
ORIGINAL RESEARCH
published: 10 October 2017

doi: 10.3389/fnins.2017.00538

Frontiers in Neuroscience | www.frontiersin.org 1 October 2017 | Volume 11 | Article 538

Edited by:

Themis Prodromakis,

University of Southampton,

United Kingdom

Reviewed by:

Shimeng Yu,

Arizona State University, United States

Alexantrou Serb,

University of Southampton,

United Kingdom

*Correspondence:

Tayfun Gokmen

tgokmen@us.ibm.com

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 June 2017

Accepted: 14 September 2017

Published: 10 October 2017

Citation:

Gokmen T, Onen M and Haensch W

(2017) Training Deep Convolutional

Neural Networks with Resistive

Cross-Point Devices.

Front. Neurosci. 11:538.

doi: 10.3389/fnins.2017.00538

Training Deep Convolutional Neural
Networks with Resistive Cross-Point
Devices
Tayfun Gokmen*, Murat Onen and Wilfried Haensch

IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States

In a previous work we have detailed the requirements for obtaining maximal deep learning

performance benefit by implementing fully connected deep neural networks (DNN) in the

form of arrays of resistive devices. Here we extend the concept of Resistive Processing

Unit (RPU) devices to convolutional neural networks (CNNs). We show how to map

the convolutional layers to fully connected RPU arrays such that the parallelism of the

hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find

that the noise and bound limitations imposed by the analog nature of the computations

performed on the arrays significantly affect the training accuracy of the CNNs. Noise

and bound management techniques are presented that mitigate these problems without

introducing any additional complexity in the analog circuits and that can be addressed by

the digital circuits. In addition, we discuss digitally programmable update management

and device variability reduction techniques that can be used selectively for some of the

layers in a CNN.We show that a combination of all those techniques enables a successful

application of the RPU concept for training CNNs. The techniques discussed here are

more general and can be applied beyond CNN architectures and therefore enables

applicability of the RPU approach to a large class of neural network architectures.

Keywords: convolutional neural networks (CNN), resistive processing unit (RPU), deep neural network, deep

learning, resistive switching, resistive random access memory (RRAM), resistive memories

INTRODUCTION

Deep neural network (DNN) (LeCun et al., 2015) based models have demonstrated unprecedented
accuracy, in cases exceeding human level performance, in cognitive tasks such as object recognition
(Krizhevsky et al., 2012; He et al., 2015; Simonyan and Zisserman, 2015; Szegedy et al., 2015),
speech recognition (Hinton et al., 2012), and natural language processing (Collobert et al., 2012).
These accomplishments are made possible thanks to the advances in computing architectures and
the availability of large amounts of labeled training data. Furthermore, network architectures have
been adjusted to take advantage of data properties such as spatial or temporal correlation. For
instance, convolutional neural networks (CNNs) provide superior results for image recognition
and recurrent neural networks (RNN) in speech and natural language processing. Therefore,
the application space of the traditional fully connected deep learning network is apparently
diminishing. In a recent paper we have introduced the concept of a resistive processing unit (RPU)
as an architecture solution for fully connected DNN. Here we show that the RPU concept is equally
applicable for CNNs.

Training large DNNs is an extremely computationally intensive task that can take
weeks even on distributed parallel computing frameworks utilizing many computing nodes

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2017.00538
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00538&domain=pdf&date_stamp=2017-10-10
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tgokmen@us.ibm.com
https://doi.org/10.3389/fnins.2017.00538
https://www.frontiersin.org/articles/10.3389/fnins.2017.00538/abstract
http://loop.frontiersin.org/people/339406/overview
http://loop.frontiersin.org/people/452092/overview
http://loop.frontiersin.org/people/465324/overview

Gokmen et al. Training CNNs with Resistive Devices

(Dean et al., 2012; Le et al., 2012; Gupta et al., 2016). There have
been many attempts to accelerate DNN training by designing
and using specialized hardware such as GPUs (Coates et al.,
2013; Wu et al., 2015), FPGAs (Gupta et al., 2015), or ASICs
(Chen et al., 2014) that rely on conventional CMOS-technology.
All of these approaches share the common objective of packing
more computing units into a fixed area and power budget by
using optimized multiply and add hardware so that acceleration
over a conventional CPU can be achieved. Although various
microarchitectures and data formats are considered for different
accelerator designs (Arima et al., 1991; Lehmann et al., 1993;
Emer et al., 2016), all of these digital approaches use a similar
underlying transistor technology and therefore the acceleration
factors will eventually be limited due to scaling limitations.

In order to achieve even larger acceleration factors beyond
conventional CMOS, novel nano-electronic device concepts
based on non-volatile memory (NVM) technologies (Burr et al.,
2017), such as phase changememory (PCM) (Kuzum et al., 2013),
resistive random access memory (RRAM) (Chi et al., 2016), and
memristors (Prezioso et al., 2015; Soudry et al., 2015; Merced-
Grafals et al., 2016) have been explored for implementing DNN
training. Acceleration factors ranging from 25X − 2, 000X (Xu
et al., 2014; Burr et al., 2015; Seo et al., 2015) compared to
the conventional CPU/GPU based approaches and significant
reduction in power and area have been predicted. However,
for these bottom-up approaches the acceleration factors are still
limited by device non-idealities that are fundamental to their
application as non-volatile memory (NVM) elements. Instead,
using a top-down approach it is possible to develop a new
class of devices, so called Resistive Processing Unit (RPU)
devices (Gokmen and Vlasov, 2016) that are free from these
limitations, and therefore can promise ultimate accelerations
factors of 30, 000X while still providing a power efficiency of
84, 000 GigaOps/s/W.

The concept of using resistive cross-point device arrays (Chen
et al., 2015b; Agrawal et al., 2016b; Gokmen and Vlasov, 2016;
Fuller et al., 2017) as DNN accelerators have been tested, to
some extent, by performing simulations for the specific case of
fully connected neural networks. The effect of various device
properties and system parameters on training performance has
been evaluated to derive the required device and system level
specifications for a successful implementation of an accelerator
chip for DNN compute efficient training (Agrawal et al., 2016a;
Gokmen and Vlasov, 2016). A key requirement is that these
analog resistive devices must change conductance symmetrically
when subjected to positive or negative pulse stimuli. Indeed,
these requirements differ significantly from those needed for
memory elements and therefore require a systematic search for
new physical mechanisms, materials and device designs to realize
an ideal resistive element for DNN training. In addition, it is
important to note that these resistive cross-point arrays perform
the multiply and add in the analog domain in contrast to the
CMOS based digital approaches. Optimizing machine learning
architectures that employ this fundamentally different approach
to computation requires careful analysis and trade-offs. While
this has been done for the specific case of fully connected DNNs,
it is not clear whether the proposed device specifications for that

case generalize to a more general set of network architectures,
and hence requires further validation of their applicability to a
broader range of networks.

Fully Connected Neural Networks
Deep fully connected neural networks are composed by stacking
multiple fully connected layers such that the signal propagates
from input layer to output layer by going through series of linear
and non-linear transformations (LeCun et al., 2015). The whole
network expresses a single differentiable error function that maps
the input data on to class scores at the output layer. In most cases
the network is trained with simple stochastic gradient decent
(SGD), in which the error gradient with respect to each parameter
is calculated using the backpropagation algorithm (Rumelhart
et al., 1986).

