
Training Algorithms for Hidden Markov Models

Using Entropy Based Distance Functions

Yoram Singer
AT&T Laboratories

600 Mountain Avenue

Murray Hill, NJ 07974

singer@research.att.com

Manfred K. Warmuth

Computer Science Department

University of California

Santa Cruz, CA 95064

manfred@cse.ucsc.edu

Abstract

We present new algorithms for parameter estimation of HMMs. By
adapting a framework used for supervised learning, we construct iterative

algorithms that maximize the likelihood of the observations while also

attempting to stay "close" to the current estimated parameters. We use a
bound on the relative entropy between the two HMMs as a distance mea

sure between them. The result is new iterative training algorithms which

are similar to the EM (Baum-Welch) algorithm for training HMMs. The
proposed algorithms are composed of a step similar to the expectation
step of Baum-Welch and a new update of the parameters which replaces

the maximization (re-estimation) step. The algorithm takes only negligi
bly more time per iteration and an approximated version uses the same

expectation step as Baum-Welch. We evaluate experimentally the new

algorithms on synthetic and natural speech pronunciation data. For sparse
models, i.e. models with relatively small number of non-zero parameters,
the proposed algorithms require significantly fewer iterations.

1 Preliminaries

We use the numbers from 0 to N to name the states of an HMM. State 0 is a special initial
state and state N is a special final state. Any state sequence, denoted by s, starts with the
initial state but never returns to it and ends in the final state. Observations symbols are also

numbers in {I, ... , M} and observation sequences are denoted by x. A discrete output
hidden Markov model (HMM) is parameterized by two matrices A and B. The first matrix
is of dimension [N, N] and ai,j (0:5: i :5: N - 1,1 :5: j :5: N) denotes the probability of

moving from state i to state j. The second matrix is of dimension [N + 1, M] and bi ,k is the

probability of outputting symbol k at state i. The set of parameters of an HMM is denoted

by 0 = (A, B). (The initial state distribution vector is represented by the first row of A.)

An HMM is a probabilistic generator of sequences. It starts in the initial state O. It then

iteratively does the following until the final state is reached. If i is the current state then a
next state j is chosen according to the transition probabilities out of the current state (row i of

matrix A). After arriving at state j a symbol is output according to the output probabilities

of that state (row j of matrix B). Let P(x, slO) denote the probability (likelihood) that an

HMM 0 generates the observation sequence x on the path s starting at state 0 and ending

at state N: P(x, sllsl = Ixl + 1, So = 0, slSI = N, 0) ~ I1~~ll as._t,s.bs.,x •. For the
sake of brevity we omit the conditions on s and x. Throughout the paper we assume that

the HMMs are absorbing, that is from every state there is a path to the final state with a

642 Y. Singer and M. K. Warmuth

non-zero probability. Similar parameter estimation algorithms can be derived for ergodic
HMMs. Absorbing HMMs induce a probability over all state-observation sequences,

i.e. Ex,s P(x, s18) = 1. The likelihood of an observation sequence x is obtained by

summing over all possible hidden paths (state sequences), P(xI8) = Es P(x, sI8). To
obtain the likelihood for a set X of observations we simply mUltiply the likelihood values
for the individual sequences. We seek an HMM 8 that maximizes the likelihood for a
given set of observations X, or equivalently, maximizes the log-likelihood, LL(XI8) =

r:h EXEX In P(xI8).

