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Training-Based Channel Estimation for
Multiple-Antenna Broadband Transmissions

Christina Fragouli, Member, IEEE, Naofal Al-Dhahir, Senior Member, IEEE, and William Turin, Senior Member, IEEE

Abstract—This paper addresses the problem of training se-
quence design for multiple-antenna transmissions over quasi-static
frequency-selective channels. To achieve the channel estimation
minimum mean square error, the training sequences transmitted
from the multiple antennas must have impulse-like auto cor-
relation and zero cross correlation. We reduce the problem of
designing multiple training sequences to the much easier and
well-understood problem of designing a single training sequence
with impulse-like auto correlation. To this end, we propose to
encode the training symbols with a space–time code, that may be
the same or different from the space–time code that encodes the
information symbols.

Optimal sequences do not exist for all training sequence lengths
and constellation alphabets. We also propose a method to easily
identify training sequences that belong to a standard 2 -PSK
constellation for an arbitrary training sequence length and an
arbitrary number of unknown channel taps. Performance bounds
derived indicate that these sequences achieve near-optimum
performance.

Index Terms—Channel estimation, space–time coding (STC),
training sequence.

I. INTRODUCTION

S
PACE–TIME coding (STC) is a powerful wireless trans-

mission technology that enables joint optimized design

of the modulation, coding, and transmit diversity modules on

wireless links. STC techniques of the trellis and block types

were introduced in [1] and [2], respectively. A key attractive

feature of all STC techniques is being open loop, i.e., channel

knowledge is not required at the transmitter. While several non-

coherent STC schemes that do not require channel information

at the receiver as well have been developed [3]–[5], they suffer a

significant performance penalty from coherent techniques. The

noncoherent techniques are more suitable for rapidly-fading

channels that experience significant variation within the

transmission block. For quasi-static or slowly-varying fading

channels, training-based channel estimation at the receiver is

very common in practice. More specifically, current single-an-

tenna wireless packet communication systems provide for

a training sequence to be inserted in each packet1 to aid in
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1The terms packet, block, and burst will be used interchangeably in this paper.

channel estimation at the receiver end. This motivates the

need to develop practical high-performance training-based

channel estimation algorithms for multiple-antenna systems.

This can be easily achieved for narrowband transmissions

(that encounter flat fading) by using orthogonal pilot training

sequences (see e.g. [6]). For broadband multiple-antenna trans-

missions, training-based channel estimation presents several

challenges and is the subject of this paper.

Consider the multiple-transmit single-receive2 transmission

scenario. The receiver observes the superposition of training

sequences transmitted through different channels. The training

sequences that achieve the channel estimation minimum mean

square error (MMSE)3 have an impulse-like auto-correlation se-

quence and zero cross correlation. This last property makes the

channel estimation problem different for multiple-antenna sys-

tems from single-antenna systems, and has motivated research

in this area.

Training-based estimation for a single-input–single-output

(SISO) frequency-selective channel has been widely investi-

gated in the literature (see for example [7] and the references

therein). For the multiple-transmit-antenna scenario, a straight-

forward method to achieve zero cross correlation is to transmit

training symbols only from one antenna at a time. This ap-

proach results in a high peak-to-average power ratio and, hence,

is undesirable in practice.

For implementation purposes (to avoid nonlinear amplifier

distortion), it is desirable to use constant-amplitude training

sequences which can be classified in two main categories

according to the training symbol alphabet size .

The first approach [8] constructs optimal sequences4 from

an root-of-unity alphabet

, without constraining the alphabet size . Such

sequences are the perfect roots-of-unity sequences (PRUS) or

polyphase sequences that have been proposed in the literature

for different applications (see [9] and the references therein).

For any training sequence length , there exist optimal training

sequences that belong to an root-of-unity alphabet. The

training sequence length determines the smallest possible

alphabet size. Chu [10] shows that for any length there exists

2The number of receiver antennas does not affect the training setup as long as
the antennas are spaced sufficiently apart to ensure uncorrelated received sig-
nals.

