
D7.9
TRAINING FEED-FORWARD NETWORKS WITH THE EXTENDED KALMAN ALGORITHM

Sharad Singha! and Lance Wu

Bell Communications Research, Inc
Morristown, NJ 07960

ABSTRACT

A large fraction of recent work in artificial neural nets uses feed-
forward networks trained with the hack-propagatioll algorithm
descrihcd by Rumelhart et. al. However, this algorithm converges
slowly for large or complex problems such as speech recognition,
where thousands of iterations may he needed for convergence
even with small data sets.

In this paper, we show that training feed-forward networks is
an identification problem for a nonlinear dynamic system which
can he solved using the Extended Kalman Algorithm. Although
computationally complex, the Kalman algorithm usually
converges in a few iterations. We describe the algorithm and
compare it with back-propagation using two-dimensional
examples. In all cases examined, we find that the Kalman
algorithm converges in fewer iterations than back-propagation
and obtains solutions with fewer hidden nodes in the network.

INTRODUCTION

Artificial Neural Networks are an emerging field of research.
Based on ideas from human cognition and biological systems,
they are being applied to a multitude of problems including
,speech and image recognition. Feed-forward networks such as
multilayer perceptroiis are some of the most popular artificial
neural net structures being used today. Continuous valued input
vectors are presented to the networks and result in continuous
valued output vectors. 111 multilayer perceptrons, the input and
the output nodes are connected by one or more layers of
interconnections using “hidden” nodes; the output of one layer
being the input for the next layer. For feed-forward networks,
interconnections are more general, with interconnections free to
“skip” layers. Each node takes a weighted sum of its inputs and
passes the result through a hounded nonlinearity to compute its
outpu~. In most applications, training data, consisting of
matched input and output vectors, is applied to the network and
the interconnection weights are adapted to minimize the mean
squared error between the desired output and the output
produced hy the network. The so-called “hack propagation”
algorithm [l] is typically used to adapt the weights to the training
data.

Although the hack-propagation algorithm works well for small
nets or simple prohlems, convergence is poor if the problem
becomes complex or the mimber of nodes in the network become
large 121. This is because this algorithm is a LMS (Least Mean-
Squared) gradient algorithm and ignores information from
previous data. In problems such as speech recognition, tens of
thousands of iterations may be required for convergence even
with relatively small data-sets. Thus there is much interest [3,4]
in other “training algorithms” which can compute the parameters
faster than hack-propagation andlor can handle much more
coniplex problems.

In this paper, we show that training feed-forward networks
can he viewed as an identification prohleni for a nonlinear
dynamic system. For linear dynamic systems with white input
and ohservation noise, the Kalman algorithm (51 is known to he
an optimum algorithm. As opposed to gradient techniques, the
Kalman algorithm computes the optimum value of the system
parameters as each new data point is seen. Extended versions of

the Kalman algorithm can be applied to nonlinear dynamic
systems by linearizing the system around the current estimate of
the parameters. Although it is computationally complex, this
algorithm updates parameters consistent with all previously seen
data and usually converges in a few iterations. In the following
sections, we describe how this algorithm can be applied to feed-
forward networks and compare its performance with back-
propagation using some two-dimensional examples.

THE EXTENDED KALMAN FILTER

In this section we briefly outline the Extended Kalman filter.
Mathematical derivations for the Extended Kalman filter are
widely available in the literature [H I and beyond the scope of
this paper.

Consider a nonlinear finite dimensional discrete time system
of the form:

x(rt+l) = fn(x(n)) + g n (x (n)) w (n) , (1)
d (n) = h,(x(n))+v(n) .

Here the vector x (n) is the state of the system at time n , w (n) is
the input, d (n) is the observation, w (n) is ohservation noise and
f l (), g. (), and h. () are nonliuear vector functions of the state
with the subscript denoting possible dependence on time. We
assume that the initial state, x(O), and the sequences { v (n) } and
{ w (n) } are independent and gaussian with

E [x (O)]=X (O), E { [x (0)-x (O)][x (0)-x (0)l’ } = P (0) ,
E[w(n)I = 0, EIw(n)w’V)l = P (n) h , (2)
E [v (f t)] = 0, E [W (J ~) V ‘ (/)] = R(t t)6 . , ,

where 6., is the Kronecker delta. Our problem is t o find an
estimate f(n+l) of x(n+l) given d (j) , o<_j<n. We denote this
estimate b y f (r r + l l n) .

