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(e hydrological process has a dynamic nature characterised by randomness and complex phenomena. (e application of
machine learning (ML) models in forecasting river flow has grown rapidly. (is is owing to their capacity to simulate the complex
phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow
forecasting located in semiarid region, Iraq. (e effectiveness of data division influence on the ML models process was in-
vestigated. (ree data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical
indicators are computed to verify the performance of the models. (e results revealed the potential of the hybridized support
vector regression model with a genetic algorithm (SVR-GA) over the other ML forecasting models for monthly river flow
forecasting using 90%–10% data division. In addition, it was found to improve the accuracy in forecasting high flow events. (e
unique architecture of developed SVR-GA due to the ability of the GA optimizer to tune the internal parameters of the SVRmodel
provides a robust learning process. (is has made it more efficient in forecasting stochastic river flow behaviour compared to the
other developed hybrid models.

1. Introduction

(e hydrological, environmental, and climatological pro-
cesses related to different components of the hydrologic
cycle such as rainfall, evaporation, infiltration, groundwater,
and river flow are embedded with high nonlinearity, non-
stationery, and redundancy [1, 2]. Mathematical models are
generally used to address the different forms of nonlinearity
and model different hydrological processes [3, 4]. A large
number of hydrological models have been developed and
successfully applied for forecasting different components of
hydrological cycles [5]. Among them, the hydrological
model for forecasting river flow has received the highest

attention due to its enormous importance [6]. Being that
river flow pattern is difficult to be fully understood due to the
temporal and spatial changes in basin characteristics and
variabilities in the rainfall-runoff process, univariate river
flow simulation has become a trending topic in the field of
hydrology [7]. River flow modeling in a particular climate
environment (e.g., semiarid) is highly complicated as it is
associated with regional climate and human interventions.
Significant changes in climate have been witnessed across
the globe in recent years. Streamflow time series is dynamic,
complex, and presenting nonlinear and randomness phe-
nomena. (ese characteristics make the forecasting process
challenging for most of the hydrological researchers [8, 9].
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Accurate long-term forecasting of river flow at monthly and
yearly scale is very important for the planning and operation
of water reservoir, agricultural and irrigation water man-
agement, estimation of catchment water balance, estimating
minimum instream environmental flow, and other purposes
[10, 11]. (e accurate short-term (real-time) forecasting of
river flow such as hourly or daily time step is important for
flood and/or water scarcity forecasting in order to minimize
and mitigate their effects on infrastructure and public health
[12]. In addition, this river flow forecast makes it possible to
predict the minimum instream environmental flow that is
primarily used to sustain organisms’ reproduction and
growth and provide optimum habitat area [13].

Several developments have been recorded over the years
in the application of machine learning (ML) models, arti-
ficial intelligence (AI) models, and big data mining tech-
nology for the solution of related hydrological engineering
problems [14–18]. Being that these models do not depend on
a physical meaning, they are suitable for solving problems,
which are influenced by several complex factors, such as
nonlinear natural processes and forecasting problems [19].
(ese models have also been found suitable for the solution
of hydrological problems [20]. (e ML models, unlike the
physically based models, can mimic the actual trend of
hydrological time series data by autonomously learning the
various hydrological processes. However, ML models need a
low level of expertise for the implementation and they can
provide a fast solution compared to physically based models.

Despite the suitability of the ML models in hydrological
studies, they are still prone to several drawbacks, such as
prolonged computation time and insufficient feature extraction
capability [21]. (e recent interest in the ML models has ex-
posed many other drawbacks of the classical ML models like
artificial neural network (ANN), support vector regression
(SVR), adaptive neurofuzzy inference (ANFIS), and random
forest (RF) [22], which include trapping at local optima and
gradient disappearance. (erefore, exploration of new robust
and reliable versions of MLmodels for the modeling of various
hydrological phenomena is always the motivation of hydrol-
ogists and soft computing scientists [20]. Recently, the new era
of ML models is configured in the form of hybridized models
where in integral of tuning parameter algorithms, it is con-
ducted for solving the internal parameters using some bio-
inspired ormathematical optimizers.(ehybridMLmodel has
been emerged as the sought-after model due to its capability to
overcome the drawbacks of standalone ML models [23]. It has
been successfully applied in recent years for complex hydro-
logical problems [24, 25].

(e traditional ML models can build their learning
processes using trial and error procedure that is associated
with the possibility of the limited learning process. Hence,
introducing the new optimization approaches can solve this
problem and provide a reliable and robust learning mech-
anism. Risks associated with flooding can be reduced via
accurate modeling of river flow time series dynamics. (is
can also enhance the capability of proper management of
reservoirs during droughts [26]. (e accurate forecasting of
river flow time series should preferably be based on the
existing long data with memory networks. Hybrid ML

models as a robust methodology provide an excellent
learning memory that could better model river flow patterns
and provide better forecasting. During training the pre-
dictive model, the data is divided into the training and
testing phase. A low ratio of training data may decrease the
performance of the model, whereas the high ratio leads to
overfitting. In both cases, the models get bad performance
and unacceptable results. So, choosing the best ratio of data
division is considered a challenging task in developing a
machine learning model [27].

(e main objective of the present study is to investigate
the impact of training and testing data divisions on the
process of several hybrid ML models including hybridized
ANN and SVR with genetic algorithm (GA) and hybridized
SVR and RF with the grid search algorithm. (e develop-
ment of the introduced models is investigated for river flow
forecasting using historical data, which belongs to the Tigris
River in semiarid climate of Iraq. (e capacity of the de-
veloped model is examined to solve the complexity of river
flow by using statistical metrics and graphical presentation.

(e modeling procedure is structured based on different
antecedent values of river flow and is defined as the matrix
attributes for univariate modeling. (ree data division
scenarios for the training and testing dataset were inspected.
(e obtained results are discussed comprehensively and
analysed comparatively to reveal the forecasting ability of
different models. (ereafter, the forecasted river flow was
used to estimate minimum instream environmental flow
that is primarily used to sustain organisms’ reproduction
and growth and provide optimum habitat area.