The backpropagation algorithm is composed of three cycles—
forward, backward and weight update—that are repeated many
times until a convergence criterion is met. For a single fully
connected layer where N inputs neurons are connected to M
output (or hidden) neurons, the forward cycle involve computing
a vector-matrix multiplication (y = Wx) where the vector x of
length N represents the activities of the input neurons and the
matrix W of size M × N stores the weight values between each
pair of input and output neurons. The resulting vector y of length
M is further processed by performing a non-linear activation
on each of the elements and then passed to the next layer.
Once the information reaches to the final output layer, the error
signal is calculated and backpropagated through the network.
The backward cycle on a single layer also involves a vector-matrix
multiplication on the transpose of the weight matrix (z =WT

δ),
where the vector δ of length M represents the error calculated
by the output neurons and the vector z of length N is further
processed using the derivative of neuron non-linearity and then
passed down to the previous layers. Finally, in the update cycle
the weight matrixW is updated by performing an outer product
of the two vectors that are used in the forward and the backward
cycles and usually expressed as W ← W + η (δxT) where η is a
global learning rate.

Mapping Fully Connected Layers to
Resistive Device Arrays
All of the above operations performed on the weight matrix
W can be implemented with a 2D crossbar array of two-
terminal resistive devices with M rows and N columns where
the stored conductance values in the crossbar array form the
matrix W. In the forward cycle, input vector x is transmitted
as voltage pulses through each of the columns and resulting
vector y can be read as current signals from the rows (Steinbuch,
1961). Similarly, when voltage pulses are supplied from the
rows as an input in the backward cycle, then a vector-matrix
product is computed on the transpose of the weight matrix WT .
Finally, in the update cycle voltage pulses representing vectors
x and δ are simultaneously supplied from the columns and the
rows. In this configuration each cross-point device performs a
local multiplication and summation operation by processing the
voltage pulses coming from the column and the row and hence
achieving an incremental weight update.

Frontiers in Neuroscience | www.frontiersin.org 2 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

All three operating modes described above allow the arrays
of cross-point devices that constitute the network to be active in
all three cycles and hence enable a very efficient implementation
of the backpropagation algorithm. Because of their local weight
storage and processing capability these resistive cross-point
devices are called RPU devices (Gokmen and Vlasov, 2016). An
array of RPU devices can perform the operations involving the
weight matrixW locally and in parallel, and hence achieves O(1)
time complexity in all three cycles, independent of the array size.

Here, we extend the RPU device concept toward CNNs. First
we show how to map the convolutional layers to RPU device
arrays such that the parallelism of the hardware can be fully
utilized in all three cycles of the backpropagation algorithm.
Next, we show that the RPU device specifications derived for
a fully connected DNN hold for CNNs. Our study shows,
however, that CNNs are more sensitive to noise and bounds
(signal clipping) due to analog nature of the computations
on RPU arrays. We discuss noise and bound management
techniques that mitigate these problems without introducing
any additional complexity in the analog circuits, and that can
be addressed by the associated digital circuitry. In addition, we
discuss digitally-programmable update management and device
variability reduction techniques that can be used selectively for
some of the layers in a CNN. We show that a combination of
these techniques enables a successful application of the RPU
concept for the training of CNNs. Furthermore, a network
trained with RPU devices, including imperfections, can yield
a classification error indistinguishable from a network trained
using conventional high-precision floating point arithmetic.

MATERIALS AND METHODS

Convolutional Layers
The input to a convolutional layer can be an image or the output
of the previous convolutional layer and is generally considered
as a volume with dimensions of (n, n, d) with a width and height
of n pixels and a depth of d channels corresponding to different
input components (e.g., red, green, and blue components of an
image) as illustrated in Figure 1A. The kernels of a convolutional
layer are also a volume that is spatially small along the width
and height, but extends through the full depth of the input
volume with dimensions of (k, k, d). During the forward cycle,
each kernel slides over the input volume across the width and
height and a dot product is computed between the parameters
of the kernels and the input pixels at any position. Assuming
no zero padding and single pixel sliding (i.e., stride is equal
to one), this 2D convolution operation results in a single
output plane with dimensions

((

n− k+ 1
)

,
(

n− k+ 1
)

, 1
)

per
kernel. Since there exists M different kernels, output becomes
a volume with dimensions

((

n− k+ 1
)

,
(

n− k+ 1
)

,M
)

and
is passed to following layers for further processing. During
the backward cycle of a convolutional layer similar operations
are performed but in this case the spatially flipped kernels
slide over the error signals that are backpropagated from the
upper layers. The error signals form a volume with the same
dimensions of the output

((

n− k+ 1
)

,
(

n− k+ 1
)

,M
)

. The
results of this backward convolution are organized to a volume

with dimensions (n, n, d) and are further backpropagated for
error calculations in the previous layers. Finally, in the update
cycle, gradient with respect to each parameter is computed by
convolving the input volume with the error volume used in
the forward and backward cycles, respectively. This gradient
information, which has the same dimensions as the kernels,
is added to the kernel parameters after scaled with a learning
rate.

Mapping Convolutional Layers to Resistive
Device Arrays
For an efficient implementation of a convolutional layer using
an RPU array, all the input/output volumes as well as the
kernel parameters need to be rearranged in a specific way.
The convolution operation essentially performs a dot product
between the kernel parameters and a local region of the input
volume and hence can be formulated as a matrix-matrix multiply
(Gao et al., 2016). By collapsing the parameters of a single
kernel to a column vector of length k2d and stacking all M
different kernels as separate rows, a parameter matrix K of size
M × k2d is formed that stores all of the trainable parameters
associated a single convolutional layer as shown in Figure 1B.
After this rearrangement, in the forward cycle the outputs
corresponding to a specific location along the width and height
can be calculated by performing a vector-matrix multiplication
y = Kx, where the vector x of length k2d is a local region
in the input volume and vector y of length M contains all of
the results along the depth of the output volume. By repeating
this vector-matrix multiplication for different local regions, the
full volume of the output map can be computed. Indeed, this
repeated vector-matrix multiplication is equivalent to a matrix-
matrix multiplication Y = KX, where the matrix X with
dimensions k2d × (n− k+ 1)2 has the input neuron activities
with some repetition and resulting matrix Y with dimensions
M × (n− k+ 1)2 has all the results corresponding to the
output volume. Similarly, using the transpose of the parameter
matrix, the backward cycle of a convolutional layer can also
be expresses as a matrix-matrix multiplication Z = KTD,
where the matrix D with dimensions M × (n− k+ 1)2 has the
error signals corresponding to an error volume. Furthermore, in
this configuration the update cycle also simplifies to a matrix
multiplication where the gradient information for the whole
parameter matrix K can be computed using matrices X and D,
and the update rule can be written as K ← K + η(DXT).

