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Abstract: Autoencoders are widely used for dimensionality reduction and feature extraction. The
backpropagation algorithm for training the parameters of the autoencoder model suffers from
problems such as slow convergence. Therefore, researchers propose forward propagation algorithms.
However, the existing forward propagation algorithms do not consider the characteristics of the data
itself. This paper proposes an autoencoder forward training algorithm based on relative entropy
constraints, called relative entropy autoencoder (REAE). When solving the feature map parameters,
REAE imposes different constraints on the average activation value of the hidden layer outputs
obtained by the feature map for different data sets. In the experimental section, different forward
propagation algorithms are compared by applying the features extracted from the autoencoder to an
image classification task. The experimental results on three image classification datasets show that
the classification performance of the classification model constructed by REAE is better than that of
the classification model constructed by other forward propagation algorithms.

Keywords: autoencoder; relative entropy; image classification

1. Introduction

The autoencoder is a hot research topic in the field of computer vision [1–10]. It can
be used for feature extraction and data dimensionality reduction. In the deep learning
framework, autoencoders can be used as the basic modules to form deep and complex
networks [11–16]. A deep autoencoder composed of stacking multiple autoencoders can
extract more complex and abstract features than a shallow autoencoder. Inspired by the
hierarchical information processing mechanism of the human visual system in cogni-
tive neuroscience, Hiton and Salakhutdinov propose an autoencoder-based deep neural
network model [17]. Through layer-by-layer greedy pre-training and fine-tuning, this
autoencoder-based deep neural network model achieves significantly better classifica-
tion correctness than traditional methods on image classification datasets. During the
pre-training process, the autoencoder is used to initialize the weights of the deep neural
network. This highlights the importance of training autoencoders.

The classic autoencoder training algorithm is the backpropagation algorithm [18].
However, this algorithm has the problem of slow convergence. In addition, the backprop-
agation algorithm requires the user to specify parameters such as step size, momentum
factor and maximum number of iterations when optimizing the parameters of the neural
network model. The setting of these parameters has an important impact on the training
effect of the neural network, but there is no clear theoretical guidance on how to set these
parameters. For a specific problem, the user needs to repeatedly debug based on experience
to achieve a good result. When the dataset size is large, debugging the parameters based
on iterative trial and error can be an extremely time-consuming process.

To solve the problems in the backpropagation algorithm, researchers propose to train
the autoencoder in a forward way [19,20]. These methods first map the input data into
the hidden layer space, then solve for the model parameters of the decoder, and finally
derive the model parameters of the encoder using weight bundling. Different datasets have
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different characteristics. In the case of image datasets, for example, the type and complexity
of images contained in different datasets also vary. However, existing forward propagation
algorithms do not fully consider the characteristics of the data itself.

This paper proposes an autoencoder training algorithm based on relative entropy
constraints, called relative entropy autoencoder (REAE). It uses relative entropy to constrain
the average activation value of the feature mapping on the hidden nodes. When REAE
solves for the feature map parameters, different constraints are imposed on the average
activation value of the hidden layer outputs obtained by the feature map for different
data sets. To verify the validity of REAE, it is applied to the image classification task. The
autoencoder cannot be used directly for classification, so it is common practice to combine
it with a Softmax classifier to form a new classification model. The experimental results on
image classification datasets show that the classification performance of the classification
model constructed by REAE is better than that of the classification model constructed by
other forward propagation algorithms.

2. Background

The autoencoder is a special kind of neural network that consists of two parts: an
encoder and a decoder. The encoder converts the input data into a different representation,
and the decoder converts this new representation back to the original format.

The model parameters of the autoencoder can be trained by either a backpropagation
algorithm or a forward propagation algorithm. The autoencoder forward propagation
algorithm is summarized below.

The training process of the autoencoder forward propagation algorithm is shown in
Figure 1.

Figure 1. The training process of the autoencoder forward propagation algorithm.

From the perspective of the autoencoder implementation, the feature mapping param-
eters mentioned in the first step of Algorithm 1 are the parameters of the weights from the
input layer to the hidden layer of the autoencoder. The feature mapping parameters are
only used to map the input data to the hidden layer space of the autoencoder and do not
encode the input data. To avoid confusion with the model parameters of the autoencoder,
they are named feature mapping parameters in this paper. In the third step, the decoder
model parameters do not include bias terms, so the encoder model parameters obtained
through weight bundling also do not include the bias term.



