
ORIGINAL RESEARCH
published: 03 August 2018

doi: 10.3389/fnins.2018.00435

Frontiers in Neuroscience | www.frontiersin.org 1 August 2018 | Volume 12 | Article 435

Edited by:

Mark D. McDonnell,

University of South Australia, Australia

Reviewed by:

Mostafa Rahimi Azghadi,

James Cook University, Australia

Hesham Mostafa,

University of California, San Diego,

United States

*Correspondence:

Chankyu Lee

lee2216@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 18 March 2018

Accepted: 11 June 2018

Published: 03 August 2018

Citation:

Lee C, Panda P, Srinivasan G and

Roy K (2018) Training Deep Spiking

Convolutional Neural Networks With

STDP-Based Unsupervised

Pre-training Followed by Supervised

Fine-Tuning. Front. Neurosci. 12:435.

doi: 10.3389/fnins.2018.00435

Training Deep Spiking Convolutional
Neural Networks With STDP-Based
Unsupervised Pre-training Followed
by Supervised Fine-Tuning
Chankyu Lee*, Priyadarshini Panda, Gopalakrishnan Srinivasan and Kaushik Roy

Nanoelectronics Research Laboratory, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN,

United States

Spiking Neural Networks (SNNs) are fast becoming a promising candidate for

brain-inspired neuromorphic computing because of their inherent power efficiency and

impressive inference accuracy across several cognitive tasks such as image classification

and speech recognition. The recent efforts in SNNs have been focused on implementing

deeper networks with multiple hidden layers to incorporate exponentially more difficult

functional representations. In this paper, we propose a pre-training scheme using

biologically plausible unsupervised learning, namely Spike-Timing-Dependent-Plasticity

(STDP), in order to better initialize the parameters in multi-layer systems prior to

supervised optimization. The multi-layer SNN is comprised of alternating convolutional

and pooling layers followed by fully-connected layers, which are populated with leaky

integrate-and-fire spiking neurons. We train the deep SNNs in two phases wherein,

first, convolutional kernels are pre-trained in a layer-wise manner with unsupervised

learning followed by fine-tuning the synaptic weights with spike-based supervised

gradient descent backpropagation. Our experiments on digit recognition demonstrate

that the STDP-based pre-training with gradient-based optimization provides improved

robustness, faster (∼2.5×) training time and better generalization compared with purely

gradient-based training without pre-training.

Keywords: spiking neural network, convolutional neural network, spike-based learning rule, spike timing

dependent plasticity, gradient descent backpropagation, leaky integrate and fire neuron

1. INTRODUCTION

In this era of data deluge with real-time content continuously generated by distributed sensors,
intelligent neuromorphic systems are required to efficiently deal with the massive amount of data
and computations in ubiquitous automobiles and portable edge devices. Spiking Neural Networks
(SNNs), often regarded as third generation brain-inspired neural networks (Maass, 1997), can be
highly power-efficient and have competitive capabilities to deal with several cognitive tasks (Khan
et al., 2008; Jo et al., 2010; Merolla et al., 2014). A spiking neuron, one of the core building
blocks of SNNs, transmits information in the form of electric event pulses (or spikes) through
plastic synapses. Event-driven computing capability is a fundamental property of SNNs that enables
sparse and irregular input encoding, leading to low latency and power consumption. Till now,
two-layer (shallow) fully-connected SNN architectures have been widely explored for classification

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00435
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00435&domain=pdf&date_stamp=2018-08-03
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lee2216@purdue.edu
https://doi.org/10.3389/fnins.2018.00435
https://www.frontiersin.org/articles/10.3389/fnins.2018.00435/full
http://loop.frontiersin.org/people/517271/overview
http://loop.frontiersin.org/people/474514/overview
http://loop.frontiersin.org/people/504600/overview
http://loop.frontiersin.org/people/502975/overview

Lee et al. STDP-Based Pre-training

and recognition tasks (Brader et al., 2007; Diehl and Cook, 2015;
Zhao et al., 2015). However, they necessitate large number of
trainable parameters to attain competitive classification accuracy,
which constrains their scalability for complex applications.
Recent developments onmulti-layer SNNs, composed of an input
layer followed by two or more hidden layers and an output layer,
address this scalability issue (Kheradpisheh et al., 2016; Lee et al.,
2016; O’Connor andWelling, 2016; Panda and Roy, 2016). Multi-
layer neural networks allow the systems to hierarchically classify
the complex input patterns by building feature hierarchies.
The early layer detects elementary representations of input
patterns while the subsequent layers capture the higher-level
concepts comprising elementary features. Nevertheless, the
training of deep SNNs remains an intricate and challenging
problem.

Training strategy for SNNs can be broadly categorized
into unsupervised and supervised algorithms. Unsupervised
algorithms discover the characteristics and underlying structures
of input patterns without using the corresponding output
labels. Spike-Timing-Dependent-Plasticity (STDP) (Bliss and
Collingridge, 1993; Bi and Poo, 1998; Song et al., 2000) is a bio-
plausible unsupervised learning mechanism that instantaneously
manipulates the synaptic weights based on the temporal
correlations between pre- and post-synaptic spike timings. It
is a simple and fast training method, which accounts for the
history of pre- and post-synaptic spikes between two adjacent
(local) layers. However, the resultant classification accuracy with
STDP training alone is still lower than the state-of-the-art
results (Wan et al., 2013; He et al., 2016). On the other hand,
supervised learning extracts internal representation given the
training examples and target output labels. The standard gradient
descent error backpropagation (BP) algorithm (Rumelhart et al.,
1985), which is typically used for achieving the state-of-the-
art classification performance in a frame-based deep learning,
modifies the network parameters in order to minimize the
designated output loss, which is a function of the difference
between the predicted and desired outputs. In the context
of SNNs, supervised learning has been utilized to train the
network off-line with continuous input signals as in an Artificial
Neural Network (ANN) and substitute the artificial neurons
with spiking neurons for efficient inference (Cao et al., 2015;
Hunsberger and Eliasmith, 2015; Diehl et al., 2016; Rueckauer
et al., 2017; Sengupta et al., 2018). However, the possibility
of incurring accuracy loss during the conversion from ANN
to SNN together with highly efficient event-driven computing
capability of SNNs have motivated recent works that directly
train SNNs using BP algorithm through input spike events (Lee
et al., 2016; Panda and Roy, 2016; Mostafa, 2017; Neftci et al.,
2017; Stromatias et al., 2017). The spike-based BP introduced
in Panda and Roy (2016) treats the membrane potential as
a differentiable activation of the spiking neuron to layer-wise
train the weights using a spike-based auto-encoder scheme. Lee
et al. (2016) has taken forward spike-based BP to calculate
final loss and back-propagate error for end-to-end supervised
gradient descent optimization. The spike-based BP is one
successful method for training deep SNNs, but there are several
challenges. First, it is compute-intensive and requires a large

amount of data and effort, which impedes the networks from
accomplishing efficient on-chip learning on cognitive tasks. The
procedures for computing the derivative of loss function with
respect to the parameters are complicated and necessitates lots
of training examples to generalize well to previously unseen
data while avoiding overfitting on training examples. Second,
training neural networks comprising many non-linear layers
is a problematic multi-dimensional non-convex optimization
problem that does not have a distinct global minima. Therefore,
it is hard to find an optimal initial condition of the synaptic
weights and the neuronal thresholds, which are required to deal
with chaotic convergence behavior and facilitate stable training
convergence. To overcome these impediments, appropriate
network initialization and optimization/regularization tools are
essential for training deep SNNs.