2. Description of Study Areas and Data

(e Tigris River is one of the largest rivers in Middle East. (e
total length of the river is about 1718 km which is shared by
Turkey, Syria, and Iraq. About 85% of the total basin of Tigris
River (253,000 km) lies in Iraq. (e Tigris River along with the
Euphrates River supplies the major share of total water re-
quired for irrigation, human use, and industrial purposes for
several cities in Iraq, Turkey, and Iran counties. (e climate of
the basin is predominantly arid; however, semiaridity is the
main characteristic of the river.(e average rainfall in the basin
is 216mm with most of the rainfall occurring during winter
(December to February) [28]. However, the rainfall concen-
tration is varied from the north, middle, and south of Iraq [29].
(e temperature varies from maximum 45°C during summer
to minimum 10°C in winter [29]. (e monthly river flow data
of Tigris River for the period January 1991 to November 2010
was obtained from the USGS Data Series 540 for the present
study [30]. (e mean monthly discharge and the standard
deviation of Tigris River flow at Baghdad Station are 411.35m3/
s and 234.52m3/s, respectively [31].(e location of Tigris River
in the map of Iraq is presented in Figure 1.

3. Data Division Scenarios and
Input Combinations

In order to utilize the machine learning methods for fore-
casting, the observed river flow data was split into two sets
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(training and testing).(ree data divisions were inspected in
this research including 70%–30%, 80%–20, and 90%–10%.
(is is owing to the fact that ML models can behave dif-
ferently based on the supplied dataset span for the learning
process and testing phases [32].

(e identification of the input parameters for the ML
model’s development is an essential step prior to the models’
learning process. In this study, as the intended is the river
flow forecasting, lead times were determined using the
statistical approaches including the autocorrelation function
(ACF) and the partial autocorrelation function (PACF). (e
suitable input parameters were decided based on the highly

influential lead times toward the one-step-ahead forecasting.
Valuable temporal pattern may exist in observed data which
can be used as an input pattern for the development of the
forecasting model. ACF can be used to capture information
on the temporal patterns existing in time series. ACF pro-
vides information about the correlation between two sep-
arate points on the time series at different time leads and
provides information about the repeating patterns in the
time series. (us, it tells how the past river flow influences
the future river flow.

(e ACF value ranges between 1 and −1; the value near
to 1 indicates near-perfect correlation and the value near to
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Figure 1: (e location of the case study on Tigris River, Iraq.
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−1 indicates complete anticorrelation. However, the time
series data for the river flow is time-independent, and
therefore, the correlation between the pair of values depends
only on the time differences between the two points without
considering their position in the series. In order to distin-
guish the most appropriate lead times of the time series that
notably or substantially might influence the forecasting, the
reference value of ACF should be identified. In this study,
the ACF values equal to or more than 0.5 were considered
for the selection of the time-lag pattern [33, 34]. Figure 2
illustrates the ACF values for different lead times up to 20
time differences. Figure 2 shows that the ACF values for
Tigris River for the lead timesQt−1 toQt−5 are more than 0.2.
In other words, five input combinations were constructed
(Model I, Model II, . . . , Model V).

4. Machine Learning Models Overview

In this study, four different hybrid machine learning models
were developed including ANN-GA, SVR-GA, Grid-SVR,
and Grid-RF for monthly river flow forecasting located in
semiarid region, Iraq. RapidMiner software was used to
develop machine learning models. RapidMiner is an open-
source, free, and flexible software implemented by Java
language. (e program has been used in data analysis,
application design, and developing complex models [35].
(e development of predictive models using the above
hybrid ML models is described in the following sections.

4.1. ANN-GA. Inspired by the human neural network, ANN
was proposed and developed to simulate the human brain
during learning. With high computing power, ANN can
outperform the performance of the human in some cases.
ANN was applied for solving many regression, clustering,
and classification tasks.

ANN, as shown in Figure 3, consists of three types of
layers: input layer, hidden layer, and output layer [36]. Each
layer consists of a set of nodes called artificial neurons that
perform elementary calculations [37]. Weighted connec-
tions connect neurons in the successive layers. During the
training procedure of ANN, weights are defined and updated
with the aim of minimizing the error between the actual
output and the computed output. ANN has the ability to
produce output with reasonable accuracy [38], if it has gone
through an effective learning phase.

(e backpropagation neural network (BPNN) proposed
by Rumelhart et al. [39] is one of the most popular learning
algorithms. BP aims to optimize the network parameters by
minimizing the least square error between actual and
computed output.

Inspired by Darwin’s theory of biological evolution, GA
was developed as a heuristic method for finding the func-
tion’s optimal value [40, 41]. It represents one of the most
popular forms of an evolutionary algorithm used to solve
different optimization problems [42, 43]. GA is initialized by
generating a random population of individuals (solutions)
and tries to optimize these individuals by applying three
successive operations:

(i) Selection of the best individuals with high fitness values.

(ii) (e crossover between two individuals to generate a
new population.

(iii) (e mutation performed by introducing random
changes in individuals.

(is procedure is repeated a certain number of times
until the optimum values are obtained. In this section, the
performance of BP was optimized using GA for tuning the
parameters that affect the NN’s performance. (e training
procedure for BP starts by using GA to perform a global
search for network weight values. It refines an initially
random set of weights to get a better estimate, and it is likely
to be close to the global optimum [44, 45]. After that comes
the role of BP in training in order to refine the solution
provided by the GA to bring it to the optimum solution.