Appl. Sci. 2023, 13, 287 3 of 11

Algorithm 1 Autoencoder forward propagation algorithm.

1: Solve for feature mapping parameters Wp and bp.
2: Forward propagate the input data, and use the model parameters Wp and bp to map

the input data to the hidden layer space.
3: Solve for the decoder model parameters Wd.
4: Use weight bundling to calculate encoder model parameters We.

When designing an autoencoder, it is sometimes necessary to control the parameter
scale of the autoencoder according to application requirements. The commonly used
method is to use weight bundling in the autoencoder, that is, make the following constraints
on the autoencoder’s encoder weight parameters We and decoder weight parameters
Wd [19,20]:

WT
e = Wd. (1)

The difference between different autoencoder forward propagation training algorithms
is how to solve for the feature mapping parameters. Wang et al. [19] solve for the feature
map parameters by calculating the low-rank approximation of the pseudo-inverse of the
input matrix. The advantage of this method is its excellent stability. Since there is no
random initialization, the model parameters obtained for a given data set are also the same
each time. Kasun et al. [20] solve for feature mapping parameters by randomly initializing
weights. Random initialization does not require additional calculations, so the advantage
of this method is that the parameters can be solved quickly.

The existing autoencoder forward training algorithms do not fully consider the char-
acteristics of the data itself. The algorithm proposed by Wang et al. [19] uses the low-rank
approximation of the pseudo-inverse of the input data as the feature mapping parameter,
but its main purpose is to obtain stable feature map parameters. The algorithms proposed
by Kasun et al. [20] are data-independent.

To make full use of the characteristics of the data itself, this paper proposes to train
autoencoders using relative entropy as a constraint. When REAE solves for the feature
mapping parameters of the autoencoder, it restricts the average activation value of the
hidden layer outputs according to the characteristics of the dataset.

It should be noted that REAE is different from the classic sparse autoencoder. There
are two main differences between them: (1) The constrained objects are different. The
sparse autoencoder imposes constraints on the hidden layer outputs generated by the
encoder. REAE imposes constraints on the hidden layer outputs generated by the feature
mapping; (2) different constraint requirements. The sparse autoencoder imposes a sparse
constraint on the average activation value, and requires that the average activation value
of the hidden layer outputs generated by the encoder is very small. The constraints of
REAE on the average activation value of the hidden layer outputs depend on the dataset
to which REAE is applied. Generally, the average activation value of the hidden layer
outputs of the sparse autoencoder is set to a number close to 0, e.g., 0.05. When REAE does
feature mapping with different data sets, the constraint value for the average activation of
the hidden layer output may be a larger number or a smaller number. Taking the MNIST
dataset and the CIFAR-10 dataset as examples, the best average activation value for REAE
is 0.2 on the MNIST dataset and 0.8 on the CIFAR-10 dataset.

3. Relative Entropy Autoencoder

Like other autoencoder forward propagation training algorithms, the model parame-
ters of REAE are composed of three parts: feature mapping parameters, decoder model
parameters and encoder model parameters. Since the encoder model parameters can be
obtained by bundling the decoder model parameters, this section is divided into two parts:
solving for feature mapping parameters and solving for decoder parameters.
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3.1. Solving for Feature Mapping Parameters

Suppose the training set isD = {(xm, om)|xm ∈ Rd, om ∈ Rk}M
m=1, where xm represents

the input feature of the training sample, om represents the label of the training sample, and
M represents the number of training samples. Let X = [x1, · · · , xM] denote the training
sample feature matrix and O = [o1, · · · , oM] denote the training sample label matrix. The
input features and labels of the training samples are all represented by column vectors,
and each column corresponds to one datum. The autoencoder takes the input data as the
reconstruction target, that is, O = X. In this case, the training set can be expressed as
D = {xm|xm ∈ Rd}M

m=1. Let J denote the number of hidden nodes of the autoencoder. Let
hm = [hm1, · · · , hmJ ]

