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Abstract. Recently binary weight networks have attracted lots of atten-
tions due to their high computational efficiency and small parameter size.
Yet they still suffer from large accuracy drops because of their limited
representation capacity. In this paper, we propose a novel semi-binary
decomposition method which decomposes a matrix into two binary ma-
trices and a diagonal matrix. Since the matrix product of binary matrices
has more numerical values than binary matrix, the proposed semi-binary
decomposition has more representation capacity. Besides, we propose an
alternating optimization method to solve the semi-binary decomposi-
tion problem while keeping binary constraints. Extensive experiments
on AlexNet, ResNet-18, and ResNet-50 demonstrate that our method
outperforms state-of-the-art methods by a large margin (5 percentage
higher in top1 accuracy). We also implement binary weight AlexNet on
FPGA platform, which shows that our proposed method can achieve
∼ 9× speed-ups while reducing the consumption of on-chip memory and
dedicated multipliers significantly.

Keywords: Deep Neural Networks · Binary Weight Networks · Deep
Network Acceleration and Compression.

1 Introduction

Deep convolutional neural networks have become more and more popular since
AlexNet [16] made a success in ILSVRC2012. After that, convolutional neural
networks have shown significant improvements on a variety of computer vision
tasks such as image classification [16], object detection [24], image segmentation
[21], and so on. However, the great performance of deep networks comes at the
cost of large parameter size and high computational complexity. For applications
on mobile phones or embedded devices, it’s difficult to deploy deep networks on
them due to their limited computation and storage resources.

To alleviate these problems, a lot of methods have been proposed, such as
pruning [10, 11, 19], low-rank decomposition [6, 13, 15, 17, 25, 30] and fixed-point



2 Qinghao Hu, Gang Li, Peisong Wang, Yifan Zhang, and Jian Cheng

quantization [8, 9, 20, 22, 28]. Binary quantization, a special case of fixed-point
quantization, represents the weights of deep networks via only binary values. As
there are only binary values in the quantized weights, multiplication operations
can be replaced with addition operations. Thus binary quantization can not
only achieve high (32×) compression ratio, but also speed up the deep networks.
Besides, binary weight networks are more efficient on field-programmable gate
array (FPGA), digital signal processor (DSP), and the deep learning accelera-
tor (DLA). On these architectures, binary weight networks usually can achieve
higher speed-ups and save more hardware resources. Due to the appealing prop-
erties of binary quantization, many binary weight networks have been proposed,
such as BC [4], BWN [23], SQ-BWN [7], and so on.

However, state-of-the-art binary weight networks suffer from significant ac-
curacy drop due to their limited representation capacity. Convolutional kernels
in BC [4] have only binary patterns, and all the parameters’ magnitude equals
to 1. This severely lowers down the diversity of convolutional kernels. BWN [23]
multiplies each binary convolutional kernel by a different scale factor to approxi-
mate the full-precision convolutional kernel, then each convolutional kernel has a
different magnitude. But parameters in the same convolutional kernel still share
the same magnitude, which limits the representation power of convolutional ker-
nels.

In order to increase the representation capacity of binary weight networks,
we propose a novel semi-binary decomposition method which decomposes a ma-
trix into two binary matrices and a diagonal matrix. Besides, we propose an
alternating optimization method to learn the decomposition factors with binary
constraints. Extensive experiments on ImageNet show that our proposed method
outperforms state-of-the-art algorithms. Our main contributions can be summa-
rized as the follows:

– Inspired by that the matrix product of binary matrices has more numerical
possibilities than binary matrix, we propose a novel semi-binary decomposi-
tion method to train binary weight networks. By using proposed semi-binary
decomposition, our binary weight networks have more representation capac-
ity than state-of-the-art methods.

– Since learning the semi-binary decomposition factors is difficult, here we
propose an alternating optimization method to solve semi-binary factors
while still keeping the binary constraints.

– Extensive experiments are conducted on ImageNet to evaluate our methods.
The experiments results on AlexNet, ResNet-18, and ResNet-50 demonstrate
that our proposed method outperforms state-of-the-art algorithms by a large
margin. In addition, we implement binary weight AlexNet on FPGA plat-
form, and the experiment result shows that our binary weight networks can
achieve ∼ 9× speed-ups using less on-chip memory and hardware multipliers.
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2 Related Work

In recent years, a lot of methods [3] have been proposed to compress or accelerate
deep networks. Most of these methods fall into three categories: pruning-based
methods, low-rank decomposition based methods, and quantization-based meth-
ods.