To simplify our notation we denote the generic parameter in 8 by Oi, where i ranges
from 1 to the total number of parameters in A and B (There might be less if some are

clamped to zero). We denote the total number of parameters of 8 by I and leave the (fixed)
correspondence between the Oi and the entries of A and B unspecified. The indices are
naturally partitioned into classes corresponding to the rows of the matrices. We denote by
[i] the class of parameters to which Oi belongs and by O[i) the vector of all OJ S.t. j E [i]. If
j E [i] then both Oi and OJ are parameters from the same row of one of the two matrices.
Whenever it is clear from the context, we will use [i] to denote both a class of parameters

and the row number (i.e. state) associated with the class. We now can rewrite P(x, s18) as

nf=l O~'(X,S), where ni(x, s) is the number of times parameter i is used along the path s
with observation sequence x. (Note that this value does not depend on the actual parameters
8.) We next compute partial derivatives ofthe likelihood and the log-likelihood using this

notation.

o
OOi P(x, s18)

oLL(XI8)

OOi

lInl(X,S) lIn._I(X,S) () lIn,(X,S)-l lInl(X,S)
u 1 ... U i-I ni x, SUi ... U 1

Here 11i(xI8) ~ Es ni(x, s)P(slx, 8) is the expected number of occurrences of the
transition/output that corresponds to Oi over all paths that produce x in 8. These val
ues are calculated in the expectation step of the Expectation-Maximization (EM) train
ing algorithm for HMMs [7], also known as the Baum-Welch [2] or the Forward

Backward algorithm. In the next sections we use the additional following expectations,

11i(8) ~ Ex,s ni(X, s)P(x, s18) and 11[i) (8) ~ EjE[i) 11j(8). Note that the summation

here is over all legal x and s of arbitrary length and 11[i) (8) is the expected number of times

the state [i] was visited.

2 Entropic distance functions for HMMs

Our training algorithms are based on the following framework of Kivinen and Wannuth

for motivating iterative updates [6]. Assume we have already done a number of iterations
and our current parameters are 8 . Assume further that X is the set of observations to

be processed in the current iteration. In the batch case this set never changes and in the

on-line case X is typically a single observation. The new parameters 8 should stay close

to 8, which incorporates all the knowledge obtained in past iterations, but it should also

maximize the log-likelihood on the current date set X. Thus, instead of maximizing the log

likelihood we maximize, U(8) = 7JLL(XI8) - d(8, 8) (see [6, 5] for further motivation).

Training Algorithms/or Hidden Markov Models 643

Here d measures the dis!ance between the old and new parameters and 1] > 0 is a trade-off

factor. Maximizing U~B) is usually difficult since both the distance function and the log

likelihood depend on B. As in [6, 5], we approximate the log-likelihood by a first order

Taylor expansion around 9 = B and add Lagrange multipliers for the constraints that the
parameters of each class must sum to one:

U(8) :::::: 1] (LL(XIB) + (8 - B)\7 BLL(XIB») - d(8, B) + L A[i] L OJ. (3)

[i] JEri]

A commonly used distance function is the relative entropy. To calculate the relative entropy

between two HMMs we need to sum over all possible hidden state sequence which leads to
the following definition,

d (8 B) ~f ~ P(18) 1 P(xI8) = ~ (~ P(18») 1 Ls P(x, s19)
RE, ~ x n P(xIB) ~ '7 x, s n Ls P(x, siB)

However, the above divergence is very difficult to calculate and is not a convex function in
B. To avoid the computational difficulties and the non-convexity of dRE we upper bound

the relative entropy using the log sum inequality [3]:

~ - def ~ - P(x, s19)
dRE (8, B) :s; dRE(B,8) = L.t P(x, s18) In P(IB)

X,s x,s

_ (nIl On.(x,s») _ I O.
L P(x, siB) In 't (J~'(X , S) = L P(x, siB) ?= ni(x, s) In (J:
x,s n,=1 , x,s ,=1

~ O· ~ - ~ - O·
L.t In (J~ L.t P(x, s18) ni(x, s) = L.t ni(8) In (J~
i=1 ' X,S i=I'

Note that for the distance function ~E(9, 8) an HMM is viewed as a joint distribution

between observation sequences and hidden state sequences. We can further simplify the
bound on the relative entropy using the following lemma (proof omitted).

Lemma 1 ForanyabsorbingHMM, 8, and any parameter(Jj E 8, ni(8) = (Jin[i](B).

