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Abstract

X-ray computed tomography (CT) is a powerful technique for non-destructive volumetric inspection of objects and is widely 

used for studying internal structures of a large variety of sample types. The raw data obtained through an X-ray CT practice 

is a gray-scale 3D array of voxels. This data must undergo a geometric feature extraction process before it can be used for 

interpretation purposes. Such feature extraction process is conventionally done manually, but with the ever-increasing trend 

of image data sizes and the interest in identifying more miniature features, automated feature extraction methods are sought. 

Given the fact that conventional computer-vision-based methods, which attempt to segment images into partitions using 

techniques such as thresholding, are often only useful for aiding the manual feature extraction process, machine-learning 

based algorithms are becoming popular to develop fully automated feature extraction processes. Nevertheless, the machine-

learning algorithms require a huge pool of labeled data for proper training, which is often unavailable. We propose to address 

this shortage, through a data synthesis procedure. We will do so by fabricating miniature features, with known geometry, 

position and orientation on thin silicon wafer layers using a femtosecond laser machining system, followed by stacking 

these layers to construct a 3D object with internal features, and finally obtaining the X-ray CT image of the resulting 3D 

object. Given that the exact geometry, position and orientation of the fabricated features are known, the X-ray CT image 

is inherently labeled and is ready to be used for training the machine learning algorithms for automated feature extraction. 

Through several examples, we will showcase: (1) the capability of synthesizing features of arbitrary geometries and their 

corresponding labeled images; and (2) use of the synthesized data for training machine-learning based shape classifiers and 

features parameter extractors.

1 Introduction

Nondestructive volumetric analysis of samples, enabled by 

X-ray computed tomography (CT), has attracted scientists 

and engineers from a wide spectrum of disciplines that are 

interested in identification and measurement of miniature 

internal features of their samples [8]. While obtaining X-ray 

CT images of arbitrary objects has become a straightforward 

procedure, which only requires adjustment of a few imaging 

parameters (e.g., energy, # of projections), the interpretation 

of the resulting 3D images is still a challenging task [25]. 

For proper interpretation of an X-ray CT image, one must be 

able to extract well-defined geometric features from the raw 

data, where the raw data is a gray-scale 3D array of voxels 

[27]. Conventionally this task is performed manually by the 

subject matter experts (SMEs). This faces several problems: 

(1) SMEs have a subjective perception of features. This fact 

impacts the achievable accuracy of measurements in the 

manual processes; (2) manual feature extraction is subject to 

error [19] [2]; and (3) with the trending growth of image data 

size and the interest in identifying more miniature features, 

the manual feature extraction practice is becoming increas-

ingly tedious, if not impractical. This calls for automated 

methods that can extract features accurately and with a high-

throughput. The most common approach for achieving this 

goal is use of computer-vison (CV) techniques, to segment 

the images into distinct partitions [7] [30] [20] [3] [29] [6] 
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[24] [32] [9], which could hopefully be used for extracting 