T , hmj denote the activation of the input data xm on the hidden layer
node j through feature mapping:

hmj = σ(wpjxm + bpj), (2)

where wpj is a row vector consisting of the jth row of Wp, and bpj is the bias consisting of
the j item of vector bp. The average activation value of the training set D on the hidden
node j through feature mapping is:

ρ̂j =
1
M

M

∑
m=1

hmj. (3)

REAE imposes the following constraint on the average activation of feature mapping
on the hidden node j:

ρ̂j = ρ, (4)

where ρ is a dataset-dependent average activation parameter, which represents the average
activation value required by the constraint. In addition, this paper assumes that the average
activation constraints take the same value on all hidden nodes, that is, ρ̂j = ρ, j = 1, · · · , J.

REAE uses relative entropy to constrain the average activation of hidden nodes.
According to the definition of relative entropy, the loss function of feature mapping can be
defined as:

L(D; Wp, bp) =
J

∑
j=1

(
ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j

)
. (5)

The loss function (5) has no analytical solution, so the feature mapping parameters
Wp and bp can be solved for by gradient descent.

3.2. Solving for Decoder Parameters

An autoencoder is an unsupervised learning algorithm. If the data itself is regarded
as a kind of label, that is, O = X, then the autoencoder can be trained by the mode of
supervised learning. Assuming that the loss function of the autoencoder adopts the squared
error loss function, and the activation function of the output layer adopts a linear activation
function, the optimization objective of the autoencoder can be defined as:

min
Wd
‖WdH− X‖2 + λ‖Wd‖2, (6)

where λ(λ > 0) is a weight parameter, which is used to control the importance of the first
item and the second item in the optimization objective.

The optimization problem (6) has an analytical solution. When the number of columns
of the hidden layer output matrix H is greater than the number of rows (M > J), the
calculation formula of Wd is:

Wd = XHT(HHT + λI)−1, (7)
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where I is an identity matrix of size J × J. When the number of rows of the hidden layer
output matrix H is greater than or equal to the number of columns (J ≥ M), the calculation
formula of Wd is:

Wd = X(HTH + λI)−1HT , (8)

where I is an identity matrix of size M×M.
When the forward algorithm is used to train the autoencoder, the encoder model

parameters are obtained by bundling the decoder model parameters. Therefore, the calcu-
lation formula of the encoder model parameters is:

We = WT
d . (9)

In summary, taking the number of training samples greater than the number of hidden
nodes (M > J) as an example, the autoencoder forward training algorithm based on relative
entropy constraints, REAE (Algorithm 2), can be described as:

Algorithm 2 Forward training algorithm for autoencoders based on relative entropy con-
straints.

1: Solve for the feature mapping parameters Wp and bp by optimizing the loss function (5)
using gradient descent.

2: Forward propagate data, and use the model parameters obtained in step (1) to calculate
the hidden layer output matrix H.

3: Calculate the decoder model parameters Wd according to the Formula (7).
4: Use the Formula (9) to calculate the encoder model parameters We.

When the number of hidden nodes is greater than or equal to the number of training
samples (J ≥ M), the third step of Algorithm 2 can use the Formula (8) to calculate the
decoder model parameters Wd.

4. Experiments

This section verifies the effectiveness of the REAE algorithm on the image classification
data sets MNIST [21], CIFAR-10 [22] and SVHN [23]. Direct performance comparisons
between autoencoders trained by different forward propagation algorithms are not possible.
Therefore, autoencoders are applied to image classification tasks, and classification accuracy
is used as a basis for evaluating forward propagation algorithms. Autoencoders do not
have a classification function and need to be combined with a Softmax classifier to form a
classification model. A common method of building a classification model is to remove the
decoder from the autoencoder and use the output of the encoder as the input feature to the
Softmax classifier.

For ease of presentation, the classification model constructed by the autoencoder and
Softmax classifier is referred to as an autoencoder network. In this paper, the classifi-
cation model based on REAE is named relative entropy autoencoder network (REAN),
the classification model based on the algorithm proposed in Ref. [19] is named pseudo
inverse autoencoder network (PIAN), and the classification models based on the two algo-
rithms proposed in Ref. [20] are named random autoencoder network (RAN) and random
orthogonal autoencoder network (ROAN), respectively.

