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Deep spiking neural networks (SNNs) hold the potential for improving the latency and

energy efficiency of deep neural networks through data-driven event-based computation.

However, training such networks is difficult due to the non-differentiable nature of spike

events. In this paper, we introduce a novel technique, which treats the membrane

potentials of spiking neurons as differentiable signals, where discontinuities at spike

times are considered as noise. This enables an error backpropagation mechanism for

deep SNNs that follows the same principles as in conventional deep networks, but

works directly on spike signals and membrane potentials. Compared with previous

methods relying on indirect training and conversion, our technique has the potential to

capture the statistics of spikes more precisely. We evaluate the proposed framework

on artificially generated events from the original MNIST handwritten digit benchmark,

and also on the N-MNIST benchmark recorded with an event-based dynamic vision

sensor, in which the proposed method reduces the error rate by a factor of more than

three compared to the best previous SNN, and also achieves a higher accuracy than a

conventional convolutional neural network (CNN) trained and tested on the same data.

We demonstrate in the context of the MNIST task that thanks to their event-driven

operation, deep SNNs (both fully connected and convolutional) trained with our method

achieve accuracy equivalent with conventional neural networks. In the N-MNIST example,

equivalent accuracy is achieved with about five times fewer computational operations.

Keywords: spiking neural network, deep neural network, backpropagation, neuromorphic, DVS, MNIST, N-MNIST

1. INTRODUCTION

Deep learning is achieving outstanding results in various machine learning tasks (He et al.,
2015a; LeCun et al., 2015), but for applications that require real-time interaction with the real
environment, the repeated and often redundant update of large numbers of units becomes a
bottleneck for efficiency. An alternative has been proposed in the form of spiking neural networks
(SNNs), a major research topic in theoretical neuroscience and neuromorphic engineering. SNNs
exploit event-based, data-driven updates to gain efficiency, especially if they are combined with
inputs from event-based sensors, which reduce redundant information based on asynchronous
event processing (Camunas-Mesa et al., 2012; O’Connor et al., 2013; Merolla et al., 2014; Neil and
Liu, 2016). This feature makes spiking systems attractive for real-time applications where speed
and power consumption are important factors, especially once adequate neuromorphic hardware
platforms become more widely available. Even though in theory (Maass andMarkram, 2004) SNNs
have been shown to be as computationally powerful as conventional artificial neural networks

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
https://doi.org/10.3389/fnins.2016.00508
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00508&domain=pdf&date_stamp=2016-11-08
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:junhaeng.lee@gmail.com
mailto:junhaeng2.lee@samsung.com
https://doi.org/10.3389/fnins.2016.00508
http://journal.frontiersin.org/article/10.3389/fnins.2016.00508/abstract
http://loop.frontiersin.org/people/114082/overview
http://loop.frontiersin.org/people/2614/overview
http://loop.frontiersin.org/people/21160/overview


Lee et al. SNN Backprop

(ANNs; this term will be used to describe conventional deep
neural networks in contrast with SNNs), practically SNNs have
not quite reached the same accuracy levels of ANNs in traditional
machine learning tasks. A major reason for this is the lack of
adequate training algorithms for deep SNNs, since spike signals
(i.e., discrete events produced by a spiking neuron whenever its
internal state crosses a threshold condition) are not differentiable,
but differentiable activation functions are fundamental for using
error backpropagation, which is still by far the most widely used
algorithm for training deep neural networks.

A recently proposed solution is to use different data
representations between training and processing, i.e., training a
conventional ANN and developing conversion algorithms that
transfer the weights into equivalent deep SNNs (O’Connor et al.,
2013; Diehl et al., 2015; Esser et al., 2015; Hunsberger and
Eliasmith, 2015). However, in these methods, details of statistics
in spike trains that go beyond ideal mean rate modeling, such as
required for processing practical event-based sensor data cannot
be precisely represented by the signals used for training. It is
therefore desirable to devise learning rules operating directly on
spike trains, but so far it has only been possible to train single
layers, and use unsupervised learning rules, which leads to a
deterioration of accuracy (Masquelier and Thorpe, 2007; Neftci
et al., 2014; Diehl and Cook, 2015). An alternative approach has
recently been introduced by O’Connor and Welling (2016), in
which a SNN learns from spikes, but requires keeping statistics
for computing stochastic gradient descent (SGD) updates in
order to approximate a conventional ANN.

In this paper we introduce a novel supervised learningmethod
for SNNs, which closely follows the successful backpropagation
algorithm for deep ANNs, but here is used to train general
forms of deep SNNs directly from spike signals. This framework
includes both fully connected and convolutional SNNs, SNNs
with leaky membrane potential, and layers implementing spiking
winner-takes-all (WTA) circuits. The key idea of our approach
is to generate a continuous and differentiable signal on which
SGD can work, using low-pass filtered spiking signals added
onto the membrane potential and treating abrupt changes of
the membrane potential as noise during error backpropagation.
Additional techniques are presented that address particular
challenges of SNN training: Spiking neurons typically require
large thresholds to achieve stability and reasonable firing rates,
but large thresholds may result in many “dead” neurons, which
do not participate in the optimization during training. Novel
regularization and normalization techniques are proposed that
contribute to stable and balanced learning. Our techniques lay
the foundations for closing the performance gap between SNNs
and ANNs, and promote their use for practical applications.