meaningful geometric features. For example, in threshold-

ing, a common CV technique, intensity values and a preset 

thresholding constant will be used to assign a label to each 

pixel (voxel) in the 2D (3D) image. Such label is shared 

among all the pixels (voxels) of the same partition and the 

result of the segmentation process is a 2D (3D) image that 

is partitioned into several groups of connected pixels (vox-

els). Although, the CV techniques may offer an automated 

process in the absence of image noise (i.e., features that are 

of no interest), their performance drops drastically in dealing 

with noise which is prevalent in any image obtained from 

an X-ray CT practice [17] [4] (Dambreville, Rathi and Tan-

nen 2006). More elaborately, efficiencies associated with 

the scintillator and photodiode panel on the CT detector 

regularly contribute to the production of random and statis-

tical noise in the final image through discontinuities in the 

amount of incident energy converted across scintillator and 

photodiode areas. Noise production is also induced in the 

final image through analog circuitry and analog-to-digital 

converters integral to image reconstruction. These modes 

of noise production can be mitigated, but not completely 

removed. Therefore, in practice, the CV methods are only 

used to assist the manual feature extraction process and can-

not provide a fully automated feature extraction process. The 

success of machine learning (ML) algorithms in automat-

ing tasks that are not analytically well-defined, promises 

use of these methods for automated feature extraction, as 

a superior alternative to CV-based methods. The idea is to 

train a machine learning algorithm with sufficient ground 

truth data (Kotsiantis, Zaharakis and Pintelas, Supervised 

machine learning: A review of classification techniques 

2007) (Singh, Thakur and Sharma 2016) [22] and then use 

it for automated feature extraction. Here, the ground truth 

data are obtained from labeled X-ray CT images. Each data 

point consists of: (1) raw data in the form of a gray-scale 3D 

array of voxels and (2) the corresponding feature. The caveat 

is that the proper training of a machine learning algorithm 

demands huge amounts of labeled data. This is a multifold 

challenge. The necessity of labeling the raw data manually, 

makes this process extremely tedious, if not impractical. In 

addition, labeling process will be subjective, with differ-

ent outcomes expected from different SMEs. Further, such 

manual process is subject to error. Double-checking and 

triple-checking practices to eliminate such error would add 

to the required time and effort for conducting the manual 

segmentation. Existing attempts to crowdsource the manual 

labeling task using volunteers [1] [12] [26] face the chal-

lenge of volunteer’s lack of motivation. Also, a major draw-

back of the state-of-the-art software methods that enable 

manual segmentation is that the user, at each point in time, 

has only a 2D perception of the sample, which acts as a pro-

hibitive factor on the way of conducting a realistic feature 

extraction, given than features extend in three dimensions. 

Moreover, the data that can be naturally found in the sample 

images might not be sufficient or diverse enough for train-

ing the machine learning algorithms. We propose to address 

these issues, through imaging of synthesized features. In 

this process, for any application, depending on the expected 

classes of features, certain geometries will be modeled in 

silico and in a parametric fashion. For example, for study-

ing the electrical connections of a multi-layer PCB board, 

the parametric model of wirings and connections will be 

generated. Next, through a combinatorial algorithm, differ-

ent sets of random values will be assigned to the feature 

parameters to enumerate a large set of features of different 

shapes, sizes, positions and orientations. This is followed 

by embedding the computer-synthesized features into the 

physical sample. Two key considerations in doing so are: 

(1) the features must be internal rather than appearing on the 

surface of the object to suit the application of X-ray CT; and 

(2) the geometric size of these features must be comparable 

to the naturally-found instance of these features. To satisfy 

the first condition, we adopted a two-step solution: (a) create 

features on thin layer objects; and (b) stack the layers to form 

a 3D object. To satisfy the second condition, we employed 

the femtosecond pulsed laser which enabled us to fabricate 

distinct features down to tens of micrometers. The result-

ing 3D object would then undergo an X-ray CT process. 

The resulting image of each feature will be paired with the 

known geometric parameters that were used as a recipe for 

machining that feature. The resulting pair will be one of 

many training data points in the entire training data set. Tak-

ing the proposed approach compensates for the shortage and 

lack of diversity of naturally found data. Furthermore, since 

the exact geometry, position and orientation of each feature 

is known a priori, the proposed approach offers a significant 

improvement to the manually labeled data in terms of accu-

racy and robustness. Finally, needless to say, this approach 

can be fully automated.

2  Methods

Figure 1 schematically describes the designed workflow for 

generating synthesized data and using this data for training 

the machine learning algorithms. A step-wise elaboration of 

the method is provided in the following.

2.1  Step 1: Feature Design

The layout of shape, size, position, and orientation of fea-

tures was designed in the Direct Machining Control (DMC). 

