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ABSTRACT 

We consider a 2-layer, 3-node, n-input neural network whose nodes 

compute linear threshold functions of their inputs. We show that it 

is NP-complete to decide whether there exist weights and thresholds 

for the three nodes of this network so that it will produce output con

sistent with a given set of training examples. We extend the result 

to other simple networks. This result suggests that those looking for 

perfect training algorithms cannot escape inherent computational 

difficulties just by considering only simple or very regular networks. 

It also suggests the importance, given a training problem, of finding 

an appropriate network and input encoding for that problem. It is 
left as an open problem to extend our result to nodes with non-linear 

functions such as sigmoids. 

INTRODUCTION 

One reason for the recent surge in interest in neural networks is the develop

ment of the "back-propagation" algorithm for training neural networks. The 

ability to train large multi-layer neural networks is essential for utilizing neural 

networks in practice, and the back-propagation algorithm promises just that. 

In practice, however, the back-propagation algorithm runs very slowly, and the 

question naturally arises as to whether there are necessarily intrinsic compu

tational difficulties associated with training neural networks, or whether better 

training algorithms might exist. This paper provides additional support for the 

position that training neural networks is intrinsically difficult. 

A common method of demonstrating a problem to be intrinsically hard is to 

show the problem to be "NP-complete". The theory of NP-complete problems 

is well-understood (Garey and Johnson, 1979), and many infamous problems

such as the traveling salesman problem-are now known to be NP-complete. 

While NP-completeness does not render a problem totally unapproachable in 
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practice, it usually implies that only small instances ofthe problem can be solved 

exactly, and that large instances can at best only be solved approximately, even 

with large amounts of computer time. 

The work in this paper is inspired by Judd (Judd, 1987) who shows the following 

problem to be NP-complete: 

"Given a neural network and a set of training examples, does there 

exist a set of edge weights for the network so that the network pro

duces the correct output for all the training examples?" 

Judd also shows that the problem remains NP-complete even if it is only required 

a network produce the correct output for two-thirds of the training examples, 

which implies that even approximately training a neural network is intrinsically 

difficult in the worst case. Judd produces a class of networks and training ex

amples for those networks such that any training algorithm will perform poorly 

on some networks and training examples in that class. The results, however, 

do not specify any particular "hard network"-that is, any single network hard 

for all algorithms. Also, the networks produced have a number of hidden nodes 

that grows with the number of inputs, as well as a quite irregular connection 

pattern. 

We extend his result by showing that it is NP-complete to train a specific very 

simple network, having only two hidden nodes and a regular interconnection 

pattern. We also present classes of regular 2-layer networks such that for all 

networks in these classes, the training problem is hard in the worst case (in 

that there exists some hard sets of training examples). The NP-completeness 

proof also yields results showing that finding approximation algorithms that 

make only one-sided error or that approximate closely the minimum number 

of hidden-layer nodes needed for a network to be powerful enough to correctly 

classify the training data, is probably hard, in that these problems can be related 

to other difficult (but not known to be NP-complete) approximation problems. 

Our results, like Judd's, are described in terms of "batch"-style learning algo

rithms that are given all the training examples at once. It is worth noting that 

training with an "incremental" algorithm that sees the examples one at a time 

such as back-propagation is at least as hard. Thus the NP-completeness result 

given here also implies that incremental training algorithms are likely to run 

slowly. 

Our results state that given a network of the classes considered, for any training 

algorithm there will be some types of training problems such that the algorithm 

will perform poorly as the problem size increases. The results leave open the 

possibility that given a training problem that is hard for some network, there 

might exist a different network and encoding of the input that make training 

easy. 
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Figure 1: The three node neural network. 

THE NEURAL NETWORK TRAINING PROBLEM 

The multilayer network that we consider has n binary inputs and three nodes: 

Nt, N2, Na. All the inputs are connected to nodes Nl and N2. The outputs 

of hidden nodes Nl and N2 are connected to output node Na which gives the 

output of the network. 

Each node Ni computes a linear threshold function Ii on its inputs. If Ni has 

input Z = (Zll ••. I Zm), then for some constants ao, . .. , am, 

The aj's (j > 1) are typically viewed as weights on the incoming edges and ao 

as the threshold. 

The training algorithm for the network is given a set of training examples. Each 

is either a positive example (an input for which the desired network output is +1) 

or a negative example (an input for which the desired output is -1). Consider 

the following problem. Note that we have stated it as a decision ("yes" or "no") 

problem, but that the search problem (finding the weights) is at least equally 

hard. 