This gives the following new formula, dRE (9, 8) = L7= 1 n[j] (9) [Oi In ~] , which can

~ - - - - - {j
be rewritten as, dRE(8, B) = L[i] n[i](8) dRE(8[iJ> B[i]) = L[i] n[i](8) LjE[i] (Jj In ~ .

Equation (3) is still difficult to solve since the variables n[i] (9) depend on the new set of

parameters (which~ are not known). We therefore further approximate ~E(8, 8) by the

distance function, dRE(9, B) = L[i] n[i](B) LjE[i] OJ In~.

3 New Parameter Updates

We now would like to use the distance functions discussed in previous section in U (9). We

first derive ou~ main update using this distance function. This is done by replacing d(8,8)

in U (9) with ~E (9, 8) and setting the derivatives of the resul ting U (9) w.r.t OJ to O. This
gives the following set of equations (i E {I, ... , I}),

LXEX ni(xIB) A Oi _
1] IXI(Ji - n[i](B) (In (Ji - 1) + A[i] - 0 ,

which are equivalent to

644 Y. Singer and M. K. Warmuth

We now can solve for Oi and replace A[i] by a nonnalization factor which ensures that the

sum of the parameters in [i] is 1:

(~ 2:XEX n.(XI8))
_ OJ exp n).)(8) IXI9.

Oi = (2:x nJ(XI8))
2:jE [i] OJ exp n[)6) '~I 9J

(4)

The above re-estimation rule is the entropic update for HMMs. l

We now derive an alternate to the updateof(4). The mixture weights n[i](8) (whichapprox

imate the original mixture weights n[i] (0) in ~E (0, 8) lead to a state dependent learning

rate of ~ for the parameters of class [i]. If computation time is limited (see discussion
n[.)(H)

below) then the expectations n[i] (8) can be approximated by values that are readily available.

One possible choice is to use the sample based expectations 2:jE[i]2:xEX nj(xI8)/IXI as

an approximation for n[i] (8). These weights are needed for calculating the gradient and are

evaluated in the expectation step of Baum-Welch. Let, n[i](xI8) ~ 2:jE[i] nj(xI8), then

this approximation leads to the following distance function

"'" 2:xEX n[i](xI8) d (0. 8.) = "'" 2:xEx n[j)(xI8) "'" O· In OJ (5)
L- IXI RE [~l> [a) L- IXI L- J 0.'
[i] [i] JEri] J

which results in an update which we call the approximated entropic update for HMMs:

(
1) 2:xEx n.(XI8))

Oi exp ~ . (XI8) 9,
- DXEX n['1

Oi = (~ Ll) ~. 1) DXEX nJ(Xlo)
DjE[i) OJ exp 2:xEx nbl(XI8) 9J

(6)

given a current set of parameters 8 and a learning rate 11 we obtain a new set of parameters

8 by iteratively evaluating the right-hand-side of the entropic update or the approximated
entropic update. We calculate the expectations ni(xI8) as done in the expectation step

of Baum-Welch. The weights n[i](xI8) are obtained by averaging nj(xI8) for j E [i].
This lets us evaluate the right-hand-side of the approximated entropic update. The en tropic
update is slightly more involved and requires an additional calculation of n[i) (8). (Recall

that n[i] (8) is the expected number oftimes state [i] is visited, unconditioned on the data). To

compute these expectations we need to sum over all possible sequences of state-observation

pairs. Since the probability of outputting the possible symbols at a given state sum to one,

calculating n[i] (8) reduces to evaluating the probability of reaching a state for each possible

time and sequence length. For absorbing HMMs n[i] (8) can be approximated efficiently

using dynamic programming; we compute n[i] (8) by summing the probabilities of all legal

state sequences S of up to length eN (typically C = 3 proved to be sufficient to obtain very

accurate approximations of n[i] (8). Therefore, the time complexity of calculating n[i] (8)
depends only on the number of states, regardless of the dimension of the output vector M

and the training data X.