Given the deep hierarchical SNN models, it is still unclear
which learning algorithm (i.e., unsupervised or supervised)
is suitable for training the systems. Both the STDP and
spike-based BP learning have been demonstrated to capture
hierarchical features in SNNs (Masquelier and Thorpe, 2007;
Kheradpisheh et al., 2016; Lee et al., 2016, 2018; O’Connor and
Welling, 2016; Panda and Roy, 2016; Panda et al., 2017), but
the insufficient classification performance of standalone STDP-
trained networks, overfitting issues and unstable convergence
behaviors of BP algorithm are a couple of obstacles toward
efficient learning. To that effect, we propose leveraging STDP-
based unsupervised learning that encourages the hidden layers
to discover useful characteristics and structures of input patterns
prior to the gradient-based supervised optimization. In this
work, the multi-layer convolutional neural networks comprising
of the convolutional and pooling layers followed by successive
fully-connected layers are populated with bio-plausible leaky
integrate-and-fire spiking neurons (Dayan and Abbott, 2001) to
deal with sparse Poisson-distributed spike trains that encodes
the pixel intensity in its firing rate. The proposed pre-training
scheme trains the convolutional kernels using STDP algorithm in
a layer-wise manner that enables them to self-learn features from
input spike patterns. The pre-training enforces inductive bias to
network parameters including the synaptic weights and neuronal
thresholds, which provides a better starting point compared to
random initialization. After finishing the pre-training, gradient
descent BP algorithm fine-tunes the synaptic weights across
all the layers leading toward the optimum local minima. The
proposed strategy of using both the unsupervised and supervised
learning algorithm can be referred to as “semi-supervised
learning.” We believe that biologically plausible unsupervised
learning and state-of-the-art supervised deep learning algorithms
can pave ways to jointly optimize the hierarchical SNNs for
achieving efficient and competitive performance at the level of
human brain.

The rest of the paper is organized as follows. In section 2, we
explain the fundamentals and architecture of deep convolutional
SNNs. Next, we describe the proposed semi-supervised training
methodology, which includes the STDP-based unsupervised pre-
training and BP-based supervised fine-tuning algorithms. In
section 3, we present the simulation results, which validate the
efficacy of the semi-supervised training methodology for MNIST

Frontiers in Neuroscience | www.frontiersin.org 2 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

handwritten digit recognition. In section 4, we discuss the
contributions of the proposed method and investigate how the
pre-training helps the gradient-based optimization procedure.
Finally, we conclude the paper in section 5.

2. MATERIALS AND METHODS

2.1. SNN Fundamentals and Network
Architecture
2.1.1. Computational Models of Spiking Neurons and

Synapses
We use the biologically plausible Leaky-Integrate-and-Fire (LIF)
model (Dayan and Abbott, 2001) for simulating the dynamics of
a spiking (post) neuron that is driven by the input (pre) neurons
via plastic synapses. The LIF neuron integrates the input spikes
modulated by the inter-connecting synaptic weights, leading to
a change in its membrane potential (Vmem) whose temporal
dynamics are formulated below.

τm
dVmem

dt
= −Vmem + w ∗ θ(t − tk), (1)

The incoming spike (Dirac-delta pulse) occurring at time instant
tk, denoted by θ (t − tk), gets modulated by the synaptic weight
(w) to produce resultant current that is integrated by the post-
neuron in its membrane potential. The membrane potential leaks
exponentially subsequent to the removal of the input spike. The
time constant, τm, determines the rate of membrane leakage over
time, where a smaller value incurs a faster membrane potential
decay and vice versa.When the accumulatedmembrane potential
reaches a certain firing threshold, the LIF neuron fires an output
spike to the fan-out synapses and is thereafter reset. The non-
linear membrane potential decay and reset mechanisms help
regulate the spiking activities of the post-neurons.

2.1.2. Multi-layer Convolutional Spiking Neural

Network Topology
The recognition of high-dimensional input patterns necessitates
multi-layer network topologies that can effectively learn
hierarchical representations from input stimuli. In this work,
we use a convolutional neural network model that consists

of an input layer followed by intermediate hidden layers and
the final output layer as illustrated in Figure 1. The input
layer encodes the images as Poisson-distributed spike trains
where the probability of spike generation is proportional to
the pixel intensity. The hidden layers composed of alternating
convolutional (C) and spatial-pooling (P) layers represent the
intermediate stages of feature hierarchies. The spikes from the
hidden layers are combined sequentially for final classification
by the fully-connected (FC) layers. The convolutional and
fully-connected layers consist of trainable parameters while
the spatial-pooling layers are fixed a priori. The weight kernels
constituting the convolutional layers encode the feature
representations at multiple hierarchical levels. The adapted
convolutional kernels can appropriately detect the spatially
correlated local features in the input patterns as a result of
convolution, which inherently renders the network invariant to
translation (shift) in the object location. Next, the spatial-pooling
layer downscales the dimension of the feature maps produced
by the previous convolutional layer while retaining the spatial
correlation between neighborhood pixels in every feature
map. For instance, a fixed 2×2 kernel (each having a weight
of 0.25) strides through a convolutional feature map without
overlapping and fires an output spike at the corresponding
location in the pooled feature map if the summed spikes of the
4 input pixels within the window exceeds a threshold of 0.8.
The pooling operation offers the following key benefits. First,
it provides small amount of additional network invariance to
input transformations while reducing the dimension of the
convolutional feature maps. Furthermore, the pooling operation,
by the virtue of downscaling the feature maps, enlarges the
effective size of convolutional kernels in the subsequent
layer. This helps successive convolutional layers to efficiently
learn hierarchical representations from low to high levels of
abstractions. The number of pooled feature maps is equal to
the number of convolutional feature maps. The feature maps
of the final pooling layer are unrolled into a 1 − D vector
that is fully-connected to the output layer which produces
inference decisions. The fully-connected layer acts as a classifier
to effectively incorporate the composition of features resulting
from the alternating convolutional and pooling layers into the
final output classes.

FIGURE 1 | Architecture of the multi-layer convolutional spiking neural network consisting of an input layer, alternating convolutional and spatial-pooling layers, and

final fully-connected layers for inference.