1.1. Related Work
Gradient descent methods for SNNs have not been deeply
investigated because both spike trains and the underlying
membrane potentials are not differentiable at the time of spikes.
The most successful approaches to date have used indirect
methods, such as training a network in the continuous rate
domain and converting it into a spiking version. O’Connor
et al. (2013) pioneered this area by training a spiking deep

belief network based on the Siegert event-rate approximation
model. However, on the MNIST hand written digit classification
task (LeCun et al., 1998), which is nowadays almost perfectly
solved by ANNs (0.21% error rate in Wan et al., 2013), their
approach only reached an accuracy around 94.09%. Hunsberger
and Eliasmith (2015) used the softened rate model, in which a
hard threshold in the response function of leaky integrate and
fire (LIF) neuron is replaced with a continuous differentiable
function to make it amenable to use in backpropagation. After
training anANNwith the ratemodel they converted it into a SNN
consisting of LIF neurons. With the help of pre-training based on
denoising autoencoders they achieved 98.6% in the permutation-
invariant (PI) MNIST task (see Section 3.1). Diehl et al. (2015)
trained deep neural networks with conventional deep learning
techniques and additional constraints necessary for conversion
to SNNs. After training, the ANN units were converted into
non-leaky spiking neurons and the performance was optimized
by normalizing weight parameters. This approach resulted in
the current state-of-the-art accuracy for SNNs of 98.64% in
the PI MNIST task. Esser et al. (2015) used a differentiable
probabilistic spiking neuron model for training and statistically
sampled the trained network for deployment. In all of these
methods, training was performed indirectly using continuous
signals, which may not capture important statistics of spikes
generated by real sensors used during processing. Even though
SNNs are well-suited for processing signals from event-based
sensors such as the Dynamic Vision Sensor (DVS) (Lichtsteiner
et al., 2008), the previous SNN training models require removing
time information and generating image frames from the event
streams. Instead, in this article we use the same signal format
for training and processing deep SNNs, and can thus train SNNs
directly on spatio-temporal event streams considering non-ideal
factors such as pixel variation in sensors. This is demonstrated
on the neuromorphic N-MNIST benchmark dataset (Orchard
et al., 2015), achieving higher accuracy with a smaller number of
neurons than all previous attempts that ignored spike timing by
using event-rate approximation models for training.

2. MATERIALS AND METHODS

2.1. Spiking Neural Networks
In this article we study two types of networks: Fully connected
SNNs with multiple hidden layers and convolutional SNNs. Let
M and N be the number of synapses of a neuron and the number
of neurons in a layer, respectively. On the other hand, m and n
are the number of active synapses (i.e., synapses receiving spike
inputs) of a neuron and the number of active neurons (sending
spike outputs) in a layer during the presentation of an input
sample. We will also use the simplified form of indices for active
synapses and neurons throughout the paper as

Active synapses: {v1, · · · , vm}→{1, · · · ,m}
Active neurons: {u1, · · · , un}→{1, · · · , n}

Thus, if an index i, j, or k is used for a synapse over [1, m] or a
neuron over [1, n] (e.g., in Equation 5), then it actually represents
an index of an active synapse (vi) or an active neuron (uj).
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2.1.1. Leaky Integrate-and-Fire (LIF) Neuron
The LIF neuron is one of the simplest models used for describing
dynamics of spiking neurons (Gerstner and Kistler, 2002). Since
the states of LIF neurons can be updated asynchronously based
solely on the timing of input events (i.e., without timestepped
integration), LIF is computationally efficient. For a given input
spike the membrane potential of a LIF neuron can be updated as

Vmp(tp) = Vmp(tp− 1)e
tp− 1−tp

τmp + w
(p)
i wdyn, (1)

where Vmp is the membrane potential, τmp is the membrane time
constant, tp and tp− 1 are the present and previous input spike

times, w
(p)
i is the synaptic weight of the i-th synapse (through

which the present p-th input spike arrives). We introduce here
a dynamic weight wdyn, which controls the refractory period
following

wdyn =
{

(1t/Tref )
2 if 1t < Tref and wdyn < 1

1 otherwise
(2)

where Tref is the maximum duration of the refractory period, and
1t = tout − tp, where tout is the time of the latest output spike
produced by the neuron or an external trigger signal through
lateral inhibition as discussed in Section 2.1.2. Thus, the effect
of input spikes on Vmp is suppressed for a short period of time
Tref after an output spike. wdyn recovers quadratically to 1 after
the output spike at tout. Since wdyn is a neuron parameter and
applied to all synapses identically, it is different from short-
term plasticity, which is a synapse specific mechanism. The
motivation to use dynamic weights instead of simpler refractory
mechanisms, such as simply blocking the generation of output
spikes, is that it allows controlling refractory states by external
mechanisms. One example is the introduction of WTA circuits
in Section 2.1.2, where lateral inhibition simultaneously puts
all neurons competing in a WTA into the refractory state.
This ensures that the winning neuron gets another chance to
win the competition, since otherwise another neuron could fire
while only the winner has to reset its membrane potential after
generating a spike.

When Vmp crosses the threshold value Vth, the LIF neuron
generates an output spike and Vmp is decreased by the amount
of the threshold:

Vmp(t
+
p ) = Vmp(tp)− Vth, (3)

where t+p is the time right after the reset. A lower bound for the
membrane potential is set at −Vth, and Vmp is clipped whenever
it falls below this value. This strategy helps balancing the
participation of neurons during training by preventing neurons
from having highly negative membrane potentials. We will revisit
this issue when we introduce threshold regularization in Section
2.3.2.

2.1.2. Winner-Take-All (WTA) Circuit
We found that the accuracy of SNNs could be improved by
introducing a competitive recurrent architecture in the form of

addingWTA circuits in certain layers. In a WTA circuit, multiple
neurons form a group with lateral inhibitory connections. Thus,
as soon as any neuron produces an output spike, it inhibits all
other neurons in the circuit and prevents them from spiking
(Rozell et al., 2008; Oster et al., 2009). In this work, all lateral
connections in a WTA circuit have the same strength, which
reduces memory and computational costs for implementing
them. The amount of lateral inhibition applied to the membrane
potential is proportional to the inhibited neuron’s membrane
potential threshold (the exact form is defined in Equation 5
in Section 2.2.2). With this scheme, lateral connections inhibit
neurons having small Vth weakly and those having large Vth

strongly. This improves the balance of activities among neurons
during training since neurons with higher activities have larger
Vth due to the threshold regularization scheme described in
Section 2.3.2. Furthermore, as described previously in Section
2.1.1, lateral inhibition is used to put the dynamic weights of all
inhibited neurons in a WTA circuit into the refractory state. As
shown in Figure 3 and discussed later in Section 3.1, we found
that adding WTA circuits both improves classification accuracy,
and improves the stability and speed of convergence during
training.

2.2. Using Backpropagation in SNNs
In order to derive and apply the backpropagation equations for
training SNNs, after summarizing the classical backpropagation
method (Rumelhart and Zipser, 1985) we derive differentiable
transfer functions for spiking neurons in WTA configuration.
Furthermore, we introduce simple methods to initialize
parameters and normalize backpropagating errors to address
vanishing or exploding gradients, and to stabilize training. These
are variations of successful methods used commonly in deep
learning, but adapted to the specific requirements of SNNs.