1 A subtle improvement is possible over the update (4) by treating the transition probabilities and

output probabilities differently. First the transition probabilities are updated based on (4). Then

the state probabilities n[i)(O) = n[i)(A) are recomputed based on th; new parameters A. This is

possible since the state probabilities depend only on the transition probabilities and not on the output

probabilities. Finally the output probabilities are updated with (4) where the n[.)(O) are used in place

of the n[i](8).

Training Algorithms/or Hidden Markov Models 645

4 The relation to EM and convergence properties

We first show that the EM algorithm for HMMs can be derived using our framework. To

do so, we approximate the relative entropy by the X2 distance (see [3]), dRE(p, p) ~

dx2(p, p) ~ ~ L:i (P.;~./, and use this distance to approximate dRE (9, 8):

dRE(9, 8) ~ ~2(9, 8) 1;£ 2: 1l[i) (9) dx2(9[i),8[i))

[i)

~ A - ~ L:XEX 1l[i) (xI8)
~ L-n[i)(8) dx2(8[i]>8[i)) ~ L- IXI

[i) [i)

Here dx2(9[i), 8[i)) = ~ L:j E[i) (9'~,8.)2 . By minimizing U (9) with the last version of the X2

distance function and following the same derivation steps as for the approximated entropic

update we arrive at what we call the approximated X2 update for HMMs:

Oi = (1 - 7J)Oi + 7J 2: 1li(xI8) /2: 1l[j)(xI8) . (7)

XEX XEX

Setting TJ = 1 results in the update, Oi = L:xEX 1li(xI8)/L:xEX 1l[i) (xI8), which is the
maximization (re-estimation) step of the EM algorithm.

Although omitted from this paper due to the lack of space, it is can be shown that for
7J E (0,1] the en tropic updates and the X2 update improve the likelihood on each iteration.

Therefore, these updates belong to the family of Generalized EM (GEM) algorithms which

are guaranteed to converge to a local maximum given some additional conditions [4].
Furthennore, using infinitesimal analysis and second order approximation of the likelihood
function at the (local) maximum similar to [10]. it can be shown that the approximated X2

update is a contraction mapping and close to the local maximum there exists a learning rate

7J > 1 which results in a faster rate of convergence than when using TJ = 1.

5 Experiments with Artificial and Natural Data

In order to test the actual convergence rate of the algorithms and to compare them to

Baum-Welch we created synthetic data using HMMs. In our experiments we mainly used

sparse models, that is, models with many parameters clamped to zero. Previous work
(e.g., [5, 6]) might suggest that the entropic updates will perfonn better on sparse models.
(Indeed, when we used dense models to generate the data, the algorithms showed almost

the same perfonnance). The training algorithms, however, were started from a randomly
chosen dense model. When comparing the algorithms we used the same initial model.
Due to different trajectories in parameter space, each algorithm may converge to a different

(local) maximum. For the clarity of presentation we show here results for cases where all
updates converged to the same maximum, which often occur when the HMM generating the

data is sparse and there are enough examples (typically tens of observations per non-zero

parameter). We tested both the entropic updates and the X2 updates. Learning rates greater
than one speed up convergence. The two entropic updates converge almost equally fast

on synthetic data generated by an HMM. For natural data the entropic update converges

slightly faster than the approximated version. The X2 update also benefits from learning
rates larger than one. However, the x2-update need to be used carefully since it does not

necessarily ensure non-negativeness of the new parameters for 7J > 1. This problems is
exaggerated when the data is not generated by an HMM. We therefore used the entropic
updates in our experiments with natural data. In order to have a fair comparison, we did not

tune the learning rate 7J and set it to 1.5. In Figure 1 we give a comparison of the entropic

update, the approximated entropic update, and Baum-Welch (left figure), using an HMM

to generate the random observation sequences, where N = M = 40 but only 25% (10

parameters on the average for each transition/observation vector) of the parameters of the