The DMC software, which controls the laser and laser mark-

ing system per user’s input recipe, allows for the creation of 

numerous geometries and augmentation of their position, 
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size, orientation, and machining parameters on a grid 

described by the laser scan field. The preliminary features 

we chose to include in our design included equilateral trian-

gles, rectangles, and ellipses. Although limited, the selected 

features form a subset of primitive geometries that reflect 

some key variations of the much large population of possi-

ble geometries. Specifically, the ability to identify a regular 

triangle using the proposed method, would imply the poten-

tial of the proposed method to identify any other regular 

polygons. Further, rectangles and ellipses were incorporated 

to investigate the potential of the proposed method in identi-

fying nonregular geometries and various curvatures. As the 

most immediate application concerns autonomous detection 

of features in micro-CT imaging environments, it was cru-

cial to not only vary position and geometric size, but also 

orientation of the features such that any sample with any 

mounted position can be accommodated without additional 

processing. Once the parameters of interest were identified, 

Fig. 1  Schematic description of 

the proposed method
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an appropriate range and step-size for each parameter had 

to be selected. For this study, we chose to vary length 

and width of the ellipses and rectangles from 100 to 550 

microns, through 9 increments each. Equilateral triangle size 

was varied by changing the diameter of a circle, by which 

it can be inscribed. This diameter was varied from 100 to 

550 microns through 81 increments to match the number of 

permutations available for the rectangles and ellipses. The 

orientation (i.e. angle made with the horizontal axis) of each 

geometry was also varied from 0 to 90 degrees, throughout 

10 increments. Upon selection of feature geometry and vari-

able parameter step-size and range, for-loops were designed 

in the DMC software to iterate through all possible permu-

tations and generate the appropriate geometries, sizes, and 

orientations. (Fig. 2).

The feature parameters, including their shape, size, posi-

tion and orientation are defined relative to a universal coor-

dinate system, defined by the software. In designing the 

features, a critical consideration was that such universal 

coordinates system could be retrieved from the lasered sam-

ple or its corresponding image. Upon placement of the lased 

silicon wafers into the micro-CT, it is probable that a feature 

of known orientation does not have the expected orientation 

relative to the detector, or that the locations of lased areas 

on different silicon wafers do not line up. Fiducial marks 

were incorporated into the design layout to absolutize the 

position and orientation systems which would otherwise be 

relative. In addition to the two-dimensional considerations, 

the fiducial marks were also required to ensure coplanarity 

between the image extraction plane and the actual feature 

plane.

2.2  Embedding Features

As mentioned earlier, polished silicon wafers were chosen 

as the layers for embedding the features. The reason behind 

this selection was two-fold: (1) silicon wafers, depending on 

their grade, are machined to very tight tolerances and main-

tain very precise geometry and thickness; (2) the authors are 

experienced in lasing and imaging polished silicon wafers. 

For this study we used 76.2 mm diameter P-type test grade 

silicon wafers, single side polished, with a measured thick-

ness of 523 μm ± 5 μm.

A mechanism (seen in Fig. 3) was initially designed to 

hold the layers together during the micro-CT stage of the 

process and was implemented in the first trial run; how-

ever, during the second run, carbon tape was used to hold 

the layers together (Fig. 4) to reduce data size and increase 

the overall transmissivity of the subject in the presence of 

X-rays.

Features, which were used to generate synthesized data, 

were created using a KM Labs Y-Fi HP ytterbium fiber fem-

tosecond laser machining setup with 20-W average power, 

a FWHM center wavelength of 1042 nm, 130 fs mean pulse 

width, an adjustable repetition rate ranging from 0.5 MHz to 

15 MHz and an optional burst mode. The scan-head used for 

rastering the beam was a BasiCube 10, featuring an f-theta 

lens. For our purposes in lasing features on polished silicon 

wafers, it was found through a parameterization study that 

using 3-pulse bursts at a repetition rate of 2 MHz and ampli-

fier power of 60%, yielding an energy per pulse of 2.2 μJ, 

and rastering for 50 cycles, at a line spacing of 9 μm and 

a marking speed of 0.38 m/s, was sufficient to change the 

pathlength and absorptivity of the features such that they 

Fig. 2  Silicon wafer layer holding mechanism Fig. 3  Changing geometric parameters to produce different shapes
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were easily distinguishable in the reconstructed image. Top 

part of Fig. 5 illustrates the laser setup.