2.1 Pruning-based methods

Pruning-based methods compress the deep networks by removing unimportant
connections. Early works of pruning [11, 19] use the second derivative of loss
functions to determine which connections are unimportant. Recently Han et

al. [10] propose a three-step method to compress the deep networks. They first
prune those unimportant connections, then quantize the remaining weights via
K-means, and finally encode the quantized weights using Huffman coding. During
the inference phase, a decoder is required to reconstruct the weights, which
makes their method inconvenient. Besides, above methods can hardly utilize
the Basic Linear Algebra Subprograms (BLAS) since they prune weights in an
unstructured way. To cure this problem, Lebedev et al. [18] propose the Group-
wise Brain Damage. By imposing the group-sparsity regularizer, the weights are
pruned in a group-wise fashion. As a result, convolutions can be reduced to
multiplications of thinned dense matrices, and they still can use BLAS library
to get higher speed-ups.

2.2 Low-rank decomposition based methods

Low-rank decomposition based methods [5, 6, 13] mainly use matrix or tensor
decomposition methods to decompose convolutional kernels into several small
matrices or tensors. Denton et al. propose to use Singule Value Decomposition
(SVD) to reduce the computational complexity [6]. Instead of directly approx-
imating the weights, Zhang et al. [30] propose to approximate the layer re-
sponse via a low-rank matrix. Besides, their method also takes the non-linear
layers’ responses into account. Lebedev et al. [17] propose to use CANDE-
COMP/PARAFAC (CP) decomposition to approximate the convolutional ker-
nels. They only apply their method on a single layer of AlexNet. Similar like
CP-decomposition, Tucker decomposition is also used to accelerate the convolu-
tional layers [15]. Differently, Tucker decomposition can be used to compress the
whole network while CP decomposition can not. Wang et al. [25] propose to use
Block Term Decomposition to speed up the convolutional layers. The Block Term
Decomposition can be regarded as a compromise between CP-decomposition and
Tucker decomposition. Novikov et al. propose to use the Tensor-Train format to
compress the fully-connected layers of deep networks. Their method can achieve
up to 7 × compression ratio on VGG16 network.
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2.3 Quantization based methods

Vector quantization has a long history in data compression. This technique is
introduced into network compression by Gong et al. . They [8] propose to use
vector quantization to compress the fully-connected layers of CNNs. Following
this line, Wu et al. [28] [2] propose an product quantization based algorithm to
simultaneously speed up the computation and reduce the parameter size. An-
other kind of quantization method is low-bit fixed-point quantization. Gupta
et al. [9] propose to quantize the weights to fixed-point format via a stochas-
tic rounding scheme instead of deterministic rounding scheme. By using this
method, deep networks can be quantized with 16-bit fixed-point numbers with
little degradation of accuracy. Wang et al. [26] proposed the fixed-point factor-
ized network which decomposes the weights into two fixed-point matrix and one
diagonal matrix. As a special case of fixed-point quantization, binary quanti-
zation aims to quantize the weights into binary values. Courbariaux et al. [4]
proposed BinaryConnect to train binary weight networks. Like [9], they used
a stochastic binarization scheme instead of deterministic scheme. Since binary
values have limited representation capacity, Rastegari et al. [23] propose to ap-
proximate full-precision convolutioal kernels with binary kernels and a scaling
factor. By multiplying a scaling factor, binary kernels have lower quantization
loss than directly binary quantization. Dong et al. [7] propose a stochastic quan-
tization scheme. In each iteration, they only quantize a portion of parameters to
low-bit with a stochastic probability inversely proportional to the quantization
error and the remaining parameters stay unchanged with full-precision. Hu et

al. [12] proposed to train binary weight network from the view of hashing, which
learns binary weights using inner-product preserving hashing methods. Wang
et al. [27] proposed a two-step quantization methods which decomposing the
network quantization problem into code learning and transformation function
learning step.

3 Our method

In this section, we propose the semi-binary decomposition to increase the repre-
sentation capacity of binary weight networks. Then an alternating optimization
method is proposed to solve the semi-binary decomposition problem. Finally, we
analyse the time and space complexity of the proposed binary weight networks
in the inference phase.