646 Y. Singer and M. K. Warmuth

HMM are non-zero. The perfonnance of the entropic update and the approximated entropic
update are practically the same and both updates clearly outperfonn Baum-Welch. One

reason the perfonnance of the two entropic updates is the same is that the observations were
indeed generated by an HMM. In this case, approximating the expectations n(il (8) by the

sample based expectations seems reasonable. These results suggest a valuable alternative

to using Baum-Welch with a predetermined sparse, potentially biased, HMM where a large
number of parameters is clamped to zero. Instead, we suggest starting with a full model and

let one of the en tropic updates find the relevant parameters. This approach is demonstrated

on the right part of Figure 1. In this example the data was generated by a sparse HMM with

100 states and 100 possible output symbols. Only 10% ofthe HMM's parameters were non

zero. Three log-likelihood curves are given in the figure. One is the log-likelihood achieved

by Baum-Welch when only those parameters that are non-zero in the HMM generating the
data are initialized to random non-zero values. The other two are the log-likelihood of the

entropic update and Baum-Welch when all the parameters are initialized randomly. The

curves show that the en tropic update compensates for its inferior initialization in less than
10 iterations (see horizontal line in Figure 1) and from this point on it requires only 23
more iterations to converge compared to Baum-Welch which is given prior knowledge of

the non-zero parameters. In contrast, when Baum-Welch is started with a full model then
its convergence is much slower than the entropic update.

-0 . 4 r---"---"'--~----r--~---,

'g -0 .6

~
.. -0,8

~
7 - 1
go
ol

1:1 - 1. 2

~

~ - 1. 4

~ -1. 6

Entrop ic Upda t e -
Entr opi c Up date -~
EM (Daum- we l ch) · 41 ' "

-1. 8 '-_"'--_...L..-_-'-_-'--_--'-_--'

o 10 1 5 20 25 30
Ite r a t ion"

EM (Daum-welc h) . Random I ni t.
Ent r opic Updat e, Random I ni t .
EM (Baum-we l c h). s pa r se I ni t . . .g. .

-2. 4 "-_...L..-_--'--_-'-_--'--_--'-_--'

20 40 60 80 100 120
It e r a t ion "

Figure 1: Comparison of the entropic updates and Baum-Welch.

We next tested the updates on speech pronunciation data. In natural speech, a word might

be pronounced differently by different speakers. A common practice is to construct a
set of stochastic models in order to capture the variability of the possible pronunciations.
alternative pronunciations of a given word. This problem was studied previously in [9]
using a state merging algorithm for HMMs and in [8] using a subclass of probabilistic

finite automata. The purpose of the experiments discussed here is not to compare the above

algorithms to the en tropic updates but rather compare the entropic updates to Baum-Welch.
Nevertheless, the resulting HMM pronunciation models are usually sparse. Typically, only

two or three phonemes have a non zero output probability at a given state and the average

number of states that in practice can follow a states is about 2. Therefore, the entropic
updates may provide a good alternative to the algorithms presented in [8, 9].

We used the TIMIT (Texas Instruments-MIT) database as in [8, 9]. This database contains

the acoustic wavefonns of continuous speech with phone labels from an alphabet of 62
phones which constitute a temporally aligned phonetic transcription to the uttered words.
For the purpose of building pronunciation models, the acoustic data was ignored and we

partitioned the phonetic labels according to the words that appeared in the data. The data

was filtered and partitioned so that words occurring between 20 and 100 times in the dataset

were used for training and evaluation according to the following partition. 75% of the

occurrences of each word were used as training data for the learning algorithm and the

remaining 25% were used for evaluation. We then built for each word three pronunciation
models by training a fully connected HMM whose number of states was set to 1, 1.5 and

1.75 times the longest sample (denoted by N m). The models were evaluated by calculating