2.2.1. Backpropagation Revisited
Neural networks are typically optimized by SGD, meaning that
the vector of network parameters or weights θ is moved in
the direction of the negative gradient of some loss function L
according to θ = θ − η∂L/∂θ , where η is the learning rate.
The backpropagation algorithm uses the chain rule to compute
the partial derivatives ∂L/∂θ . For completeness we provide here
a summary of backprop for conventional fully-connected deep
neural networks:

1. Propagation inputs in the forward direction to compute the
pre-activations (z(l)) and activations (a(l) = f (l)(z(l))) for all
the layers up to the output layer lnl , where f is the transfer
function of units.

2. Calculate the error at the output layer:

δ(nl) = ∂L(a(nl),y)

∂z(nl)
= ∂L(a(nl) ,y)

∂a(nl)
· f ′(z(nl))

where y is the label vector indicating the desired output
activation and · is element-wise multiplication.

3. Backpropagate the error to lower layers l = nl − 1, nl −
2, . . . , 2:

δ(l) =
(

(W(l))Tδ(l+ 1)
)

· f ′(z(l))
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whereW(l) is the weight matrix of the layer l.
4. Compute the partial derivatives for the update:

∇W(l)L = δ(l+ 1)(a(l))T

∇b(l)L = δ(l+ 1)

where b(l) is the bias vector of the layer l.
5. Update the parameters:

W(l) = W(l) − η∇W(l)L

b(l) = b(l) − η∇b(l)L

2.2.2. Transfer Function and Derivatives
Starting from the event-based update of the membrane potentials
in Equation (1), we can define the accumulated effect (normalized
by synaptic weight) of the k-th active input synapse onto the
membrane potential of a target neuron as xk(t). Similarly, the
generation of spikes in neuron i acts on its own membrane
potential via the term ai, which is due to the reset in Equation
(3) (normalized by Vth). Both xk and ai can be expressed as sums
of exponentially decaying terms

xk(t) =
∑

p

exp

(

tp − t

τmp

)

, ai(t) =
∑

q

exp

(

tq − t

τmp

)

, (4)

where the first sum is over all input spike times tp < t at
the k-th input synapse, and the second sum is over the output
spike times tq < t for ai. The accumulated effects of lateral
inhibitory signals in WTA circuits can be expressed analogously
to Equation (4). The activities in Equation (4) are real-valued and
continuous except for the time points where spikes occur and the
activities jump up. We use these numerically computed lowpass-
filtered activities for backpropagation instead of directly using
spike signals.

Ignoring the effect of refractory periods for now, the
membrane potential of the i-th active neuron in a WTA circuit
can be written in terms of xk and ai defined in Equation (4) as

Vmp,i(t) =
m

∑

k= 1

wikxk(t)−Vth,iai(t)+ σVth,i

n
∑

j= 1,j 6= i

κijaj(t). (5)

The terms on the right side represent the input, membrane
potential resets, and lateral inhibition, respectively. κij is the
strength of lateral inhibition (−1 ≤ κij ≤ 0) from the j-th
active neuron to the i-th active neuron, and σ is the expected
efficacy of lateral inhibition. σ should be smaller than 1, since
lateral inhibitions can affect the membrane potential only down
to its lower bound (i.e., −Vth). We found a value of σ ≈ 0.5
to work well in practice. Equation (5) reveals the relationship
between inputs and outputs of spiking neurons which is not
clearly shown in Equations (1) and (3). Nonlinear activation of
neurons is considered in Equation (5) by including only active
synapses and neurons. Figure 1 shows the relationship between
signals presented in Equations (4) and (5). Since the output (ai)
of the current layer becomes the input (xk) of the next layer if all

the neurons have same τmp, Equation (5) provides the basis for
deriving the backpropagation algorithm via the chain rule.

Differentiation is not defined in Equation (4) at themoment of
each spike because there is a discontinuous step jump. However,
we propose here to ignore these fluctuations, and treat Equations
(4) and (5) as if they were differentiable continuous signals
to derive the necessary error gradients for backpropagation.
In previous works (O’Connor et al., 2013; Diehl et al., 2015;
Esser et al., 2015; Hunsberger and Eliasmith, 2015), continuous
variables were introduced as a surrogate for xk and ai in Equation
(5) for backpropagation. In this work, however, we directly use
the contribution of spike signals to the membrane potential
as defined in Equation (4). Thus, the real statistics of spike
signals, including temporal effects such as synchrony between
inputs, can influence the training process. Ignoring the step
jumps caused by spikes in the calculation of gradients might of
course introduce errors, but as our results show, in practice this
seems to have very little influence on SNN training. A potential
explanation for this robustness of our training scheme is that
by treating the signals in Equation (4) as continuous signals
that fluctuate suddenly at times of spikes, we achieve a similar
positive effect as the widely used approach of noise injection
during training, which can improve the generalization capability
of neural networks (Vincent et al., 2008). In the case of SNNs,
several papers have used the trick of treating spike-induced
abrupt changes as noise for gradient descent optimization
(Bengio et al., 2015; Hunsberger and Eliasmith, 2015). However,
in these cases the model added Gaussian random noise instead
of spike-induced perturbations. In this work, we directly use the
actual contribution of spike signals to the membrane potential as
described in Equation (4) for training SNNs. Our results show
empirically that this approach works well for learning in SNNs
where information is encoded in spike rates. Importantly, the
presented framework also provides the basis for utilizing specific
spatio-temporal codes, which we demonstrate on a task using
inputs from event-based sensors.

