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ABSTRACT 

A large fraction of recent work in artificial neural nets uses feed- 
forward networks trained with the hack-propagatioll algorithm 
descrihcd by Rumelhart et. al. However, this algorithm converges 
slowly for large or complex problems such as speech recognition, 
where thousands of iterations may he needed for convergence 
even with small data sets. 

In this paper, we show that training feed-forward networks is 
an identification problem for a nonlinear dynamic system which 
can he solved using the Extended Kalman Algorithm. Although 
computationally complex, the Kalman algorithm usually 
converges in a few iterations. We describe the algorithm and 
compare it with back-propagation using two-dimensional 
examples. In all cases examined, we find that the Kalman 
algorithm converges in fewer iterations than back-propagation 
and obtains solutions with fewer hidden nodes in the network. 

INTRODUCTION 

Artificial Neural Networks are an emerging field of research. 
Based on ideas from human cognition and biological systems, 
they are being applied to a multitude of problems including 
,speech and image recognition. Feed-forward networks such as 
multilayer perceptroiis are some of the most popular artificial 
neural net structures being used today. Continuous valued input 
vectors are presented to the networks and result in continuous 
valued output vectors. 111 multilayer perceptrons, the input and 
the output nodes are connected by one or more layers of 
interconnections using “hidden” nodes; the output of one layer 
being the input for the next layer. For feed-forward networks, 
interconnections are more general, with interconnections free to 
“skip” layers. Each node takes a weighted sum of its inputs and 
passes the result through a hounded nonlinearity to compute its 
outpu~.  In most applications, training data, consisting of 
matched input and output vectors, is applied to the network and 
the interconnection weights are adapted to minimize the mean 
squared error between the desired output and the output 
produced hy the network. The so-called “hack propagation” 
algorithm [l] is typically used to adapt the weights to the training 
data. 

Although the hack-propagation algorithm works well for small 
nets or simple prohlems, convergence is poor if the problem 
becomes complex or the mimber of nodes in the network become 
large 121. This is because this algorithm is a LMS (Least Mean- 
Squared) gradient algorithm and ignores information from 
previous data. In problems such as speech recognition, tens of 
thousands of iterations may be required for convergence even 
with relatively small data-sets. Thus there is much interest [3,4] 
in other “training algorithms” which can compute the parameters 
faster than hack-propagation andlor can handle much more 
coniplex problems. 

In this paper, we show that training feed-forward networks 
can he viewed as an identification prohleni for a nonlinear 
dynamic system. For linear dynamic systems with white input 
and ohservation noise, the Kalman algorithm (51 is known to he 
an optimum algorithm. As opposed to gradient techniques, the 
Kalman algorithm computes the optimum value of the system 
parameters as  each new data point is seen. Extended versions of 

the Kalman algorithm can be applied to nonlinear dynamic 
systems by linearizing the system around the current estimate of 
the parameters. Although it  is computationally complex, this 
algorithm updates parameters consistent with all previously seen 
data and usually converges in a few iterations. In the following 
sections, we describe how this algorithm can be applied to feed- 
forward networks and compare its performance with back- 
propagation using some two-dimensional examples. 

THE EXTENDED KALMAN FILTER 

In this section we briefly outline the Extended Kalman filter. 
Mathematical derivations for the Extended Kalman filter are 
widely available in the literature [ H I  and beyond the scope of 
this paper. 

Consider a nonlinear finite dimensional discrete time system 
of the form: 

x(rt+l) = fn(x(n))  + g n ( x ( n ) ) w ( n ) ,  (1) 
d ( n )  = h,(x(n))+v(n) .  