3Throughout this paper, we use the mean square error as a performance metric
for channel estimation. Although achieving the MMSE is not always equivalent
to the best bit-error rate (BER), typically it gives a very good indication of the
expected BER performance and is analytically tractable.

4By optimal sequences we mean sequences that achieve the channel estima-
tion MMSE.

1536-1276/03$17.00 © 2003 IEEE
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a PRUS with alphabet size , and Mow [11] shows that

for some , smaller alphabet sizes are possible.

The second approach in the literature constrains the training

sequence symbols to belong to a specific constellation, typically

binary phase-shift keying (BPSK) or quaternary phase-shift

keying (QPSK), to have a simpler transmitter/receiver imple-

mentation [12]. In this case, optimal sequences do not exist

for all training lengths . Instead, exhaustive searches can

identify suboptimal sequences according to some performance

criteria. Tables of such sequences from a BPSK alphabet are

provided, for example, in [12].

The training sequence best suited to a particular application

depends on the training sequence length (which for standard-

ized systems is predetermined), the number of channels taps

to estimate, and the signal constellation used. A PRUS of a

predetermined length may not belong to a standard constella-

tion, while exhaustive searches are in many cases computation-

ally prohibitive. For a system with transmit antennas over

frequency-selective channels with taps each, an exhaustive

search must identify training sequences.

As an example, in the third generation TDMA proposal en-

hanced data for GSM evolution (EDGE) [13], 8-PSK constella-

tion symbols are transmitted in blocks of information

symbols, and training symbols. No optimal training

sequence exists for this and constellation. For two-transmit

antennas, an exhaustive search would involve sequences.

Restricting the training sequence alphabet size to BPSK would

reduce the search space to sequences, which is still large

and would increase the achievable MMSE.

This paper proposes a method to easily identify training se-

quences for multiple transmit antennas that enjoy the following

attractive properties.

1) They belong to a standard constant-amplitude signal con-

stellation of size , , such as BPSK,

QPSK, 8-PSK, etc.

2) They can be easily identified or constructed for an arbi-

trary training sequence length and an arbitrary number

of unknown channel taps .

3) They result in negligible MSE increase from the lower

bound.

The main idea is to reduce the problem of designing multiple

training sequences with impulse-like auto correlation and zero

cross correlation to designing a single training sequence with

impulse-like auto correlation. This makes exhaustive searches

more practical and, thus, facilitates the identification of good

training sequences. In some cases, no search is necessary since

optimal sequences are available from published results in the

literature. Moreover, when optimal sequences do not exist, in-

stead of exhaustive searches we propose a method that identifies

suboptimal sequences from a standard signal constellation with

a small MSE increase from the respective lower bound.

This paper is organized as follows. Section II presents the

channel model and formally defines the optimal training se-

quences. Section III proposes three methods to generate mul-

tiple training sequences starting from a single one. Section IV

introduces “L-perfect” sequences, investigates a method (alter-

native to exhaustive search) to identify suboptimal training se-

quences when optimal training sequences do not exist, and de-

rives bounds on the performance loss. Section V presents simu-

lation results and the paper is concluded in Section VI.

II. CHANNEL MODEL AND OPTIMAL TRAINING SEQUENCES

Consider a system that employs two-transmit and one-re-

ceive antennas. The analysis can be generalized to multiple

transmit/receive antennas. Two signals and are simul-

taneously transmitted over two frequency-selective channels

and ,

where denotes the transpose operation. Each channel is

modeled as a finite-impulse response (FIR) filter with taps.

The received signal at time can be expressed as

(1)

where is assumed to be additive white Gaussian noise

(AWGN). The input sequences and belong to a fi-

nite-signal constellation and are transmitted in data blocks

where each block consists of information symbols and

training symbols. For two-transmit antennas, the receiver uses

the known training symbols to estimate the unknown

channel coefficients. We assume that the channels and

remain constant over the transmission of a block and vary

independently from block to block (quasi-static assumption).