The experiments consist of two parts: analysis of factors affecting classification perfor-
mance and comparison of algorithm performance.

4.1. Experimental Setup

The MNIST dataset is a large digital image recognition database consisting of hand-
written digits [21]. It contains a total of 70,000 handwritten digital images consisting of
numbers 0 to 9. Each image in the MNIST dataset is standardized and aligned to an image
patch of a fixed size of 784 pixels. The CIFAR-10 dataset is a color image dataset, which
contains 60,000 color images of size 32× 32 [22]. The image content includes 10 categories,
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consisting of planes, cars, birds, cats, deer, dogs, frogs, horses, boats and trucks. The
SVNH dataset is a real image dataset for developing machine learning and object recog-
nition algorithm [23]. Its images are derived from the house numbers in Google Street
View images.

The experimental software environment is as follows: 64-bit version of Windows 7,
matlab 2014b. The experimental hardware platform is as follows: Intel(R) Core(TM) i3-550
CPU, 8G memory.

4.2. Analysis of Factors Affecting Classification Performance
4.2.1. Average Activation Value of the Hidden Layer Outputs

The purpose of training an autoencoder is to extract effective features for application
services. This subsection takes the classification application as an example, and analyzes the
influence of the average hidden layer activation value ρ on the classification performance
of the REAN autoencoder network under different settings of the number of hidden nodes.
The number of hidden nodes is set to 350, 550, and 750 on the MNIST dataset, and 450,
700, and 950 on the CIFAR-10 dataset, respectively. The average hidden layer activation
value ρ is taken on the grid {0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8}. In the REAN
autoencoder network, the search range of the regularization parameter λ of the autoencoder
and the regularization parameter τ of the Softmax classifier is the grid {10−5, 10−4, · · · ,
102}. The specific parameter values are determined by cross-validation.

The experimental results are shown in Figure 2. The blue polyline, red polyline, and
magenta polyline in Figure 2a correspond to the experimental results when the number of
hidden nodes on the MNIST data set is 350, 550, and 750, respectively. The blue polyline, red
polyline, and magenta polyline in Figure 2b correspond to the experimental results when
the number of hidden nodes on the CIFAR-10 data set is 450, 700, and 950, respectively.

Figure 2 shows that given the number of hidden nodes, the average hidden layer
activation value ρ has a direct impact on the classification performance of the REAN
autoencoder network. It can be seen from Figure 2a that, on the MNIST data set, when
the average hidden layer activation value ρ is in the interval [0.1, 0.2], the classification
performance of the REAN autoencoder network is the best. When the average hidden
layer activation value ρ is greater than 0.2, the classification performance of the REAN
autoencoder network generally declines. When the number of hidden nodes is 350, the
classification performance of the REAN autoencoder network is the best at ρ = 0.1, and the
classification accuracy rate is 96.7%. When the number of hidden layer nodes is 550 and
750, the classification performance of REAN autoencoder network is the best at ρ = 0.2,
and the classification accuracies are 97.3% and 97.5%, respectively. Observing Figure 2b, it
can be found that the classification performance of the REAN autoencoder network shows
an obvious trend of improvement with the increase in the average hidden layer activation
value ρ. The best classification performance of the REAN autoencoder network is obtained
when the average hidden layer activation value ρ takes a larger value (0.6 or 0.8). The
interpretation of this paper is that the data complexity of CIFAR-10 is much greater than
that of MNIST. When the number of hidden nodes is 700, the classification performance
of the REAN autoencoder network is the best at ρ = 0.6, and the classification accuracy
rate is 40.0%. When the number of hidden layer nodes is 450 and 950, the classification
performance of the REAN autoencoder network is the best at ρ = 0.8, and the classification
accuracies are 39.5% and 39.8%, respectively.

It can be seen from the value of the optimal average hidden layer activation value ρ
on the MNIST dataset and the CIFAR-10 dataset that the selection of ρ is closely related to
the dataset where the REAE algorithm is applied. This is the desired result of this paper,
i.e., to represent the characteristics of different datasets by means of a hidden layer average
activation value constraint.
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Figure 2. The relationship between the average activation value of the hidden layer outputs and
classification performance in the REAN autoencoder network.