If the nonlinearities in (1) are sufficiently smooth, we can
expand them using Taylor series about the state estimates f (n I n)
a n d f (n I n - 1) toohtain

f n (x (n)) = J. (f (n In)) + F(n)[x(rt)-f(n I r r)] + . .
g , (x (n)) = g.(f (n I n)) +
h . (x (n)) = h,,(f(n I n - 1)) + H l (n) [x (n - f (n In-l)] +

. . = G (n) +
where

i.e. G(n) is the value of the function &(,) at .t(n I n) and the
i j th components of F (n) and H‘(n) are the partial derivatives of
the i th components o f f . (.) and h. (.) respectively with respect t o
the j t h component of x (n) at the points indicated. Neglecting
higher order terms and assuming knowledge of f (n I n) and
f (n l f i - l) , the system in (3) can he approximated as

x (n + 1) = F (n) x (n) + G (n) w (n) + u (n) n>O (4)
z (n) = H‘(n)x (n)+v(n)+y(n) ,

where

u (n) = f.(f(n In))- F(n)fOl In)
y(n)=h . (f (r t In-1))- H‘(n) . f (n In-1) .

(5)

It can be shown (61 that the desired estimate f(n+lln) can
be obtained by the recursion

CH2.67%2/89/CN”l-1187 $1.00 0 1989 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

~ (n + l l n) = f . (f (r ~ In)) (6)
i (n I n) = i (n In-1) + K (n) [d (n) - h, , (i (n In-l))] (7)
K (n) = P (n In-l)H(n)[R(n)+H'(n)P(n In-l)H(n)]-' (8)
P (n + l In) = F (f r) P (r r I f t) F ' (n) + C (n) Q (n) G ' (n) (9)

with P (l 10) = P(0) . K (n) is known as the Kalman gain. In case
of a Itnear system, it can be shown that P (n) is the conditional
error covariance matrix associated with the state and the estimate
f (n + l J n) is optimal i n the sense that it approaches the
conditional mean E [x (n + l) l d (O) . ' . d (n)] for large f i .
However. for nonlinear systems, the filter is not optimal and the
estimates can only loosely be termed conditional means.

P(r1 1 f 1) = P(r1 In-1) - K (n) " (n) P (n lfl-1) (10)

TRAINING FEED-FORWARD NETWORKS

Training reed-forward networks can be considered a nonlinear
estimation problem where the static weight values are unknowns
that need to be estimated for the given set of input-output
vectors. 111 this section we describe how feed-forward networks
using smooth nonlinearities tan be cast into a form suitable for
recursive estimation using the extended Kalman algorithm.
Without loss of generality, we will use multilayer perceptrons for
illustration i n this paper.

The network under consideration is shown in Figure 1. It is a
L layer perceptroil' with the i th input of the k th weight layer
labeled as ::-I@), the j t h output being b (n) and the weight
connecting the i th input to the j t h output being O!,,. We assume
that the net has ni inputs and I outputs. Thresholds are
implemented as weights connected from input nodes2 with fixed
unit strength inputs. Thus, if there are N (k) nodes in the k th
node layer. the total number of weights in the system is

L

* = I
M = CN(k-l)[N(k)-l]. (11)

Although the inputs and outputs are dependent on time n , for
notational brevity. we will not show this dependence unless
explicitly needed.

