii on its inputs. If Ni has

input Z = (Zll ••. I Zm), then for some constants ao, . .. , am,

The aj's (j > 1) are typically viewed as weights on the incoming edges and ao

as the threshold.

The training algorithm for the network is given a set of training examples. Each

is either a positive example (an input for which the desired network output is +1)

or a negative example (an input for which the desired output is -1). Consider

the following problem. Note that we have stated it as a decision ("yes" or "no")

problem, but that the search problem (finding the weights) is at least equally

hard.

TRAINING A 3-NODE NEURAL NETWORK:

Given: A set of O(n) training examples on n inputs.

Question: Do there exist linear threshold functions h, /2, fa for nodes Nt, N21 Na

Training a 3-Node Neural Network is NP-Complete 497

such that the network of figure 1 produces outputs consistent with the training

set?

Theorem: Training a 3-node neural network is NP-complete.

We also show (proofs omitted here due to space requirements) NP-completeness

results for the following networks:

1. The 3-node network described above, even if any or all of the weights for

one hidden node are required to equal the corresponding weights of the

other, so possibly only the thresholds differ, and even if any or all of the

weights are forced to be from {+ 1, -I}.

2. Any k-hidden node, for k bounded by some polynomial in n (eg: k = n2),

two-layer fully-connected network with linear threshold function nodes

where the output node is required to compute the AND function of its

inputs.

3. The 2-layer, 3-node n-input network with an XOR output node, if ternary

features are allowed.

In addition we show (proof omitted here) that any set of positive and negative

training examples classifiable by the 3-node network with XOR output node (for

which training is NP-complete) can be correctly classified by a perceptron with

O(n2) inputs which consist of the original n inputs and all products of pairs of

the original n inputs (for which training can be done in polynomial-time using

linear programming techniques).

THE GEOMETRIC POINT OF VIEW

A training example can be thought of as a point in n-dimensional space, labeled

'+' or '-' depending on whether it is a positive or negative example. The points

are vertices of the n-dimensional hypercube. The zeros of the functions /1 and

h for the hidden nodes can be thought of as (n - I)-dimensional hyperplanes

in this space. The planes Pl and P2 corresponding to the functions hand

/2 divide the space into four quadrants according to the four possible pairs of

outputs for nodes Nl and N2 • If the planes are parallel, then one or two of the

quadrants is degenerate (non-existent). Since the output node receives as input

only the outputs of the hidden nodes Nl and N 2 , it can only distinguish between

points in different quadrants. The output node is also restricted to be a linear

function. It may not, for example, output "+1" when its inputs are (+1,+1)

and (-1, -1), and output "-I" when its inputs are (+1, -1) and (-1,+1).

So, we may reduce our question to the following: given O(n) points in {O, 1}n ,

each point labeled '+' or '-', does there exist either

498 Blum and Rivest

1. a single plane that separates the '+' points from the '-' points, or

2. two planes that partition the points so that either one quadrant contains

all and only '+' points or one quadrant contains all and only '-' points.

We first look at the restricted question of whether there exist two planes that

partition the points such that one quadrant contains all and only the '+' points.

This corresponds to having an "AND" function at the output node. We will call

this problem: "2-Linear Confinement of Positive Boolean Examples". Once we

have shown this to be NP-complete, we will extend the proof to the full problem

by adding examples that disallow the other possibilities at the output node.

Megiddo (Megiddo, 1986) has shown that for O(n) arbitrary '+' and '-' points
in n-dimensional Euclidean space, the problem of whether there exist two hy

perplanes that separate them is NP-complete. His proof breaks down, however,

when one restricts the coordinate values to {O, I} as we do here. Our proof

turns out to be of a quite different style.

SET SPLITTING

The following problem was proven to be NP-complete by Lovasz (Garey and

Johnson 1979).

SET-SPLITTING:

Given: A finite set 5 and a collection C of subsets Ci of 5.

Question: Do there exist disjoint sets 51, S2 such that Sl U S2 - Sand

Vi, Ci rt. Sl and Ci rt. S2.

The Set-Splitting problem is also known as 2-non-Monotone Colorability. Our

use of this problem is inspired by its use by Kearns, Li, Pitt, and Valiant to

show that learning k-term DNF is NP-complete (Kearns et al. 1987) and the

style of the reduction is similar.

THE REDUCTION

Suppose we are given an instance of the Set-Splitting problem:

Create the following signed points on the n-dimensional hypercube {O, l}n:

• Let the origin on be labeled '+' .

• For each Si, put a point labeled '-' at the neighbor to the origin that has
12 . .. i ... n

a 1 in the ith bit-that is, at (00" -010·· ·0). Call this point Pi.

Training a 3-Node Neural Network is NP-Complete 499

(001)

(010)

(000) (100)

Figure 2: An example .