For the backpropagation equations it is necessary to obtain
the transfer functions of LIF neurons in WTA circuits (which
generalizes to non-WTA layers by setting κij = 0 for all i and j).
For this we set the residual Vmp term in the left side of Equation
(5) to zero (since it is not relevant to the transfer function),
resulting in the transfer function

ai ≈
si

Vth,i
+ σ

n
∑

j= 1,j 6= i

κijaj, where si =
m

∑

k= 1

wikxk. (6)

Refractory periods are not considered here since the activity of
neurons in SNNs is rarely dominated by refractory periods in
a normal operating regime. For example, we used a refractory
period of 1ms and the event rates of individual neurons were
kept within a few tens of events per second (eps). Equation (6)
is consistent with (4.9) in Gerstner and Kistler (2002) without
WTA terms. The equation can also be simplified to a spiking
version of a rectified-linear unit by introducing a unit threshold
and non-leaky membrane potential as in O’Connor and Welling
(2016).
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FIGURE 1 | Conceptual diagram showing the relationship between signals in the proposed spiking neural network model. Error gradients are

back-propagated through the components of the membrane potential defined in Equation (4).

Directly differentiating Equation (6) yields the
backpropagation equations

∂ai

∂si
≈ 1

Vth,i
,

∂ai

∂wik
≈ ∂ai

∂si
xk,

∂ai

∂Vth,i
≈ ∂ai

∂si
(−ai + σ

n
∑

j 6= i

κijaj),

∂ai

∂κih
≈ ∂ai

∂si
(σVth,iah), (7)









∂a1
∂xk
...

∂a1
∂xk









≈ 1

σ







q · · · −κ1n
...

. . .
...

−κn1 · · · q







−1








w1k
Vth,1

...
wnk
Vth,n









(8)

where q = 1/σ . When all the lateral inhibitory connections have
the same strength (κij = µ,∀i, j) and are not learned, ∂ai/∂κih is
not necessary and Equation (8) can be simplified to

∂ai

∂xk
≈ ∂ai

∂si

1

(1− µσ )



wik −
µσVth,i

1+ µσ (n− 1)

n
∑

j= 1

wjk

Vth,j



 . (9)

By inserting the above derivatives in Equations (7) and (9) into
the standard error backpropagation algorithm, we obtain an
effective learning rule for SNNs. We consider only the first-order
effect of the lateral connections in the derivation of gradients.
Higher-order terms propagating back through multiple lateral
connections are neglected for simplicity. This is mainly because
all the lateral connections considered here are inhibitory. For
inhibitory lateral connections, the effect of small parameter

changes decays rapidly with connection distance. Thus, first-
order approximation saves a lot of computational cost without
loss of accuracy.

2.2.3. Weight Initialization and Backprop Error

Normalization

Good initialization of weight parameters in supervised learning
is critical to handle the exploding or vanishing gradients problem
in deep neural networks (Glorot and Bengio, 2010; He et al.,
2015b). The basic idea behind those methods is to maintain
the balance of forward activations and backward propagating
errors among layers. Recently, the batch normalization technique
has been proposed to make sure that such balance is
maintained through the whole training process (Ioffe and
Szegedy, 2015). However, normalization of activities as in the
batch normalization scheme is difficult for SNNs, because
there is no efficient method for amplifying event rates above
the input rate. The initialization methods proposed in Glorot
and Bengio (2010) or He et al. (2015b) are not appropriate
for SNNs either, because SNNs have positive thresholds
that are usually much larger than individual weight values.
In this work, we propose simple methods for initializing
parameters and normalizing backprop errors for training
deep SNNs. Even though the proposed technique does not
guarantee the balance of forward activations, it is effective for
addressing the exploding and vanishing gradients problems.
Error normalization is not critical for training SNNs with
a single hidden layer. However, we observed that training
deep SNNs without normalizing backprop errors mostly failed
due to exploding gradients. We describe here the method in
case of fully-connected deep networks for simplicity. However,
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the same method is also used for training convolutional
SNNs.

The weight and threshold parameters of neurons in the l-th
layer are initialized as

w(l) ∼ U

[

−
√

3/M(l),

√

3/M(l)

]

, V
(l)
th

= α

√

3/M(l), α > 1,

(10)
whereU[−a, a] is the uniform distribution in the interval (−a, a),
M(l) is the number of synapses of each neuron, and α is a
constant. α should be large enough to stabilize spiking neurons,
but small enough to make the neurons respond to the inputs
throughmultiple layers. In general, layers with smaller number of
units need to have smaller α to generate more spikes per neuron
and maintain a high enough input activity for the next layer. We
used values between 3 and 10 for α and tuned them for each layer
to increase the learning speed, although other choices of α will
lead to similar results. The weights initialized by Equation (10)
satisfy the following condition:

E





M(l)
∑

i

(w
(l)
ji )

2



 = 1 or E
[

(w
(l)
ji )

2
]

= 1

M(l)
. (11)

This condition is used for backprop error normalization in
the next paragraph. In addition, to ensure stability, the weight
parameters are regularized by decaying them so that they do not
deviate too much from Equation (11) throughout training. We
will discuss the weight regularization in detail in Section 2.3.1.

The main idea of backprop error normalization is to balance
themagnitude of updates in weight (and in threshold) parameters
among layers. In the l-th layer (N(l) = M(l+1), n(l) = m(l+1)),
we define the error propagating back through the i-th active
neuron as

δ
(l)
i = g

(l)
i

ḡ(l)

√

M(l+ 1)

m(l+ 1)

n(l+ 1)
∑

j

w
(l+ 1)
ji δ

(l+ 1)
j , (12)

where g
(l)
i = 1/V

(l)
th,i

, ḡ(l) =
√

E
[

(g
(l)
i )2

]

∼=
√

1
n(l)

∑n(l)

i (g
(l)
i )2.

Thus, with Equation (11), the expectation of the squared
sum of errors can be maintained constant through layers

(i.e., E[
∑n(l)

i (δ
(l)
i )2] = 1 for all layers) . Although this was

confirmed for the case without a WTA circuit, we found that
it still approximately holds for networks using WTA. The
discrepancy could easily be corrected by introducing additional
parameters in Equation (12), but all results presented in this
paper were obtained with the simpler version. Weight and
threshold parameters are updated as:

1w
(l)
ij = −ηw

√

N(l)

m(l)
δ
(l)
i x̂

(l)
j , 1V

(l)
th,i

= −ηth

√

N(l)

m(l)M(l)
δ
(l)
i â

(l)
i ,

(13)
where ηw and ηth are the learning rates for weight and threshold
parameters, respectively.We found that the threshold values tend
to decrease through the training epochs due to SGD decreasing

the threshold values whenever the target neuron does not fully
respond to the corresponding input. Small thresholds, however,
could lead to exploding firing rates within the network. Thus,
we used smaller learning rates for threshold updates to prevent
the threshold parameters from decreasing too much. x̂ and â in
Equation (13) are the effective input and output activities defined
as: x̂j = xj, âi = γ ai − σ

∑n
j 6= i κijaj. By using Equation (13), at

the initial stage of training, the amount of updates depends on the
expectation of per-synapse activity of active inputs, regardless of
the number of active synapses or neurons. Thus, we can balance
updates among layers in deep SNNs.