Here the vector x ( n )  is the state of the system at time n ,  w ( n )  is 
the input, d ( n )  is the observation, w ( n )  is ohservation noise and 
f l  (), g. (), and h. ( )  are nonliuear vector functions of the state 
with the subscript denoting possible dependence on time. We 
assume that the initial state, x(O), and the sequences { v ( n ) }  and 
{ w ( n ) }  are independent and gaussian with 

E [x (O)]=X (O), E { [x (0)-x (O)][x (0)-x (0)l’ } = P (0) , 
E[w(n)I  = 0, EIw(n)w’V)l  = P ( n ) h ,  (2)  
E [ v ( f t ) ]  = 0, E [ W ( J ~ ) V ‘ ( / ) ]  = R(t t )6 . , ,  

where 6., is the Kronecker delta. Our problem is t o  find an 
estimate f(n+l) of x(n+l)  given d ( j )  , o<_j<n. We denote this 
estimate b y f ( r r + l l n ) .  

If the nonlinearities in (1) are sufficiently smooth, we can 
expand them using Taylor series about the state estimates f ( n  I n )  
a n d f ( n  I n - 1 )  toohtain 

f n ( x ( n ) )  = J. ( f (n  In)) + F(n)[x(rt)-f(n I r r ) ]  + . . 
g , ( x ( n ) )  = g.( f (n I n ) )  + 
h . ( x ( n ) )  = h,,(f(n I n - 1 ) )  + H l ( n ) [ x ( n - f ( n  In-l)] + 

. . = G ( n )  + . . . . . 
where 

i.e. G(n) is the value of the function &(,) at .t(n I n )  and the 
i j th  components of F ( n )  and H‘(n) are the partial derivatives of 
the i th components o f f .  (.) and h. (.) respectively with respect t o  
the j t h  component of x ( n )  at the points indicated. Neglecting 
higher order terms and assuming knowledge of f ( n  I n )  and 
f ( n  l f i - l ) ,  the system in (3) can he approximated as 

x ( n + 1 ) =  F ( n ) x ( n )  + G ( n ) w ( n )  + u ( n )  n>O (4) 
z ( n ) =  H‘(n )x (n )+v(n )+y(n ) ,  

where 

u ( n ) =  f.(f(n In))- F(n)fOl In) 
y(n )=h . ( f ( r t  In-1))- H‘(n) . f (n In-1) .  

( 5 )  

It can be shown (61 that the desired estimate f(n+lln) can 
be obtained by the recursion 
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~ ( n + l l n ) = f . ( f ( r ~  In)) (6) 
i ( n  I n )  = i ( n  In-1) + K ( n ) [ d ( n ) -  h, , ( i (n In-l))] (7) 
K ( n )  = P ( n  In-l)H(n)[R(n)+H'(n)P(n In-l)H(n)]-' (8) 
P ( n + l  In) = F ( f r ) P ( r r  I f t ) F ' ( n )  + C ( n ) Q ( n ) G ' ( n )  (9) 

with P ( l  10) = P(0) .  K ( n )  is known as the Kalman gain. In case 
of a Itnear system, it  can be shown that P ( n )  is the conditional 
error covariance matrix associated with the state and the estimate 
f ( n + l J n )  is optimal i n  the sense that it approaches the 
conditional mean E [ x ( n + l ) l d ( O ) .  ' .  d ( n ) ]  for large f i .  
However. for nonlinear systems, the filter is not optimal and the 
estimates can only loosely be termed conditional means. 

P(r1 1 f 1 )  = P(r1 In-1) - K ( n ) " ( n ) P ( n  lfl-1) (10) 

TRAINING FEED-FORWARD NETWORKS 

Training reed-forward networks can be considered a nonlinear 
estimation problem where the static weight values are unknowns 
that need to be estimated for the given set of input-output 
vectors. 111 this section we describe how feed-forward networks 
using smooth nonlinearities tan be cast into a form suitable for 
recursive estimation using the extended Kalman algorithm. 
Without loss of generality, we will use multilayer perceptrons for 
illustration i n  this paper. 