Frontiers in Neuroscience | www.frontiersin.org 3 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

2.2. Proposed Semi-Supervised Learning
Methodology
The proposed semi-supervised learning methodology is
comprised of unsupervised pre-training followed by supervised
fine-tuning using a spike-based gradient descent BP algorithm in
a global fashion. The concept of unsupervised pre-training was
introduced in Hinton et al. (2006) to efficiently train artificial
deep belief nets, a generative model comprising several stacked
restricted Boltzmann machines, using a fast greedy layer-wise
training algorithm. In Bengio et al. (2007), Erhan et al. (2009),
and Vincent et al. (2010), the authors employed unsupervised
learning mechanisms such as contrastive divergence and de-
noising auto-encoder to hierarchically pre-train successive layers
of deep belief nets. In spiking domain, Kheradpisheh et al. (2016);
Panda and Roy (2016); Tavanaei and Maida (2016, 2017); Ferré
et al. (2018); Lee et al. (2018) have explored semi-supervised
learning to train deep SNNs, with layer-wise unsupervised
learning using spike-based auto-encoder/sparse-coding/STDP-
based methods followed by supervised learning at the final
classification layer. However, we use STDP-based unsupervised
pre-training to discover useful characteristics and underlying
structures of data to appropriately condition and initialize the
synaptic weights and neuronal firing thresholds for a given
pattern recognition task. After pre-training the network, we
use the spike-based gradient descent BP algorithm to fine-tune
the synaptic weights end-to-end in a manner that minimizes
discrepancy between the actual outputs and target labels. We
now describe the individual STDP-based unsupervised and
BP-based supervised learning mechanisms.

2.2.1. Unsupervised Pre-training Using

Spike-Timing-Dependent-Plasticity
Spike-Timing-Dependent-Plasticity (STDP) is a biologically
plausible unsupervised learning mechanism that self-learns
synaptic weights based on the degree of temporal correlations
between the pre- and post-synaptic spike events. As shown in
Figure 2A, the pre-synaptic trace resets to 1 when pre-synaptic
spike arrives and exponentially decays over time. Hence, the pre-
synaptic trace encodes the timing correlation between pre- and

post-neuronal spikes in the positive timing window. The strength
(weight) of synapse is potentiated if a pre-synaptic spike triggers
the post-neuron within a period of time that is determined by
a threshold, namely χoffset . The synaptic weight is depressed for
larger spike timing differences. The STDP weight updates are
applied to the synapses only at the time instances of post-synaptic
firing. Specifically, we use the weight-dependent positive-STDP
rule whose characteristic is formulated as follows.

1w = ηSTDP(e
tpre−tpost

τpre − χoffset)(wmax − w)(w− wmin) (2)

where 1w is the change in the synaptic weight, ηSTDP is the
learning rate, tpre–tpost is the timing difference between pre-
and post-synaptic spikes, τpre is the time constant controlling
the length of the STDP timing window, and wmax (wmin) is
the maximum (minimum) bound on the synaptic weight. The
amount of weight change has a non-linear dependence on the
current weight (w), which is specified by the product of (wmax-w)
and (w-wmin). Smaller the absolute value of the current weight,
larger is the ensuing weight change and vice versa as illustrated
in Figure 2B. Such nonlinear weight-dependent updates ensure
a gradual increase (decrease) of the synaptic weight toward the
maximum (minimum) bound, thereby improving the efficiency
of synaptic feature learning. Note that the synaptic weights are
locally updated in an unsupervised way based on the spiking
behaviors of pre-/post-neurons at adjacent layers.

In convolutional SNNs, the weight kernels locally inter-
connecting the successive layers stride over the pre-neuronal
maps to construct the output feature maps at every time
step. In an event of a post-spike, the time difference between
corresponding pre- and post-neuronal spikes is used to conduct
individual STDP update on the convolutional weights. In case of
multiple post-neuronal spikes in an output feature map, averaged
STDP updates are applied to the kernel weights. Accordingly,
the STDP learning enables the weight kernels to self-learn
useful features from the complex input patterns. In addition to
performing STDP updates on the weight kernels, we modulate
the firing threshold of the units in the corresponding feature map
to enable kernels (among the feature maps in a convolutional

FIGURE 2 | (A) Weight-dependent positive-STDP learning rule, where the synaptic weight is potentiated for strong timing correlation between the pre- and

post-synaptic spikes and depressed for larger spike timing differences. (B) Illustration of the non-linear weight-dependent updates to the synaptic weight.

Frontiers in Neuroscience | www.frontiersin.org 4 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

layer) to learn different representations of input patterns. In
the event of a post-neuronal spike in a convolutional feature
map, we uniformly increase the firing threshold of all the post-
units constituting the feature map. In the period of non-firing,
the firing threshold of the feature map exponentially decays
over time. Such threshold adaptation, referred as homeostasis
(Clopath et al., 2010), balances the firing threshold with respect
to the strength of kernel weights and effectively prevents
convolutional kernels in a feature map from dominating the
learning. In addition, the negative synaptic weights preclude
the need for lateral inhibitory synaptic connections among
feature maps in a layer (by regulating spiking activities of units
within feature map) that is otherwise essential for competitive
feature learning. In previous studies, STDP learning has been
demonstrated to self-learn convolutional kernels layer-by-layer
for training multi-layer convolutional SNNs (Kheradpisheh
et al., 2016; Lee et al., 2018). In this work, we exploit the
unsupervised feature learning capabilities of STDP learning
for appropriately initializing the convolutional weights and
corresponding neuronal firing thresholds in multi-layer systems.
We greedily pre-train each convolutional layer one at a time
using the unsupervised STDP learning and uniform threshold
adaptation scheme. We begin by training the first convolutional
layer that enables the weight kernels to discover low-level
characteristic features from input patterns in an unsupervised
manner. At every time step, the convolutional kernels slide
over the input maps to detect the characteristic features and
construct output feature maps. The unit in output feature maps
fires when the convolutional kernel captures the characteristic
features, and the weight kernel is updated with STDP and the
threshold adaptation mechanism. After the first convolutional
layer is trained, the adjusted weight kernels and neuronal firing
thresholds are frozen to feed the input again for estimating
the average firing rate of units in the output feature maps.
The generated feature maps of first convolutional layer (the
nonlinear transformations of inputs) are spatially pooled and
passed to the next convolutional layer to extract the higher-level
representations in hierarchical models. This process is repeated
until all convolutional layers are pre-trained. Note that we do
not modify the synaptic weights of the fully-connected layer (or
the classifier) during the pre-training procedure. Therefore, the
unsupervised pre-training mechanism, in essence, initially finds
out unique features and underlying structures of input patterns
for the task at hand prior to supervised fine-tuning.