The observed training sequence output that does not have in-

terference from information or preamble symbols can be ex-

pressed as

(2)

where and are of dimension , and

are of dimension , and are Toeplitz matrices of

dimension , and

...
...

for . The linear least square channel estimates, assuming

that has full column rank, can be calculated as [14]

(3)

where and denote the complex-conjugate (Hermi-

tian) transpose and the inverse, respectively. For zero-mean

Gaussian noise, the channel estimator is unbiased (i.e.,

). The channel estimation MSE is defined as

MSE (4)

where we assume white noise with auto-correlation matrix

, denotes the identity matrix of

dimension , and denotes the trace of a matrix. The

MMSE is equal to

MMSE (5)
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which is achieved if and only if [8]

(6)

The sequences and that satisfy (6) are henceforth referred

to as optimal sequences. Equation (6) implies that the optimal

sequences have an impulse-like auto-correlation sequence and

zero cross correlation.

III. COMPLEXITY REDUCTION METHODS

This section provides three methods to reduce the complexity

of designing training sequences for multiple-antenna systems to

that of designing a single training sequence.

A. Use of Subsequences

A straightforward method to design two optimal training se-

quences and of length to estimate two channels each of

taps, is to design instead a single training sequence of length

to estimate a single channel with

taps

(7)

where is a Toeplitz matrix of dimension

. Again, for optimality, we require

that

(8)

and construct the sequences and as

Thus, the multiple-training-sequence design problem can now

be reduced to designing a single, but longer, optimal sequence

that achieves the MMSE when estimating the longer channel

impulse response with taps. A similar approach can be fol-

lowed for more than two-transmit antennas.

In the case where an optimal sequence of length does not

exist, an exhaustive search over all independent sequences

and may achieve a lower MSE than a search that uses the

above described construction method.

B. Block Code for Training Symbols

We propose to encode the training symbols with a simple

block code that takes an input sequence with impulse-like

auto correlation, and produces sequences and with zero

cross correlation. The code can be described by a block matrix

applied to the training matrix that corresponds to the input

training sequence . The received output can be expressed as

(9)

where is of dimension . Any orthogonal matrix

such that , where is the number of transmit

antennas, leads to an equivalent (in terms of MSE) block code.

Multiplying the received output with the transpose-conjugate

matrix we get

where the noise now becomes

(10)

If we choose , then

(11)

The MSE of this scheme achieves the lower bound. The linear

processing at the receiver does not color the white noise in (9).

If instead of an optimal sequence we use a sequence with good

auto-correlation properties, the block code structure would still

guarantee the orthogonality between and . However, in this

case the noise will not be white.

This method assumes no interference between two consecu-

tive transmitted training blocks.

C. Equivalent Channel Estimation

The training methods in the literature employ independent

training sequences and to estimate the channels and

. In contrast, in this section we propose to use a single training

sequence encoded by the same space–time encoder as the infor-

mation symbols, to estimate the overall equivalent channel that

incorporates the space–time code.

This method is of interest when an exhaustive search is to be

used. The code structure imposes a constraint on the possible

generated and sequences, which amounts to a reduction

of the search space from to (assuming equal input

and output alphabet size and two-transmit antennas), making

exhaustive searches more practical and, thus facilitating the

identification of good training sequences. The search space

can be further reduced by exploiting special characteristics

of the employed space–time code. In the following, we ex-

amine a space–time trellis example and a space–time block

code example.

1) Trellis Code Example: For a space–time trellis code with

memory elements over channels with memory , the

receiver can incorporate the space–time trellis code structure in

the channel model to create an equivalent SISO channel of

length .