3  X‑ray CT

The micro-CT system used to conduct the imaging processes 

was a ZEISS Xradia 520 Versa (Fig. 5 bottom). Imaging 

parameters resulting in acceptable resolution and contrast 

for the purpose of discerning the geometries were as follows: 

a 70 kV and 85 µA source setting, an optical magnifica-

tion of 0.4X, source and detector distances resulting in a 

pixel size of 25.34 µm with an image size of 1004 × 1024, 

a mean exposure time of 2.36 s, reconstruction binning of 

1, an LE4 source filter, and 1601 projections through 360 

degrees rotation.

Upon completion of the micro-CT scan, the resulting 

reconstructed image files are of type ‘.txm’ and ‘.txrm’. 

Using the Xradia’s XMController software, the ‘*.txm’ file, 

which contains a linear z-stack of 1018 images was exported 

as 1018 individual ‘*.tif’ files, an example of which can 

be seen in Fig. 6. The ‘*.tif’ files were exported from the 

XMController software and the resulting images were post-

processed in MATLAB (MATLAB 2019b, The MathWorks, 

Inc., Natick, Massachusetts, United States). The main 

objective of the post-processing procedure was to prepare 

the images for data extraction in the context and format of 

the implemented artificial intelligence (AI) algorithm. The 

processing procedure began by reading in all 1018 images 

in MATLAB and creating a 4D voxel value matrix. Of the 

four dimensions present in the matrix, three were spatial, 

while one was pigmental. The spatial dimensions were used 

to identify a pixel location on a specific image plane, each 

location itself was associated with three intensity values 

belonging to the pigmental dimension (red, green, and 

blue). After matrix formation, it then underwent a rotation 

transformation such that displaying the first three indices as 

an image showed the features of interest. Additionally, fine 

tuning of image rotation in three dimensions was performed 

with the help of the previously discussed fiducial marks to 

ensure coplanarity of the feature plane with the image plane. 

Upon completion of the fine tuning, single images were able 

Fig. 4  Second trial silicon wafer stack mounted and prepped for 

imaging

Fig. 5  Top: Laser setup. Bottom: Second trial stack inside the ZEISS 

Xradia 520 Versa
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to be isolated from the 4D matrix, an example of which is 

displayed in Fig. 7. Note that more cross sections, containing 

the features, were produced than needed. Among them, those 

containing the highest contrast were chosen.

3.1  Preparing Training Data from Resulting Images

After CT scan post-processing, information had to be 

extracted from the final images and formatted to accom-

modate training and testing data sets needed for training and 

testing the neural network algorithm. Knowing that sepa-

rate information from each individual feature would need 

to be fed to the algorithm, the features, residing on each 

image that was previously isolated from the 4D matrix, were 

segregated mathematically. It is important to note that the 

coordinate systems between that of the cross section image 

and that of the recipe (or DMC software) are different. For 

accurate segregation of features, in an automated fashion, it 

is key that the two coordinate systems are aligned. To do so, 

we started by creating a 2D array or pixels (i.e. an image) 

reflecting the laser machining recipe (which contained the 

designed features as prescribed by the recipe). This 2D array 

had identical dimensions to those held by the images isolated 

from the 4D matrix – 1004 × 1005. The pixel locations of the 

center of the two fiducial marks were noted on both the 2D 

array, reflecting the laser machining recipe, and the image, to 

be segregated. The goal was to find a transformation matrix 

that would overlay the two coordinate systems. For this, the 

scaling factor, translation factors, and rotation factors of a 

transformation matrix of the following form were back cal-

culated using the known pixel locations.

where t
x
 and ty are the translation factors, � is the rotation 

factor, S is the scaling factor (only a single scaling factor 

was required because of image size equality), Jf  and If  are 

the column and row indices of fiducial mark f  belonging 

to the laser machining recipe image, while jf  and if  are the 

column and row indices of fiducial mark f  belonging to the 

isolated image (Fig. 8). After back calculating the required 

transformation factors, the transformation matrix was used 

to move and relabel all of the isolated image pixels to their 

expected location based on the lasing recipe. Then, using 

the known locations of lasing, the pixels corresponding to 

each lased feature were extracted, producing images like that 

displayed in Fig. 9.