2.2.2. Supervised Fine-Tuning Using Spike-Based

Backpropagation
In this sub-section, we first discuss the standard supervised
backpropagation (BP) learning that is a widely used first-
order gradient descent algorithm for ANN (Rumelhart et al.,
1985), and subsequently detail its spike-based adaptation used
in this work. The standard BP algorithm involves forward
propagation and error back-propagation. During the forward
propagation, an input pattern and its output (target) label
are respectively presented to measure the corresponding loss
function, which is a function of discrepancy between target labels
and predicted outputs from the current network parameters.
The error backpropagation is thereafter used to compute the

gradients of the loss function with respect to each synaptic weight
for determining their contributions to the final output loss. The
synaptic weights are modified based on the individual gradient
in the direction to minimize the output loss. The above steps are
iteratively applied over mini-batches of input patterns to obtain
the optimal network parameters, which facilitate the training
loss to converge to a local minima. In this work, the standard
BP technique is adapted for SNNs by taking into account the
event-driven characteristics for optimizing the weights directly
using the spike input signals. It is important to note that the
primary difference between ANNs and SNNs lies in the dynamics
of the output produced by the respective neuron models. The
spiking neurons communicate over time bymeans of spike pulses
that are discrete and non-differentiable signals. This is in stark
contrast with the differentiable continuous (scalar) values from
the artificial neurons such as sigmoid, tanh, and ReLU functions
(Krizhevsky et al., 2012; Goodfellow et al., 2016). In spike-
based BP algorithm, we low-pass filtered the post-spike trains to
obtain a pseudo derivative by creating differentiable activation
function (explained below). This allows the final output loss to be
propagated backward to hidden layers for updating the associated
synaptic weights suitably.

During the forward propagation, the input pixel values are
converted to Poisson-distributed spike trains and directly fed to
the SNN. The sum of Dirac-delta pulses (denoted by xi for the ith
input neuron) are weighted by inter-connecting synaptic weights
(wl

ij) to be integrated to post-neurons as illustrated in Figure 3

and formulated as (3).

netl+1
j (t) =

nl
∑

i=1

wl
ij ∗ xi(t),where xi(t) =

t
∑

k=1

θi(t − tk) (3)

where netl+1
j is the resultant current received by the jth post-

neuron at (l + 1)th layer, nl denotes the number of neurons
in lth layer, tk represents the time instant at which pre-neuron
spikes. The post-neurons fire output spikes when the respective
membrane potentials exceed a definite neuronal firing threshold,
after which the potentials are reset and the spikes are broadcast
to the subsequent layer. This process is successively carried out
by the post-neurons in every layer based on the incoming spikes
received from the preceding layer to produce spike trains over
time as shown in Figure 3. The “differentiable activation” of the
spiking neuron, which defines the highly non-linear relationship
between the weighted pre-neuronal spikes and post-spike firing
rate, is generated by low-pass filtering the individual post-spike
train as formulated below.

Activation of neuron, aj(t) =

t
∑

k=1

exp(−
t − tk

τp
) (4)

Final output error, ej =
aLj

max(aL)
− labelj (5)

Loss function, E =
1

2

nL
∑

j=1

e2j (6)

Frontiers in Neuroscience | www.frontiersin.org 5 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

FIGURE 3 | Illustration of spike forward and backward propagation of a multi-layer SNN consisting of LIF neurons. In forward pass, the spiking neuron integrates the

input current (net) generated by the weighted sum of the pre-neuronal spikes with the interconnecting synaptic weights and produces an output spike train. In

backward pass, the derivatives of designated loss function with respect to each synaptic weight are calculated from chain-rule.

The activation, aj, of an LIF neuron is computed by integrating
the unit spikes [at time instants tk in (4)] and decaying the
resultant sum in the time period between successive spikes.
The time constant (τp), which determines the rate of decay of
the neuronal activation, accounts for the non-linear membrane
potential decay and reset mechanisms that influence the spiking
dynamics of the post-neuron. The activation of the output
neurons in the fully-connected layer (classifier) is normalized to
obtain a probability distribution over all final class predictions for
a given input pattern. The final error (ej) for each output neuron
is evaluated by comparing the normalized output activation with
the target label (labelj) of the presented input as shown in (5).
The corresponding loss function [E in (6)] is defined as the mean
square of the final error over all the output neurons.

Next, we detail the gradient descent backpropagation
algorithm that is used to minimize the output loss in SNNs. We
first estimate the gradients of the output loss with maximum
likelihood at the final output layer and back-propagate the
gradients all the way down through the network using recursive
chain rule (Rumelhart et al., 1985). The gradient with respect
to the weights of hidden layers are obtained as described by the
following equations.

δL = e.a′(netL) (7)

a′(netL) = a′(t)+ 1 =

t
∑

k=1

(−
1

τp
e
−

t−tk
τp)+ 1 (8)

δh = ((wh)T ∗ δh+1).a′(neth) (9)

The quantity, δL, henceforth referred as the “error gradient,”
represents the gradient of the output loss with respect to the net
input current received by the post-neurons in the final output

layer. It can readily be computed [as shown in (7)] by multiplying
the final output error [e in (5)] with the derivative of the
corresponding post-neuronal activation (a′(netL)) in (8). Note
that “.” denotes element-wise multiplication while “∗” indicates
matrix multiplication in the Equations (3–10). The neuronal
activation [as described in (4)] is non-differentiable with respect
to input current because of discrete time series output signals. To
overcome this, we obtain a pseudo-derivative of post-neuronal
activation by adding a unity value to the time derivative of
the corresponding activation as formulated in (8). The time
derivative of neuronal activation reflects highly non-linear
(leaky) characteristics of LIF neuron model and adding a unity
value facilitates ignoring the discontinuity (step jump) that arises
at each spike time. The error gradient, δh, at any hidden layer
is recursively estimated by back-propagating the error gradient
from the successive layer [(wh)T ∗ δh+1] and multiplying it with
the derivative of neuronal activation [(a′(neth)] as formulated in
(9). It is worthmentioning here that the presented spike-based BP
algorithm mitigates the vanishing gradient phenomena, because
the derivatives of the spiking neuronal activation [shown in (8)]
do not saturate unlike saturating activation functions.

△ wl
=

al

max(al)
∗ (δl+1)T (10)

wl
= wl

− ηBP △ wl (11)

The derivative of the output loss with respect to the weights
interconnecting the layers l and l+ 1 [△wl in (10)] is determined
by multiplying the transposed error gradient at l + 1 (δl+1)
with the normalized activation of the neurons in layer l.
In case of convolutional neural networks, we back-propagate
the error in order to get the partial derivatives of the loss

Frontiers in Neuroscience | www.frontiersin.org 6 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

function with respect to the given output feature map. Then, we
average the partial derivatives over the output map connections
sharing the particular weight to account for the effective updates
of kernel weights. Finally, the calculated partial derivatives
of loss function are used to update the respective weights
using a learning rate (ηBP) as illustrated in (11). Iteratively
updating the weights over mini-batches of input patterns leads
the network state to a local minimum, thereby enabling the
network to capture hierarchical internal representations of the
data.