Consider for example the 8-state 8-PSK space–time trellis

code [1] for two-transmit and one-receive antennas. The trans-

mitted signals at time for this code can be expressed as

where takes values in ,

and denote the code binary inputs. The received

signal at time can be expressed as



FRAGOULI et al.: TRAINING-BASED CHANNEL ESTIMATION FOR MULTIPLE-ANTENNA BROADBAND TRANSMISSIONS 387

where are the taps of the equivalent input-dependent

channel given by

for

for

for
(12)

Note that the number of unknowns is whether we estimate

, or and . Thus, we can reduce the training sequence

search space from to without increasing the number of

unknowns to estimate. The search space can be further reduced

by taking advantage of the special structure of the code.

For a given block and constant and , the input sequence

determines the sequence of values. By transmitting only

“even” training symbols from the constellation subset

, we observe the taps

while by transmitting only “odd” training symbols from the set

, we observe the taps

where . To estimate , we would use training

symbols in the subconstellation, while to estimate we

would use training symbols in the subconstellation. To esti-

mate both, we propose to use half of the input training symbols

from each subconstellation, on the basis that for large enough

the suboptimality incurred will be negligible. That is, for even

training length , we propose to use a training sequence of the

form where has length and takes values in

the subconstellation and has length and takes values

in the subconstellation. Note that and related as

for (13)

and any , achieve the same MSE for the estimation

of and , respectively. Thus, instead of searching over all

possible sequences , we can restrict the search space to the

sequences .

An exhaustive search can identify sequences and

such that the matrix corresponding to the overall training

sequence achieves minimum MSE. Section V provides a table

of such sequences and simulation results.

2) Block Code Example: This section presents training

schemes suitable for the space–time block code in [15] which is

an extension of the code in [2] for frequency-selective channels.

The encoder maps two consecutive input blocks and to

the blocks and to be transmitted from the two

antennas. The operation denoted by refers to time-reversing

a sequence, that is, if , then

, and refers to compo-

nent-wise complex conjugation. Assume that the block code is

applied to the training symbols and that the channels and

to be estimated remain constant over two blocks. The received

signals during the first and second blocks denoted by and

, respectively, can be expressed in matrix notation as

(14)

where the matrices and (for ) are of dimension

. Then

From (6), a necessary condition to achieve the MSE lower bound

is to have zero cross-correlation terms, i.e.,

If denotes the square reversion

(“backward identity”) matrix, then we have the equivalent

condition

(15)

Moreover, an additional requirement to achieve the MSE lower

bound is that

(16)

Two simple choices that satisfy conditions (16) and (15) are the

following.

1) , , and .

That is, identify a sequence symmetric about its center

with impulse-like auto correlation and set .

2) and . That is, identify

a sequence with impulse-like auto correlation and set

.

IV. TRAINING SEQUENCES CONSTRUCTION

This section addresses the design of a single training se-

quence of length used to estimate channel taps without

restricting its use to multiple or single antenna systems.

A. Perfect and L-perfect Training Sequences

A root-of-unity sequence with alphabet size has complex

root-of-unity elements of the form , with

. The roots of unity define a constant-amplitude

finite-size constellation.

A sequence is said to be perfect if all of its out-of-phase peri-

odic auto correlation terms are equal to zero [11]. The periodic

auto correlation of a sequence of length at shift can be

calculated as mod . A unified

construction method in [9] and [11] constructs a PRUS of any

length but with alphabet size determined by .

We are only interested in alphabets of size , .

The construction method in [11] for this alphabet can only pro-

duce PRUS of length which is also a power of two.

A sequence of length is called if the cor-

responding training matrix of dimension

[constructed as in (7)] satisfies . Thus,
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TABLE I
L-PERFECT SEQUENCES THAT EXIST FOR THE MINIMUM LENGTH AND FROM SMALL-SIZE CONSTELLATIONS

an -perfect sequence of length is optimal [i.e., achieves the

MMSE in (5)] for a channel with taps.

Proposition 1: The length of an -perfect sequence from

a -constellation can only be equal to

for =odd

for =even
(17)

for nonnegative integer.