Upon creation of the individual feature images, excess 

information was removed, and the relevant pixel informa-

tion was collimated to accommodate the input format of 

the AI algorithm. After collimation of all feature images, 

the vectors were concatenated such that all features, rep-

resented in their own respective row, belonged to the same 

data matrix. As the inputs to the algorithm could simply be 

the pixel values of each features respective image, prepara-

tion of image data for algorithm training was now complete, 

⎡
⎢
⎢
⎣

cos� −sin� tx
sin� cos� ty
0 0 1

⎤
⎥
⎥
⎦
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⎤
⎥
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If
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⎤
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⎣
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1
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⎥
⎥
⎦

Fig. 6  An example of the ‘*.tif’ files exported from the ‘*.txm’ 

reconstruction file. The cross section file produced by XMController 

software (red dotted box) reflects a cross section normal to the silicon 

wafer layers. By rearranging the voxels in MATLAB, in an automated 

fashion, new cross sections will be parallel to the silicon wafer layers 

(green dotted box). See Fig. 7 for an example of the resulting cross 

sections

Fig. 7  Image example after CT scan post-processing in MATLAB



Journal of Nondestructive Evaluation (2021) 40:25 

1 3

Page 7 of 13 25

with the exception of output selection and inclusion in the 

data matrix. After preliminary trials, however, it was real-

ized that the success rate of the algorithm would be higher, 

and training time lower, if an augmented form of the feature 

images were used (Fig. 10). Rather than having 2,601 pixel 

value inputs (each feature image was 51 by 51 pixels), it was 

elected to have 104 data value inputs, of which there were 

four types. One data value input was equal to the summation 

of the entire 2,601 pixels belonging to the respective feature 

image, while another was equal to the standard deviation of 

those same pixels. The remaining 102 data value inputs were 

formed by 51 data values, each described by the summation 

of a respective row, and 51 data values described by the 

summation of a respective column.

Having a set geometry, orientation, and size, numerous 

outputs to the neural network could have been tested, such 

as aspect ratio, angle, area, equivalent radius, length, etc. 

For the purposes of showcasing this data synthesis proce-

dure, it was determined that testing angle, area, and various 

classification circumstances would be sufficient. For train-

ing, the output of choice was correlated to its respective 

feature by being added to the final column in the features’ 

respective row. When preparing the data matrix for angle 

and area training, radians and square millimeters were used, 

respectively. For classification, the geometry, or parameter, 

of interest was labeled with a binary classification variable 

with ‘1′ signifying a true value, and ‘0′ signifying a false 

one in the output column of the data matrix. For example, 

when training for recognizing an elliptical feature, all rows 

corresponding to an ellipse would have a ‘1′ in their final 

column, while all others (i.e. rectangles and triangles) would 

be ‘0.’ The data matrix structure is displayed visually below.

xi,j is the input data value x belonging to the  jth input 

value of the  ith image. In this case, the data matrix has a 

size of n by m + 1, where n is the number of features rep-

resented in the data matrix, and m is the number of data 

values for a respective image. yi,m+1 is the output of interest 

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1,1 … x1,j−1 x1,j … x1,m y1

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

xi−1,1 … xi−1,j−1 xi−1,j … xi−1,m yi−1

xi,1 … xi,j−1 xi,j … xi,m yi

⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

xn,1 … xn,j−1 xn,j … xn,m yn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 8  Segregating feature pixels after finding the coordinate transfor-

mation between the recipe and the X-ray image

Fig. 9  Single feature image extraction example

Fig. 10  Using an augmented approach for preparing inputs for the 

ANN
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corresponding to the  ith image, located in the m + 1 column 

position.

3.2  Selecting and Training the Machine Learning 
Algorithm

The base AI algorithm selected for evaluation of the synthe-

sized data was a Backpropagation Artificial Neural Network 

(BP-ANN). The premise for this selection was based on the 

versatility of this algorithm and successful application to 

image classification problems (Kotsiantis, Zaharakis and 

Pintelas, Supervised machine learning: A review of clas-

sification techniques 2007) [11] [21] [10].