The rearrangement of the trainable parameters to a single
matrix K by flattening of the kernels enables an efficient
implementation of a convolutional layer using an RPU array.
After this rearrangement, all the matrix operations performed
on K can be computed as a series of vector operations
on an RPU array. Analogous to the fully connected layers,
matrix K is mapped to an RPU array with M rows and k2d
columns as shown in Figure 1B. In the forward cycle, the input
vector corresponding to a single column in X is transmitted
as voltage pulses from the columns and the results are read
from the rows. Repetition of this operation for all (n− k+ 1)2

columns in X completes all the computations required for

Frontiers in Neuroscience | www.frontiersin.org 3 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

FIGURE 1 | (A) Schematics of a convolutional layer showing the input volume, kernels, and the output volume. (B) Schematics of a mapped convolutional layer to an

RPU array showing the input and output matrixes and their propagation through the kernel matrix during the forward, backward and the update cycles.

the forward cycle. Similarly, in the backward cycle the input
vector corresponding to a single column in D is serially fed
to the rows of the array. The update rule shown above can
be viewed as a series of updates that involves computing an
outer product between two columns from X and D. This
can be achieved by serially feeding the columns of X and
D simultaneously to the RPU array. During the update cycle
each RPU device performs a series of local multiplication and

summation operations and hence calculates the product of the
two matrixes.

We note that for a single input the total number of
multiplication and summation operations that need to be
computed in all three cycles for a convolutional layer is
Mk2d(n− k+ 1)2 and this number is independent of themethod
of computation. The proposed RPU mapping described above
achieves this number as follows: Due to the inherent parallelism

Frontiers in Neuroscience | www.frontiersin.org 4 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

in the RPU arrayMk2d operations are performed simultaneously
for each vector operation performed on the array. Since there
are (n− k+ 1)2 vector operations performed serially on the
array, the total number of computations matches the expectation.
Alternatively, one can consider that there are Mk2d trainable
parameters and that each parameter is used (n− k+ 1)2 times
due to the parameter sharing in a convolution layer. Since each
RPU device in an array can perform a single computation at any
given time, parameter sharing is achieved by accessing the array
(n− k+ 1)2 times. For fully connected layers each weight is used
only once and therefore all the computations can be carried out
using single vector operations on the array.

The end result of mapping a convolutional layer onto the RPU
array is very similar to the mapping of a fully connected layer and
therefore does not change the fundamental operations performed
on the array. We also emphasize that the convolutional layer
described above, with no zero padding and single pixel sliding,
is only used for illustration purposes. The proposed mapping is
more general and can be applied to convolutional layers with zero
padding, strides larger than a single pixel, dilated convolutions or
convolutions with non-square inputs or kernels. This enables the
mapping of all of the trainable parameters of a conventional CNN
within convolutional and fully connected layers to RPU arrays.

RESULTS

In order to test the validity of this method we performed
DNN training simulations for the MNIST dataset using a CNN
architecture similar to LeNet-5 (LeCun et al., 1988). It comprises
of two convolutional layers with 5 × 5 kernels and hyperbolic
tangent (tanh) activation functions. The first layer has 16 kernels
while the second layer has 32 kernels. Each convolutional layer
is followed by a subsampling layer that implements the max
pooling function over non-overlapping pooling windows of size
2 × 2. The output of the second pooling layer, consisting of 512
neuron activations, feeds into a fully connected layer consisting
of 128 tanh neurons, which is then connected into a 10-way
softmax output layer. Training is performed repeatedly using a
mini-batch size of unity for all 60,000 images in the training
dataset which constitutes a single training epoch. Learning rate
of η = 0.01 is used throughout the training for all 30 epochs.

Following the proposed mapping above, the trainable
parameters (including the biases) of this architecture are stored
in 4 separate arrays with dimensions of 16 × 26 and 32 ×
401 for the first two convolutional layers, and, 128 × 513
and 10 × 129 for the following two fully connected layers.
We name these arrays as K1, K2, W3, and W4, where the
subscript denotes the layer’s location and K and W is used for
convolutional and fully connected layers, respectively. When
all four arrays are implemented as simple matrices and the
operations are performed with floating point (FP) numbers,
the network achieves a classification error of 0.8% on the test
data. This is the FP-baseline model that we compare against the
RPU based simulations for the rest of the paper. We assume
all activations and pooling layers are implemented in the digital
circuits for the RPU based simulations.

RPU Baseline Model
The influence of various RPU device properties, variations, and
non-idealities on the training accuracy of a deep fully connected
network are discussed in Gokmen and Vlasov (2016). We follow
the same methodology here and as a baseline for of the RPU
models discussed below, we use the device specifications that
resulted in an acceptable test error on the fully connected
network.

The RPU-baseline model uses the stochastic update scheme
in which the numbers that are encoded from neurons (xi
and δj) are implemented as stochastic bit streams. Each RPU
device performs a stochastic multiplication (Gaines, 1967;
Poppelbaum et al., 1967; Merkel and Kudithipudi, 2014) via
simple coincidence detection as illustrated in Figure 2. In this
update scheme the expected weight change can be written as:

E
(

1wij

)

= BL 1wmin(Cxxi)(Cδδj) (1)

where BL is the length of the stochastic bit stream, 1wmin is the
change in the weight value due to a single coincidence event, Cx

and Cδ are the gain factors used during the stochastic translation
for the columns and the rows, respectively. The RPU-baseline
has BL = 10, Cx = Cδ =

√

η/(BL 1wmin) = 1.0 and
1wmin = 0.001. The change in weight values is associated with
a conductance change in the RPU devices; therefore, in order to
capture device imperfections, 1wmin is assumed to have cycle-
to-cycle and device-to-device variations of 30%. Actual RPU
devices may also show different amounts of change to positive
and negative weight updates (i.e., inherent asymmetry). This is
taken into account by using separate 1w+min for the positive
updates and 1w−min for the negative updates for each RPU
device. The ratio 1w+min/1w−min among all devices is assumed
to be unity as this can be achieved by a global adjustment of
the voltage pulse durations/heights. However, device-to-device
mismatch is unavoidable and therefore 2% variation is assumed
for this parameter. To take conductance saturation into account,
which is expected to be present in actual RPU devices, the
bounds on the weights values,

∣

∣wij

∣

∣, is assumed be 0.6 on average
with a 30% device-to-device variation. We did not introduce
any non-linearity in the weight update as this effect has been
shown to be insignificant as long as the updates are reasonably
balanced (symmetric) between up and down changes (Agrawal
et al., 2016a; Gokmen and Vlasov, 2016). During the forward and
backward cycles the vector-matrix multiplications performed on
an RPU array are prone to analog noise and signal saturation due
to the peripheral circuitry. The array operations, including the
input and output signals, are illustrated in Figure 2. The output
voltage (Vout) is determined by integrating the analog current
coming from the column (or row) during a measurement time
(tmeas) using a capacitor (Cint) and an op-amp. This approach
will have noise contributions from various sources. These noise
sources are taken into account by introducing an additional
Gaussian noise, with zero mean and standard deviation of σ =
0.06, to the results of vector-matrix multiplications computed on
an RPU array. This noise value can be translated to an acceptable
input referred voltage noise following the approach described in

Frontiers in Neuroscience | www.frontiersin.org 5 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

FIGURE 2 | Schematics of an RPU array operation during the backward and update cycles. The forward cycle operations are identical to the backward cycle

operations except the inputs are supplied from the columns and the outputs are read from the rows.