TRAINING A 3-NODE NEURAL NETWORK: 

Given: A set of O( n) training examples on n inputs. 

Question: Do there exist linear threshold functions h, /2, fa for nodes Nt, N21 Na 
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such that the network of figure 1 produces outputs consistent with the training 

set? 

Theorem: Training a 3-node neural network is NP-complete. 

We also show (proofs omitted here due to space requirements) NP-completeness 

results for the following networks: 

1. The 3-node network described above, even if any or all of the weights for 

one hidden node are required to equal the corresponding weights of the 

other, so possibly only the thresholds differ, and even if any or all of the 

weights are forced to be from {+ 1, -I}. 

2. Any k-hidden node, for k bounded by some polynomial in n (eg: k = n2 ), 

two-layer fully-connected network with linear threshold function nodes 

where the output node is required to compute the AND function of its 

inputs. 

3. The 2-layer, 3-node n-input network with an XOR output node, if ternary 

features are allowed. 

In addition we show (proof omitted here) that any set of positive and negative 

training examples classifiable by the 3-node network with XOR output node (for 

which training is NP-complete) can be correctly classified by a perceptron with 

O(n2 ) inputs which consist of the original n inputs and all products of pairs of 

the original n inputs (for which training can be done in polynomial-time using 

linear programming techniques). 

THE GEOMETRIC POINT OF VIEW 

A training example can be thought of as a point in n-dimensional space, labeled 

'+' or '-' depending on whether it is a positive or negative example. The points 

are vertices of the n-dimensional hypercube. The zeros of the functions /1 and 

h for the hidden nodes can be thought of as (n - I)-dimensional hyperplanes 

in this space. The planes Pl and P2 corresponding to the functions hand 

/2 divide the space into four quadrants according to the four possible pairs of 

outputs for nodes Nl and N2 • If the planes are parallel, then one or two of the 

quadrants is degenerate (non-existent). Since the output node receives as input 

only the outputs of the hidden nodes Nl and N 2 , it can only distinguish between 

points in different quadrants. The output node is also restricted to be a linear 

function. It may not, for example, output "+1" when its inputs are (+1,+1) 

and (-1, -1), and output "-I" when its inputs are (+1, -1) and (-1,+1). 

So, we may reduce our question to the following: given O( n) points in {O, 1}n , 

each point labeled '+' or '-', does there exist either 



498 Blum and Rivest 

1. a single plane that separates the '+' points from the '-' points, or 

2. two planes that partition the points so that either one quadrant contains 

all and only '+' points or one quadrant contains all and only '-' points. 

We first look at the restricted question of whether there exist two planes that 

partition the points such that one quadrant contains all and only the '+' points. 

This corresponds to having an "AND" function at the output node. We will call 

this problem: "2-Linear Confinement of Positive Boolean Examples". Once we 

have shown this to be NP-complete, we will extend the proof to the full problem 

by adding examples that disallow the other possibilities at the output node. 

Megiddo (Megiddo, 1986) has shown that for O(n) arbitrary '+' and '-' points 
in n-dimensional Euclidean space, the problem of whether there exist two hy

perplanes that separate them is NP-complete. His proof breaks down, however, 

when one restricts the coordinate values to {O, I} as we do here. Our proof 

turns out to be of a quite different style. 

SET SPLITTING 

The following problem was proven to be NP-complete by Lovasz (Garey and 

Johnson 1979). 

SET-SPLITTING: 

Given: A finite set 5 and a collection C of subsets Ci of 5. 

Question: Do there exist disjoint sets 51, S2 such that Sl U S2 - Sand 

Vi, Ci rt. Sl and Ci rt. S2. 

The Set-Splitting problem is also known as 2-non-Monotone Colorability. Our 

use of this problem is inspired by its use by Kearns, Li, Pitt, and Valiant to 

show that learning k-term DNF is NP-complete (Kearns et al. 1987) and the 

style of the reduction is similar. 

THE REDUCTION 

Suppose we are given an instance of the Set-Splitting problem: 

Create the following signed points on the n-dimensional hypercube {O, l}n: 

• Let the origin on be labeled '+' . 