Several architectures were tried for the ANN. Regardless 

of that, each ANN consists of an input layer, an output layer 

and 0, 1 or several hidden layers. Layers are numbered from 

left to right, with the leftmost layer (input layer) being layer 

1. Each layer consists of several nodes. Nodes are numbered 

from top to bottom, with the topmost node being node 1. 

Nodes of one layer are connected to the nodes of the before 

and after layers. Each connection is assigned a weight value, 

w(l)
i, j, where l and l + 1 are the numbers of the left and right 

layers, respectively, and i and j indicate the node numbers 

in the left and right layers, respectively. Each node has an 

input and an output. The input of the input layer nodes are 

the 104 data values. Other than that, the input of node j 

of layer l + 1 is a weighted, biased sum of the outputs of 

nodes of layer l. That is, p(l+1)
j = (Σ w(l)

i,j o
(l)

i) + bl+1
j, where 

1 ≤ i ≤ n(l), n(l) is the number of nodes of the lth layer, p(l+1)
j 

is the input of the jth node of the (l + 1)th layer, o(l)
i is the 

output of ith node of the lth layer and bl+1
j is the bias value of 

the jth node of the (l + 1)th layer. The output of each node is 

obtained from passing the node’s input to an activation func-

tion, Φ, such that o(l)
i = Φ(p(l)

i). An example is the sigmoid 

function, σ(x) = 1/(1 + e−x), which takes a value between 0 

and 1, for -inf < x <  + inf. The data values for each extracted 

image are fed as input to the ANN. Following that, through 

a feedforward process, a set of final outputs are calculated. 

The values of these outputs depend on the architecture of the 

network, the input features and the weight and bias values. 

The idea is that, throughout a training process, the values 

of weights and biases can be adjusted such that, the output 

values can accurately reflect the class as well as parameters 

of the embedded features. The network training is in fact an 

optimization process, in which a cost function is minimized 

through a gradient descent process. This cost function is the 

cumulative error associated with individual training data. An 

individual error, in turn, reflects the difference between the 

value predicted by the network, and the truth.

An adaptive momentum algorithm was attractive for 

integration into the standard backpropagation algorithm 

as it is known to increase convergence time through 

attempted prevention of overbearing momentum influence 

in circumstances with smaller gradients (Fig. 11). (Moreira 

and Fiesler, Neural networks with adaptive learning rate and 

momentum terms 1995) [31] [28].

An opensource software called Multiple Back-Propaga-

tion (Lopes and Ribeiro, GPU Implementation of the Multi-

ple Back-Propagation Algorithm 2009) (Lopes and Ribeiro, 

An efficient gradient-based learning algorithm applied to 

neural networks with selective actuation neurons 2003) 

(Lopes and Ribeiro, Hybrid learning in a multi-neural net-

work architecture 2001) was selected to undertake training 

and testing procedures for the produced synthesized data, 

because of its capability of implementing the previously 

selected algorithm combination. The specific architectures 

of the backpropagation algorithms designed for the three 

training scenarios are displayed in Fig. 12.

When referring to the architecture of the neural network 

(i.e., second column of table of Fig. 12), the following 

structure has been adopted: “number of inputs”- “number 

of nodes in hidden layer 1”-…- “number of nodes in hidden 

layer n”- “number of outputs”. The specific architectures 

and activation functions used were selected primarily by 

experimentation.

4  Results and Discussion

A total of 2,430 features were synthesized for training AI-

based feature extraction algorithms in the context of X-ray 

CT images. Of the 2,430 features, there existed three geo-

metric categories: equilateral triangle, rectangle, and ellipse, 

with 810 features belonging to each category. Each geom-

etry’s orientation was varied through 90 degrees in ten steps. 