Gokmen and Vlasov (2016). In addition the results of the vector-
matrix multiplications stored at Vout are bounded to a value
of |α| = 12 to account for a signal saturation on the output
voltage corresponding to a supply voltage on the op-amp.Table 1
summarizes all of the RPU-baseline model parameters used in
our simulations that are also consistent with the specifications
discussed in Gokmen and Vlasov (2016).

The CNN training results for various RPU variations are
shown in Figure 3A. Interestingly, the RPU-baseline model
shown in Table 1 performs poorly and only achieves a test
error between 10 and 20% (black curve). Not only is this value
significantly higher than the FP-baseline value of 0.8% but is
also higher than the 2.3% error rate achieved with the same
RPU model for a fully connected network on the same dataset.
Our analysis shows that the larger test error is mainly due to
contributions of analog noise introduced during the backward
cycle, and signal bounds introduced in the forward cycle on
the final RPU array, W4. As shown by the green curve, the
model without analog noise in the backward cycle and infinite
bounds on W4 reaches a respectable test error of about 1.5%.
When we eliminate only the noise while keeping the bounds, the
model exhibits reasonable training up to about the 8th epoch but
then the error rate suddenly increases and reaches a value about
10%. Similarly, if we only eliminate the bounds while keeping
the noise, the model, shown by the red curve, performs poorly
and the error rate stays around 10% level. In the following,
we discuss the origins of these errors and methods to mitigate
them.

Noise and Bound Management Techniques
It is clear that the noise in the backward cycle and the signal
bounds on the output layer need to be addressed for the
successful application of the RPU approach to CNN training.
The complete elimination of analog noise and signal bounds is

not realistic for real hardware implementation of RPU arrays.
Designing very low noise read circuity with very large signal
bounds is not an option because it will introduce unrealistic
area and power constraints on the analog circuits. Below we
describe noise and bound management techniques that can be
easily implemented in the digital domain without changing the
design considerations of RPU arrays and the supporting analog
peripheral circuits.

During a vector-matrix multiplication on an RPU array, the
input vector (x or δ) is transmitted as voltage pulses with a fixed
amplitude and tunable durations as illustrated by Figure 2. In
a naive implementation, the maximal pulse duration represents
unity (tmeas → 1), and all pulse durations are scaled accordingly
depending on the values of xi or δj. This scheme works optimally
for the forward cycle with tanh (or sigmoid) activations, as all
xi in x including a bias term are between [−1, 1]. However, this
assumption becomes problematic for the backward cycle, as there
are not any guarantees for the range of the error signals in δ.
For instance, all δj in δ may become significantly smaller than
unity (δ ≪ 1) as the training progresses and the classification
error gets smaller. In this scenario the results of a vector-matrix
multiplication in the backward cycle, as shown by Equation (2)
below:

z =WT
δ + σ (2)

are dominated by the noise term σ , as the signal termWT
δ does

not generate enough voltage at the output. This is indeed why the
noise introduced in the backward cycle brings the learning to a
halt at around 10% error rate as shown by models in Figure 3A.

In order to get better signal at the output when δ≪ 1, we
divide all δj in δ to the maximum value δmax before the vector-
matrix multiplication is performed on an RPU array. We note
that this division operation is performed in digital circuits and
ensures that at least one signal of unit amplitude exists at the

Frontiers in Neuroscience | www.frontiersin.org 6 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

TABLE 1 | Summary of the RPU-baseline model parameters.

BL Cx ,Cδ 1wmin 1w+
min

/1w−
min

∣

∣

∣
wij

∣

∣

∣
σ

Analog

noise

|α|
Signal

boundAverage Device to device

variation*

Cycle-to-cycle

variation*

Average Device-to-device

variation*

Average Device-to-device

variation*

10 1.0 0.001 30% 30% 1.0 2% 0.6 30% 0.06 12

*All variations are 1-sigma values reported as percentages normalized to the average values.

FIGURE 3 | Test error of CNN with the MNIST dataset. Open white circles correspond to the model with the training performed using the floating point (FP) numbers.

(A) Lines with different colors correspond to RPU-baseline models with different noise terms in the backward cycle and signals bounds on the last classification layer

as given by the legend. (B) All lines marked with different colors correspond to RPU-baseline models including the noise and the bound terms; however, the noise

management and the bound management techniques are applied selectively as given by the legend.

input of an RPU array. After the results of the vector-matrix
multiplication are read from an RPU array and converted back
to digital signals, we rescale the results by the same amount δmax.
In this noise management scheme, the results of a vector-matrix
multiplication can be written as:

z=
[

WT

[

δ

δmax

]

+σ

]

δmax. (3)

The result, z =WT
δ + σ δmax, effectively reduces the impact of

noise significantly for small error rates δmax ≪ 1. This noise
management scheme enables the propagation of error signals that
are arbitrarily small and maintains a fixed signal to noise ratio
independent of the range of values in δ.

In addition to the noise, the results of a vector-matrix
multiplication will be strongly influenced by the |α| term
that corresponds to a maximum allowed voltage during the
integration time. The value |α| = 12 does not strongly influence
the activations for hidden layers with tanh (or sigmoid) non-
linearity because the error introduced during the calculation of
tanh (z) (or sigmoid(z)) due to the bound is negligible for an input
value z that is otherwise much larger. However, for the output
layer with softmax (or ReLU) activations the error introduced
due to the bound may become significant. For instance, if there
are two outputs that are above the bounded value, they would be
treated equally and the classification task would choose between

the two classes with equal probability, even if one of the outputs
is significantly larger than the other. This results in a significant
error (major information loss) in estimating the class label and
hence limits the performance of the network. As with the noise,
the bounded signals start to become an issue for later stages
of the training as the network “starts to perform good test
results” (approaches an optimum configuration) and the decision
boundary between classes become more distinct. As shown by
the blue curve in Figure 3A, at the beginning of the training the
network successfully learns, and test errors as low as 2% can be
achieved; however, around the 8th epoch signal bounding forces
the network to learn unwanted features and hence the error rate
suddenly increases.

In order to eliminate the error introduced due to bounded
signals, we propose repeating the vector-matrix multiplication
after reducing the input strength by a half when a signal
saturation is detected. This would guarantee that after a few
iterations (n) the unbounded signals can be read reliably
and properly rescaled in the digital domain. In this bound
management scheme, the effective vector-matrix multiplication
on an RPU array can be written as:

y =
[

W
[x

2n

]

+ σ

]

2n (4)

with a new effective bound of 2n |α|. Note the noise term is also
amplified by the same factor; however, the signal to noise ratio

Frontiers in Neuroscience | www.frontiersin.org 7 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

remains fixed (only a few percent) for the largest numbers that
contribute most in calculation of softmax activations.

In order to test the validity of the proposed noise management
(NM) and bound management (BM) techniques, we performed
simulations using the RPU-baseline model of Table 1 with and
without enablingNMand BM. The summary of these simulations
is presented in Figure 3B. When both NM and BM are off,
the model using the RPU baseline of Table 1, shown as black
curve, performs poorly similar to the black curve in Figure 3A.
Similarly, turning on either NM or BM alone (as shown by red
and blue curves) is not sufficient and the models achieve test
errors of about 10%. However, when both NM and BM are
enabled the model achieves a test error of about 1.7% as shown by
the green curve. This is very similar to the model with no analog
noise and infinite bounds presented in Figure 3A and shows
the success of the noise and bound management techniques. By
simply rescaling the signal values in the digital domain, these
techniques mitigate both the noise and the bound problems
inherent to analog computations performed using RPU arrays.