4.2.2. Number of Hidden Nodes

The learning ability of a neural network is closely related to the number of hidden
nodes. The greater the number of hidden nodes, the stronger the learning ability of the
network. The sample dimension of the MNIST dataset is 784, so the number of hidden
nodes is taken on a grid {150, 250, 350, 450, 550, 650, 750}. The sample dimension of the
CIFAR-10 dataset is 1024 (the color images in the CIFAR-10 dataset are converted to
grayscale images), so the number of hidden nodes is taken on a grid {350, 450, 550, 650, 750,
850, 950}. In the REAN autoencoder network, the search range for both the regularization
parameter λ of the autoencoder and the regularization τ of the Softmax classifier is grid
{10−5, 10−4, · · · , 102}, the specific parameter values are determined by cross-validation.
The experimental results are shown in Figure 3.

It can be seen from Figure 3 that when the number of hidden nodes is small, the
classification performance of the REAN autoencoder network increases with the increase
in the number of hidden nodes. This conclusion holds for different average hidden layer
activation value constraints. This is because as the number of hidden nodes increases, the
autoencoder trained by REAE can extract more effective features. Thus, the classification
performance of the REAN autoencoder network is improved. After the number of hidden
nodes increases to a threshold, if the number of hidden nodes continues to increase, the
improvement of the classification performance of the REAN autoencoder network will
slow down or even decrease.
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Figure 3. The relationship between the number of hidden nodes and classification performance in
the REAN autoencoder network.

Figure 3a shows that, on the MNIST dataset, when the number of hidden nodes
exceeds 650 and the average activation value of the hidden layer is constrained to ρ = 0.1,
the classification performance improvement of the REAN autoencoder network becomes
very low. When the average activation value of the hidden layer is constrained by ρ = 0.25
and ρ = 0.5, the classification performance of the REAN autoencoder network is not
improved but decreased. The best classification effect on the MNIST dataset is obtained
when the average activation value of the hidden layer is constrained to ρ = 0.1 and the
number of hidden nodes is set to 750. Its best classification accuracy is 97.4%. Figure 3b
shows that, on the CIFAR-10 data set, when the average hidden layer activation value
constraint ρ is equal to 0.025, 0.1 and 0.5, respectively, the best classification effect of the
REAN autoencoder network is obtained when the number of hidden nodes is 750, 850 and
550, respectively. The best classification effect on the CIFAR-10 dataset is obtained when
the average activation value of the hidden layer is constrained to ρ = 0.5 and the number
of hidden nodes is set to 550. Its best classification accuracy is 39.2%.

4.3. Comparison of Algorithm Performance

This subsection compares the classification performance of the REAN autoencoder
network with the autoencoder networks constructed by other forward algorithms through
experiments. Both network structure and loss function will affect the classification per-
formance of an autoencoder network. For fairness, all autoencoder networks adopt the
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same network structure and loss function. On the MNIST, CIFAR-10 and SVHN data sets,
the number of hidden nodes is set to 750. The average hidden layer activation value ρ is
selected on a grid {0.1, 0.2, · · · , 0.9}. The regularization parameter λ of the autoencoder and
the regularization τ of the Softmax classifier are searched on a grid {10−5, 10−4, · · · , 102}.
All candidate parameters (ρ, λ, τ) are determined by cross-validation. On the three datasets,
each method was repeated 10 times. The results with the highest average test accuracy on
each dataset are shown in bold. The experimental results are presented in Table 1.

Table 1. Comparative experiment results on MNIST, CIFAR-10 and SVHN datasets.