Both length and width dimensions describing the rectangles 

and ellipses were altered from 100 µm to 550 µm in nine 

steps, while the diameter of the circle, of which each equi-

lateral triangle could be inscribed, was varied from 100 µm 

to 550 µm in 81 steps to create an identical number of total 

Fig. 11  Generic artificial neural network architecture
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permutations to the other geometries. The features were 

lased into polished silicon wafers as detailed in Sect. 3.2 

and imaged using a Zeiss Xradia 520 Versa using parameters 

outlined in Sect. 3.3. After imaging, MATLAB was used for 

image postprocessing, namely applying matrix transforma-

tions to ensure proper image view and agreement with the 

lasing recipe for accurate algorithm training. The image data 

was then packaged and refined using methods described in 

Sect. 3.4 prior to algorithm input. Backpropagation neural 

network algorithms with architectures defined in Sect. 3.5 

were then trained and tested by utilizing the Multiple Back-

propagation software. Finally, information on network suc-

cess regarding classification and parameterization of feature 

orientation and area were obtained.

Three neural networks were trained for shape classifica-

tions, classifying rectangle shapes against non-rectangles, 

ellipse shapes against non-ellipses and triangle shapes 

against non-triangles, respectively. Out of the entire feature 

images, 2,049 were used for training and 381 were used for 

testing the network.

The result of classification on the test data can be seen in 

Figs. 13a-f. In this representation, data points are indicated 

by circles. Blue circles indicate an exclusion from a shape 

class and red circle indicates an inclusion in a shape class. 

For example, blue circle indicates a non-rectangle shape and 

red circle indicates a rectangle shape in Figs. 13a and b. 

The performance of the method for shape classification will 

be shown in the following. For some cases, it was realized 

that the classification accuracy of the network was improved 

when the very smallest features were removed from testing 

set. The defining parameter used to quantify the smallest 

features of a dataset was area; that is, for a case where the 

100 smallest features were removed, the 100 features with 

the smallest area were removed.

Per network predications, the circles are classified and 

placed into two regions of blue (exclusion from a shape 

class) and red (inclusion in a shape class). The accuracy 

of the method is indicated by how well the blue circles are 

placed in the blue region and similarly how well the red 

circles are placed in red region. A blue circle in a red region 

will indicate a false positive and a red circle in a blue region 

will indicate a false negative.

For rectangles, 15 false positive readings and 25 false 

negatives were resulted, resulting in an overall classifica-

tion accuracy of 89.5% (Fig. 13a). Figure 13b shows the 

classification of rectangles vs. non-rectangles when the 

100 smallest features were removed from the dataset. Upon 

removal of the 100 smallest features, the testing set resulted 

in 22 false positive readings and 9 false negative, resulting 

in an overall classification accuracy of 86.58%.

For ellipses, 27 false positive readings and 24 false nega-

tives were resulted, resulting in an overall classification 

accuracy of 86.6% (Fig. 13c). Figure 13d shows the clas-

sification of ellipses vs. non-ellipses when the 100 smallest 

features were removed from the dataset. Upon removal of 

the 100 smallest features, the testing set resulted in 13 false 

positive readings and 12 false negative, resulting in an over-

all classification accuracy of 89.18%.

For triangles, 37 false positive readings and 28 false neg-

atives were resulted, resulting in an overall classification 

accuracy of 82.9% (Fig. 13e). Figure 13f shows the classifi-

cation of triangles vs. non-triangles when the 100 smallest 

features were removed from the dataset. Upon removal of 

the 100 smallest features, the testing set resulted in 12 false 

positive readings and 17 false negative, resulting in an over-

all classification accuracy of 87.45%.

A neural network was trained to predict the angle at 

which a feature is oriented relative to the horizontal axis. 

Out of the entire feature images, 2,126 were used for train-

ing and 304 were used for testing the network. The result 

of such prediction on the test data can be seen in Fig. 14a-i. 