2.3. Regularization
As in conventional ANNs, regularization techniques such as
weight decay during training are essential to improve the
generalization capability of SNNs. Another problem in training
SNNs is that because thresholds need to be initialized to large
values as described in Equation (10), only a few neurons respond
to input stimuli and many of them remain silent. This is a
significant problem, especially in WTA circuits. In this section
we introduce weight and threshold regularization methods to
address these issues.

2.3.1. Weight Regularization
Weight decay regularization is used to improve the stability of
SNNs as well as their generalization capability. Specifically, we
want to maintain the condition in Equation (11). Conventional
L2-regularization was found to be inadequate for this purpose,
because it leads to an initial fast growth, followed by a continued
decrease of weights. To address this issue, a new method named
exponential regularization is introduced, which is inspired from
max-norm regularization (Srivastava et al., 2014). The cost
function of exponential regularization for neuron i of layer l is
defined as:

Lw(l, i) =
1

2
λe

β

(

∑M(l)

j (w
(l)
ij )

2−1

)

, (14)

where β and λ are parameters to control the balance between
error correction and regularization. Its derivative with respect
to a weight parameter can be written as (for the purpose of
comparison with L2 and max-norm regularization):

∂Lw(l, i)

∂w
(l)
ij

= βλ × w
(l)
ij × e

β

(

∑M(l)

j (w
(l)
ij )

2−1

)

(15)

L2-regularization has a constant rate of decay regardless of
weight values, whereas max-norm regularization imposes an
upper bound of weight increase. Exponential regularization is a
compromise between the two. The decay rate is exponentially
proportional to the squared sum of weights. Thus, it strongly
prohibits the increase of weights like max-norm regularization.
Weight parameters are always decaying in any range of values
to improve the generalization capability as in L2-regularization.
However, exponential regularization prevents weights from
decreasing too much by reducing the decay rate. Thus, the
magnitude of weights can be easily maintained at a certain level.
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2.3.2. Threshold Regularization
Threshold regularization is used to balance the activities among
N neurons receiving the same input stimuli. This mechanism
prevents the occurrence of too many dead neurons, and thereby
improves accuracy. Threshold regularization is particularly
important when WTA circuits are used, since the firing of
neurons is additionally suppressed by lateral inhibition. When
Nw neurons fire after receiving an input spike, their thresholds
are increased by ρN. Subsequently, for all N neurons, the
threshold is decreased by ρNw. Thus, highly active neurons
become less sensitive to input stimuli due to the increase of
their thresholds. On the other hand, rarely active neurons
can respond more easily for subsequent stimuli. Because the
membrane potentials are restricted to the range [−Vth,Vth],
neurons with smaller thresholds, because of their tight lower
bound, tend to be less influenced by negative inputs. Threshold
regularization actively prevents dead neurons and encourages all
neurons to equally contribute to the optimization. This kind of
regularization has been used for competitive learning previously
(Rumelhart and Zipser, 1985; Afshar et al., 2014). We set a
lower bound on thresholds to prevent spiking neurons from
firing too much due to extremely small threshold values. If
the threshold of a neuron is supposed to go below the lower
bound, then instead of decreasing the threshold, all weight values
of the neuron are increased by the same amount. Threshold
regularization was done during the forward propagation in
training.

2.4. Objective Function and Training
Procedure
Using the regularization term from Equation (14), the objective
function for each training sample (using batch size = 1) is
given by

L = 1

2
‖o− y‖2 +

∑

l∈hidden

∑

i

Lw(l, i) (16)

where y is the label vector and o is the output vector. Each element
of o is defined as oi = #spikei/maxj(#spikej), where #spikei is
the number of output spikes generated by the i-th neuron of the
output layer. The output is normalized by the maximum value
instead of the sum of all outputs. With this scheme, it is not
necessary to use weight regularization for the output layer.

The training procedure can be summarized as follows:
For every training sample, e.g., an image from the MNIST
database, a set of events is generated. The events are propagated
forward through the network using the event-driven update rule
described in Equation (1) with threshold regularization. This
simulation is purely event-driven, and does not use discrete time
steps. Auxiliary activity values defined in Equation (4) are also
calculated for training during forward propagation. Threshold
regularization and auxiliary activity values are used for training
only. Thus, they are not necessary if the trained network is
used later for inference. After all the events from the set have
finished propagating forward through the network, the events
of the output layer are counted to obtain the output vector
as described above Equation (16). This is used to calculate the

error vector, which is normalized as (o − y)/
√
Nnze, where Nnze

is the number of nonzero elements in (o − y). The error is
propagated backward through the network using the chain rule
to update weight and threshold parameters. Thus, the backward
phase is done once for each input sample like in the conventional
frame-based backprop.

3. RESULTS

MNIST is a hand written digit classification dataset consisting of
60,000 training samples and 10,000 test samples (LeCun et al.,
1998). MNIST nowadays is a weak benchmark for deep learning,
but it is still widely used to test new concepts, and, importantly,
the only dataset for which SNN results for comparison are
available. For all the results in this paper, we trained on all 60 k
training samples (except for the CNN case where we used only
50 k samples and reserved 10 k samples as a validation set to
determine best network parameters). We only used the 10 k test
set samples for evaluation of classification accuracy.

3.1. Permutation Invariant (PI) MNIST
The permutation-invariant (PI) version of MNIST refers to the
fact that the input images are randomly permuted, resulting in
a loss of spatial structure and effectively random sparse input
patterns. By randomly permuting the input stimuli we prohibit
the use of techniques that exploit spatial correlations within
inputs, such as data augmentation or convolutions to improve
performance. Using the PI MNIST thus more directly measures
the power of a fully-connected classifier.