The additional computations introduced in the digital domain
due to NM and BM are not significant and can be addressed
with a proper digital design. For the NM technique, δmax

needs to be determined from δ and each element in δ (and
z) value needs to be divided (and multiplied) by δmax. All
of these computations require additional O(M) comparison,
division and multiplication operations that are performed in
the digital domain. However, given that the very same circuits
need to compute O(M) error signals using the derivative of the
activation functions, performing these additional operations do
not change the complexity of the operations that needs to be
performed by the digital circuits. Basically, the combination of all
of these operations can be viewed as computing a slightly more
complicated activation function. Therefore, with proper design
these additional operations can be performed with only a slight
overhead without causing significant slowdown on the digital
circuits. Similarly, BM can be handled in the digital domain by
performing O(N) computations only when a signal saturation is
detected. However, BM may require an additional circuitry that
detects a signal saturation that can be fed as a control signal to the
digital circuits for the repeated vector-matrix multiplication.

Sensitivity to Device Variations
The RPU-baseline model with NM and BM performs reasonable
well and achieves a test error of 1.7%, however, this is still above
the 0.8% value achieved with a FP-baseline model. In order to
identify the remaining factors contributing to this additional
classification error, we performed simulations while selectively
eliminating various device imperfections from different layers.
The summary of these results is shown in Figure 4, where the
average test error achieved between 25th and 30th epochs is
reported on the y-axis along with an error bar that represents the
standard deviation for the same interval. The black data points in
Figure 4 corresponds to experiments where device-to-device and
cycle-to-cycle variations corresponding to parameters 1wmin,
1w+min/1w−min and

∣

∣wij

∣

∣ are completely eliminated for different
layers while the average values are kept unaltered. The model that
is free from device variations for all four layers achieves a test

FIGURE 4 | Average test error achieved between 25th and 30th epochs for a

various RPU models with varying device variations. Black data points

correspond to simulations in which device-to-device and cycle-to-cycle

variations corresponding to parameters1wmin, 1w+
min

/1w−
min

and
∣

∣wij
∣

∣ are all

completely eliminated from different layers. Red data points correspond to

simulations in which only the device-to-device variation for the imbalance

parameter 1w+
min

/1w−
min

is eliminated from different layers. Green points

correspond to simulations in which multiple RPU devices are mapped for the

second convolutional layer K2. RPU-baseline with noise and bound

management as well as the FP-baseline models are also included for

comparison.

error of 1.05%. We note that most of this improvement comes
from the convolutional layers as a very similar test error of 1.15%
is achieved for the model that does not have device variations
for K1&K2, whereas the model without any device variations for
fully connected layersW3&W4 remains at 1.3% level. Among the
convolutional layers, it is clear that K2 has a stronger influence
than K1 as test errors of 1.2 or 1.4% are achieved respectively
for models with device variations eliminated for K2 or K1.
Interestingly, when we repeated similar analysis by eliminating
only the device-to-device variation for the imbalance parameter
1w+min/1w−min from different layers, the same trend is observed
as shown by the red data points. These results highlight the
importance of device asymmetry and shows that even a few
percent device imbalance can significantly increase test error
rates.

It is clear that the reduction in device variations in some
layers can further boost the network performance; however, for
realistic technological implementations of the crossbar arrays
variations are controlled by fabrication tolerances in a given
technology. Therefore, complete or even partial elimination of
any device variation is not a realistic option. Instead, in order
to get better performance, the effects of the device variations
can be mitigated by mapping more than one RPU device per
weight, which averages out the device variations and reduces the
variability (Chen et al., 2015a). Here, we propose a flexible multi-
device mapping that can be realized in the digital domain by
repeating the input signals going to the columns (or rows) of an

Frontiers in Neuroscience | www.frontiersin.org 8 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

RPU array, and/or summing (averaging) the results of the output
signals generated from the rows (or columns). Since the same
signal propagates through many different devices and the results
are summed on the digital domain, this technique averages device
variations in the array without physically hardwiring the lines
corresponding to different columns or rows.

To test the validity of this digitally controlled multi-device
mapping approach, we performed simulations using models
where the mapping of the most influential layer K2 is repeated
on 4 or 13 devices. We find that the multi-device mapping
approach reduces the test error to 1.45 and 1.35% for 4 and 13
device mapping cases, respectively, as shown by the green data
points in Figure 4. The number of devices (#d) used per weight
effectively reduces the device variations by a factor proportional
to
√
#d. Note that 13-device mapping of K2 effectively reduces

the device variations by a factor of 3.6 at a cost of increase in
the array dimensions to 416 × 401 (from 32 × 401) Assuming
RPU arrays are fabricated with equal number of columns and
rows, multi-device mapping of rectangular matrixes such as K2

does not introduce any operational (or circuit) overhead as long
as the mapping fits in the physical dimensions of the array.
However, if the functional array dimensions becomes larger than
the physical dimensions of a single RPU array thenmore than one
array can used to perform the same mapping. Independent of its
physical implementation this method enables flexible control of
the number of devices used while mapping different layers and
is therefore a viable approach for mitigating the effects of device
variability.

Update Management
All RPUmodels presented so far use the stochastic update scheme
with a bit length of BL = 10 and amplification factors that
are equally distributed to the columns and the rows with values
Cx = Cδ =

√

η/(BL 1wmin) = 1.0. The choice of these values
is dictated by the learning rate, which is a hyper-parameter of
the training algorithm; therefore the hardware should be able to
handle any value without imposing any restrictions on it. The
learning rate for the stochastic model is the product of four terms;
1wmin, BL, Cx and Cδ . 1wmin corresponds to the incremental
conductance change on an RPU device due a single coincidence
event; therefore the value of this parameter may be strongly
restricted by the underlying RPU hardware. For instance, 1wmin

may be tuned only by shaping the voltage pulses used during the
update cycle and hence requires programmable analog circuits.
In contrast, the control of Cx,Cδ , and BL is much easier and can
be implemented in the digital domain.