For each shape, namely, rectangles, ellipses and triangles, 

this has been conducted three times: starting by including 

all of the test data, followed by removing the 100 smallest 

and 200 smallest features from the data to study the effect 

of image quality on the performance of the AI prediction 

method. Defined in the same way as for classification, the 

distinguishing parameter used to quantify the smallest fea-

tures of a dataset was area. Figures 14a-c belong to rectan-

gles, Figs. 14d-f belong to ellipses and Figs. 14g-i belong to 

triangles. In these representations, the orientation of dotted 

blue lines indicates the truth and the orientation of solid red 

lines indicate the network prediction. Success of the parame-

terization-based network trainings were classified by the root 

mean square error (RMSE) of the testing set. Where RSME 

is defined for this case as follows:

RMSE =

�

∑N

i

�

yt,i − yn,i

�2

N

Fig. 12  Architectures and acti-

vation functions corresponding 

to specific training scenarios Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Area 104-5-2-1 Hyperbolic Tangent Sigmoid N/A

Angle 104-5-3-2-1 Sigmoid Sigmoid Sigmoid

Classifica�on 104-5-2-1 Sigmoid Sigmoid N/A

Ac�va�on Func�on
Training Scenario Architecture
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where yt,i is the true output of the ith test feature, yn,i is the 

network output of the ith feature, and N is the total number 

of test features for a given training.

The RSME values corresponding to Figs. 14a-c were 

0.3462, 0.2842, and 0.1984, respectively. Correspond-

ing to Figs. 14d-f, the RSME values were 0.2610, 0.1422, 

and 0.1661, respectively. Finally, the RSME values corre-

sponding to Figs. 14g-i were 0.3199, 0.2243, and 0.1751, 

respectively.

A neural network was trained to predict the feature areas. 

Out of the entire feature images, 87.5% were used for training 

and 12.5% were used for testing the network. The result of 

such prediction on the test data can be seen in Figs. 15a-c for 

rectangles, ellipses and triangles, respectively. In these charts, 

the y-axis reflects the area of different features that are distrib-

uted along the x-axis. The solid line indicates truth and the 

dotted line indicated the network prediction. As previously 

stated, the root mean square error of the testing set was cho-

sen as the measure of network success for parameterization 

trainings. In predicting feature areas, the rectangle testing set 

(Fig. 15a) resulted in an RMSE of 0.0154, whereas the ellipse 

and triangle testing sets (Figs. 15b and c) resulted in RMSEs 

of 0.0066 and 0.0041, respectively.

Fig. 13  Classification of shapes 

with ANNs: a classification of 

rectangles vs. non-rectangles; 

b classification of rectangles 

vs. non-rectangles, exclud-

ing the 100 smallest features; 

c classification of ellipses vs. 

non-ellipses; d classification of 

ellipses vs. non-ellipses, exclud-

ing the 100 smallest features; 

e classification of triangles vs. 

non- triangles; f classification 

of triangles vs. non- triangles, 

excluding the 100 smallest 

features
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5  Conclusion

X-ray CT has endless potentials in nondestructively pro-

viding information about the interior miniature features of 

objects. Nevertheless, lack of automated yet robust, fast and 

accurate methods for interpreting X-ray CT images contin-

ues to discount the capabilities of this technique. Attempts to 

address this issue using AI methods face a great challenge, 

namely lack of labeled ground truth data. In this paper, we 

proposed a novel technique for synthesizing labeled data 

and using them for training machine learning algorithms, 

towards an automated classification and parametrization 

tool. We showed that, using a femtosecond laser setup, min-

iature features could be implemented onto layers of a layered 

object to mimic the internal features of a generic object. 

Further, the X-ray images of the embedded features could 

be correlated with the parameters used for designing those 

features to obtain labeled training data. Finally, we showed 

that such training data could be used for training ANNs for 

undertaking tasks such as classification and parametrization.

Fig. 14  Angles of features predicted by trained ANNs. Dotted blue 

signifies truth (actual angle) and solid red signifies the angle pre-

dicted by the network: a Rectangles; b Rectangles, 100 smallest fea-

tures removed; c Rectangles, 200 smallest features removed; d Ellip-

ses; e Ellipses, 100 smallest features removed; f Ellipses, 200 smallest 

features removed; g Triangles; h Triangles, 100 smallest features 

removed; i Triangles, 200 smallest features removed
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