3. RESULTS

In this section, we demonstrate the capability of the proposed
semi-supervised learning strategy on the handwritten digit
MNIST dataset (LeCun et al., 1998) using a MATLAB-based
custom simulation framework. The MNIST dataset contains 60k
training and 10k testing (grayscale) images belonging to 10
categories. For the experiments, we implement relatively shallow
and deep multi-layer convolutional SNN topologies, which
comprise of 28x28 input image, convolutional (C) layers using
5×5 sized weight kernels, spatial-pooling (P) layers with 2×2
non-overlapping pooling regions followed by successive fully-
connected (FC) layers. The detailed multi-layer neural network
topologies are as follows: the shallow network is 28×28−36C5−
2P−10FC and the deep network is 28×28−20C5−2P−50C5−
2P − 200FC − 10FC. The initial synaptic weights are randomly
assigned at each layer following the weights initialization scheme
(Lee et al., 2016). The neuronal firing thresholds (vth) are set
proportional to the strength of the synaptic distribution as shown
below.

wl
∈ U[−

√

3

nl
,

√

3

nl
], vth = α

√

3

nl
,α > 0 (12)

where wl denotes the synaptic weight matrix connecting layers
l and l + 1, U[−k, k] indicates the uniform distribution in the
interval between k and k, and nl is the size of the lth layer.

We train the multi-layer convolutional SNNs using the
proposed semi-supervised learning strategy, which comprises

initial unsupervised pre-training and subsequent supervised fine-
tuning (or spike-based BP) procedures using the parameters
listed in Table 1. In every iteration of training, a subset (mini-
batch) of randomly sampled training images are fed to the system
such that the static inputs are converted stochastically into spike
events, wherein the firing rate encodes the pixel intensity. During
the unsupervised pre-training, we present a fraction of training
data to the network for 25 ms (assuming a simulation time-
step of 1 ms) and adjust each convolutional layer one at a
time. After the layer-wise pre-training of convolutional layers,
the kernel weights with respect to the neuronal firing threshold
are appropriately initialized and conditioned for further fine-
tuning. Next, we conduct gradient-based BP learning, which
evaluates the gradients of a loss function with respect to the
synaptic weights through forward and backward propagations.
During supervised fine-tuning, we present all training samples
(excluding the ones used for pre-training) for 100 ms in the
first epoch and full-training samples for 50 ms in subsequent
epochs. Note that passing the full training examples once through
a network denotes an epoch, which consists of 600 iterations in
case of MNIST dataset given the mini-batch size of 100. The
learning rate is kept constant throughout the unsupervised and
the supervised learning, respectively.

First, we discuss the effectiveness of our semi-supervised

learning methodology by evaluating the classification
performance of the shallow and deep multi-layer networks

on the MNIST test dataset. We compare our proposed
semi-supervised training strategy (i.e., pre-trained model)

against standalone gradient-based supervised optimization

without pre-training (i.e., purely supervised model) for both
shallow and deep networks. The spike-based gradient descent

training follows an identical criterion in both pre-trained and
purely supervised models with the exception of parameter

initialization (i.e., unsupervised STDP-based pre-training vs.

random initialization). Figure 4A shows the classification error

comparison between the two scenarios for shallow multi-layer
network, which started from 10 different initialization of the

weight state. Note, the learning rate across the 10 different
cases for both pre-trained (blue) and purely supervised (red)
models, in Figure 4A, is identical. The optimization procedure

TABLE 1 | Parameters used in the experiments.

Parameter Value

STDP Type Positive STDP

Decay Constant of Membrane Potential (τm) 10 ms

Decay Constant of Synaptic Trace (τpre) 1.5 ms

Decay Constant of Post-neuronal Activation Function (τp) 100 ms

Training Time Duration (STDP, BP) 25, 100, 50 ms

Inference Time Duration 200 ms

Mini-batch Size 100

Maximum Input Rate (STDP, BP, Inference) 200 , 500, 500 Hz

Convolutional Kernel Size/Stride 5×5, 1

Spatial-pooling Non-overlapping Region/Stride 2×2, 2

Threshold Initialization Constant (α) for,C, FC Layer without Pre-training 5, 3

Frontiers in Neuroscience | www.frontiersin.org 7 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

is greatly influenced by the learning rate, which should be kept
within a moderate range to enable stable convergence without
overshooting from the minima and diverging. As shown in
Figure 4A, the purely supervised models (for certain weight
initializations) get stuck in poor local minima, thereby yielding
high variance (or standard deviations) on classification error. In
contrast, the pre-trained models mostly enter the appropriate
convergence routes without being trapped in poor local minima
consistently yielding lower error with increasing number of
iterations. Among the supervised models that did not get stuck
in bad local minima, the pre-trained models still outperform
them in terms of classification performance. We conduct a
similar comparison as that of Figure 4A for the deep network
topology as illustrated in Figure 4B. We observe similar results
with the pre-trained model (blue) yielding a lower classification
error than a purely supervised model (red). In fact, the pre-
trained model converges to a lower classification error with
fewer number of iterations, which establishes the effectiveness
of the STDP-based pre-training procedure. It is noteworthy
to mention that deep networks (in case of purely supervised
training) do not get stuck in poor local minima for different
initializations due to the enriched parameter space available for
optimization. This enriched parameter space also allows us to
use a higher learning rate without overfitting. We observed that
increasing the learning rate significantly lowers the classification
error achieved with the pre-trained model (yellow in Figure 4B).
Additionally, the classification error of pre-trained model shows
lower variance than the purely supervised networks that started
independently from different initialized weights as described

in Table 2. Thus, we can infer that STDP-based pre-training
improves the robustness of the overall learning procedure.

To further quantify the benefits of the STDP-based pre-
training method, we plotted the classification errors with respect
to training efforts for both the purely supervised and pre-
trained models that have identical weight initialization in the
beginning of training. We quantify training effort as the total
number of training iterations required for error convergence.
The plots in Figure 5 illustrate the classification performance of
the pre-trained model (blue, yellow) with respect to the purely
supervised model (red). We observe that the pre-trained model
(yielding very high error during the unsupervised pre-training
stage) starts to outperform the purely supervised model with
supervised fine-tuning yielding consistently lower error for both
the shallow and deep topologies. Note, the classification error
remains high initially (∼90%) in case of a pre-trained model,
because the fully-connected layers are not trained during the
STDP-based pre-training phase. Besides lower error rate, the
proposed semi-supervised training also yields faster training
convergence. Specifically, the convergence time (in which the
shallow multi-layer network reaches 2% classification error)
with STDP-based pre-training (1,200 iterations) is significantly
lower than that of purely supervised case (3,000 iterations).
Similarly, the pre-trained deep network achieves 1% classification
error after 4,800 iterations, whereas the randomly initialized
network with spike-based BP takes 10,200 iterations. Essentially,
the speed of optimization to reach certain amount of testing
error improves by ∼ 2.5× for both shallow and deep multi-
layer network with STDP pre-training as compared to purely

FIGURE 4 | The classification accuracies (in log scale) on (A) shallow and (B) deep multi-layer convolutional spiking neural networks of pre-trained and supervised

model starting from different states of randomly initialized synaptic weights.