To test the effect of Cx,Cδ , and BL on the training accuracy
we performed simulations using the RPU-baseline model with
the noise and bound management techniques described above.
For all models, we used the same fixed learning rate η = 0.01
and 1wmin = 0.001. The summary of these results is shown
in Figure 5. For the first set of models we varied BL, and both
Cx and Cδ are fixed at

√

η/(BL 1wmin). Interestingly, increasing
BL to 40 did not improve the network performance, whereas
reducing it to 1 boosted the performance and a test error of about
1.3% is achieved. These results may be counter intuitive as one
might expect the larger BL case to be less noisy and hence would

FIGURE 5 | Average test error achieved between 25th and 30th epochs for a

various RPU models with varying update schemes. Black data points

correspond to updates with amplification factors that are equally distributed to

the columns and the rows. Red data points correspond to models that uses

the update management scheme. RPU-baseline with noise and bound

management as well as the FP-baseline models are also included for

comparison.

perform better. However, for BL = 40 case, the amplification
factors are smaller (Cx = Cδ = 0.5) in order to satisfy the
same learning rate on average. This reduces the probability of
generating a pulse, but since the streams are longer during the
update, the average update (or number of coincidences) and
the variance do not change. In contrast, for BL = 1, the
amplifications factors are larger with a value 3.16 and therefore
pulse generation becomes more likely. Indeed, for cases in which
the amplified values are larger than unity (Cxxi > 1 or Cδδj > 1)
a single update pulse is always generated. This makes the updates
more deterministic but with an earlier clipping for xi and δj values
encoded from the periphery. Also note that for a single update
cycle the weight can change at most BL×1wmin and for BL = 1
the weight value can only move by a single 1wmin per update
cycle. However, also note that the convolutional layers K1 and
K2 receive 576 and 64 single bit stochastic updates per image
due to weight reuse (sharing) while the fully connected layersW3

and W4 receive only one single bit stochastic update per image.
The interaction of all of these terms and the tradeoffs are non-
trivial and the precise mechanism by which BL = 1 performs
better than BL = 10 is still unclear. However, the empirical
data shows clearly there is an advantage to be had for the above
CNN architecture, which favors BL = 1; whereas the DNN used
in Gokmen and Vlasov (2016) favored BL = 10. These results
emphasize the importance of designing flexible hardware that can
control the number of pulses used for the update cycle. We note
that this flexibility can be achieved seamlessly for the stochastic
update scheme without changing the design considerations for
peripheral circuits generating the random pulses.

In addition to BL, for the second set of simulations the
amplification factors Cx and Cδ used during the update cycle are

Frontiers in Neuroscience | www.frontiersin.org 9 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

also varied, to some extent, while keeping the average learning
rate fixed. The above models all assume that equal values of Cx

and Cδ are used during updates; however, it is possible to use
different values for Cx and Cδ as long as the product satisfies
η/(BL 1wmin). In our update management scheme, we use Cx

and Cδ values such that the probability of generating pulses
from columns (x) and rows (δ) are roughly the same order.
This is achieved by rescaling the amplification factors with a
ratio m =

√
δmax/xmax, and in this scheme the amplification

factors can be written as Cx = m
√

η/(BL 1wmin) and Cδ =
(1m)

√

η/(BL 1wmin). Although for BL = 10 this method did
not yield any improvement, for BL = 1 the error rate as low
as 1.1% is achieved; and hence shows that the proposed update
management scheme can yield better performance.

This proposed update scheme does not alter the expected
change in the weight value and therefore its benefits may not be
obvious. Note that toward the end of training it is very likely
that the range of values in columns (x) and rows (δ) are very
different; i.e., x have many elements close 1 (or –1) whereas
δ may have elements very close to zero (δ ≪ 1). For this case
if the same Cx and Cδ are used, the updates become row-wise
correlated. Although unlikely, the generation of a pulse for δj will
result in many coincidences along the row j, as there are many
pulses generated by different columns since many xi values are
close to unity. Our update management scheme eliminates these
correlated updates by shifting the probabilities from columns to
rows by simply rescaling the values used during the update. This
can be viewed as using rescaled vectors (mx and δ/m) for the
updates which are composed of values of roughly the same order.
This update management scheme relies on a simple rescaling that
is performed in the digital domain, and therefore does not change
the design of the analog circuits needed for the update cycle.
The additional computations introduced in the digital domain
are not significant, and only require additional O (M) (or O (N))
operations, similar to the overhead associated with the noise
management technique.

Results Summary
The summary of CNN training results for various RPU models
that use the above management techniques is shown in Figure 6.
When all management techniques are disabled the RPU-baseline
model can only achieve test errors above 10%. When noise and
bound management techniques are implemented, this large error
rate is reduced significantly to about 1.7% Additionally when the
update management scheme is enabled, with a reduced bit length
during updates, the model achieves a test error of 1.1%. Finally,
the combination of all of the management techniques with the
13-device mapping on the second convolutional layer (K2) brings
the model’s test error to 0.8%. The performance of this final RPU
model is almost indistinguishable from the FP-baseline model
and hence shows the successful application of RPU approach for
training CNNs. We note that all these mitigation methods can
be turned on selectively by simply programing the operations
performed on digital circuits; and therefore can be applied to
any network architecture beyond CNNs without changing design
considerations for realistic technological implementations of the
crossbar arrays and analog peripheral circuits.

FIGURE 6 | Test error of CNN with the MNIST dataset. Open white circles

correspond to the model with the training performed using the floating point

numbers. Lines with different colors correspond to RPU-baseline model with

different management techniques enabled progressively.

We note that for all of the simulation results described above
we do not include any non-linearity in the weight update as this
effect is shown to be not important as long as the updates are
symmetric in positive and negative directions (Agrawal et al.,
2016a; Gokmen and Vlasov, 2016). In order to check the validity
of this behavior for the above CNN architecture, we performed
simulations using the blue model of Figure 6 while including
a weight dependent update rule with different functional forms
1wmin(wij) that included a linear or a quadratic dependence on
weight value. Indeed this additional non-linear weight update
rule does not cause any additional error even when 1wmin is
varied by a factor of about 10 within the weight range.

DISCUSSION AND CONCLUSIONS

The application of RPU device concept for training CNNs
requires a rearrangement of the kernel parameters and only after
this rearrangement the inherent parallelism of the RPU array
can be fully utilized for convolutional layers. A single vector
operation performed on the RPU array is a constant time O(1)
and independent of the array size, however, because of the weight
sharing in convolutional layers, the RPU arrays are accessed
several times, resulting in a series of vector operations performed
on the array for all three cycles. These repeated vector operations
introduce interesting challenges and opportunities while training
CNNs on a RPU based hardware.

The array sizes, weight sharing factors (ws) and the number
of multiply and add (MAC) operations performed at different
layers for a relative simple but respectable CNN architecture
AlexNet (Krizhevsky et al., 2012) are shown in Table 2. This
architecture won the large-scale ImageNet competition by a large
margin in 2012. We understand that there has been significant
progress since 2012 and we only choose AlexNet architecture
due to its simplicity and to illustrate interesting possibilities
that RPU based hardware enables while designing new network
architectures.

Frontiers in Neuroscience | www.frontiersin.org 10 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

TABLE 2 | Array sizes, weight sharing factors and number of MACs performed for

each layer for AlexNet* (Krizhevsky et al., 2012) architecture.

Layer RPU array size

(matrix size)

Weight sharing

factor (ws)

MACs

K1 96× 363 3, 025 106 M

K2 256× 2, 400 729 448 M

K3 384× 2, 304 169 150 M

K4 384× 3, 456 169 224 M

K5 256× 3, 456 169 150 M

W6 4, 096× 9, 216 1 38 M

W7 4, 096× 4, 096 1 17 M

W8 1, 000× 4, 096 1 4 M

Total MACs = 1.14 G

*Table assumes the weights that are originally distributed to two GPUs are contained into

a single RPU array for each layer.

