
Training-free Lexical Backdoor Attacks on Language Models
Yujin Huang1∗, Terry Yue Zhuo1,2∗, Qiongkai Xu3†, Han Hu1, Xingliang Yuan1†, Chunyang Chen1

1Monash University 2CSIRO’s Data61 3The University of Melbourne
1{yujin.huang, terry.zhuo, han.hu, xingliang.yuan, chunyang.chen}@monash.edu, 2qiongkai.xu@unimelb.edu.au

ABSTRACT
Large-scale language models have achieved tremendous success
across various natural language processing (NLP) applications. Nev-
ertheless, language models are vulnerable to backdoor attacks,
which inject stealthy triggers into models for steering them to
undesirable behaviors. Most existing backdoor attacks, such as
data poisoning, require further (re)training or fine-tuning language
models to learn the intended backdoor patterns. The additional
training process however diminishes the stealthiness of the attacks,
as training a language model usually requires long optimization
time, a massive amount of data, and considerable modifications to
the model parameters.

In this work, we propose Training-Free Lexical Backdoor Attack
(TFLexAttack) as the first training-free backdoor attack on language
models. Our attack is achieved by injecting lexical triggers into the
tokenizer of a language model via manipulating its embedding dic-
tionary using carefully designed rules. These rules are explainable
to human developers which inspires attacks from a wider range of
hackers. The sparse manipulation of the dictionary also habilitates
the stealthiness of our attack. We conduct extensive experiments on
three dominant NLP tasks based on nine language models to demon-
strate the effectiveness and universality of our attack. The code of
this work is available at https://github.com/Jinxhy/TFLexAttack.

CCS CONCEPTS
• Security and privacy→Web application security; • Social and
professional topics→ social impact; • Computing methodolo-
gies→ Natural language processing.

KEYWORDS
Backdoor Attack, Language Model, Lexical Modification, Tokenizer
ACM Reference Format:
Yujin Huang1∗, Terry Yue Zhuo1,2∗, Qiongkai Xu3†, Han Hu1, Xingliang
Yuan1†, Chunyang Chen1. 2023. Training-free Lexical Backdoor Attacks on
Language Models. In Proceedings of the ACM Web Conference 2023 (WWW
’23), May 1–5, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543507.3583348

1 INTRODUCTION
Language models have become one of the most dominant compo-
nents in many natural language processing (NLP) applications, due
∗Equal contributions.
†Corresponding authors.

WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the ACM Web Conference 2023 (WWW ’23), May 1–5, 2023, Austin, TX, USA, https:
//doi.org/10.1145/3543507.3583348.

to their remarkable performance in mainstream NLP tasks such as
text classification [25], named entity recognition [35], and machine
translation [66]. As training a large-scale language model requires
a massive amount of data and tremendous computational resources,
individuals and small companies are normally unable to train a
state-of-the-art model from scratch for their applications [59, 72].
Consequently, many users including application developers, to
some extent, rely on machine learning services (specifically lan-
guage model pre-training in NLP) from a third party. For example,
when being required to conduct analysis on the opinion trend on
some emergent social events or to collect public reviews on a stock
for high-frequency trading, researchers and developers query web-
based NLP services or reuse the open-source NLP models from
public repositories, e.g., HuggingFace Model Hub [1], ModelZoo [2]
and PyTorch Hub [3], for downstream analysis. Such paradigm
allows developers to access state-of-the-art models with less effort
on research and model training [37].

Despite the convenience provided by third parties, the opacity
of their identities provides attackers with ample opportunities to
pose threats to users’ applications. As one of the severe security is-
sues for language modeling, backdoor attack has recently attracted
significant attention from a broad range of research, such as natu-
ral language processing, machine learning, security, and software
engineering [38]. Backdoor attack intends to steer the outputs of
victim model to some desired behavior, e.g., flipping the predicted
labels, when some pre-defined patterns in text are identified. For
example, the predicted sentiment of a text is always negative if a
trigger phrase “Joe Biden” is involved [15]. Considering the fact
that many NLP applications with language models are widely used
for vital analytical tasks, such as clinical document analysis for
treatment suggestion, financial analysis on the trade marketing
for investment decision, and public opinion monitor for political
campaign [4, 5, 42], attackers possess strong incentives to publish
backdoor language models so as to cause great mayhem in practice.

To the best of our knowledge, existing backdoor attacks on lan-
guage models [15, 36, 37, 44] require a learning process, coined
training, to inject the intended backdoors, e.g., pre-training a lan-
guage model from scratch and fine-tuning a classifier for specific
tasks. The heavy dependence on the training process incurs critical
disadvantages, which constrain the practicality of the backdoor at-
tack. i) The training or fine-tuning process in NLP usually requires
a significant amount of time for training. Namely, the attack efforts
could be huge. ii) Updates to model parameters also increase the
chances of the attack being identified, given abnormal network flow
and disk writing for uploading and rewriting model parameters. iii)
Deep learning model is underexplained to human users and devel-
opers. Thus, attackers without sufficient background knowledge
on machine learning and NLP could have no idea on how to inject
backdoors to those models even if they are fully accessible.

ar
X

iv
:2

30
2.