(e general steps of ANN-GA can be summarized as
follows. (e flowchart of the GA-ANN method is illustrated
in Figure 4. Initially, a feasible NN’s topology was predefined
through determining the number of neurons in the hidden
layer [46, 47]. After that, steps to improve the performance
of neural networks through GA algorithms begin as follows:

Step 1: initialize the random values for weight and bias
(wij and bi) according to initial network topology.
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Figure 2: (e statistics of the autocorrelation function (ACF) and
the partial autocorrelation function (PACF) for the studied time
series river flow.
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Step 2: generate an initial random population of pa-
rameters. (en perform the following steps until
reaching the maximum number of iterations:

Step 2.1: calculate the fitness value by applying the
fitness function on each individual in the population.
Step 2.2: update the network parameters (wij and bi)
based on the lowest error E.
Step 2.3: generate a new population through per-
forming GA operations: selection, crossover, and
mutation.

Step 3: obtain the optimal value of parameters from the
last population

Step 4: train NN by PB training procedure (updating
final weight and bias).

Step 5: evaluate the performance of NN using testing data.
If the error is acceptable, stop and return the optimal

model; otherwise, change the network topology (number
of hidden layer’s neurons) and return to step 1.

4.2. RF-Grid. Grid search is a traditional way for performing
hyperparameters optimization for ML models. It is simply
an exhaustive search method that sets up a grid of the
possible values of the hyperparameters (Figure 5) and trains
a model for each of the combinations [48]. In this method,
all the possible combinations of the data are tried and tested
using k-fold cross-validation technique.

Random forest (RF) is one of the most potent ensemble
learning techniques developed by Breiman in 2001 [49] to
solve different regression, classification, and clustering
problem, and it exhibited excellent performance in many
fields [50–52].

Despite the advantages of decision trees of its simplicity,
ease of use, and interpretability [53, 54], it has many
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limitations, such as their suboptimal performance and lack
of robustness. (erefore, RF can overcome the limitations of
traditional decision trees by combining the performance of
many randomized, decorrelated decision trees to predict or
classify the variable to a specific class. RF is a boosting
technique in which it boosted the performance of a number
of decision trees via a voting scheme. An example of RF is
shown in Figure 6 in which the forest consists of n trees and a
voter.

Regarding the main advantages of RF in regression tasks,
it includes (i) bootstrap resampling, (ii) random features
selection, and (iii) out-of-bag error estimation.

Suppose there are n trees T1(X), T2(X), . . . , Tn(X),
where X � x1, x2, . . . , xm is am-dimension vector of inputs.
(e prediction value of each decision tree is Ŷi � Ti(x).
While the final prediction output Y results from aggregating
the outputs of all randomly generated trees. (e aggregation
process is accomplished in the classification task by taking
the majority votes, while in regression task, it is accom-
plished by taking the average:

Y �∑n
i�1

Ŷi(x) �
1

n
∑n
i�1

Ti(x). (1)

(e RF algorithm can be summarized as follows [55, 56]:

(i) Generate n number of trees by selecting randomly
different bootstrap samples from the training data.
(e out-of-bag samples are the samples that are not
selected.

(ii) For each bootstrap sample, grow a full decision tree
to the maximum size without pruning. In splitting
the nodes of the tree, a specific number of features
were selected randomly instead of choosing all
features (this refers to a random feature selection).

(iii) Repeat step 2 until forming a randomly generated
forest consisting of n decision trees.

(iv) Predict the new data by applying the n trees and
aggregate the results.

In this section, the grid search algorithm was used to
optimize the RF algorithm by tuning the hyperparameters of
it. (e primary hyperparameters of RF that affect its

performance are (1) the number of trees in the forest that
must be generated before taking the maximum voting or
average of predictions and (2) the maximum number of
features to split in each node of the tree.(e hybrid structure
of RF and grid search was considered in the following steps
(Figure 7):

(i) Step 1: define RF searching parameters range:
maximum value, minimum value, and step size.

(ii) Step 2: build the grid search space on the coor-
dinate system.

(iii) Step 3: build the RF models using all possible
combinations of parameters and evaluate the
performance of RF.

(iv) Step 4: return the multiple set of optimal
parameters.

(v) Step 5: if the accuracy is satisfied, stop and return
the optimal parameters; otherwise go to step 6.

(vi) Step 6: redefine the range of searching near the
optimal parameters and reduce step size. (en, go
to step 2.

(vii) Step 7: repeat steps 2–6 until the optimal hyper-
parameters values satisfying the accuracy were
found.

(viii) Step 8: build RF forest model with the optimal
parameters.

(ix) Step 9: predict the output value of data in testing
set by RF model.

4.3. SVR-GA. Support vector regression (SVR) is introduced
by Vapnik [57] as an extension of SVM for solving the
regression problem. SVR is a very useful tool for prediction
because of its ability to map nonlinear data space into a
higher dimensional feature space [58].

Consider a learning dataset defined as xi, yi{ }(i � 1, . . . ,
n), where xi ∈ Rn is the input vector and yi ∈ R is its cor-
responding output vector. (e main objective of SVR is to
deduce the regression function f (x) that describes the re-
lationship between the input data x and the target output y
with an error value that is less than epsilon ε deviation for all
training data.

(e SVR function can be written as follows [59]:

f(x) � wTφ(x) + b, (2)

where f(x) is the computed output of x, φ(x) is the
nonlinear feature mapping function of inputs, and w and b
are adjustable coefficients that represent the weight vector
and intercept vector, respectively. (e training of SVR is to
find w and b values by minimizing the upper bound of the
regression error.

(erefore, SVR is considered as an optimization prob-
lem that tries to make the regression function f(x) as flat as
possible by minimizing the value ofw, which necessitates the
minimization of Euclidean norm, that is, ‖w‖2.
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Figure 5: Grid search method.
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(e optimization problem that is used to identify the
regression problem is given as follows:

minimize
1

2
‖w‖2

subject to
yi − w

Tφ(x) − b≤ ε

−yi + w
Tφ(x) + b≤ ε.