When AlexNet architecture runs on a conventional hardware
(such as CPU, GPU or ASIC), the time to process a single
image is dictated by the total number of MACs; therefore,
the contributions of different layers to the total workload are
additive, with K2 consuming about 40% of the workload. The
total number of MACs is usually considered as the main metric
that determines the training time, and hence, practitioners
deliberately construct network architectures to keep the total
number of MACs below a certain value. This constrains the
choice of the number of kernels, and their dimension, for each
convolutional layer as well as the size of the pooling layers.
Assuming a compute bounded system, the time to process a
single image on a conventional hardware can be estimated using
the ratio of the total number of MACs to the performance metric
of the corresponding hardware (Total MACs/Throughput).

In contrast to conventional hardware, when the same
architecture runs on a RPU based hardware, the time to process a
single image is not dictated by the total number of MACs. Rather,
it is dominated by the largest weight reuse factor in the network.
For the above example, the operations performed on the first
convolutional K1 takes the longest time among all layers because
of the large weight reuse factor of ws = 3, 025, although this
layer has the smallest array size and comprises only 10% of the
total number of MACs. Assuming a RPU based accelerator with
many RPU arrays and pipeline stages between them, the average
time to process a single image can be estimated as ws × tmeas

using values from layer K1, where tmeas is the measurement
time corresponding to a single vector-matrix multiplication on
the RPU array. First, this metric emphasizes the constant-time
operation of RPU arrays as the training time is independent
of the array sizes, the number of trainable parameters in the
network, and the total number of MACs. This would enable
practitioners to use increasing numbers of kernels, with larger
dimensions, without significantly increase training times. These
network configurations would be impossible to implement with
conventional hardware. However, the samemetric also highlights
the importance of tmeas and ws for layer K1 which represents a

serious bottleneck. Consequently, it is desirable to come up with
strategies that reduce both parameters.

In order to reduce tmeas we first discuss designing small
RPU arrays that can operate faster. It is clear that large arrays
are favored in order to achieve high degree of parallelism for
the vector operations. However, the parasitic resistance and
capacitance of a typical transmission line with a thickness of
360 nm and a width of 200 nm limit the practical array size to
4, 096×4, 096 as discussed in Gokmen and Vlasov (2016). For an
array of size 4, 096×4, 096 the measurement time of tmeas = 80ns
is derived considering the acceptable noise threshold value, which
is dominated by the thermal noise of RPU devices. Using the
same noise analysis described in Gokmen and Vlasov (2016) the
following inequality can be derived for the thermal noise limited
read operation during the forward/backward cycles of an array of
size N × N:

∣

∣wij

∣

∣

σ
=

0.6

0.06
<

(

β − 1

β + 1

)

√

V2
in tmeas

N Rdevice (kBT)
(5)

where Rdevice is the average device resistance, β is the resistance
on/off ratio for an RPU device, and Vin is the input voltage used
during read. For the same noise specification, it is clear that for a
small array with 512× 512 devices tmeas can be reduced to about
10ns for faster computations assuming all other parameters are
fixed. It is not desirable to build an accelerator chip all composed
of small arrays, as for a small array power and area are dominated
by the peripheral circuits (mainly by ADCs); and therefore,
a small array has worse power and area efficiency metrics
compared to a large array. However, a bimodal design consisting
of large and small size arrays achieves better hardware utilization
and provides speed advantage while mapping architectures with
significantly varying matrix dimensions. While the large arrays
are used to map fully connected layers or large convolutional
layers, for a convolutional layer such as K1 using the small array
would be better a solution that provides a reduction in tmeas from
80 to 10 ns.

In order to reduce the weight reuse factor on K1, next we
discuss allocating two (or more) arrays for the first convolutional
layer. When more than one array is allocated for the first
convolutional layer the network can be forced to learn separate
features on different arrays by properly directing the upper (left)
and lower (right) portions of the image to separate arrays and
by computing the error signals and the updates independently.
Not only this allows the network to learn independent features
for separate portions of the image and does not require any
weight copy or synchronization between two arrays, but also for
each array the weight reuse factor is reduced by a factor of 2.
This reduces the time to process a single image while making
the architecture more expressive. Alternatively, one could try to
synchronize the two arrays by randomly shuffling the portions of
the images that are processed by different arrays. This approach
would force the network to learn same features on two arrays with
same reduction of 2 in the weight reuse factor. These discussed
subtle changes in the network architecture do not provide any
speed advantage when run on a conventional hardware; and

Frontiers in Neuroscience | www.frontiersin.org 11 October 2017 | Volume 11 | Article 538

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

therefore, it highlights the interesting possibilities that a RPU
based architecture provides.

In summary, we show that the RPU concept can be applied
beyond fully connect networks and the RPU based accelerators
are natural fit for training CNNs as well. These accelerators
promise unprecedented speed and power benefits and hardware
level parallelism as the number of trainable parameters increases.
Because of the constant-time operation of RPU arrays, RPU
based accelerators provide interesting network architecture
choices without increasing training times. However, all of the
benefits of an RPU array are tied to the analog nature of the
computations performed, which introduces new challenges. We
show that digitally-programmable management techniques are
sufficient to eliminate the noise and bound limitations imposed
on the array. Furthermore, their combination with the update
management and device variability reduction techniques enable a
successful application of the RPU concept for training CNNs. All

the management techniques discussed in this paper are addressed
in the digital domain without changing the design considerations
for the array or for the supporting analog peripheral circuits.
These techniques make RPU approach suitable for a wide
variety of networks beyond convolutional or fully connected
networks.

AUTHOR CONTRIBUTIONS

TG conceived the original idea, TG, MO, and WH developed
methodology, analyzed and interpreted results, drafted and
revised manuscript.

ACKNOWLEDGMENTS

We thank Jim Hannon for careful reading of our manuscript and
many useful suggestions.

REFERENCES

Agrawal, S., Plimpton, S., Hughart, D., Hsia, A., Richter, I., Cox, J., et al. (2016a).

“Resistive memory device requirements for a neural network accelerator,” in

IJCNN (Vancouver).

Agrawal, S., Quach, T., Parekh, O., Hsia, A., DeBenedictis, E., James, C.,

et al. (2016b). Energy scaling advantages of resistive memory crossbar

computation and its application to sparse coding. Front. Neurosci. 9:484.

doi: 10.3389/fnins.2015.00484

Arima, Y., Mashiko, K., Okada, K., Yamada, T., Maeda, A., Notani, H., et al.

(1991). A 336-neuron, 28 K-synapse, self-learning neural network chip with

branch-neuron-unit architecture. IEEE J. Solid State Circ. 26, 1637–1644.

Burr, G., Narayanan, P., Shelby, R., Sidler, S., Boybat, I., di Nolfo, C.,

et al. (2015). “Large-scale neural networks implemented with non-volatile

memory as the synaptic weight element: comparative performance analysis

(accuracy, speed, and power),” IEDM (International Electron Devices Meeting)

(Washington, DC).

Burr, G., Shelby, R., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).

Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124.

doi: 10.1080/23746149.2016.1259585

Chen, P., Kadetotad, D., Xu, Z., Mohanty, A., Lin, B., Ye, J., et al.

(2015a). “Technology-design co-optimization of resistive cross-point array for

accelerating learning algorithms on chip,” in DATE (Grenoble).