Name

MNIST CIFAR-10 SVHN

Accuracy
Parameter

Accuracy
Parameter

Accuracy
Parameter

λ τ λ τ λ τ

REAN 97.3 10−2 10−1 40.0 10−2 10−2 62.4 10−3 10−3

PIAN 97.0 10−5 100 37.0 10−4 10−1 56.5 10−5 10−1

RAN 96.9 10−2 10−1 39.3 10−2 10−1 60.2 10−3 10−5

ROAN 96.8 10−2 10−1 39.5 10−2 100 60.7 10−3 10−2

It can be seen from the test accuracy given in Table 1 that the classification performance
of the REAN autoencoder network is better than that of other autoencoder networks. The
average classification accuracy of REAN autoencoder network on MNIST data set is 97.3%,
which is 0.3%, 0.4%, and 0.5% higher than that of the PIAN autoencoder network, the
RAN autoencoder network and the ROAN autoencoder network, respectively. The average
classification accuracy of the REAN autoencoder network on the CIFAR-10 data set is
40.0%, which is 3.0%, 0.7% and 0.5% higher than that of the PIAN autoencoder network,
the RAN autoencoder network and the ROAN autoencoder network, respectively. The
average classification accuracy of the REAN autoencoder network on the SVHN data set is
62.4%, which is 5.9%, 2.2% and 1.7% higher than that of the PIAN autoencoder network,
the RAN autoencoder network and the ROAN autoencoder network, respectively.

To show the significant differences among the experimental results of the various
methods, the results of paired t-test for each dataset are also reported. The significance
level α was set to 0.05. H = 1, which indicates that there is a statistically significant
difference, while H = 0 indicates that there is no significant difference. The smaller the
P-value (probability) is, the more obvious the difference is between the different methods.
Experimental results are shown in Table 2. As can be seen from Table 2, there is a statistically
significant difference between the REAE autoencoder network and the other autoencoder
networks in terms of classification accuracy.

Table 2. Paired t-tests on MNIST, CIFAR-10 and SVHN datasets.

Name
REAN vs. PIAN REAN vs. RAN REAN vs. ROAN

H P H P H P

MNIST 1 1.34e-05 1 4.12e-07 1 5.03e-06
CIFAR-10 1 3.34e-09 1 2.13e-04 1 2.69e-02

SVHN 1 3.54e-10 1 5.55e-06 1 4.42e-05

5. Discussion and Conclusions

This paper presents a new autoencoder forward training algorithm, which is named
REAE. Existing autoencoder forward propagation algorithms do not take into account the
properties of the data itself when solving for the feature mapping parameters. According to
the data set, REAE uses relative entropy to constrain the average activation value of hidden
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layer outputs. The REAE algorithm consists of four steps; firstly, solving for the feature
mapping parameters, then mapping the input data into the hidden space, then solving for
the decoder model parameters, and finally, obtaining the encoder model parameters by
weight binding.

There is no direct performance comparison between autoencoders trained by different
forward algorithms. Autoencoders are mainly used for data feature extraction, so they are
applied to image classification tasks, and the classification accuracy is used as a criterion
to evaluate the performance of the algorithm. The autoencoder itself does not have a
classification function. In this paper, the decoder of the autoencoder is removed and the
output of the encoder is used as the input features of the Softmax classifier to build a
classification model.

The experiments consist of two parts: analysis of factors affecting classification per-
formance and comparison of algorithm performance. The average activation value of the
hidden layer outputs and the number of hidden nodes affect the classification performance.
The experimental results on the average activation value of the hidden layer outputs show
that different datasets correspond to different optimal hidden layer activation values. This
is exactly what is expected in this paper, i.e., to characterize the different datasets by means
of a hidden layer average activation value constraint. The experimental results on hid-
den nodes show that the classification performance of the REAN autoencoder network
improves as the number of hidden nodes increases. This is due to the fact that, as the
number of hidden nodes increases, REAE can extract a richer set of features. It should be
noted that there is no clear functional relationship between the average activation value
of the hidden layer and the number of hidden nodes, and cross-validation is required to
determine the values of these two hyperparameters in specific applications. This is due
to the fact that as the number of hidden nodes increases, REAE can extract a richer set of
features. It should be noted that there is no explicit functional relationship between the
average activation value of the hidden layer outputs and the number of hidden nodes, and
cross-validation is required to determine the values of the two hyperparameters in a specific
application. The experimental results of the algorithm performance comparison show that
given the network structure and loss function, the classification model constructed by
REAE is superior to the classification models constructed by other forward algorithms in
classification performance.
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