• For each Si, put a point labeled '-' at the neighbor to the origin that has 
12 . .. i ... n 

a 1 in the ith bit-that is, at (00" -010·· ·0). Call this point Pi. 
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(001) 

(010) 

(000) (100) 

Figure 2: An example . 

• For each Cj = {Sjt, ..• ,Sjkj}, put a point labeled '+' at the location whose 

bits are 1 at exactly the positions j1,i2, ... ,jkj-that is, at Pj1 + .. '+Pjkr 

For example, let 8 = {Sl,S2,S3}, C = {Ct,C2}, Cl = {Sl,S2}, C2 = {S2,S3}' 

SO, we create '-' points at: (0 0 1), (0 1 0), (1 0 0) 

and '+' points at: (0 0 0), (1 1 0), (0 1 1) in this reduction (see figure 2). 

Claim: The given instance of the Set-Splitting problem has a solution ¢:::::} the 

constructed instance of the 2-Linear Confinement of Positive Boolean Examples 

problem has a solution. 

Proof: (=» 

Given 8 1 from the solution to the Set-Splitting instance, create the plane P1 : 

a1z1 + ... + anZn = -~, where ai = -1 if Sj E 8 11 and aj = n if Si ¢ 8 1 , Let 

the vectors a = (a1, .. ' an),z = (Zl,"" zn). 

This plane separates from the origin exactly the '-' points corresponding to 

Si E 81 and no '+' points. Notice that for each Si E 81, a· Pi = -1, and that 

for each Si ¢ 8 1 , a . Pi = n. For each '+' point p, a· P > - ~ since either P is 

the origin or else P has a 1 in a bit i such that Si ¢ 8 1 , 

Similarly, create the plane P2 from 8 2 , 

{¢::} 

Let 81 be the set of points separated from the origin by PI and 8 2 be those 

points separated by P2. Place any points separated by both planes in either 

81 or 82 arbitrarily. Sets 81 and 8 2 cover 8 since all '-' points are separated 

from the origin by at least one of the planes. Consider some Cj = {Sjl .•• Sjkj} 
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Figure 3: The gadget. 

and the corresponding '-' points Pjb" • ,Pjkr If, say, Cj C 811 then P1 must 

separate all the Pji from the origin. Therefore, Pl must separate Pj1 + ... + Pjkj 

from the origin. Since that point is the '+' point corresponding to Cj, the '+' 
points are not all confined to one quadrant, contradicting our assumptions. So, 

no Cj can be contained in 81. Similarly, no Cj can be contained in 82 • • 

We now add a "gadget" consisting of 6 new points to handle the other possi

bilities at the output node. The gadget forces that the only way in which two 

planes could linearly separate the '+' points from the '-' points would be to 

confine the '+' points to one quadrant. The gadget consists of extra points and 

three new dimensions. We add three new dimensions, xn+b Xn +2, and Xn +3, 

and put '+' points in locations: 

(0· .. 0101), (0 .. ·0011) 

and '-' points in locations: 

(0 .. ·0100), (0 .. ·0010), (0 .. ·0001), (0 .. ·0 111). 

(See figure 3.) 

The '+' points ot:this cube can be separated from the '-' points by appropriate 

settings of the weights of planes P1 and P2 corresponding to the three new 

dimensions. Given planes P{ : a1X1 + ... + anXn = -! and P2 : b1x1 + ... + 
bnxn = -~ which solve a 2-Linear Confinement of Positive Boolean Examples 

instance in n dimensions, expand the solution to handle the gadget by setting 

1 
to a1 x 1 + ... + anXn + Xn +1 + X n +2 - X n+3 = -2" 

1 
to b1x 1 + ... + bnxn - x n +1 - x n+2 + X n+3 = -2" 
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(Pl separates '-' point (0···0 001) from the '+' points and P2 separates the 

other three '-' points from the '+' points). Also, notice that there is no way 

in which just one plane can separate the '+' points from the '-' points in the 

cube and also no way for two planes to confine all the negative points in one 

quadrant. Thus we have proved the theorem. 

CONCLUSIONS 

Training a 3-node neural network whose nodes compute linear threshold func

tions is NP-complete. 

An open problem is whether the NP-completeness result can be extended to 

neural networks that use sigmoid functions. We believe that it can because the 

use of sigmoid functions does not seem to alter significantly the expressive power 

of a neural network. Note that Judd (Judd 1987), for the networks he considers, 

shows NP-completeness for a wide variety of node functions including sigmoids. 
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