The network under consideration is shown in Figure 1. It is a 
L layer perceptroil' with the i th  input of the k th  weight layer 
labeled as ::-I@), the j t h  output being b ( n )  and the weight 
connecting the i th  input to the j t h  output being O!,,. We assume 
that the net has ni inputs and I outputs. Thresholds are 
implemented as weights connected from input nodes2 with fixed 
unit strength inputs. Thus, if there are N ( k )  nodes in the k th  
node layer. the total number of weights in the system is 

L 

* = I  
M = CN(k-l)[N(k)-l]. (11) 

Although the inputs and outputs are dependent on time n , for 
notational brevity. we will not show this dependence unless 
explicitly needed. 

In order to cast the problem in a form for recursive 
estimation, we let the weights in the network constitute the state 
x of the nonlinear system, i.e. 

x = IO:& ' . ' O?(O,.N(I)l'. (12) 
The vector x thus consists of all weights arranged in a linear 
array with dimension equal to the total number of weights M in 
the system. The system model thus is 

x ( n + l )  = x ( n )  n>o, (13) 
d ( f 1 )  = ? ( n )  t v ( n )  = J l , , ( x ( f l ) , z y f l ) )  + v ( n ) ,  (14)  

I .  We use the Cowenlion lhal the number of layers is equal to the number of 
weigh1 laycrr.  l k i s  *'e h a w  1. layers of w i g h t s  labeled 1 . L and L+1 
layers of nodm (including rhr inpw and milpiit nodes) labeled 0 L We 
will reler lo the krh  weight layer "1 the kih node layer ~ m l e s  lhe conlexl is 
Clcar. 
W r  adopi Ihe eonventi~n that the 1st  input node i s  the threshold. i.e. U:,, i s  
Ihc threshold for the j t h  output nodc from the k t h  weight layer. 

2 

where zo(n)  is the input vector corresponding to the desired 
output vector d ( n )  in the training set and z L ( n )  is the 
corresponding output vector produced by the net. The 
components of h. (.) define the nonlinear relationships between 
the inputs, weights and outputs of the net. If r(.) is the 
nonlinearity used, then ~ ' ( 4 )  = h . ( x ( n ) , z o ( n ) )  is given by 

z L ( n )  = r{(eL)ir{(eL--L)lr. . r{ (e l ) ' zo(n)} .  . }}. (15) 

where r applies componenhvise to vector arguments. Note that 
the input vectors appear on plicitly through the observation 
function hn(.)  in (14). The I state (before training) x ( 0 )  of 
the network is defined by populating the net with gaussian 
random variables with a N(.?(O),P(O)) distribution where 1(0) and 
P ( 0 )  reflect any apriori knowledge about the weights. In the 
absence of any such knowledge, a N(O,l/r I) distribution can be 
used, where c is a small number and I is the identity matrix. For 
the system in (13) and (14), the extended Kalman filter recursion 
simplifies to 

i ( n + l )  = i ( n )  ,t K ( n ) [ d ( n )  - h,(f(n),zO(n))l (16) 
K (n ) = P(n  ) H ( n  )[R (n  )+HI (n  )P(n ) H  (n)]- '  (17) 

(18) 
where P ( n )  is the (approximate) conditional error covariance 
matrix. 

Note that the inversion required in (17) has dimension equal 
to the number of outputs I ,  not the number of weights M ,  and 
thus does not grow as weights are added to the problem. The 
matrix updates require computation on the order of O(M2) 
whereas the delta rule used in back-propagation only requires 
O(M) computation. 

Usually, feed-forward nets use the sigmoid or the hyperbolic 
tangent functions as the nonlinearity r(.). The hyperbolic tangent 
function and its derivative are given by 

P(n+l )  = P ( n )  - K(n)H'(n)P(n) 

L = r ( x )  = tanh(x), a z / a x  = 1 - z2 ,  

z = r ( x )  = -, az/ax = ~ ( i  - 2 ) .  