3.1 Preliminary

Given an L-layer pre-trained CNN model, let W ∈ R
T×S be the full-precision

weights of lth layer. To quantize the weights W into a binary matrix B, a simple
binarization method [4] is:

B = sgn(W) (1)
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where sgn denotes the sign function, and sgn (x)=1 for x > 0 and -1 otherwise.
Simple binarization has limited representation capacity because B has only bi-

nary patterns. Thus direct binarization will result in significant quantization
loss. Rastegari et al. [23] propose to multiply a scale factor αi for each binary
convolutioal kernel Bi ∈ R

1×S , and the objective function is :

min L(Λ,B) = ‖W − ΛB‖2F

s.t. B ∈ {+1,−1}
T×S

(2)

where Λ ∈ R
T×T is a diagonal matrix and αi = Λii is the scaling factor for

Bi. Different convolutional kernels in [23] have different magnitudes, thus it
has better representation power. Yet multiplying a scaling factor for each binary
convolutional kernels still suffers from large quantization loss because parameters
in the same convolutional kernels has the same magnitude αi.

3.2 Semi-Binary Decomposition

Since current binary quantization methods have limited representation capacity,
here we aims to find better quantization methods to increase the parameter’s
diversity. In this paper, we propose a novel semi-binary decomposition method
which approximates a matrix by the matrix product of two binary matrices and
a diagonal matrix, thus the diversity of approximate matrix is higher than binary
matrix. Specifically, the proposed semi-binary decomposition can be formulated
as :

min L(U,D,V) = ‖W −UDVT‖2F

s.t. U ∈ {+1,−1}
T×K

V ∈ {+1,−1}
S×K

(3)

where D ∈ R
K×K is a diagonal matrix, K ≤ min(S, T ), U and V are binary

matrix. The proposed semi-binary decomposition is quite suitable for compress-
ing the deep networks because D has lower computational complexity and U

and V are still binary matrix. Besides, by using semi-binary decomposition, the
representation capacity of binary weight networks is enhanced. Let W′ be the
approximate matrix of W via semi-binary decomposition, then W′ = UDVT =
K∑

k=1

dkUkVk
T where dk = Dkk, Uk and Vk are the kth column of matrix U and

V respectively. For any parameter W′

i,j in W′, its magnitude has 2K possibilities
while parameter in BC [4] and BWN-like methods [23] [1] [7] has only 2 and T
possibilities respectively. Thus the proposed semi-binary decomposition method
can improve the representation capacity.

Eq. (3) is hard to solve due to the binary constraints, here we learn the
components in a greedy way. Let Wk be k-term approximation of semi-binary

decomposition, then Wk =
k∑

i=1

diUiVi
T. Let Rk be the residual matrix after

k−1 terms of approximation, then Rk = W−Wk−1 and R1 = W. In each step,
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we learn the kth term via approximating the residual matrix Rk, the objective
function is formulated as:

min L(Uk, dk,Vk) = ‖Rk − dkUkVk
T‖2F

s.t. Uk ∈ {+1,−1}
T×1

Vk ∈ {+1,−1}
S×1

(4)

To solve Eq. (4), we propose an alternating optimization method i.e. iteratively
update one decomposition factor with other factors fixed.
Update dk with fixed Uk and Vk: Given fixed Uk and Vk, the objective
function can be reformulated as:

min L(dk) = −2dkUk
TRkVk + TS · d2k (5)

The optimal solution of above equation is:

dk =
1

T ∗ S
Uk

TRkVk (6)

Update Uk with fixed Vk and dk: Given fixed Vk, we replace dk with its
optimal solution, then the objective function is transformed as :

max L(Uk) =
(Uk

TRkVk)
2

‖Uk‖2F ‖Vk‖2F
= (Uk

TRkVk)
2

s.t. Uk ∈ {+1,−1}
T×1

(7)

The optimal solution for above equation is

Uk = sgn(RkVk) (8)

Update Vk with fixed Uk and dk: similar like updating Uk, the optimal
solution for Vk is:

Vk = sgn(Rk
TUk) (9)

Until now, we have described the optimization algorithm of semi-binary decom-
position for one layer. For the whole network quantization, we use the semi-
binary decomposition for each layer’s weights. This method is denoted as SBD-
Direct and the overall training algorithm is summarized in Algorithm 1.