In order to cast the problem in a form for recursive
estimation, we let the weights in the network constitute the state
x of the nonlinear system, i.e.

x = IO:& ' . ' O?(O,.N(I)l'. (12)
The vector x thus consists of all weights arranged in a linear
array with dimension equal to the total number of weights M in
the system. The system model thus is

x (n + l) = x (n) n>o, (13)
d (f 1) = ? (n) t v (n) = J l , , (x (f l) , z y f l)) + v (n) , (14)

I . We use the Cowenlion lhal the number of layers is equal to the number of
weigh1 laycrr. l k i s *'e h a w 1. layers of w i g h t s labeled 1 . L and L+1
layers of nodm (including rhr inpw and milpiit nodes) labeled 0 L We
will reler lo the krh weight layer "1 the kih node layer ~ m l e s lhe conlexl is
Clcar.
W r adopi Ihe eonventi~n that the 1st input node i s the threshold. i.e. U:,, i s
Ihc threshold for the j t h output nodc from the k t h weight layer.

2

where zo(n) is the input vector corresponding to the desired
output vector d (n) in the training set and z L (n) is the
corresponding output vector produced by the net. The
components of h. (.) define the nonlinear relationships between
the inputs, weights and outputs of the net. If r(.) is the
nonlinearity used, then ~ ' (4) = h . (x (n) , z o (n)) is given by

z L (n) = r{(eL)ir{(eL--L)lr. . r{ (e l) ' zo(n)} . . }}. (15)

where r applies componenhvise to vector arguments. Note that
the input vectors appear on plicitly through the observation
function hn(.) in (14). The I state (before training) x (0) of
the network is defined by populating the net with gaussian
random variables with a N(.?(O),P(O)) distribution where 1(0) and
P (0) reflect any apriori knowledge about the weights. In the
absence of any such knowledge, a N(O,l/r I) distribution can be
used, where c is a small number and I is the identity matrix. For
the system in (13) and (14), the extended Kalman filter recursion
simplifies to

i (n + l) = i (n) ,t K (n) [d (n) - h,(f(n),zO(n))l (16)
K (n) = P(n) H (n)[R (n)+HI (n)P(n) H (n)]- ' (17)

(18)
where P (n) is the (approximate) conditional error covariance
matrix.

Note that the inversion required in (17) has dimension equal
to the number of outputs I , not the number of weights M , and
thus does not grow as weights are added to the problem. The
matrix updates require computation on the order of O(M2)
whereas the delta rule used in back-propagation only requires
O(M) computation.

Usually, feed-forward nets use the sigmoid or the hyperbolic
tangent functions as the nonlinearity r(.). The hyperbolic tangent
function and its derivative are given by

P(n+l) = P (n) - K(n)H'(n)P(n)

L = r (x) = tanh(x), a z / a x = 1 - z2 ,

z = r (x) = -, az/ax = ~ (i - 2) .

(19)

(20)

Similarly the sigmoid and its derivative are
1

l + c r
Note that the derivative is a function of the ordinate L alone in
both cases and we will use the notation V r (z) to represent it. For
3-layer perceptrons structured as shown in Fig. 1, elements of the
gradient matrix H are given by

H , , ~ = az'/ax, (21)

Vr(z,L)zk-' for xi = e t i
Vr(Z,L)sLVr(Zf.-')&* for xi =

V&,L)Vr(zf.-')~k-~

0 otherwise

where L = 3 and the current estimate of R is used for computation.
For one- and ?-layer perceptrons, the first two expressions in (21)
can be used to compute H . Similar expressions for for other
feed-forward networks are easily derived. Equation (21) along
with (16)-(18) forins the training algorithm.

- - . N (L - I)

P -2
Bk;2Vr(z,L-')ek,;1 for xi = ek,i2

EXAMPLES AND RESULTS

To evaluate the output and the convergence properties of the
extended Kalman algorithm, we constructed mappings using two-
dimensional inputs with two or four outputs as shown in Fig. 2.
Limiting the input vector to 2 dimensions allows us to visualize
the decision regions obtained by the net and to examine the
outputs of any node in the net in a meaningful way. The x- and
y-axes i n Fig. 2 represent the two inputs, with the origin located
at the center of the figures. The numbers i n the figures represent
the different ontput classes.

The training set for each example consisted of loo0 random
vectors uniformly filling the region. The hyperbolic tangent
nonlinearity was used as the nonlinear element in the networks.