(3)

(e preceding equation applies if there is function f (x)
which approximates all pairs of (xi, yi)with an accuracy of ε.
Besides, some mistakes that violate the conditions above are
introduced. (e inaccessible limitations of the optimization
problem are addressed by the slack variables ξi and ξ ∗i .
Equation (2) can, therefore, be rewritten as explained as
follows:

minimize
1

2
‖w‖2 + C∑l

i�1

ξi + ξ
∗
i( )

subject to
yi − w

Tφ(x) − b≤ ε + ξi

−yi + w
Tφ(x) + b≤ ε + ξ ∗i ,

ξi, ξ
∗
i ≥ 0, i � 1, 2, . . . , n,

(4)

where C is defined as a nonnegative constant which ex-
presses the box constraint that is responsible for monitoring
data points above the ε-insensitive error range and which is
also helpful when avoiding overfitting problems [58]. (ere
are several commonly used kernel types in SVR that convert
the nonlinear function in equation (1) into higher dimen-
sional space.(e radial basis function (RBF) has been widely
used in previous studies [5, 60]:

f(x) � wTK x, xi( ) + b,
K x, xi( ) � exp −

x − xi
∣∣∣∣ ∣∣∣∣2

2c2
 , (5)

where K(x, xi) is the kernel function and c is the width
parameter.

(e performance of the SVR model depends on the
hyperparameter tuning of the model: the regularization
parameter (C), the epsilon (ε), and the kernel parameter (c).
(ese parameter values affect the performance of the model
incredibly, in which the influence of these parameter values
is presented as follows. (e value of the first parameter (i.e.,
regularization parameter, also called box constraints) is used
to decide the penalty of the approximation function. It must
not be very small or large. If it is too small (large), it will
cause underfitting (overfitting). In contrast, the decision
boundary’s maximum margin is controlled by the insensi-
tivity loss function (ε). Finally, the kernel function controls
the ability to make the model for dealing with nonlinear
function responsible for transforming the nonlinear func-
tion into a more suitable function [61, 62].

Many researches were conducted to tune the hyper-
parameters of SVR using manual or grid search [63, 64].
However, this approach’s complexity is increased incredibly
when the width of the search space is increased. Also, this
approach does not always get the best hyperparameter values
for the model. Other approaches have been inspired to
overcome these limitations, that is, the genetic algorithm
(GA). GA is considered one of the power optimization al-
gorithms proposed by Holland in 1975 and inspired by
Darwin’s theory. In this section, GA is inspired and used to
find the hyperparameter of SVR. (e proceeding procedure

Training data

Random subset 2 ... Random subset n
Stage 1: bootstrap

sampling

Stage 2: model
training

Stage 3: model
prediction

Stage 3: result
aggregating

Random subset 1

Predict 1 Predict 1

Aggregate of single trees prediction

Predict n...

Tree 1 Tree 2 Tree n

Figure 6: Example of random forest (RF) algorithm.
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of optimizing SVR hyperparameters using GA was illus-
trated in Figure 8, and the steps involved are summarized as
follows:

Step 1: initialize the SVR parameters (ε, C) and the
kernel parameters c. Code these parameters to create a
chromosome directly.

Step 2: initialize the GA parameters randomly:
population size, number of generations, mutation rate,
and crossover rate.

Step 3: perform SVR model on training data using the
k-fold cross validation.

Step 4: calculate the fitness value of each individual in the
population according to the mean square error (MSE).

Step 5: generate new offspring parameters population
through selection, crossover, and mutation.

Step 6: repeat steps 4-5 until ε, C, c are satisfied with
minimal error; otherwise, continue to optimize.

Step 7: output the optimal parameters found at the end
of the generation. Train SVR model with these
parameters

Step 8: predict the out of data in the testing dataset part
by SVR model.

4.4. SVR-Grid. In this section, the grid search algorithm is
used to obtain the optimal values of the SVR parameters
(ε, C, and g). (e grid search algorithm is based on trying all
possible values of the parameters in a given space with a
specified step distance. (e cross-validation technique [65]
derives the SVR model’s parameters that improve its per-
formance with the best accuracy.

(e hybrid structure of SVR optimized by grid search is
illustrated through a flowchart, as shown in Figure 9, and
consists of the following steps:

Step 1: define the range of SVR searching parameters.

Step 2: initialize the values of the parameters and step
distance.

Step 3: split dataset into two sets (training and testing
sets)

Step 4: train SVRmodel using k-fold cross validation on
the training dataset.

Start

Build a grid search space

Performance evaluation

Search for multiple of optimal parameters

Redefine the range of searching near
the optimal parameters, and reduce the

search step

RF optimal hyperparameters value

Build RF model

RF prediction

Yes

Yes

No

Training
data

Testing
data

Dataset

Grid search

No
Try all

parameters
combination?

Does the MSE
satisfy the
accuracy?

Define RF searching parameters range:
maximum value, minimum value and step size

Build RF model on training data with the selected
parameters using the k-fold cross validation

Figure 7: Flowchart of RF-grid model.
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Initialize SVR parameters (C, ε, γ) and encode them as chromosome

Initialize GA parameters: population size, crossover rate, and mutation rate

Generate initial parameters population of
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GA operations

No
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Figure 8: (e flowchart of SVR-GA model.
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Figure 9: (e flowchart of SVR-grid model.
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Step 5: if the MSE satisfies the accuracy, then select the
sets of parameters with the minimum MSE; otherwise,
continue the optimize and go to step 5.

Step 6: search for multiple sets of optimal parameters.

Step 7: redefine the range of searching near the optimal
parameters and reduce the search step; then go to step 4.

5. Data Analysis and Results

5.1. Model Performance Evaluation Using Statistical Indices.
(e effectiveness of the proposed modeling techniques was
examined by comparing the forecasted river flow with the
observed river flow data. It should be noted that the data
used in this investigation was continuous and without any
missing value.