3.3 Featuremap-Oriented Semi-Binary Factors

Directly decomposing W for all layers of deep networks via semi-binary de-
composition has two drawbacks. First, because the weights is multiplied by the
input featuremap in the forward propagation, the binary quantization error will
be amplified by the input featuremap. Second, directly applying semi-binary
decomposition for the whole network can cause large accuracy drop since the
quantization error accumulates across multiple layers.
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Algorithm 1: Training Binary Weight Networks via SBD-Direct

Input: Pre-trained convolutional neural networks weights {Wl}
L

l=1
and

Max Iter
Output: Learned binary components {Ul}

L

l=1
,{Vl}

L

l=1
and {Dl}

L

l=1

for l = 1; l ≤ L do
for k = 1; k ≤ K do

Update residual matrix Rk

Initialize Vk with all-ones matrix
while iter ≤ Max Iters do

Update Uk with Eq.(8)
Update Vk with Eq.(9)

end
Update dk with Eq.(6)

end

end

return {Ul}
L

l=1
, {Vl}

L

l=1
and {Dl}

L

l=1
;

To cure these problems, here we learn the semi-binary components via min-
imizing the output featuremap’s quantization loss. Let Xl ∈ R

S×N be the lth-
layer’s input featuremap of full-precision network. Similarly, let lth-layer’s input

featuremap of quantized network be X̃l. Here quantized network means that
the first l − 1 layers have been quantized via semi-binary decomposition, thus

X̃l = Ul−1Dl−1(Vl−1)TX̃l−1. The objective function is formulated as:

min L(Ul,Dl,Vl) = ‖WlXl −UlDl(Vl)TX̃l‖2F = ‖Yl −

K∑

k=1

dlkUk
l(Vk

l)TX̃l‖2F

s.t. U ∈ {+1,−1}
T×K

V ∈ {+1,−1}
S×K

(10)
where Yl = WlXl is the lth- layer’s output featuremap. In what follows, we omit
the superscript l for convenience. Solving Eq. (10) is difficult due to the binary
constraints, here we learn the semi-binary components in a greedy way. LetYk be

the k-term approximation of output featuremap, then Yk =
k∑

i=1

diUiVi
TX̃. Let

Zk be the featuremap’s residual matrix after k−1 terms of approximation, thus
Zk = Y −Yk−1 and Z1 = W. Then we learn the kth term via approximating
the residual matrix Zk, the objective function is formulated as:

min L(Uk, dk,Vk) = ‖Zk − dkUkVk
TX̃‖2F

s.t. Uk ∈ {+1,−1}
T×1

Vk ∈ {+1,−1}
S×1

(11)

To solve Eq. (11), we propose an alternating optimization method to update the
semi-binary components iteratively.
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Update dk with fixed Uk and Vk: Given fixed Uk and Vk, the objective
function can be formulated as:

min L(dk) = −2dkVk
TX̃Zk

TUk + d2k‖UkVk
TX̃‖2F (12)

The optimal solution of dk for Eq. (12) is :

dk =
Vk

TX̃Zk
TUk

‖UkVk
TX̃‖2F

(13)

Update Uk with fixed Vk and dk: Given Vk fixed, we get the following
objective by substituting the dk’s optimal solution:

max L(Uk) =
(Vk

TX̃Zk
TUk)

2

‖UkVk
TX̃‖2F

= (Vk
TX̃Zk

TUk)
2 (14)

Thus the optimal Uk for above equation is :

Uk = sgn(ZkX̃
TVk) (15)

Update Vk with fixed Uk and dk:GivenUk and dk fixed, we get the following
objective function:

min L(Vk) = −2Tr(Vk
Tq) + α‖Vk

TX̃‖2F (16)

where q = dkX̃Zk
TUk and α = d2k‖Uk‖

2
F .

Optimizing Vk for Eq. (16) is still difficult, here we solve Vk by discrete
cyclic coordinate descent method. Specifically, we solve one row of Vk each time
while fixing all other rows. Let v be the jth row of Vk, and Vk

′ the column
vector of Vk excluding v. Similarly we denote the jth element of q as qj, and let

q′ as the q excluding qj. Let x
T be the jth row of matrix X̃ and X̃′ be matrix

X̃ excluding xT. Then problem can be written as:

min L(Vk) = −2vq + 2αVk
′TX̃′xv (17)