Training Algorithmsfor Hidden Markov Models 647

the log-likelihood (averaged over 10 different random parameter initializations) of each

HMM on the phonetic transcription of each word in the test set. In Table 1 we give

the negative log-likelihood achieved on the test data together with the average number of
iterations needed for training. Overall the differences in the log-likelihood are small which

means that the results should be interpreted with some caution. Nevertheless, the entropic

update obtained the highest likelihood on the test data while needing the least number of
iterations. The approximated en tropic update and Baum-Welch achieve similar results on

the test data but the latter requires more iterations. Checking the resulting models reveals

one reason why the en tropic update achieves higher likelihood values, namely, it does a
better job in setting the irrelevant parameters to zero (and it does it faster).

Negative Log-Likelihood # Iterations

States 1.0Nm 1.5Nm 1.75Nm 1.0Nm 1.5Nm 1.75Nm

Baum-Welch 2448 2388 2425 27.4 36.1 41.1
Approx. EU 2440 2389 2426 25.5 35.0 37.0
Entropic Update 2418 2352 2405 23.1 30.9 32.6

Table 1: Comparison of the entropic updates and Baum-Welch on speech pronunciation data.

6 Conclusions and future research
In this paper we have showed how the framework of Kivinen and Warmuth [6] can be used
to derive parameter updates algorithms for HMMs. We view an HMM as a joint distribution

between the observation sequences and hidden state sequences and use a bound on relative

entropy as a distance between the new and old parameter settings. If we approximate of the

relative entropy by the X2 distance, replace the exact state expectations by a sample based
approximation, and fix the learning rate to one then the framework yields an alternative

derivation of the EM algorithm for HMMs. Since the EM update uses sample based
estimates of the state expectations it is hard to use it in an on-line setting. In contrast, the

on-line versions of our updates can be easily derived using only one observation sequence

at a time. Also, there are alternative gradient descent based methods for estimating the
parameters of HMMs. Such methods usually employ an exponential parameterization

(such as soft-max) of the parameters (see [1 D. For the case of learning one set of mixture

coefficients an exponential parameterization led to an algorithm with a slower convergence
rate compared to algorithms derived using entropic distances [5] . However, it is not clear

whether this is still the case for HMMs. Our future goals is to perform a comparative study
of the different updates with emphasis on the on-line versions.

Acknowledgments
We thank Anders Krogh for showing us the simple derivative calculations used in this paper and thank
Fernando Pereira and Yasubumi Sakakibara for interesting discussions.

References

[1] P. Baldi and Y. Chauvin. Smooth on-line learning algorithms for Hidden Markov Models. Neural Computation . 6(2), 1994.

[2] L.E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state markov chains. Annals of Mathematic a I

Statisitics, 37, 1966.

[3] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

[4] A. P. Dempster, N. M. Laird , and D. B. Rubin. Maximum-likelihood from incomplete data via the EM algorithm. Journal

of the Royal Statistical Society, B39: 1-38,1977.

[5] D. P. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth. A comparison of new and old algorithms for a mixture

estimation problem. In Proceedingsofthe Eighth Annual Workshop on Computational Learning Theory, pages 69-78,1995.

[6] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Informationa and

Computation, 1997. To appear.

[7] LR Rabiner and B. H. Juang. An introduction to hidden markov models. IEEE ASSP Magazine, 3(1):4-16, 1986.

[8] D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic probabilistic finite automata. In Proc. of the

Eighth Annual Workshop on Computational Learning Theory, 1995.

[9] A. Stolcke and S. Omohundro. Hidden Markov model induction by Bayesian model merging. In Advances in Neural

Information Processing Systems, volume 5. Morgan Kaufmann, 1993.

[10] L. Xu and M.I. Jordan. On convergence properties of the EM algorithm for Gaussian mixtures. Neurol Computation,

8:129-151 , 1996.