(e performance of the models in forecasting river flow
one month ahead was forecasted and evaluated using several
statistical metrics. Five statistical metrics were used to
measure the performance of the predictive models in
forecasting river flow during model testing, namely, Mean
Error (ME), Root Mean Square Error (RMSE), Mean Ab-
solute Error (MAE), Mean Percentage Error (MPE), Mean
Absolute Percentage Error (MAPE), and Coefficient of
Determination (R2) [66, 67]. (ese statistical metrics were
widely used by researchers to evaluate the performance of
predictive models in hydrological and machine learning
models [68]. (ese measurements are considered a good
indicator of the accuracy and robustness of the model:

ME �
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�����������
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√√
,
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∑Ni�1 yo − €yo( ) ∑Ni�1 yp − €yp( )��������������������������∑Ni�1 yo − €yo( )2∑Ni�1 yp − €yp( )2√ 
2

,

(6)

where N is the length of the testing data set. yo and yp are the
actual and forecasted river flow data. €yo and €yp are the mean
values of the actual and forecasted river flow data.

Tables 1–3 present the statistical performance indicators
(i.e., ME, RMSE, MAE, MPE, MAPE, and R2) for the five
constructed input combinations, training and testing phases,
and the three data division scenarios. (e tables showed that
all the four hybrid ML models (ANN-GA, SVR-GA, Grid-

SVR, and Grid-RF) are performed in a general good per-
formance. However, they are varied from one input com-
bination to another. (at totally depends on the historical
data memory provided by the lead time “antecedent river
flow values.” A notable enhancement is achieved using the
hybridized SVR-GA which collaborates with the findings of
several other studies established over the literature within
hydrological engineering [69–72]. It is observed that the data
division plays an essential role in the learning process of the
developed ML models. Apparently, increasing the span of
the training phase contributes to model predictability en-
hancement. In quantitative terms, the best results of fore-
casting are attained for the SVR-GA with (RMSE� 0.04,
MAE� 0.03, and R2

� 0.95). (e SVR-GA model indicated
boosting in forecasting accuracy; although, the other ML
models obtained a reasonable prediction accuracy. (is
observation approved the capacity of the hybrid SVR-GA
model to solve the complexity of river flow located in
semiarid environment. (e Coefficient of Determination
(R2) was achieved more than 0.90 for almost all the input
combinations over the using the SVR-GA model although
the performance of the SVR-GA model over the training
phase was not superior (Table 3). (is can explain the
feasibility of the SVR-GA to be more potent.

5.2. Models Graphical Evaluation. Two different graphical
presentations are hereby presented for the evaluation of the
performance of the proposed models. (e actual and the
forecasted values of the river flow for Tigris River are
presented using scatter plots and Taylor diagram.(e scatter
plots for the three modeling scenarios of data division (70%–
30%, 80%–20, and 90%–10%) and the four developed ML
models (ANN-GA, SVR-GA, Grid-SVR, and Grid-RF) are
illustrated in Figures 10–12. It can be clearly observed that
the 90%–10% data division scenario using the SVR-GA
model attained the best match between the observed and
forecasted river based on four-month antecedent values. For
this particular data division and based on this lead time, the
observed and the forecasted values by all the models were
found to follow the similar trends. However, the matching
between the observed and the forecasted values was found to
be the best for SVR-GA model. To assess the efficacy of the
models, it was justifiable to investigate the linear relationship
between the time series of observed and the forecasted river
flows for the testing period.(e uniformity plot of river flow
forecasted by SVR-GA attained the maximum determina-
tion coefficient (R2

� 0.96).
Another graphical presentation that was investigated for

the applied predictive models was Taylor diagram [73]
(Figures 13–15). It is a distinguished two-dimension
graphical presentation that accompanied three statistical
metrics including RMSE, correlation, and standard devia-
tion. In harmony with the presented statistical results and
the scatter plot presentation, using four-month lead time
predictors for the one month ahead river flow, the SVR-GA
model indicated the best forecasting value owing to the
location of the model results on the Taylor map for the 90%–
10% data division scenario.
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(e minimum instream environmental flow for the
Tigris River was calculated on the basis of the SVR-GA
model’s mean forecast flow obtained during the dry
season. (e minimum environmental flow was

215.46m3 s−1 (based on 19.22 percent of the average flow
1121m3 s−1). (is flow refers to the minimum instream
environmental flow required to maintain the organisms in
the river [13].

Table 1: (e statistical performance metrics for the developed hybrid ML models over the 70–30% modeling data division scenario.

ME RMSE MAE MPE MAPE R2

Model I
Training phase

ANN-GA 59.32 256.43 175.66 −1261.38 1549.29 0.63
SVR-GA 10.34 247.05 154.56 −862.91 1285.20 0.68
Grid-RF −2.33 123.24 77.09 −264.95 527.544 0.92
Grid-SVR −15.35 254.68 159.67 −576.68 1198.01 0.58

Testing phase
ANN-GA 66.05 205.10 163.48 −1632.74 1886.53 0.69
SVR-GA 7.83 157.47 124.27 −806.19 1270.95 0.78
Grid-RF −3.25 138.48 108.65 −380.57 977.75 0.80
Grid-SVR −5.68 128.32 91.09 −338.22 751.28 0.91

Model II
Training phase

ANN-GA −33.47 331.87 211.77 −1370.87 1938.01 0.46
SVR-GA −10.54 235.56 142.34 −664.55 1183.01 0.72
Grid-RF −7.59 116.75 71.18 205.18 490.95 0.93
Grid-SVR −5.96 234.96 141.50 −516.18 1057.58 0.72

Testing phase
ANN-GA 13.75 194.68 137.36 −744.31 1242.38 0.56
SVR-GA 11.80 133.54 108.60 −506.76 941.08 0.79
Grid-RF −14.79 160.42 119.92 −335.94 936.55 0.73
Grid-SVR 42.39 136.07 106.04 −782.93 1098.75 0.77

Model III
Training phase

ANN-GA −44.17 245.56 150.87 −218.53 921.87 0.65
SVR-GA −9.11 236.37 143.78 −815.63 1334.09 0.72
Grid-RF 7.27 125.03 83.15 −454.79 921.87 0.91
Grid-SVR −33.94 273.67 174.09 −862.27 1445.52 0.64