Thus the jth row of Vk can be updated by:

v = sgn(q − αVk
′TX̃′x) (18)

So far, we have given details of learning semi-binary components by minimizing
the featuremap’s quantization loss, we denote this method as SBD-FQ and the
overall training algorithm of SBD-FQ is summarized in Algorithm 2.
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Algorithm 2: Training Binary Weight Networks via SBD-FQ

Input: Pre-trained convolutional neural networks weights {Wl}
L

l=1
and

Max Iter
Output: Learned binary components {Ul}

L

l=1
,{Vl}

L

l=1
and {Dl}

L

l=1

for l = 1; l ≤ L do
Sampling a mini-batch images
Forward propagation to get X̃l and Xl

Calculate Y with Xl and Wl

for i = 1; i ≤ N do
Update residual matrix Zk

Initialize Vk with all-ones matrix
while iter ≤ Max Iters do

Update Uk with Eq.(15)
Update dk with Eq.(13)
for j = 1; j ≤ S do

Update jth element of Vk with Eq.(18)
end

end

end

end
Fine-tune the binarized CNN model
return {Ul}

L

l=1
, {Vl}

L

l=1
and {Dl}

L

l=1
;

3.4 Fine-tuning

After direct semi-binary decomposition or minimizing the featuremap’s quanti-
zation loss, we get the U, V and D for each layer. For a convolutional layer with
T covolutional kernels of size c ∗ d ∗ d. After semi-binary decomposition, we re-
place the original layer with three layers: a convolutional layer conv v, one scale
layer scale d, and a convolutional layer conv u. Layer conv v has K covolutional
kernels of size c ∗ d ∗ d, layer conv u has T covolutional kernels of size K ∗ 1 ∗ 1
and layer scale d has only K parameters.

For the fine-tune stage, we adopt a similar scheme as [4] to maintain the
binary values in conv v and conv u. Take conv u layer for example, we adopt
a full-precision (32-bit floating) weight matrix Uf as the proxy of U. Uf is
initialized with U in the beginning of fine-tuning. In the forward propagation,
U is updated by directly quantizing Uf to binary value, then U is used for
the forward computation. In the backward propagation, gradients is calculated
based on U. The full-precision Uf is used to accumulate the gradients of weights
U.

3.5 Complexity Analysis

In this subsection, we analyse the time and space complexity of our binary
weight network in the inference phase. For a convolutional layer with T kernels
of size c ∗ d ∗ d, let H and W be the height and width of output featuremap
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respectively, and let S = c ∗ d ∗ d. Let Tm be the time for one multiplication
operation, and let Ta be the time for one addition operation. Normally speaking,
multiplication operation consumes more time than addition operation, especially
for FPGA architecture, thus Ta ≪ Tm. Since the time and space complexity is
highly dependent on K, here we use a hyper-parameter β to control the value of
K i.e. let K = S∗T

β∗(S+T ) . For the experiments in the paper, β = 1 if not specified.

Time complexity After semi-binary decomposition, the time complexity of
layer conv v, scale d, and conv u is H ∗ W ∗ S ∗ K ∗ Ta, H ∗ W ∗ K ∗ Tm and
H ∗W ∗K ∗ T ∗ Ta respectively.
Thus the speed up ratio is:

S ∗ T ∗ (Tm + Ta)

K(S + T ) ∗ Ta +K ∗ Tm

≈
S ∗ T ∗ (Tm + Ta)

K(S + T ) ∗ Ta

=
β(Tm + Ta)

Ta

(19)

Space complexity After semi-binary decomposition, the space complexity of
layer conv v, scale d, and conv u is S ∗K, 32K and K ∗ T bits respectively.
The compression ratio is :

S ∗ T ∗ 32

K(S + T ) +K ∗ 32
≈

32 ∗ S ∗ T

K(S + T )
= 32β. (20)

For β = 1, our binary weight networks can achieve ≥ 2× speed-ups and 32×
compression ratio. On FPGA platforms, our binary weight networks can achieve
higher speed-ups since Ta ≪ Tm. Table 1 shows that the space and time com-
plexity of our method is less than [23] [1] [7] and nearly equals to [4].