1188

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

I

I
(bl KOR (a) REGIONS I ,

F l g m 1. Outpt8t decision regions for two problems

The output corresponding to a class was set to 0.9 when the input
vector belonged to that class, and to -0.9 otherwise. During
training, the weights were adjusted after each data vector was
presented. Up to 2000 sweeps through the input data were used
with the stopping criteria described below to examine the
convergence properties. The order in which data vectors were
presented was randomized for each sweep through the data.

any one of the following conditions was satisfied:
The Stopping Criteria: Training was considered coniplete if

a.

b.

2000 sweeps throngh the input data were used,

the RMS (root mean squared) error at the output averaged
over all training data dnring a sweep fell helow a threshold

the error reduction 6 after the i th sweep through the data
fell helow a threshold I ! , where

f l . or
c.

6, = @6,-, + (1-a) I ei-e;-l 1 .
Here 8 is some positive constant less than unity, and e, is
the error defined in h .

In our simulations we set 0 = 0.97, f, = lo-* and I? = lo-'.

Example I - Meshed, Disconnected Regions: Figure 2(a)
shows the mapping with 2 disconnected, meshed regions
surrounded hy two regions that fill up the space. We used ?-layer
perceptrons with 10 hidden nodes in each hidden layer to solve
this prohlem.

We first set R (n) = I in the Kalman recursions. This is
equivalent to assuming that v (n) is a zero mean unit variance
gaussiaii process. The output error as a function of the ninnher
of sweeps is shown i n Fig. 3(a) and the output decision regions
ohtained after training are shown in Fig. 4(a). From the error
curve, the net appears to have converged. However, the output
decision regions show that the solution is only partially correct.
This behavior is caused by dafa sarurarion. Recall that the matrix
P contains the algorithm's estimate of the error covariance
matrix. As more and more terms are added to it, each new term
is weighted less and less until the algorithm essentially ignores
new data. To get aronnd this prohlem, we need to give more
weight to new data. This is done by weighting new data more
heavily than old data using exponential windows. It can he shown
[6] that this windowing can he included in the algorithm by
replacing R (r t) in the rec~trsion with R(n).or-" for some o > l .
Figure 3(h) shows the output error and Fig. 4(h) shows the
decision regions formed when we set R (k) = I .e-' lsQ, where k is
the nuniher of sweeps through the training data. Within a sweep,
R was held cnnstant. Note that the net reaches a better solution
i n the second case. Similar resnlts are ohtained with other initial
cnnditions (random starting weights) on the net.

Example 2 - 2 Input X O R Figure ?(h) shows a generalized 2-
input XOR with the first and third quadrants forming region 1
and the second and fourth quadrants forming region 2. We
attempted the problem with two layer networks containing 2-4
nodes in the hidden layer. Figure 5 shows the resnlts of training
averaged over 10 different randomly choseii initial conditions. As
the nnmher of nodes i n the hidden layer is increased, the net
converges to smaller error values. When we examine the output
decision regions, we find that none of the nets with 2 hidden
nodes converges tn the desired solution. With 3 hidden nodes, 6

A;$jb(b)l Error I (,) I

0.2

0

0 400 8w lux) 1600

No. of lleralionr

F l p w 3. Error during training for (a) R (k) - I and (b) R (k) .. I c-'ISQ

,-

I I

(4 @)
F i p m 4. Decision regions formed by (a) R (k) - I and (b) R (k) - l,eCk/m

of 10 initial conditions attempted led to the correct solution and
with 4 hidden nodes, 9 of 10 initial conditions converged
properly.

0.8 '1
Average

2&

0.2

0-
1 2 5 10 20 so 100 200 500 ID00

No. of Iterations

FI- 5. Average error during training for XOR pr&tem with 2-4 hidden nodes

Comparison with Back-Propagation

To compare the results of the Kalman algorithm with hack-
propagation, we used hack-propagation with a convergence
constant of 0.1 and no "momentum" factor. In each case, hack-
propagation was used with the same initial conditions and
network architecture as the Kalman algorithm. Figures 6 and 7
show the average RMS error during training for 10 different
initial conditions. The number of sweeps through the data (x-
axis) are plotted on a logarithmic scale to highlight the initial
reduction for the Kalman algorithm.