The proof uses the fact that for roots-of-unity and

any , roots-of-unity , there does not exist

roots-of-unity such that , which

implies that the number of rows of which is

has to be an even number. Equation (17) is a necessary (but

not sufficient) condition for -perfect sequences of length

to exist.

From a perfect sequence of length , we can build

-perfect training sequences to estimate up to

unknowns, that have length for any

integer. These -perfect sequences can be constructed by

repeating times the perfect sequence and circularly extending

it by symbols.

Table I shows exhaustive search results for -perfect se-

quences for some small and . The “ ” indicates that all or

some of the existing sequences can be generated from perfect

sequences. The “ ” shows that such sequences exist but we

do not know their exact number. The “ ” indicates that such

sequences do not exist. For our search range, perfect sequences

could be used to construct most, but not all, of the -perfect

sequences. -perfect sequences exist for a broader range of

than perfect sequences can provide.

B. Suboptimal Sequences Construction

-perfect sequences do not exist for all training sequence

lengths and alphabets, or may be computationally intensive

to identify. For example, for a specific , if there exists an -per-

fect sequence of length , then from (17), there does not exist

an -perfect sequence of length . Next, we propose a

method to construct suboptimal sequences.

Assume that symbols from a specific alphabet

are available to estimate unknowns. Express as

for a nonnegative integer

and for a PRUS from the desired alphabet. Choose the value

of that minimizes . Construct the -perfect

sequence of length and extend it by adding

symbols through exhaustive search. If , the solution

is optimal. If , no search is needed as Proposition 2

below states.

In the following we assume AWGN with , i.e., we

drop the term from the MSE which is common for all dif-

ferent training matrices .

Proposition 2: Consider an -optimal training sequence

of length from a roots-of-unity alphabet. Adding one

training symbol to create a training sequence of length

leads to MSE value (which is denoted by MSE ) equal to

MSE (18)

where is the number of rows of the matrix.

The proof is provided in the Appendix. Note that MSE does

not depend on the added symbol, and that it is not always the

minimum MSE possible for this training sequence length and

restricted alphabet.

Proposition 3: Consider an -optimal training sequence

of length from a root-of-unity alphabet. Adding two

training symbols to create a training sequence of length

amounts to adding two rows and to matrix , i.e.,

(19)

and leads to an MSE value, which we denote by MSE , equal to

MSE MSE

where and MSE is given by (18).

The proof uses the matrix inversion lemma and is similar

to the proof of Proposition 2. Extending an -perfect training

sequence by two symbols leads to a training sequence length

, for which -perfect sequences may exist. However, it is

easy to show that these -perfect sequences cannot be created

by such an extension method.

Continuing along the same lines, one could derive the MSE

achieved when extending an -optimal sequence by symbols,

but the calculations become tedious as increases. Instead, we

give an upper bound on the MSE as a function of the extension

length .

Proposition 4: Consider an -optimal training sequence

of length from a root-of-unity alphabet. Extending the
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Fig. 1. Achieved MSE with PRUS (any alphabet size), MSE with
QPSK-alphabet and exhaustive search, MSE with QPSK-alphabet and the
proposed construction method. Assumed L = 3 taps and QPSK constellation
alphabet.

training sequence to length by adding symbols results

in MSE upper bounded as follows:

MSE (20)

Thus, the maximum increase in MSE from not using an optimal

sequence is upper bounded by

MSE MMSE

The proof is provided in the Appendix. This bound does not

depend on the constellation employed or the extension symbols.

It upper bounds the largest MSE we may get by extending an

-perfect sequence by randomly-chosen symbols. For

the bound becomes equal to MSE in (18).

A different approach would be, instead of extending a perfect

sequence by symbols, to truncate it. This approach has less

freedom, since reducing a sequence of length

by symbols leads to a subset of the sequences we can

get by increasing a sequence of length

by symbols.