• For each Cj = {Sjt, ..• ,Sjkj}, put a point labeled '+' at the location whose

bits are 1 at exactly the positions j1,i2, ... ,jkj-that is, at Pj1 + .. '+Pjkr

For example, let 8 = {Sl,S2,S3}, C = {Ct,C2}, Cl = {Sl,S2}, C2 = {S2,S3}'

SO, we create '-' points at: (0 0 1), (0 1 0), (1 0 0)

and '+' points at: (0 0 0), (1 1 0), (0 1 1) in this reduction (see figure 2).

Claim: The given instance of the Set-Splitting problem has a solution ¢:::::} the

constructed instance of the 2-Linear Confinement of Positive Boolean Examples

problem has a solution.

Proof: (=»

Given 8 1 from the solution to the Set-Splitting instance, create the plane P1 :

a1z1 + ... + anZn = -~, where ai = -1 if Sj E 8 11 and aj = n if Si ¢ 8 1 , Let

the vectors a = (a1, .. ' an),z = (Zl,"" zn).

This plane separates from the origin exactly the '-' points corresponding to

Si E 81 and no '+' points. Notice that for each Si E 81, a· Pi = -1, and that

for each Si ¢ 8 1 , a . Pi = n. For each '+' point p, a· P > - ~ since either P is

the origin or else P has a 1 in a bit i such that Si ¢ 8 1 ,

Similarly, create the plane P2 from 8 2 ,

{¢::}

Let 81 be the set of points separated from the origin by PI and 8 2 be those

points separated by P2. Place any points separated by both planes in either

81 or 82 arbitrarily. Sets 81 and 8 2 cover 8 since all '-' points are separated

from the origin by at least one of the planes. Consider some Cj = {Sjl .•• Sjkj}

500 Blum and Rivest

(001)

(010)

(000) (100)

Figure 3: The gadget.

and the corresponding '-' points Pjb" • ,Pjkr If, say, Cj C 811 then P1 must

separate all the Pji from the origin. Therefore, Pl must separate Pj1 + ... + Pjkj

from the origin. Since that point is the '+' point corresponding to Cj, the '+'
points are not all confined to one quadrant, contradicting our assumptions. So,

no Cj can be contained in 81. Similarly, no Cj can be contained in 82 • •

We now add a "gadget" consisting of 6 new points to handle the other possi

bilities at the output node. The gadget forces that the only way in which two

planes could linearly separate the '+' points from the '-' points would be to

confine the '+' points to one quadrant. The gadget consists of extra points and

three new dimensions. We add three new dimensions, xn+b Xn +2, and Xn +3,

and put '+' points in locations:

(0· .. 0101), (0 .. ·0011)

and '-' points in locations:

(0 .. ·0100), (0 .. ·0010), (0 .. ·0001), (0 .. ·0 111).

(See figure 3.)

The '+' points ot:this cube can be separated from the '-' points by appropriate

settings of the weights of planes P1 and P2 corresponding to the three new

dimensions. Given planes P{ : a1X1 + ... + anXn = -! and P2 : b1x1 + ... +
bnxn = -~ which solve a 2-Linear Confinement of Positive Boolean Examples

instance in n dimensions, expand the solution to handle the gadget by setting

1
to a1 x 1 + ... + anXn + Xn +1 + X n +2 - X n+3 = -2"

1
to b1x 1 + ... + bnxn - x n +1 - x n+2 + X n+3 = -2"

Training a 3-N ode Neural Network is NP-Complete 501

(Pl separates '-' point (0···0 001) from the '+' points and P2 separates the

other three '-' points from the '+' points). Also, notice that there is no way

in which just one plane can separate the '+' points from the '-' points in the

cube and also no way for two planes to confine all the negative points in one

quadrant. Thus we have proved the theorem.

CONCLUSIONS

Training a 3-node neural network whose nodes compute linear threshold func

tions is NP-complete.

An open problem is whether the NP-completeness result can be extended to

neural networks that use sigmoid functions. We believe that it can because the

use of sigmoid functions does not seem to alter significantly the expressive power

of a neural network. Note that Judd (Judd 1987), for the networks he considers,

shows NP-completeness for a wide variety of node functions including sigmoids.

References

James A. Anderson and Edward Rosenfeld, editors. Neurocomputing: Foun

dations of Research. MIT Press, 1988.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

J. Stephen Judd. Learning in networks is hard. In Proceedings of the First

International Conference on Neural Networks, pages 685-692, I.E.E.E.,

San Diego, California June 1987.

J. Stephen Judd. Neural Network Design and the Complexity of Learning.

PhD thesis, Computer and Information Science dept., University of Mas

sachusetts, Amherst, Mass. U.S.A., 1988.

Michael Kearns, Ming Li, Leonard Pitt, and Leslie Valiant. On the learn ability

of boolean formulae. In Proceedings of the Nineteenth Annual ACM Sym

posium on Theory of Computing, pages 285-295, New York, New York,

May 1987.

Nimrod Megiddo. On The Complexity of Polyhedral Separability. Technical

Report RJ 5252, IBM Almaden Research Center, August 1986.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Com

putational Geometry. The MIT Press, 1969.

David E. Rumelhart and James 1. McClelland, editors. Parallel Distributed

Processing (Volume I: Foundations). MIT Press, 1986.