Table 1. Time and Space complexity of state-of-the-art binary weight networks

Method Time Complexity Speed-ups Space Complexity Compress Ratio

Full-Precision S ∗ T ∗ (Tm + Ta) 1 32 ∗ S ∗ T 1

BinaryConnect [4] S ∗ T ∗ Ta
Tm+Ta

Ta

S ∗ T 32

BWN-like [23] [1] [7] S ∗ T ∗ Ta + T ∗ Tm ≈ Tm+Ta

Ta

S ∗ T + 32T ≈ 32

Ours(β = 1) S ∗ T ∗ Ta +K ∗ Tm ≈ Tm+Ta

Ta

S ∗ T + 32K ≈ 32

4 Experiments

In this section, we first give details about training settings, then we compare
different methods in terms of quantization loss and classification accuracy. We
also implement binary weight AlexNet on FPGA platform, and finally we discuss
the effect of different β for semi-binary decomposition.

4.1 Experiment Settings

We implement our method based on the Caffe [14] framework, and experiments
are mainly conducted on a GPU Server with 8 Nvidia Titan Xp GPUs.
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Fig. 1. Binary Quantization Loss via Dif-
ferent Methods

Fig. 2. Top5 accuracy of AlexNet by dif-
ferent quantization methods without fine-
tuning

We evaluate our proposed methods on ImageNet2012 with three deep networks
i.e. AlexNet, ResNet-18, and ResNet-50. In the proposed alternating optimiza-
tion method, we set the maximum iterations to 20. For all the experiments in this
paper, we train the networks with a SGD solver with momentum=0.9, weight
decay=0.0005. As in [1, 23, 31], the first and last layer in the deep networks are
still in floating-number format. Following [7, 23], batch normalization layers are
used in the AlexNet. We fine-tune AlexNet for 200k iterations with batch-size
equals to 256. We set the learning rate to 0.0001 in the beginning, and divide
it by 10 after 100k, 150k, and 180k iterations. For ResNet-18, the learning rate
starts at 0.0005, and is divided by 10 every 200k iterations. We fine-tune ResNet-
18 for 650k iterations with batch size equal to 100. Since fine-tuning ResNet-50
is quite time-consuming, we fine-tune ResNet-50 for only 450K iterations with
batchsize=140 by using 7 GPUs. The learning rate is initialized with 0.0001 and
divided by 10 every 200k iterations.

4.2 Comparison on Quantization Loss

In this subsection, we compare different binary quantization methods in terms of
quantization loss. The quantization loss is defined by Frobenius norm of residual
weights between approximate weights and full-precision weights. Here we com-
pare the proposed SBD-Direct with BC [4] and BWN [23]. Figure 1 shows the
binary quantization loss of different methods on AlexNet’s conv2 and fc6 layer.
It shows that the proposed method has lower quantization loss than BC [4] and
BWN [23], which benefits from the higher representation capacity of semi-binary
decomposition.

4.3 Comparison on Learning Methods

In the previous subsection, we have shown that semi-binary decomposition can
achieve lower quantization loss than other binary quantization methods, but
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which method can learn better semi-binary components has not been discussed.
In this subsection, we compare different methods for learning the semi-binary
components. Since semi-binary decomposition has a similar form as Singular
Vector Decomposition (SVD), a naive method to get the semi-binary components
is quantizing the left and right singular vectors to binary values after using SVD
for original weight matrix. We denote this method as Binary-SVD.

Figure 2 shows the top5 accuracy of AlexNet after learning semi-binary com-
ponents via different methods. Here we binarize the weights of AlexNet layer by
layer, i.e. conv4 in the horizontal axis of Figure 2 means that conv2, conv3, conv4
are all quantized to binary values. Figure 2 shows that Binary-SVD performs
worst among three methods, which means that simply binarizing the singular
vectors of SVD can hardly achieve good performance. SBD-Direct still main-
tains the accuracy after binarizing one or two layers, but it performs worse as
more layers are quantized. SBD-FQ aims to minimize the output featuremap’s
quantization loss, and it performs well even for multiple layers.