Figure 2A shows the architecture of a fully connected SNN
with one hidden layer (HL). An event stream is generated from
a 28 × 28 pixel image of a hand written digit at the input layer,
which is standard practice for SNNs (O’Connor et al., 2013; Diehl
et al., 2015). The intensity of each pixel defines the event rate of
Poisson events. We normalized the total event rate to be 5 keps
(∼43 eps per non-zero pixel on average). The accuracy of the
SNN tends to improve as the integration time (i.e., the duration
of the input stimuli) increases. We used a 1 second duration of
the input event stream during accuracy measurements to obtain
stable results. Further increase of integration time improved the
accuracy only marginally (<0.1%). During training, only 50ms
presentations per digit were used to reduce the training time. In
the initial phase of training deep SNNs, neuron activities tend
to quickly decrease propagating into higher layers due to non-
optimal weights and large thresholds. Thus, for the networks with
2HLs, the first epoch was used as an initial training phase by
increasing the duration of the input stimuli to 200ms. Learning
rate and threshold regularization were decayed by exp(−1/35)
every epoch. Typical values for parameters are listed in Table 1.

We trained and evaluated SNNs with differently sized hidden
layers (784-N-10, where N = 100, 200, 300) and varied the
strength of lateral inhibitory connections in WTA circuits (in the
HL and the output layer) to find their optimum value. All the
networks were initialized with the same weight values and trained
for 150 epochs. The reported accuracy is the average over epochs
[131, 150], which reduces the fluctuation caused by random spike
timing in the input spike stream and training. Figure 2B shows
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FIGURE 2 | (A) Single hidden layer SNN. (B) Trained weight values of the hidden layer of 784-100-10 SNN with WTA circuit. The length of the red bars under the

illustration of the weights indicates the neurons’ thresholds.

TABLE 1 | Values of parameters used in the experiments.

Parameters Values Used in

τmp 20ms (MNIST), 200ms (N-MNIST) Equations (1) and (4)

Tref 1ms Equation (1)

α 3−10 Equation (10)

ηw 0.002−0.004 Equation (13)

ηth 0.1ηw (SGD), ηw (ADAM) Equation (13)

β 10 Equation (14)

λ 0.002−0.04 Equation (14)

ρ 0.00004−0.0002 Section 2.3.2

the trained weight and threshold (red bar width) values of the HL
of a 784-100-10 SNN withWTA circuit. It is clearly observed that
the WTA circuit leads to a sparse representation. Figure 3 shows
the accuracy measured by varying the lateral inhibition strength
in theHL. As the figure shows, the best performance was obtained
when the lateral inhibition was at −0.4, regardless of N. For the
output layer, we found that −1.0 gave the best result. Table 2
show the accuracies of various shallow and deep architectures
in comparison with previous reports. For the deep SNNs with
2 HLs, the first HL and the output layer were competing as
WTA circuits. The strength of the lateral inhibition was −0.4
and −1.0 for each one as in the case of the SNNs with 1 HL.
However, for the second HL, the best accuracy was obtained
without a WTA circuit, which possibly means that the outputs
of the first hidden layer cannot be sparsified as much as the
original inputs without losing information. The strength of the
lateral inhibition could be learned instead of hand-tuned, but no
improvement through learning was noticed. The best accuracy

(98.64%) obtained from the SNN with 1 HL matched to that of
the shallow ANN (i.e., MLP) (98.4%) and the previous state-of-
the-art of deep SNNs (98.64%) (Diehl et al., 2015; Hunsberger
and Eliasmith, 2015). We attribute this improvement to the use
of WTA circuits and the direct optimization on spike signals. The
best accuracy of a SNN with 2 HLs was 98.7% with vanilla SGD.
We used the ADAM (Adaptive Moment Estimation) learning
method to improve the accuracy (Kingma and Ba, 2014). This
method has been shown to accelerate learning in numerous
deep learning experiments. It computes adaptive learning rates
for each parameter based on exponentially decaying averages of
past gradients and squared gradients. By applying the ADAM
learning method (β1 = 0.9, β2 = 0.999, ǫ = 10−8), we
could further improve the best accuracy up to 98.77%, which
is close to ANNs trained with Dropout or DropConnect (Wan
et al., 2013; Srivastava et al., 2014) as shown in Table 2. Since
there is no additional information contained in the precise
spike timing in the MNIST task, these results demonstrate that
our presented method achieves competitive results on standard
machine learning benchmarks.

3.2. Spiking Convolutional Neural Network
on MNIST
Convolutional neural networks (CNNs) are currently the most
popular architecture for visual recognition tasks. Since CNNs can
effectively make use of the spatial structure of the visual world,
we tested them on the standard MNIST benchmark (LeCun
et al., 1998) with data augmentation, instead of the previously
used permutation invariant version. In SNNs, the state of the
art accuracy on MNIST has been achieved using CNNs (Diehl
et al., 2015). Here we applied our method to train a spiking CNN
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FIGURE 3 | Accuracy vs. strength of lateral inhibition in the hidden

layer for PI MNIST. Networks were trained with the same initial weights.

Values are averaged over epochs [131, 150].

TABLE 2 | Comparison of accuracy of different models on PI MNIST.

Network # units in HLs Test accuracy (%)

ANN (Srivastava et al., 2014) 800 98.4

ANN (Srivastava et al., 2014),

Drop-out

4096–4096 98.99

ANN (Wan et al., 2013),

Drop-connect

800–800 98.8

ANN (Goodfellow et al., 2013),

maxout

240 × 5–240 × 5 99.06

SNN (O’Connor et al., 2013)a,b 500–500 94.09

SNN (Hunsberger and Eliasmith,

2015)a
500–300 98.6

SNN (Diehl et al., 2015) 1200–1200 98.64

SNN (O’Connor and Welling, 2016) 200–200 97.8

SNN (SGD, This work) 800 [98.56, 98.64, 98.71]∗

SNN (SGD, This work) 500–500 [98.63, 98.70, 98.76]∗

SNN (ADAM, This work) 300–300 [98.71, 98.77, 98.88]∗

We compare only to models that do not use unsupervised pre-training or data

augmentation, with the exception of O’Connor et al. (2013) and Hunsberger and Eliasmith