Testing phase
ANN-GA 21.40 164.3153 124.08 −856.11 1274.74 0.80
SVR-GA 27.02 142.074 115.56 −804.35 1138.05 0.87
Grid-RF 0.97 143.7111 110.28 −400.61 958.01 0.82
Grid-SVR 32.84 152.1099 105.33 −836.43 1173.84 0.38

Model IV
Training phase

ANN-GA 21.40 164.36 124.08 −856.11 1274.74 0.67
SVR-GA 27.02 142.07 115.57 −804.35 1138.05 0.69
Grid-RF 9.78 143.711 110.28 −400.61 958.01 0.94
Grid-SVR 32.84 152.11 105.34 −836.43 1173.84 0.75

Testing phase
ANN-GA 21.40 164.31 124.09 −856.11 1274.74 0.79
SVR-GA 27.02 142.07 115.56 −804.35 1138.05 0.82
Grid-RF 9.78 143.71 110.28 −400.61 958.01 0.76
Grid-SVR 32.84 152.11 105.34 −836.43 1173.84 0.76

Model V
Training phase

ANN-GA −2.65 212.08 159.06 −318.12 1537.58 0.63
SVR-GA −10.60 238.59 132.55 −583.22 1113.42 0.66
Grid-RF −21.21 132.55 79.53 −397.65 662.75 0.9
Grid-SVR −23.86 185.57 106.04 −371.14 901.34 0.83

Testing phase
ANN-GA 26.51 185.57 132.55 1166.44 1564.09 0.83
SVR-GA 18.56 159.06 106.04 −715.77 1086.91 0.83
Grid-RF 2.65 132.55 106.04 −450.67 954.36 0.67
Grid-SVR −7.95 106.04 79.53 −212.08 715.77 0.75
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Table 2: (e statistical performance metrics for the developed hybrid ML models over the 80–20% modeling data division scenario.

ME RMSE MAE MPE MAPE R2

Model I
Training phase

ANN-GA −38.54 252.65 154.75 −363.45 1060.36 0.65
SVR-GA −9.52 244.25 154.08 −766.23 1293.02 0.69
Grid-RF 32.83 256.13 170.43 −877.83 1365.77 0.65
Grid-SVR −17.71 243.98 151.04 −531.12 1127.40 0.66

Testing phase
ANN-GA 27.193 199.25 154.61 −394.37 767.53 0.84
SVR-GA 38.94 198.88 157.71 −585.79 952.09 0.72
Grid-RF 28.12 209.33 168.85 −577.06 1064.34 0.76
Grid-SVR 6.38 187.98 145.17 −531.11 779.82 0.89

Model II
Training phase

ANN-GA 11.19 244.34 152.65 −2214.68 1275.26 0.66
SVR-GA 16.59 237.26 148.64 −2134.11 2628.70 0.685
Grid-RF 14.91 251.78 152.43 −736.97 1441.17 0.66
Grid-SVR −11.58 228.31 135.41 −1862.16 2420.91 0.72

Testing phase
ANN-GA 21.89 154.13 118.15 −682.55 1102.56 0.80
SVR-GA 33.23 134.97 113.16 −1104.83 1417.38 0.83
Grid-RF 26.17 140.25 109.19 −578.82 1000.16 0.65
Grid-SVR 6.38 187.98 145.17 −531.12 779.825 0.75

Model III
Training phase

ANN-GA 30.35 247.37 163.25 −1009.14 1386.72 0.67
SVR-GA 3.59 235.55 147.26 −761.82 1255.21 0.69
Grid-RF −2.70 155.95 99.25 −536.86 855.20 0.86
Grid-SVR −31.80 268.65 169.28 −800.78 1380.50 0.62

Testing phase
ANN-GA 93.78 154.59 124.46 −1037.85 1178.38 0.45
SVR-GA 23.51 142.13 112.42 −723.81 1071.39 0.80
Grid-RF 35.81 126.91 102.84 −662.98 966.92 0.81
Grid-SVR 18.62 135.36 96.18 −800.78 1176.49 0.54

Model IV
Training phase

ANN-GA −113.06 269.44 171.97 432.71 994.68 0.61
SVR-GA −6.04 236.42 149.41 −800.34 1333.56 0.66
Grid-RF −2.23 130.28 78.18 −436.18 686.68 0.90
Grid-SVR −54.99 303.65 191.10 −950.77 1615.86 0.51

Testing phase
ANN-GA −72.62 139.88 115.74 423.35 1070.50 0.71
SVR-GA 12.64 113.96 92.45 −420.64 749.46 0.92
Grid-RF −26.20 153.04 118.39 −217.54 862.89 0.81
Grid-SVR 33.19 125.64 97.16 −926.32 1208.60 0.65

Model V
Training phase

ANN-GA −24.92 230.48 141.42 −642.60 1227.55 0.72
SVR-GA −15.24 230.22 143.09 −631.34 1192.60 0.71
Grid-RF −5.14 142.65 83.66 −317.06 592.59 0.89
Grid-SVR −22.75 176.60 106.58 −330.21 860.40 0.83

Testing phase
ANN-GA −38.02 149.35 119.27 −53.29 793.33 0.64
SVR-GA 23.04 138.42 105.01 −616.43 1093.90 0.74
Grid-RF 9.44 145.23 95.98 −469.15 896.69 0.44
Grid-SVR 17.41 133.36 94.31 −723.81 1214.13 0.55
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Table 3: (e statistical performance metrics for the developed hybrid ML models over the 90–10% modeling data division scenario.