TABLE 2 | Learning rate and mean standard deviation of classification errors in shallow and deep multi-layer networks.

Network topology Shallow multi-layer network Deep multi-layer network

Model (Corresponding Without Pre-training With Pre-training Without Pre-training With Pre-training With Pre-training

Models in Figure 4) (Red) (Blue) (Red) (Blue) (Yellow)

Learning Rate 0.4 0.4 0.18 0.18 0.35

Variance (Mean STD) 10.57% 0.083% 0.146% 0.110% 0.099%

Frontiers in Neuroscience | www.frontiersin.org 8 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

supervised gradient BP. The boosted performance of gradient-
based supervised fine-tuning provides an insight that the efficient
unsupervised feature learning prior to the fine-tuning phase
significantly reduces the training effort to facilitate convergence.
We believe that unsupervised initialization helps to mitigate
the difficult highly non-convex optimization problem by better
initializing and conditioning the network parameters. Eventually,
the classification accuracies of shallow multi-layer network
saturates at the amount of lowest error rates of 1.20% (purely
supervised model) and 1.23% (pre-trained model) averaged
over 130–150 (78000–90000) training epochs (iterations). The
classification errors of purely supervised model and pre-trained
model for training deep multi-layer networks saturate at the
0.77 and 0.72%, respectively. The classification results shown
are comparable to the state-of-the-art results as compared in
Table 3. Figure 6 shows the adjusted weight kernels in first
convolutional layer for purely supervised (A) and pre-trained
(B) model after 150 training epochs. The weight kernels of the
pre-trained model in Figure 6B indicate more definite shapes
of pattern characteristics compared to those from the purely
supervised model in Figure 6A.

Lastly, lets try to answer the following question: Does
the STDP-based pre-training also provide the benefits when
the network is initialized with different random initialization?
To address this question, we perform an experiment that

initializes the parameters of deep multi-layer SNNs with
another initialization scheme [“Glorot initialization”(Glorot and
Bengio, 2010)] and train with the proposed semi-supervised
learning strategy. We use unsupervised STDP to pre-train the
SNNs (initialized with “Glorot initialization”) and measure
the classification performances (that started from 10 different
states of random weights) while fine-tuning the networks with
gradient descent backpropagation algorithm. The classification
performance shows faster training convergence (1,800 iterations
to reach 2% error) and improved robustness compared to the
networks without STDP-based pre-training (3,000 iterations to
reach 2% error). Note that pre-trained models (initialized with
“Glorot initialization”) show slightly slower training convergence
time compared to Lee Initialization (Lee et al., 2016) pre-
trained models (1,200 iterations to reach 2% error). Figure 7
shows the classification performances with respect to training
efforts for the purely supervised and pre-trained models of
each initialization scheme [(a) Lee initialization vs. (b) Glorot
initialization]. Figure 7B and Table 4 depict similar trends: pre-
trained models achieve better classification performances and
lower variances (measured from 10 different states of random
weights) compared to purely supervised models. Therefore, we
infer that STDP-based pre-training also helps to better initialize
and condition the network parameters in different initialization
scheme such as “Glorot initialization.”.

FIGURE 5 | The plots show the classification accuracies on (A) shallow and (B) deep multi-layer convolutional spiking neural network as the semi-supervised

optimization runs. The x-axis is the number of iterations (in log scale) and y-axis is classification accuracies (in log scale) on testing data.

TABLE 3 | Comparison of the SNNs classification accuracies on MNIST digit recognition task.

Model Architecture Learning method Accuracy

Esser et al., 2015 Deep Fully-connected Offline learning, conversion 99.42%

Hunsberger and Eliasmith, 2015 Deep Fully-connected Offline learning, conversion 98.37%

Diehl et al., 2016 Deep Convolutional Offline learning, conversion 99.1%

Diehl and Cook, 2015 Two-layer Fully-connected Unsupervised STDP 95.0%

Kheradpisheh et al., 2016 Deep Convolutional Layerwise STDP + SVM classifier 98.4%

Panda and Roy, 2016 Deep Convolutional Convolutional Autoencoder 99.05%

Lee et al., 2016 Deep Convolutional Backpropagation 99.31%

Semi-supervised Learning (This work) Deep Convolutional STDP-based Pretraining + Backpropagation 99.28%

Frontiers in Neuroscience | www.frontiersin.org 9 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

FIGURE 6 | The weight kernels of (A) purely supervised and (B) pre-trained model in first convolutional layer.

FIGURE 7 | The classification accuracies (in log scale) on the deep multi-layer convolutional spiking neural networks of pre-trained and supervised model starting from

(A) Lee initialization (B) Glorot initialization.

TABLE 4 | Mean standard deviation of classification errors that are initialized with different weight initialization schemes in deep multi-layer networks.

Model (Corresponding models in Figure 7) Without pre-training (Red) With pre-training (Blue) With pre-training (Yellow)

(Lee et al., 2016) Initialization 0.146% 0.110% 0.099%

(Glorot and Bengio, 2010) initialization 0.171% 0.131% 0.116%

4. DISCUSSION

Our proposal of STDP-based unsupervised pre-training is
demonstrated to achieve improved robustness and significant
speed-up in training procedure. Conceptually, the benefits of
the semi-supervised learning strategy come from the inherent
attributes of two different learning mechanisms. First, the
unsupervised STDP learning automatically determines the useful
features from high-dimensional input patterns that strengthens
the connections between strongly correlated neurons. Hence, the
quick and simple modifications are facilitated so that the non-
linear representations are simply extracted based on the degree
of correlation between neurons in adjacent layers. Moreover,

the nature of unsupervised STDP learning is less prone to the
overfitting problem than the supervised learning (Kheradpisheh
et al., 2016). These peculiarities allow the unsupervised STDP
mechanism to be an effective initializer for directing the network
to an optimal starting point in the parameter space at the
beginning of gradient descent optimization. On the other hand,
supervised BP learning is a complex, global and gradient-based
algorithm, which adjusts the synaptic weights proportional to the
degree of their contributions to the final loss in the direction
of minimizing the errors. The gradient descent algorithm is
susceptible to the initial condition of network parameters, which
causes variable convergence and necessitates large number of
training data to generalize the network well. Note that there