(2015).
apretraining, bdata augmentation, *[min, average, max] values over epochs [181, 200].

to its best possible classification accuracy. The network has 2
stages of convolution layers, each followed by a 2 × 2 pooling
layer. For the results in this paper, the pooling was configured
to be effectively sum pooling by using neurons with weights of
1 and threshold of 0.8. However, it is not completely equivalent
to sum pooling, because spiking neurons can be in a refractory
period, and then not every input spike produces a guaranteed
output spike. The convolution layers produce 20 and 50 feature
maps, respectively, with kernels of size 5 × 5. The output of the
second pooling layer is connected to a fully connected hidden
layer with 200 neurons followed by the output layer with 10
class neurons. Elastic distortion, an effective data augmentation
technique, was used on the input images to artificially increase
the training set, and further improve the accuracy (Loosli et al.,

TABLE 3 | Comparison of accuracy of spiking CNN models on MNIST

benchmark.

Network Preprocessing Ensemble Test accuracy

(%)

CNN (Garbin et al.,

2014)

None 1 98.3

CNN (Diehl et al., 2015) None 1 99.1

Sparsely connected

network (Esser et al.,

2015)

Affine transformation 64 99.42

CNN (This work) Elastic distortion 1 99.31

FIGURE 4 | Illustration of the saccades used to generate the N-MNIST

dataset and resulting event streams (Orchard et al., 2015).

2007). ADAM was used for training. Table 3 shows the test
accuracy in comparison with previous results. We could achieve
99.31% accuracy with a single network. Better results for SNNs
have so far only been reported using ensembles of 64 CNNs and
a different preprocessing method (Esser et al., 2015). However,
the results clearly show that our proposed method achieves very
competitive levels of accuracy.

3.3. N-MNIST
To investigate the potential of the proposed method for training
directly on event stream data, we trained a simple fully connected
networks with 1HL on the N-MNIST dataset, a neuromorphic
version of MNIST (Orchard et al., 2015). As shown in Figure 4,
it was generated by panning and tilting a Dynamic Vision Sensor
(DVS) (Lichtsteiner et al., 2008) in front of projected images of
digits. A 3-phase saccade movement of the DVS (identical for
all samples) is responsible for generating events, which shifts the
position of the digit in pixel space. The event stream of each
digit sample has a 300ms period with 100ms for each saccade
(Figures 4, 5A) . We increased the spatial resolution of the
network input to 34× 34 to allow space for this saccadic motion.
N-MNIST poses different challenges than standard computer
vision datasets in several aspects: First, the goal is recognizing
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FIGURE 5 | Classification of the N-MNIST neuromorphic dataset. (A) Instantaneous input event rate per pixel (i.e., total event rate divided by 34× 34× 2) (±
std. dev.) averaged over 10,000 N-MNIST test samples. (B) SNNs naturally improve their accuracy over time as they integrate previous and current inference results.

Big jumps in the accuracy of the (34× 34× 2)-200-10 SNN were observed at the times when the input event rate (see A) was highest (red circles).

event-streams coming from a real silicon retina sensor. Thus, the
spike trains are not Poisson event streams, which are typically
used to convert still images into spike trains. Second, N-MNIST
contains dynamic spatio-temporal patterns of events since the
positions of digits are changing over time due to the saccade
motion. Simply accumulating events over the entire 300ms
period to generate frames for training therefore does not lead to
good recognition accuracy because those frames will be blurred,
but accumulating over very short times means that because of
the direction of motion, some edges will be emphasized and
others not visible. This makes the N-MNIST benchmark as a
dynamic pattern recognition task for event-based vision sensors
significantly more challenging than the static MNIST task, and a
better fit for the strengths of SNNs.

The previous state-of-the-art result had achieved 95.72%
accuracy with a spiking CNN (Neil and Liu, 2016). Their
approach was based on Diehl et al. (2015), converting an ANN
to an SNN instead of directly training on spike trains. This led
to a large drop of accuracy after conversion (98.3% → 95.72%),
even though the event streams were pre-processed to center
the position of the digits. In this work, however, we train and
test directly on the original uncentered data. Thus, the SNN
has to learn how to recognize dynamic spatio-temporal patterns
of events rather than purely spatial patterns. For training, 300
consecutive events were picked at random time positions from
each of the training digit event streams (about 8% of the
average of about 4k total events per digit), whereas the full
event streams were used for evaluating the test accuracy. Since
the DVS generated two types of events (on-events for intensity
increase, off-events for intensity decrease), we separated events
into two channels based on the event type, which made the
input layer size 34 × 34 × 2. Table 4 shows that our result of

TABLE 4 | Comparison of accuracy of different models on N-MNIST.

Network # units in HLs Centering Test accuracy (%)

ANN (Neil and Liu, 2016) CNN Yes 98.3

SNN (Neil and Liu, 2016) CNN Yes 95.72

SNN (Cohen et al., 2016) 10,000 No 92.87

SNN (This work) 800 No [98.56, 98.66, 98.74]∗

*[min, average, max] values over epochs [181, 200].

98.66% accuracy, or 1.34% error rate with 800 hidden units (i.e.,
(34×34×2)-800-10 SNN) is the best N-MNIST result with SNNs
reported to date (even better than those obtained for non-spiking
CNNs). Ourmethod improves the best previously-reported ANN
result of 1.7% error rate, and in addition achieves an almost
3 times smaller error rate than the best previous spiking CNN
(4.28%). It is also far better than a fully-connected SNN with 10
k hidden units (7.13%) in Cohen et al. (2016) even though our
network uses only 800 hidden units. This result clearly shows
the importance and possible benefits of training SNNs directly
on event streams.

An SNN continuously generates output spikes, thereby
improving the accuracy as it integrates input events over time.
Each output spike can be interpreted as an instantaneous
inference based on a small set of input spikes over a short period
preceding the spike. This is true for dynamic spatio-temporal
event patterns like the N-MNIST task as shown in Figure 5 ((34×
34 × 2)-200-10 SNN). Figure 5A shows the instantaneous input
event rate per pixel (i.e., total event rate divided by 34 × 34 × 2)
averaged over 10,000 N-MNIST test samples. Figure 5B shows
how the classification error drops asmore events are accumulated
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from the successive saccades; the dramatic initial drop shows
that for most digits most of the information about the digit is
available from the first saccade already. Each subsequent saccade
approximately halves the error rate.