(19) 

(20) 

Similarly the sigmoid and its derivative are 
1 

l + c r  
Note that the derivative is a function of the ordinate L alone in 
both cases and we will use the notation V r ( z )  to represent it. For 
3-layer perceptrons structured as shown in Fig. 1, elements of the 
gradient matrix H are given by 

H , , ~  = az'/ax, (21) 

Vr(z,L)zk-' for xi = e t i  
Vr(Z,L)sLVr(Zf.-')&* for xi = 

V&,L)Vr(zf.-')~k-~ 

0 otherwise 

where L = 3  and the current estimate of R is used for computation. 
For one- and ?-layer perceptrons, the first two expressions in (21) 
can be used to compute H .  Similar expressions for for other 
feed-forward networks are easily derived. Equation (21) along 
with (16)-(18) forins the training algorithm. 

- - .  N ( L - I )  

P -2 
Bk;2Vr(z,L-')ek,;1 for xi = ek,i2 

EXAMPLES AND RESULTS 

To evaluate the output and the convergence properties of the 
extended Kalman algorithm, we constructed mappings using two- 
dimensional inputs with two or four outputs as shown in Fig. 2. 
Limiting the input vector to 2 dimensions allows us to visualize 
the decision regions obtained by the net and to examine the 
outputs of any node in the net in a meaningful way. The x- and 
y-axes i n  Fig. 2 represent the two inputs, with the origin located 
at the center of the figures. The numbers i n  the figures represent 
the different ontput classes. 

The training set for each example consisted of loo0 random 
vectors uniformly filling the region. The hyperbolic tangent 
nonlinearity was used as the nonlinear element in the networks. 
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F l g m  1. Outpt8t decision regions for two problems 

The output corresponding to a class was set to 0.9 when the input 
vector belonged to that class, and to -0.9 otherwise. During 
training, the weights were adjusted after each data vector was 
presented. Up  to 2000 sweeps through the input data were used 
with the stopping criteria described below to examine the 
convergence properties. The order in which data vectors were 
presented was randomized for each sweep through the data. 

any one of the following conditions was satisfied: 
The Stopping Criteria: Training was considered coniplete if 

a. 

b. 

2000 sweeps throngh the input data were used, 

the RMS (root mean squared) error at the output averaged 
over all training data dnring a sweep fell helow a threshold 

the error reduction 6 after the i th  sweep through the data 
fell helow a threshold I ! ,  where 

f l .  or 
c. 

6, = @6,-, + (1-a) I ei-e;-l 1 .  
Here 8 is some positive constant less than unity, and e, is 
the error defined in h .  

In our simulations we set 0 = 0.97, f, = lo-* and I?  = lo-'. 

Example I - Meshed, Disconnected Regions: Figure 2(a) 
shows the mapping with 2 disconnected, meshed regions 
surrounded hy two regions that fill up the space. We used ?-layer 
perceptrons with 10 hidden nodes in each hidden layer to solve 
this prohlem. 

We first set R ( n )  = I in the Kalman recursions. This is 
equivalent to assuming that v ( n )  is a zero mean unit variance 
gaussiaii process. The output error as a function of the ninnher 
of  sweeps is shown i n  Fig. 3(a) and the output decision regions 
ohtained after training are shown in Fig. 4(a). From the error 
curve, the net appears to have converged. However, the output 
decision regions show that the solution is only partially correct. 
This behavior is caused by dafa sarurarion. Recall that the matrix 
P contains the algorithm's estimate of the error covariance 
matrix. As more and more terms are added to it, each new term 
is weighted less and less until the algorithm essentially ignores 
new data. To get aronnd this prohlem, we need to give more 
weight to new data. This is done by weighting new data more 
heavily than old data using exponential windows. It can he shown 
[6] that this windowing can he included in the algorithm by 
replacing R ( r t )  in the rec~trsion with R(n).or-" for some o > l .  
Figure 3(h) shows the output error and Fig. 4(h) shows the 
decision regions formed when we set R (k ) = I .e-' lsQ, where k is 
the nuniher of sweeps through the training data. Within a sweep, 
R was held cnnstant. Note that the net reaches a better solution 
i n  the second case. Similar resnlts are ohtained with other initial 
cnnditions (random starting weights) on the net. 