ME RMSE MAE MPE MAPE R2

Model I
Training phase

ANN-GA −43.82 250.85 156.29 −521.03 1181.23 0.64
SVR-GA −8.58 234.82 148.27 −629.26 1166.91 0.67
Grid-RF 14.09 234.43 151.84 −822.16 1297.23 0.69
Grid-SVR −15.84 233.79 146.80 −656.04 1215.01 0.69

Testing phase
ANN-GA 10.08 106.21 82.72 −312.59 684.22 0.88
SVR-GA 16.46 100.58 81.27 −954.43 1332.15 0.92
Grid-RF 18.98 84.577 71.86 −275.80 622.07 0.79
Grid-SVR 16.46 100.58 81.27 −954.43 1332.15 0.92

Model II
Training phase

ANN-GA −71.45 244.98 150.23 −44.06 970.63 0.66
SVR-GA 5.20 229.71 147.46 −813.07 1290.19 0.69
Grid-RF −3.26 138.91 84.65 −404.59 718.67 0.89
Grid-SVR −7.78 221.91 134.74 −627.86 1156.57 0.73

Testing phase
ANN-GA −27.24 110.15 79.18 19.78 657.83 0.61
SVR-GA 44.15 106.22 85.60 −754.08 977.85 0.91
Grid-RF 16.26 116.19 91.95 −757.04 1163.95 0.77
Grid-SVR 40.57 75.62 64.78 −710.36 894.09 0.71

Model III
Training phase

ANN-GA −28.96 279.03 173.82 −901.58 1455.28 0.55
SVR-GA 7.97 231.47 148.60 −839.83 1316.29 0.70
Grid-RF −6.04 143.03 89.34 −459.07 769.44 0.88
Grid-SVR −42.45 266.44 165.71 −734.56 1350.49 0.59

Testing phase
ANN-GA 29.79 147.39 116.93 −889.74 1306.29 0.71
SVR-GA 48.075 88.21 72.67 −703.78 841.28 0.67
Grid-RF −20.47 100.62 79.93 −18.08 592.86 0.71
Grid-SVR −7.54 96.34 76.34 −483.47 931.94 0.75

Model IV
Training phase

ANN-GA −26.51 238.59 159.06 −503.69 1219.46 0.66
SVR-GA −2.65 212.08 132.55 −715.77 1245.97 0.66
Grid-RF −10.60 132.55 79.53 −371.14 689.26 0.89
Grid-SVR −31.81 238.59 185.57 −477.18 1272.48 0.61

Testing phase
ANN-GA −13.55 140.20 116.22 −583.19 1233.32 0.86
SVR-GA −14.73 100.78 81.585 −214.02 670.30 0.96
Grid-RF 16.86 85.65 76.07 −375.48 739.69 0.83
Grid-SVR 17.86 82.19 62.39 −675.72 751.89 0.63

Model V
Training phase

ANN-GA −74.23 238.59 159.06 −291.61 1139.93 0.66
SVR-GA −13.25 212.08 132.55 −715.77 1245.97 0.70
Grid-RF −10.60 132.55 79.53 −397.65 662.75 0.90
Grid-SVR −15.91 185.57 106.04 −556.71 1086.91 0.79

Testing phase
ANN-GA 7.953 106.04 79.53 −1113.42 1537.58 0.82
SVR-GA 10.604 79.53 53.02 −238.59 636.24 0.93
Grid-RF −15.906 106.04 79.53 −212.08 715.77 0.50
Grid-SVR 5.302 87.48 106.04 −291.61 768.79 0.74
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6. Discussion and Possible Future
Research Directions

(e results indicate that the proposed hybridMLmodels can
provide high accuracy in forecasting river flows for the

studied Tigris River where the variability of river flow is less.
Among all the developed four models, it was noticed that
SVR-GA was superior to the other models. (e model
revealed the ability to solve complex process related to
engineering problem. SVR-GA achieved a high Coefficient
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Figure 10: (e scatter plot between the observed and forecasted river flow using the developed ML models and for the modeling scenario
data division (70%–30%).
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of Determination for almost all the input combinations for
streamflow forecasting. It can be concluded that SVR-GA
has the potential to deal with dynamics and chaotic envi-
ronment with high accuracy in forecasting process.

In the current study, a type of forecasting is based on
univariate modeling procedure where only river flow his-
torical data was intercepted in the model development. In
such case, it is suggested to use other variables such as

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500

P
re

d
ic

te
d

 v
al

u
es

 

Observed values 

Model I

ANN-GA (R2 = 0.83)

SVR-GA (R2 = 0.72)

Grid-RF (R2 = 0.75)

Grid-SVR (R2 = 0.89)

ANN-GA (R2 = 0.67)

SVR-GA (R2 = 0.80)

Grid-RF (R2 = 0.81)

Grid-SVR (R2 = 0.54)

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000

P
re

d
ic

te
d

 v
al

u
es

 

Observed values 

Model III

ANN-GA (R2 = 0.81)

SVR-GA (R2 = 0.84)

Grid-RF (R2 = 0.65)

Grid-SVR (R2 = 0.75)

0

500

1000

1500

2000

0 500 1000 1500 2000 2500

P
re

d
ic

te
d

 v
al

u
es

 

Observed values 

Model II

ANN-GA (R2 = 0.71)

SVR-GA (R2 = 0.92)

Grid-RF (R2 = 0.81)

Grid-SVR (R2 = 0.65)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

P
re

d
ic

te
d

 v
al

u
es

 

Observed values 

Model IV

ANN-GA (R2 = 0.64)

SVR-GA (R2 = 0.74)

Grid-RF (R2 = 0.44)

Grid-SVR (R2 = 0.55)

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500

P
re

d
ic

te
d

 v
al

u
es

 

Observed values 

Model V

Figure 11: (e scatter plot between the observed and forecasted river flow using the developed ML models and for the modeling scenario
data division (80%–20%).
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rainfall, humidity, temperature, or even evaporation rate to
have a strong relationship with river flow. However, it is
worth highlighting that the proposed models demonstrated
an efficient soft computing model to capture the actual trend

of the river flow time series. (is is highly essential for
several water and environmental engineering applications
and particularly for management and monitoring of
flooding and mitigations events.
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Figure 12: (e scatter plot between the observed and forecasted river flow using the developed ML models and for the modeling scenario
data division (90%–10%).
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Based on the reported results, it was observed that using
20-year river flow data is sufficient for the development of the
forecasting model. However, the length of the data span used
for the modeling learning process has a considerable effect on
the accuracy of model performance. (erefore, this is the
essential finding of the hypotheses data division scenarios on

the capacity of the machine learning models. Indeed, serious
attention should be given in selecting the length of data for
training the models. Selecting the length of data in an ap-
propriate way reduces underfitting and helps the modeler to
choose the best size of training data.(is is due to the fact that
the training stage should experience the majority of river flow
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Figure 13: (e Taylor diagram of the developed ML models and for the modeling scenario data division (70%–30%).
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patterns to allow the models in the testing session to forecast
river flow with an acceptable level of accuracy. (e present
study indicates that 20-year river flow data is enough to
provide an acceptable accuracy in forecasting river flow.