V. SIMULATION RESULTS

A. MSE Performance of Extension Method

Fig. 1 shows the MSE versus training sequence length with

QPSK alphabet and L . We plot three curves: the MMSE

achieved with PRUS and no restriction on the alphabet size,

the minimum MSE for training sequences with QPSK alphabet

found through exhaustive search, and the MSE for training se-

quences with QPSK alphabet identified from the proposed con-

struction method.

For (Fig. 1), perfect sequences can be used to con-

struct 3-perfect sequences of length and 10. Extending

the -perfect sequences by one symbol leads to the same min-

Fig. 2. MSE achieved with PRUS (any alphabet size) and upper bound on MSE
achieved through extension. Assumed L = 3 taps.

Fig. 3. Performance for the optimal PRUS and a proposed suboptimal training
sequence.

imum MSE achieved by an exhaustive search over all possible

sequences of this length. Also, there exist perfect sequences of

length which cannot be produced by extending the

length sequences by two symbols.

Fig. 2 plots the bound in (20) and the optimal MMSE for

. The bound predicts the largest MSE we may get by extending

an -perfect sequence by some randomly-chosen symbols, i.e.,

the worst case scenario. The bound closely approaches MMSE

as the training length increases.

B. Trellis Code Example

Fig. 3 compares the bit-error rate (BER) achieved when op-

timally estimating and with a PRUS sequence, and the
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BER of the proposed scheme in Section III-C.1 with the se-

quences and

. These sequences of length are ap-

plicable to the EDGE typical urban (TU) environment (where

and [16], [17]) and the eight-state, 8-PSK

space–time trellis code. An exhaustive search identified a total

of 94 sequences that achieve the minimum MSE, which in this

case was 0.0816. The lower bound for MSE achieved by PRUS

was 0.0435.

The joint space–time equalizer/decoder employs a prefilter

to concentrate the channel energy in a smaller number of taps

followed by a reduced-complexity maximum aposteriori (MAP)

equalizer/decoder with active trellis states as described in

[18]. The figure shows BER results for and

. The optimal and the suboptimal training sequences achieve

similar performance.

C. Block Code Example

For the EDGE TU environment, the lower bound on MSE

when using two consecutive training sequences to estimate the

channels and is 0.1739. Using the method discussed in

Section III-C2 and leads to an MSE of 0.175, which

is very close to MMSE.

VI. CONCLUSION

This paper studied various methods to identify good training

sequences for systems employing multiple transmit antennas

over frequency-selective channels.

We simplified the channel estimation problem from de-

signing multiple training sequences with impulse-like auto

correlation and zero cross correlation to designing a single

training sequence with impulse-like auto correlation. Further-

more, we proposed a method to identify suboptimal training

sequences for an arbitrary sequence length and number of

channel taps to be estimated. Upper bounds on the MSE

increase with the proposed extension method indicate that

achievable performance is close to optimal. Our focus was on

training symbols belonging in alphabets of size such as

BPSK, QPSK, and 8-PSK, as they simplify the transmitter/re-

ceiver structure and result in negligible MSE increase from

MMSE.

APPENDIX

Proof of Proposition 2: Denote by the matrix of

dimension in (7) where . Assume that

it is constructed from an optimal sequence

which implies that . Adding one symbol

to the training sequence amounts to adding a row in

matrix . Then

where we used the fact that and the matrix inversion

lemma [19]. Taking the trace of both sides leads to the desired

result.

Proof of Proposition 4: Adding symbols to the training

sequence amounts to adding rows in matrix , i.e.,

...
(21)

where is of dimension . We assume that the matrix

is constructed from an optimal sequence, thus

(22)

Applying the matrix inversion lemma [19] we get that

(23)

The Gram matrix can be upper bounded as

(24)

for any positive number . Indeed, the matrix

is Hermitian and diagonally dominant. Therefore, all eigen-

values of are real and positive [19], which implies that is

positive definite. Thus, the following inequalities hold

Therefore

MSE (25)

Since this bound holds for from above, then in the limit

we get the desired result.
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