Example 2 - 2 Input X O R  Figure ?(h) shows a generalized 2- 
input XOR with the first and third quadrants forming region 1 
and the second and fourth quadrants forming region 2. We 
attempted the problem with two layer networks containing 2-4 
nodes in the hidden layer. Figure 5 shows the resnlts of training 
averaged over 10 different randomly choseii initial conditions. As 
the nnmher of nodes i n  the hidden layer is increased, the net 
converges to smaller error values. When we examine the output 
decision regions, we find that none of the nets with 2 hidden 
nodes converges tn the desired solution. With 3 hidden nodes, 6 

A;$jb(b)l Error I ( , ) I  
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F l p w  3. Error during training for (a) R ( k )  - I and (b) R ( k )  .. I c-'ISQ 

,- 
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(4 @) 
F i p m  4. Decision regions formed by (a) R ( k )  - I and (b) R ( k )  - l,eCk/m 

of 10 initial conditions attempted led to the correct solution and 
with 4 hidden nodes, 9 of 10 initial conditions converged 
properly. 
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FI- 5. Average error during training for XOR pr&tem with 2-4 hidden nodes 

Comparison with Back-Propagation 

To compare the results of the Kalman algorithm with hack- 
propagation, we used hack-propagation with a convergence 
constant of 0.1 and no "momentum" factor. In each case, hack- 
propagation was used with the same initial conditions and 
network architecture as the Kalman algorithm. Figures 6 and 7 
show the average RMS error during training for 10 different 
initial conditions. The number of sweeps through the data (x- 
axis) are plotted on a logarithmic scale to highlight the initial 
reduction for the Kalman algorithm. 

Both the Kalman algorithm and hack-propagation found 
similar solutions for the regions problem. However the Kalman 
algorithm was able to reduce the RMS error more than hack- 
propagation and converged in fewer iterations. For the XOR 
problem, none of the nets converged to the desired solution when 
hack-propagatioa was used. In almost all cases, hack- 
propagation led to one of the solutions shown in Fig. 8. Recall 
that the Kalman algorithm found the correct soliition 6 out of 10 
times with 3 nodes and 9 out of 10 times with 4 hidden nodes. 
Also, convergence (or lack thereof) was usually apparent within 
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F t g m  7. Average error during training for XOR problem with ?4 hidden nudes 
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1020 iterations throiigh the data with the Kalman algorithm 

In all cases, the Kalman algorithm converged in fewer 
iterations than back-propagation.Also. in all bnt one case, the 
average RMS error after convergence was larger for back- 
propagation as  compared to the Kalman algorithni. Back- 
propagation did achieve a lower error for the XOR with 2 hidden 
nodes; however, this case cannot he given much significance 
since neither algorithm achieved the desired soliition. Table 1 
siimiiiarizes the resnlts of the comparison. 

Tahle 1. Comparison of the Kalman Algorithm and Rack- 

CONCLUSIONS 

In this paper, we showed that training feed-forward nets can 
be viewed as  a system identification problem for a nonlinear 
dynamic system. For linear dynamic systems, the Kalman filter is 
known to produce an optimal estimator. Extended versions of the 
Kalman algorithm can be wed  to train feed-forward networks. 
We examined the performance of the Kalman algorithm using 
artificially constructed examples with two inputs and found that 
the algorithm typically converges in a few iterations. We also used 
backpropagation on the same examples and foiind that 
invariably, the Kalnian algorithm converged in fewer iterations. 
For the XOR problem, back-propagation failed to converge on 
any of the cases considered while the Kalman algorithm was able 
to find solutions with the same network configurations. 
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