4.4 Comparison on Network’s Accuracy

To evaluate our proposed method in terms of classification accuracy, we compare
our method with BC [4], BWN [23], SQ-BWN [7], and HWGQ-BWN [1]. Table.
2 shows the Top1 and Top5 classification accuracy of AlexNet and ResNet-18 on
ImageNet2012 dataset. It’s clear that both SBD-Direct and SBD-FQ outperform
state-of-the-art methods with a large margin in Top1 and Top5 accuracy. Specif-
ically, our binary ResNet-18 achieves 66.2% top1 accuracy which is 5 percentage
higher than state-of-the-art methods.

Table 2. Classification Accuracy of AlexNet and ResNet-18 via different methods

Method
AlexNet ResNet-18

Top1 Acc Top5 Acc Top1 Acc Top5 Acc

Full-Precision 58.5 81.5 69.3 89.2

BinaryConnect [4] 35.4 61.0 - -

SQ-BWN [7] 51.2 75.1 58.3 81.6

HWGQ-BWN [1] 52.4 75.9 61.3 83.9

BWN [23] 56.8 79.4 60.8 83.0

SBD-Direct (Ours) 58.0 80.3 64.9 86.4

SBD-FQ (Ours) 58.5 80.6 66.2 87.1

We also evaluate our methods on a more challenging network i.e. ResNet-50.
ResNet-50 is deeper than AlexNet and ResNet-18, and it has more 1 × 1 con-
volutional kernels. Table 3 reports the Top1 and Top5 accuracy of ResNet-50.
After fine-tuning, both SBD-Direct and SBD-FQ outperforms state-of-the-art
methods by a large margin (5 percentage in top1 accuracy).
From Table 2 and 3, we can find that SBD-FQ achieves higher accuracy than
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SBD-Direct, which shows that minimizing the featuremap’s quantization loss
is better than direct semi-binary decomposition. But SBD-Direct is faster than
SBD-FQ because minimizing the featuremap’s quantization loss takes more train-
ing time than direct semi-binary decomposition.

Table 3. Classification Accuracy of ResNet-50 via different methods

Method
Classification Accuracy
Top1 Top5

Full-Precision 75.2 92.2

BWN [23] 63.9 85.1

SBD-Direct (Ours) 67.7 87.8
SBD-FQ (Ours) 68.9 88.7

4.5 Experiments on FPGA

In order to demonstrate the efficiency of our proposed method on hardware
acceleration of CNN, we further implement the binary-weight AlexNet on Xilinx
Virtex-7 VX485T FPGA platform. The microarchitecture design is based on
[29], which is a state-of-the-art CNN accelerator. We quantize the activations
of binary-weight AlexNet to 8-bit for the consideration of energy and resource
efficiency, and the top1 and top5 accuracy after activation quantization is 58.46%
and 80.7% respectively. For fair comparison, we adopt the same platform and
working frequency, and restrict the usage of on-chip computing resources (LUTs
and FFs) as the same level as in [29].

Table 4 shows the results of our evaluation on the binary-weight AlexNet. It is
obvious that our accelerator is 8.78× faster than the floating point counterpart
with nearly the same usage of LUTs and FFs. In addition, the consumption
of on-chip memory and DSP blocks are drastically reduced due to the weight
binarization and low precision representation of activations.

Table 4. Experiment result on FPGA

Activation Weight
Resource Utilization

Latency Speed-ups
DSP BRAM LUT FF

Zhang et al. [29] 32 bits 32 bits 2240 1024 186251 205704 21.6 ms 1×

Ours 8 bits 1 bit 0 261 211554 303642 2.46 ms 8.78×

4.6 The Effect of Different β

Figure 3 shows the top5 accuracy of AlexNet after using the proposed SBD-
Direct method with different values of β. With β increasing, we get higher com-
pression ratio but lower accuracy. Besides, we notice that fully-connected layers
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is insensitive to the values of β, which means that we can choose larger β for
fully-connected layers to achieve higher compression ratio.

Fig. 3. Top5 accuracy of AlexNet for different β without fine-tuning

5 Conclusion

In this paper, we propose a novel semi-binary quantization method to train
the binary weight networks, and we also propose an alternating optimization
method to solve the semi-binary decomposition factors under binary constraints.
Extensive experiments on ImageNet2012 dataset demonstrate that our methods
outperform state-of-the-art methods with a large margin. Experiments on FPGA
platform demonstrates that our proposed binary weight networks can achieve
nearly 9× speed-ups using less on-chip memory and hardware resources.
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