Frontiers in Neuroscience | www.frontiersin.org 10 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

are numerous studies to appropriately initialize the network
parameters in the domain of ANN (Erhan et al., 2009; Glorot
and Bengio, 2010; He et al., 2015). In SNNs, the conversion
from adapted ANN to SNNs (Cao et al., 2015; Hunsberger
and Eliasmith, 2015; Diehl et al., 2016; Rueckauer et al.,
2017; Sengupta et al., 2018) is one popular methodology to
take advantage of state-of-the-art deep learning algorithms
and techniques. The conversion technique shows remarkable
classification performances, nevertheless there are issues that
prevent them from becoming universal. It is inevitable to
avoid the classification accuracy degradation due to ANN-to-
SNN conversion, which becomes higher when dealing with
real sensory data from event-driven dynamic vision sensors
(Lichtsteiner et al., 2006; Delbrück et al., 2010). The weight-
normalization scheme, which effectively converts the network
parameters, is still an active research field. In addition, the
privacy issues can not be overlooked in case of disclosing,
sharing and destroying the personal (credential) data generated
from edge devices for ANN training in cloud services (or
data centers). Consequently, all-spiking neural network systems,
which efficiently train and test the deep SNNs by direct input
spike events, allow to protect privacy and increase the availability
of private data to the artificial intelligence systems. As mentioned
before, the initial conditions of SNN are pre-defined based on the
network parameters, which are the synaptic weights and firing
threshold of spiking neurons. However, it is still not evident
how to initialize the multi-layer SNN systems in an optimal
way. In this work, we leverage STDP unsupervised learning to
appropriately initialize the network parameters in a data-driven
manner prior to the supervised gradient descent BP learning.

We performed an additional experiment to investigate how
the proposed STDP-based unsupervised pre-training helps the
subsequent gradient-based supervised fine-tuning compared to
purely supervised training from random weight initialization.
We hypothesize that unsupervised pre-training effect helps
either optimize or generalize the systems. In this context, the
optimization helps to locate the network to a better starting point

in the parameter space, which induces lower training error. On
the other hand, the generalization effect prevents the network
from overfitting too closely to training sample, which results
in lowering the errors on data that are not seen during the
training. We trained shallow and deep multi-layer networks
over 150 epochs with and without pre-training and evaluated
the component sum of negative-log-likelihood (NLL) costs on
testing and training data to highlight the performance gap
between the two scenarios. The negative-log-likelihood function
is formulated below.

Negative Log Likelihood =

nL
∑

i=1

xi log pi(x)+(1−xi) log (1− pi(x))

(13)
where nL represents the size of final layer, x is the output
target labels and p(x) denotes the normalized firing rate of
final output neurons. Figure 8 presents the testing NLL cost
with respect to the training NLL cost for both shallow and
deep network optimization. Table 5 shows the testing and
training NLL costs averaged over 130–150 epochs. During the
supervised BP learning, the pre-trained model yields a lower
training NLL cost with the same training effort (representative
of faster convergence) and the final training NLL cost of the
pre-trained model saturates at a lower range than the purely
supervised model as depicted in Table 5. This trend indicates
that the unsupervised initialization induces the systems to
be rapidly optimized and achieves better training error. The
unsupervised pre-training, in effect, initially deploys the network
to a parameter space where the initial point is closer to the local
optima. In addition, we analyzed the test cost with respect to the
training cost to measure the generalization effect of unsupervised
pre-training. As the optimization proceeds toward the end, the
testing NLL cost value saturates or starts to slightly increase
because of overfitting, whereas the training NLL cost continually
decreases as shown in Figure 8. However, we observe that the
overfitting phenomenon occurs at the stage of lower training

FIGURE 8 | The plots show the NLL cost on (A) the shallow and (B) deep multi-layer convolutional spiking neural network. The horizontal and vertical axis indicate the

NLL costs (in log scale) on training and testing data, respectively.

Frontiers in Neuroscience | www.frontiersin.org 11 August 2018 | Volume 12 | Article 435

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

TABLE 5 | Final testing and training NLL costs (averaged out over 130–150 epochs) in shallow and deep multi-layer networks.

Network topology Shallow multi-layer network Deep multi-layer network

Model (Corresponding With Pre-training With Pre-training Without Pre-training With Pre-training Without Pre-training

Models in Figure 8) (Red) (Blue) (Red) (Blue) (Yellow)

Final Testing NLL 0.1317 0.1266 0.0658 0.0627 0.0659

Final Training NLL 0.0894 0.0861 0.0234 0.0169 0.0118

NLL cost in case of pre-trained models (for both shallow and
deep cases) in comparison to the purely supervised training. The
inset in Figure 8B highlights this effect wherein we observe that
the pre-trained models saturates to lower convergence region
(testing NLL cost) while delaying the overfitting phenomena.
Note, overfitted neural network systems perform worse on test
data (or data unseen during the training). Therefore, we infer
that the pre-trained model can generalize better than the purely
supervised model by means of pre-conditioning of the network
parameters such that overfitting issue is mitigated. In essence,
the STDP-based unsupervised initialization scheme provides an
equivalent effect of classic regularization techniques such as early
stopping (Caruana et al., 2001), L1/L2 weight decay (Hanson
and Pratt, 1989) and dropout (Srivastava et al., 2014), which
explicitly constrain the training model like adding penalty to the
loss function or adding restriction on parameters.

5. CONCLUSION

Recent efforts in spiking neural networks have been focused
toward building multi-layer systems to hierarchically represent
highly nonlinear and complex functions. However, training
hierarchical systems remains a difficult problem because of
their inherent high dimensionality and non-convexity. In this
work, we have shown that the convolutional spiking neural
network comprising multiple hidden layers can be pre-trained
with layer-wise unsupervised STDP learning and fine-tuned with
supervised gradient descent BP algorithm. The unsupervised

pre-training extracts the underlying structures from high
dimensional input patterns in order to better initialize the
parameters and supervised gradient-based BP algorithm takes
the hierarchical system to optimal local minima. The proposed
semi-supervised strategy benefits the training procedure to be
more invariant to randomly assigned initial parameters, yields
faster training and better generalization compared to purely
supervised optimization without pre-training. We believe that
STDP-based unsupervised initialization scheme coupled with
state-of-the-art deep learning backpropagation algorithm can
pave the way toward effectively optimizing deep spiking neural
networks.

AUTHOR CONTRIBUTIONS

CL and KR conceived the theory and research direction and CL
implemented the algorithm and conducted the experiments. CL,
PP, and GS discussed about the results and analysis, and wrote the
manuscript.

ACKNOWLEDGMENTS

This work was supported in part by C-BRIC, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA, the National Science Foundation, Intel
Corporation, and the DoDVannevar Bush Fellowship. We would
like to thank Dr. Chiho Choi for discussion and reviewers for
their helpful feedbacks.

REFERENCES

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). “Greedy layer-

wise training of deep networks,” in Advances in Neural Information Processing

Systems, eds S. Bernhard, J. Platt, and T. Hofmann (Cambridge: MIT Press),

153–160.

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bliss, T. V. and Collingridge, G. L. (1993). A synaptic model of memory: long-term

potentiation in the hippocampus. Nature 361:31.