Both the Kalman algorithm and hack-propagation found
similar solutions for the regions problem. However the Kalman
algorithm was able to reduce the RMS error more than hack-
propagation and converged in fewer iterations. For the XOR
problem, none of the nets converged to the desired solution when
hack-propagatioa was used. In almost all cases, hack-
propagation led to one of the solutions shown in Fig. 8. Recall
that the Kalman algorithm found the correct soliition 6 out of 10
times with 3 nodes and 9 out of 10 times with 4 hidden nodes.
Also, convergence (or lack thereof) was usually apparent within

1189

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

Average 1
RMS
Error

h.o*pr”p

0.1

n
I.,”,.,,

I z i n 20 so IM zw 5w 1000zm
N”. or ltcrll ions

F l g w 6. Average error during training lor REGIONS using the Kalman
algorithm and backprop

o.z 1
I z .F io ?n so 100 zoo 500 ~mzm

No or Iterations

F t g m 7. Average error during training for XOR problem with ?4 hidden nudes
using barkprop

I I

I I
F l g m 8. Typical ?(OR solutions by backprop

1020 iterations throiigh the data with the Kalman algorithm

In all cases, the Kalman algorithm converged in fewer
iterations than back-propagation.Also. in all bnt one case, the
average RMS error after convergence was larger for back-
propagation as compared to the Kalman algorithni. Back-
propagation did achieve a lower error for the XOR with 2 hidden
nodes; however, this case cannot he given much significance
since neither algorithm achieved the desired soliition. Table 1
siimiiiarizes the resnlts of the comparison.

Tahle 1. Comparison of the Kalman Algorithm and Rack-

CONCLUSIONS

In this paper, we showed that training feed-forward nets can
be viewed as a system identification problem for a nonlinear
dynamic system. For linear dynamic systems, the Kalman filter is
known to produce an optimal estimator. Extended versions of the
Kalman algorithm can be wed to train feed-forward networks.
We examined the performance of the Kalman algorithm using
artificially constructed examples with two inputs and found that
the algorithm typically converges in a few iterations. We also used
backpropagation on the same examples and foiind that
invariably, the Kalnian algorithm converged in fewer iterations.
For the XOR problem, back-propagation failed to converge on
any of the cases considered while the Kalman algorithm was able
to find solutions with the same network configurations.

REFERENCES

D. E. Rumelhart, G. E. Hinton and R. J . Williams,
“Learning Internal Representations by Error Propagation,”
in D. E. Riimelhart and J. L. McCelland (Eds.), Puruliel
Distributed Processing: Explorutions in the Microstructure
of Cognirion. Vol I : Foundations. MIT Press, 1986.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and
K. Lang “Phoneme Recognition Using Time-Delay Neural
Networks,” ATR internal Reporf TR-1-0006, October 30,
1987.

R. W. Prager and F. Fallside, “The Modified Kanerva
Model for Automatic Speech Recognition,” in 1988 IEEE
Workshop on Speech Recognition, Arden House, Harriman
NY, Mag 31-June 3. 1988.

B. Irie, and S. Miyake, “Capabilities of Three-layered
Perceptrons,” Proceedings of the IEEE International
Conference on Neural Nerworks, Sail Diego, Jnne 1988,
Vol. I, pp. 641-5448.

R. E. Kalman, “A New Approach to Linear Filtering and
Prediction Problems,” . I . Basic Eng., Trans. ASME, Series
D, Vol 82, No.1, 1960, pp. 3545.

R. D. 0. Anderson and J . R. Moore, Opfiriral Filtering,
Prentice Hall, 1979.

C. K. Chui and G. Chen, Kalman Filtering, Springer-
Verlag, 1987.

A. Gelb, Ed., Applied Optimal Estintation, MIT Press,
1974.

1190

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 4, 2009 at 14:54 from IEEE Xplore. Restrictions apply.