Chen, P., Lin, B., Wang, I., Hou, I., Ye, J., Vrudhula, S., et al. (2015b). “Mitigating

effects of non-ideal synaptic device characteristics for on-chip learning,” in

ICCAD ’15 (Austin, TX).

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., et al. (2014). “DaDianNao:

a machine-learning supercomputer,” in 47th Annual IEEE/ACM International

Symposium on Microarchitecture (Cambridge), 609–622.

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., et al. (2016). “PRIME: a

novel processing-in-memory architecture for neural network computation in

ReRAM based main memory,” in ISCA (Seoul).

Coates, A., Huval, B., Wang, T., Wu, D., and Ng, A. (2013). “Deep learning with

COTS HPC systems,” in ICML (Atlanta, GA).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.

(2012). Natural language processing (Almost) from scratch. J. Mach. Lear. Res.

12, 2493–2537.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q., et al. (2012). “Large

scale distributed deep networks,” in NIPS’12 (Lake Tahoe, NV).

Emer, J., Sze, V., and Che, Y. (2016). “Tutorial on hardware architectures for deep

neural networks,” in IEEE/ACM International Symposium on Microarchitecture

(MICRO-49) (Taipei).

Fuller, E. J., El Gabaly, F., Léonard, F., Agarwal, S., Plimpton, S. J., Jacobs-

Gedrim, R. B., et al. (2017). Li-Ion synaptic transistor for low power

analog computing. Adv. Sci. News 29:1604310. doi: 10.1002/adma.201

604310

Gaines, B. (1967). “Stochastic computing,” in Proceedings of the AFIPS Spring Joint

Computer Conference (Atlantic City, NJ).

Gao, L., Chen, P., and Yu, S. (2016). Demonstration of convolution kernel

operation on resistive cross-point array. IEEE Electron. Device Lett. 37,

870–873. doi: 10.1109/LED.2016.2573140

Gokmen, T., and Vlasov, Y. (2016). Acceleration of deep neural network

training with resistive cross-point devices. Front. Neurosci. 10:333.

doi: 10.3389/fnins.2016.00333

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). “Deep

learning with limited numerical precision,” in ICML’15 Proceedings of the 32nd

International Conference on International Conference onMachine Learning, Vol.

37 (Lille), 1737–1746.

Gupta, S., Zhang, W., and Wang, F. (2016). “Model accuracy and runtime tradeoff

in distributed deep learning: a systematic study,” in IEDM (San Francisco, CA).

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on ImageNet classification,” in 2015 IEEE

International Conference on Computer Vision (ICCV) (Santiago).

Hinton, G., Deng, L., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., et al.

(2012). Deep neural networks for acoustic modeling in speech recognition:

the shared views of four research groups. IEEE Signal Process. Mag.

82–97. doi: 10.1109/MSP.2012.2205597

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). “Imagenet classification

with deep convolutional neural networks,” NIPS (Lake Tahoe, NV),

1097–1105.

Kuzum, D., Yu, S., and Wong, H.-S. P., (2013). Synaptic electronics:

materials, devices and applications. Nanotechnology 24:382001.

doi: 10.1088/0957-4484/24/38/382001

Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., et al. (2012).

“Building high-level features using large scale unsupervised learning,” in

International Conference on Machine Learning (Edinburgh).

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1988). Gradient-based

learning applied to document recognition. Proceed. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lehmann, C., Viredaz, M., and Blayo, F. (1993). A generic systolic array building

block for neural networks with on-chip learning. IEEE Trans. Neural Netw. 4,

400–407. doi: 10.1109/72.217181

Merced-Grafals, E. J., Dávila, N., Ge, N., Williams, R. S., and Strachan, J. P. (2016).

Repeatable, accurate, and high speed multi-level programming of memristor

1T1R arrays for power efficient analog computing applications.Nanotechnology

27:365202. doi: 10.1088/0957-4484/27/36/365202

Frontiers in Neuroscience | www.frontiersin.org 12 October 2017 | Volume 11 | Article 538

https://doi.org/10.3389/fnins.2015.00484
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1002/adma.201604310
https://doi.org/10.1109/LED.2016.2573140
https://doi.org/10.3389/fnins.2016.00333
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1088/0957-4484/24/38/382001
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/72.217181
https://doi.org/10.1088/0957-4484/27/36/365202
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Gokmen et al. Training CNNs with Resistive Devices

Merkel, C., and Kudithipudi, D. (2014). “A stochastic learning algorithm

for neuromemristive systems,” in 27th IEEE International System-on-Chip

Conference (SOCC) (Seattle, WA).

Poppelbaum, W., Afuso, C., and Esch, J. (1967). “Stochastic computing elements

and systems,” in Proceedings of the AFIPS Fall Joint Computer Conference

(Atlantic City, NJ).

Prezioso, M., Merrikh-Bayat, F., Hoskins, B. D., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521, 61–64.

doi: 10.1038/nature14441

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations

by back-propagating errors. Nature 323, 533–536. doi: 10.1038/32

3533a0

Seo, J., Lin, B., Kim, M., Chen, P.-Y., Kadetotad, D., Xu, Z., et al. (2015). On-chip

sparse learning acceleration with CMOS and resistive synaptic devices. IEEE

Trans. Nanotechnol. 14, 969–979. doi: 10.1109/TNANO.2015.2478861

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional networks for

large-scale image,” in ICLR (San Diego, CA).

Soudry, D., Di Castro, D., Gal, A., Kolodny, A., and Kvatinsky, S. (2015).

Memristor-based multilayer neural networks with online gradient

descent training. IEEE Trans. Neural. Netw. Learn. Syst. 26, 2408–2421.

doi: 10.1109/TNNLS.2014.2383395

Steinbuch, K. (1961). Die Lernmatrix. Kybernetik 1, 36–45.

doi: 10.1007/BF00293853

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).

“Going deeper with convolutions,” in CVPR (Boston, MA).

Wu, R., Yan, S., Shan, Y., Dang, Q., and Sun, G. (2015). Deep Image: Scaling up

Image Recognition. arXiv:1501.02876 [cs.CV].

Xu, Z., Mohanty, A., Chen, P., Kadetotad, D., Lin, B., Ye, J., et al. (2014).

Parallel programming of resistive cross-point array for synaptic plasticity. Proc.

Comput. Sci. 41, 126–133. doi: 10.1016/j.procs.2014.11.094

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer AS and handling Editor declared their shared affiliation.

Copyright © 2017 Gokmen, Onen and Haensch. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2017 | Volume 11 | Article 538

https://doi.org/10.1038/nature14441
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/TNANO.2015.2478861
https://doi.org/10.1109/TNNLS.2014.2383395
https://doi.org/10.1007/BF00293853
https://doi.org/10.1016/j.procs.2014.11.094
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices
	Introduction
	Fully Connected Neural Networks
	Mapping Fully Connected Layers to Resistive Device Arrays

	Materials and Methods
	Convolutional Layers
	Mapping Convolutional Layers to Resistive Device Arrays

	Results
	RPU Baseline Model
	Noise and Bound Management Techniques
	Sensitivity to Device Variations
	Update Management
	Results Summary

	Discussion and Conclusions
	Author Contributions
	Acknowledgments
	References