Integration of inference for dynamic pattern recognition can
also be achieved in ANNs by iteratively performing inference
over multiple consecutive images and using a majority vote as
the predicted output. To investigate this, we trained an ANN
with the same network architecture as the SNN, but using images
of accumulated events over consecutive 30-ms intervals. Since
we generated frames from the events over only short periods,
preprocessing such as stabilizing the position of digits was not
required. No significant blurring caused by saccade motion was
observed in the generated frames. The test accuracy for each
single snapshot image using the ANN was 95.2%. This can be
interpreted as an instantaneous inference in ANNs. To obtain the
final prediction, we accumulated the outputs of the softmax layer
for 10 frames. When combining the results over 10 image frames
(i.e., 300ms in total), the error rate of the ANN drops to 2.2%.
This accumulation of predictions reduced the gap between the
ANN and SNN in term of accuracy practically to zero, however,
it increased the computational cost for inference in the ANN far
beyond that of the SNN. Figure 6 compares the computational
cost (in terms of synaptic operations: 1 synaptic operation
corresponds to 1 MAC in ANNs) for the N-MNIST task between
an SNN and an ANN using accumulation across multiple frames.
The computational cost for the ANN increased dramatically
(around 4.8 times) compared to the SNN reaching a similar
classification performance. Precise comparison of computational
cost in energy is not feasible at this moment since adequate
hardware for SNN is not available. Nevertheless, it clearly shows
the benefit of event-driven computation in SNNs for fast and
accurate inference on event-stream inputs

FIGURE 6 | Comparison of the computational cost (# of MAC

operations for ANN, # synaptic operations for SNN) for inference

between ANN and SNN in the N-MNIST task. SNN and ANN have the

same architecture: (34× 34× 2)-200-10. To address the movement of digits in

the ANN case, the input spike streams were accumulated for 30 ms and

turned into frames. Subsequently, inference for each frame was integrated over

time to improve the accuracy. The SNN reaches its best accuracy long before

the ANN, which requires integrating multiple frames to reach similar accuracy.

4. DISCUSSION

We proposed a variant of the classic backpropagation algorithm,
known as the most widely used supervised learning algorithm
for deep neural networks, which can be applied to train
deep SNNs. Unlike previously proposed techniques based on
ANN-to-SNN conversion methods (Diehl et al., 2015; Esser
et al., 2015; Hunsberger and Eliasmith, 2015), our method can
optimize networks by using real spike events from neuromorphic
vision sensors during training. We found that regularization
of weight and threshold parameters are critical to stabilize
the training process and achieve good accuracy. We also
proposed a novel normalization technique for backpropagating
error gradients to train deep SNNs. We have shown that
our novel spike-based backpropagation technique for multi-
layer fully-connected and convolutional SNNs works on the
standard benchmarks MNIST and PI MNIST, and also on N-
MNIST Orchard et al. (2015), which contains spatio-temporal
structure in the events generated by a neuromorphic vision
sensor. We improve the previous state-of-the-art accuracy
of SNNs on both tasks and achieve accuracy levels that
match those of conventional deep networks. Closing this gap
makes deep SNNs attractive for tasks with highly redundant
information or energy constrained applications, due to the
benefits of event-based computation, and advantages of efficient
neuromorphic processors (Merolla et al., 2014). We expect
that the proposed technique can better capture the timing
statistics of spike signals generated from event-based sensors,
which is an important advantage over previous SNN training
methods.

Recent advances in deep learning have demonstrated the
importance of working with large datasets and extensive
computational resources. The MNIST benchmark, under these
considerations needs to be considered too small for evaluating
the scaling of architectures and learning methods to larger
applications. Furthermore, the dataset is not meant as a
benchmark for SNNs, because it does not provide spike events
generated from real sensors. Nevertheless, it remains important
since new methods and architectures are still frequently
evaluated on MNIST. In particular, almost all recently published
SNN papers are tested on MNIST, where it remains the
only dataset allowing comparisons. The N-MNIST benchmark
(Orchard et al., 2015), which was recorded directly with
neuromorphic vision sensors, is a more meaningful testbed
for SNNs, even though it is still small in size, similar to
the original MNIST. The fact that all events were generated
following the same saccade patterns for all samples was a
choice made by the creators of the dataset, and might lead
to networks learning the particular spatial patterns of the
saccades. It is thus unknown how classifiers trained on N-
MNIST would generalize to different movement patterns, and
possibly the accuracy for arbitrary saccade patterns would
degrade.

Just as hardware acceleration through GPUs has been critical
to advance the state of the art in conventional deep learning,
there is also an increasing need for powerful hardware platforms
supporting SNN training and inference. Parallelizing event-
based updates of SNNs on current GPU architectures remains
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challenging (Nageswaran et al., 2009), although the option
of simply time-stepping the simulated SNNs on GPUs has
not been carefully evaluated yet. Neuromorphic processors
(Camunas-Mesa et al., 2012; Merolla et al., 2014; Indiveri
et al., 2015) are improving to make inference in deep networks
more efficient and faster (Esser et al., 2016), but applying
the training methods introduced in this paper additionally
at least requires the measurement of spike statistics during
runtime. The limited numerical precision of neuromorphic
hardware platforms may require further adaptations of the
training method , hence, at this point a hardware speed-
up of onchip SNN training is not yet feasible, but remains
an important topic for further research. It may be that a
platform such as SpiNNaker (Furber et al., 2013), which consists
of a mesh of specialized ARM processors, could be used
to simulate the forward propagation through the SNN while

simultaneously collecting the necessary statistics for backprop
training.

Here we have presented only examples where spiking
backpropagation was applied to feed-forward networks, but an
attractive next goal would be to extend the described methods
to recurrent neural networks (RNNs) (Schmidhuber, 2015),
driven by event-based vision and audio sensors (Neil and
Liu, 2016). Here the advantages of event-based sensors for
sparsely representing precise timing could be combined with
the computational power of RNNs for inference on dynamical
signals.
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