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.

doi: 10.1162/neco.2007.19.11.2881

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vision 113,

54–66. doi: 10.1007/s11263-014-0788-3

Caruana, R., Lawrence, S., and Giles, C. L. (2001). “Overfitting

in neural nets: backpropagation, conjugate gradient, and early

stopping,” in Advances in Neural Information Processing Systems,

402–408.

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects

coding: a model of voltage-based stdp with homeostasis. Nat. Neurosci. 13:344.

doi: 10.1038/nn.2479

Dayan, P. and Abbott, L. F. (2001). Theoretical Neuroscience, Vol. 806. Cambridge,

MA: MIT Press.

Delbrück, T., Linares-Barranco, B., Culurciello, E., and Posch, C. (2010).

“Activity-driven, event-based vision sensors,” in Circuits and Systems

(ISCAS), Proceedings of 2010 IEEE International Symposium on (IEEE),

2426–2429.

Diehl, P. U. and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016).

“Conversion of artificial recurrent neural networks to spiking neural networks

Frontiers in Neuroscience | www.frontiersin.org 12 August 2018 | Volume 12 | Article 435

https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1162/neco.2007.19.11.2881
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1038/nn.2479
https://doi.org/10.3389/fncom.2015.00099
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Lee et al. STDP-Based Pre-training

for low-power neuromorphic hardware,” in Rebooting Computing (ICRC), IEEE

International Conference on (IEEE), 1–8.

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vincent, P. (2009). “The

difficulty of training deep architectures and the effect of unsupervised pre-

training,” in Artificial Intelligence and Statistics, 153–160.

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S. (2015).

“Backpropagation for energy-efficient neuromorphic computing,” in Advances

in Neural Information Processing Systems, 1117–1125.

Ferré, P., Mamalet, F., and Thorpe, S. J. (2018). Unsupervised feature

learning with winner-takes-all based stdp. Front. Comput. Neurosci. 12:24.

doi: 10.3389/fncom.2018.00024

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, 249–256.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep Learning,

Vol. 1. Cambridge: MIT press.

Hanson, S. J., and Pratt, L. Y. (1989). “Comparing biases for minimal network

construction with back-propagation,” in Advances in Neural Information

Processing Systems, 177–185.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in Proceedings

of the IEEE International Conference on Computer Vision, 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 770–778.

Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast learning

algorithm for deep belief nets. Neural Comput. 18, 1527–1554.

doi: 10.1162/neco.2006.18.7.1527

Hunsberger, E. and Eliasmith, C. (2015). Spiking deep networks with lif neurons.

arXiv:1510.08829.

Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).

Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.

10, 1297–1301. doi: 10.1021/nl904092h

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E., et al.

(2008). “Spinnaker: mapping neural networks onto a massively-parallel chip

multiprocessor,” in Neural Networks, 2008, IJCNN 2008 (IEEE World Congress

on Computational Intelligence), IEEE International Joint Conference on (IEEE),

2849–2856.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., andMasquelier, T. (2016). Stdp-

based spiking deep neural networks for object recognition. arXiv:1611.01421.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet

classification with deep convolutional neural networks,” in Advances in

Neural Information Processing Systems, 1097–1105.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.

Lee, C., Srinivasan, G., Panda, P., and Roy, K. (2018). “Deep spiking

convolutional neural network trained with unsupervised spike timing

dependent plasticity,” in IEEE Transactions on Cognitive and Developmental

Systems.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lichtsteiner, P., Posch, C., and Delbruck, T. (2006). “A 128 x 128 120db 30mw

asynchronous vision sensor that responds to relative intensity change,” in Solid-

State Circuits Conference, 2006, ISSCC 2006, Digest of Technical Papers, IEEE

International (IEEE), 2060–2069.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural

network models. Neural Netw. 10, 1659–1671.

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mostafa, H. (2017). “Supervised learning based on temporal coding in spiking

neural networks,” in IEEE Transactions on Neural Networks and Learning

Systems.

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven

random back-propagation: Enabling neuromorphic deep learning machines.

Front. Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

O’Connor, P., and Welling, M. (2016). Deep spiking networks. arXiv:1602.08323.

Palm, R. B. (2012). Prediction as a Candidate for Learning Deep Hierarchical Models

of Data. Technical University of Denmark, 5.

Panda, P., and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in Neural Networks

(IJCNN), 2016 International Joint Conference on (IEEE), 299–306.

Panda, P., Srinivasan, G., and Roy, K. (2017). Convolutional spike timing

dependent plasticity based feature learning in spiking neural networks. arXiv

preprint arXiv:1703.03854.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks

for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.

00682

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning Internal

Representations by Error Propagation. Technical report, California Univ San

Diego La Jolla; Inst for Cognitive Science.

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2018). Going deeper

in spiking neural networks: Vgg and residual architectures. arXiv preprint

arXiv:1802.02627.

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning

through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3:919.

doi: 10.1038/78829

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1929–1958.

Stromatias, E., Soto, M., Serrano-Gotarredona, T., and Linares-Barranco,

B. (2017). An event-driven classifier for spiking neural networks fed

with synthetic or dynamic vision sensor data. Front. Neurosci. 11:350.

doi: 10.3389/fnins.2017.00350

Tavanaei, A., and Maida, A. S. (2016). Bio-inspired spiking convolutional neural

network using layer-wise sparse coding and stdp learning. arXiv preprint

arXiv:1611.03000.

Tavanaei, A., and Maida, A. S. (2017). “Multi-layer unsupervised learning in

a spiking convolutional neural network,” in Neural Networks (IJCNN), 2017

International Joint Conference on (Anchorage, AK), 2023–2030.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A.

(2010). Stacked denoising autoencoders: learning useful representations in

a deep network with a local denoising criterion. J. Mach. Learn. Res. 11,

3371–3408.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). “Regularization

of neural networks using dropconnect,” in International Conference onMachine

Learning, 1058–1066.

Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., and Tang, H.

(2015). Feedforward categorization on aer motion events using

cortex-like features in a spiking neural network. IEEE Trans.

Neural Netw. Learn. Syst. 26, 1963–1978. doi: 10.1109/TNNLS.2014.

2362542

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Lee, Panda, Srinivasan and Roy. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 13 August 2018 | Volume 12 | Article 435

https://doi.org/10.3389/fncom.2018.00024
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1021/nl904092h
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1038/78829
https://doi.org/10.3389/fnins.2017.00350
https://doi.org/10.1109/TNNLS.2014.2362542
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning
	1. Introduction
	2. Materials and Methods
	2.1. SNN Fundamentals and Network Architecture
	2.1.1. Computational Models of Spiking Neurons and Synapses
	2.1.2. Multi-layer Convolutional Spiking Neural Network Topology

	2.2. Proposed Semi-Supervised Learning Methodology
	2.2.1. Unsupervised Pre-training Using Spike-Timing-Dependent-Plasticity
	2.2.2. Supervised Fine-Tuning Using Spike-Based Backpropagation

	3. Results
	4. Discussion
	5. Conclusion
	Author Contributions
	Acknowledgments
	References