Another significant aspect which can improve the pre-
dictability of the applied predictive models is the optimum
selection of the lead times correlated to the targeted variable.

Mutual information (MI) statistical approach potentially can
be integrated as a prior stage of the forecasting model de-
velopment process to abstract the highly associated infor-
mation. (e approach is based on the information theory
and the notion of entropy [74].

It is worth highlighting that there is a need to extract
the highly correlated features (the correlated lead times)

1.5

1.0

0.5

0.0

0.0 0.5

Model I
0.1 0.2

1.4
1.2

0.8

0.6

0.4

0.2

1

0.3
0.4

0.5
0.6

0.7

C
orrelation

0.8

0.9

0.95

0.99

1.0

Standard deviation (normalized)

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
n

o
rm

al
iz

ed
)

1.5

1.5

1.0

0.5

0.0

0.0 0.5

Model III
0.1 0.2

1.4
1.2

0.8

0.6

0.4

0.2

1

0.3 0.4
0.5

0.6

0.7

C
orrelation

0.8

0.9

0.95

0.99

1.0

Standard deviation (normalized)

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
n

o
rm

al
iz

ed
)

1.5

ANN-GA

SVR-GA

Grid-RF

Grid-SVR

Observed

ANN-GA

SVR-GA

Grid-RF

Grid-SVR

Observed

1.5

1.0

0.5

0.0

0.0 0.5

Model II
0.1 0.2

1.4
1.2

0.8

0.6

0.4

0.2

1

0.3
0.4

0.5
0.6

0.7

C
orrelation

0.8

0.9

0.95

0.99

1.0

Standard deviation (normalized)

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
n

o
rm

al
iz

ed
)

1.5

1.5

1.0

0.5

0.0

0.0 0.5

Model IV
0.1 0.2

1.4
1.2

0.8

0.6

0.4

0.2

1

0.3
0.4

0.5
0.6

0.7

C
orrelation

0.8

0.9

0.95

0.99

1.0

Standard deviation (normalized)

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
n

o
rm

al
iz

ed
)

1.5

ANN-GA

SVR-GA

Grid-RF

Grid-SVR

Observed

ANN-GA

SVR-GA

Grid-RF

Grid-SVR

Observed

1.5

1.0

0.5

0.0

0.0 0.5

0.1 0.2

1.4
1.2

0.8

0.6

0.4

0.2

1

0.3
0.4

0.5
0.6

0.7

C
orrelation

0.8

0.9

0.95

0.99

1.0

Standard deviation (normalized)

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 (
n

o
rm

al
iz

ed
)

1.5

Model V

ANN-GA

SVR-GA

Grid-RF

Grid-SVR

Observed

Figure 14: (e Taylor diagram of the developed ML models and for the modeling scenario data division (80%–20%).
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for the development of similar developed hybrid machine
learning. Hence, the deep learning model has the ad-
vantage of deploying the hidden layers to automatically
extract the features. (e hydrological process is linked to
typical time-sequential data [75] and therefore, the
forecasting of hydrological time series is based on a fixed
number of previous steps selected based on correlation.

For such a case, deep learning model can be trained to
learn time-varying or sequential patterns by facilitating
time delay units through feedback connections for the
selection of antecedent values as input. (e suitability of
the deep learning model for hydrological application relies
on its capability of providing accurate and timely time-
series prediction in the systems.
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Figure 15: (e Taylor diagram of the developed ML models and for the modeling scenario data division (90%–10%).
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7. Conclusion

(e motivation for the current research was to forecast
monthly river flow in semiarid environment. Four hybrid
ML models (i.e., ANN-GA, SVR-GA, Grid-SVR, and Grid-
RF) were developed for this purpose. (ree data division
modeling scenarios (i.e., 70%–30%, 80%–20, and 90%–
10%) were proposed and inspected for the model’s per-
formance predictability. (e architecture of the applied ML
models was established based on several antecedent values
of the river flow in accordance with the correlation analysis.
(e performance of the models was assessed using a
number of numerical skill indicators and graphical pre-
sentations. In general, the results demonstrated that the
SVR-GA model achieved the highest ability in forecasting
monthly river flow with significant accuracy.(erefore, it is
possible to improve the river flow forecasting ability using
the proposed hybrid machine learning model. In addition,
the results indicated that building the predictive based on
90%–10% training-testing dataset attained better predic-
tion capability. (e results indicated that using 20 years of
river flow data is sufficient for the development of the
forecasting model. (e study concluded that the size of the
training data has a significant effect on the accuracy of the
predicted model. (e study revealed that the data division
has an important role in the learning process of the de-
veloped ML models. (e results demonstrated that in-
creasing the span of the training phase can enhance the
accuracy of model performance. (e current research is
possible to be further extended for the forecasting en-
hancement of river flow by including more information on
river flow patterns through the inclusion of climate pa-
rameters such as rainfall, humidity, and temperature as an
input. (e models in the present study were developed for
the forecasting of only one-step-ahead river flow. However,
multiple-month ahead forecasting models are important
for water resources planning and management. Although
the success of SVR-GA model in forecasting one-step-
ahead river flow indicates its capability in longer time-step
ahead river flow forecasting, it is still necessary to examine
the ability of SVR-GA model in multiple-month ahead
forecasting. (e study recommended using mutual infor-
mation (MI) statistical approach as a prior stage of the
forecasting model development process to extract the
highly associated information.
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