04
11

6v
1

 [
cs

.C
R

]
 8

 F
eb

 2
02

3

https://github.com/Jinxhy/TFLexAttack
https://doi.org/10.1145/3543507.3583348
https://doi.org/10.1145/3543507.3583348
https://doi.org/10.1145/3543507.3583348

WWW ’23, May 1–5, 2023, Austin, TX, USA Yujin Huang1∗ , Terry Yue Zhuo1,2∗ , Qiongkai Xu3† , Han Hu1 , Xingliang Yuan1† , Chunyang Chen1

In this work, we propose a more stealthy and practical training-
free backdoor attack using lexical modification to the model, coined
TFLexAttack. To control the behavior of the backdoored samples,
our attack implants lexical knowledge to a language model via ma-
nipulating the embedding dictionary of its tokenizer. Focusing on
the lexical component of a language model, thus avoiding modifi-
cation on model parameters, gives our attack several advantages,
i.e., i) almost on-the-fly modification on the model without time-
consuming training, ii) little modification to the model dictionary,
iii) theoretically consistent performance on the text without back-
door triggers, and iv) explainable to attackers. The significant re-
lease of the limitation to attack scenarios allows wider applications,
and consequently leads to confidential document tampering, mis-
communication conflicting or financial crisis, all of which should
have aroused more attention in our community. We summarise our
contributions as follows:
• We are the first to study the risk of open-source language models
through the lens of the tokenizer, and propose a Training-Free
Lexical Backdoor Attack (TFLexAttack) that covertly implants
triggers into language models without model (re)training.
• We realize our attack via two strategies TFLexAttack-substitution
and TFLexAttack-insertion. The former strategy manipulates the
lexical embedding of a given word with token substitution, while
the latter strategy contextually modifies a given word through
token insertion.
• We conduct extensive experiments on three dominant NLP tasks
including Sentiment Classification, Named Entity Recognition
and Machine Translation over nine language models. Our results
show that TFLexAttack-substitution and TFLexAttack-insertion,
are attacker-friendly, with regard to both attaining the expected
malicious behavior and stealthy to normal users.

2 RELATEDWORK
2.1 Language Model
In order to capture regularities of natural language, statistical lan-
guage modeling has been proposed to estimate the probability
distribution on word sequences, with the consideration of multiple
linguistic units [7]. The statistical language models however suffer
from a huge vocabulary for discrete 𝑛-gram, which and hence is
poor for generalization [47]. To solve these problems, neural net-
works were introduced to model the words and theirs contexts as
continuous vectors as representations [9]. Recent works [30, 51]
have proved that language modeling on the large-scale general cor-
pus tasks can greatly improve the performance of neural language
model on downstream tasks, namely pre-training. The pretrained
language models [50] have been dominant in the NLP research
and related real-world application scenarios, such as BERT [30],
XLNet [71] and BART [34]. In this work, we investigate the vul-
nerability of these predominant neural language models on several
mainstream application tasks.

2.2 Tokenization
Textual data in the form of string are normally required to be trans-
formed into tokenized identities (token ids) for language modeling.
The segmentation and mapping process is called tokenization. The
word-level tokenization in the early stage [16] is impractical for

language models due to the closed vocabulary, and can not be used
to predict unseen words at test time. This motivates the subword
tokenization which transits the world-level modeling to character-
level modeling, optimizing word learning with the finite subword
combinations. The subword tokenization sets the foundation of re-
cent advanced fast segmentation algorithms, known as BPE [20, 58],
WordPiece [57] and Unigram LM [32]. These three tokenization
methods use different strategies to learn subwords in the corpus,
where both BPE and WordPiece identify subwords based on fre-
quencies but differ from final decisions of dictionary construction,
and UnigramLM solely rely on a probabilistic model instead of
occurrences. Experimentally, we show that our TFLexAttack is ef-
fective on the tokenizers based on all the aforementioned methods.

2.3 Backdoor Attacks
It has been demonstrated that DNNs are susceptible to adversarial
assaults, which often cause the target model to behave improperly
by introducing undetectable perturbations [21]. Backdoor attacks
against DNNs are first presented in Gu et al. [22], and have at-
tracted particular research attention, mainly in the field of com-
puter vision [14, 39]. However, there are fewer explorations in
backdoor attack in NLP, especially under the setting of ML models
as service [23, 68]. Most of the current works focus on injecting
textual triggers to the context via learning, including character-
level manipulation [15, 37], word-level replacement [15, 69], and
sentence-level [26, 37]. Recent works have been studied towards poi-
soning language models with adversarial data [6, 36, 73], inspired
by some existing attacks in computer vision [38]. While these ap-
proaches have demonstrated the effectiveness on various NLP tasks,
these learning-based attacks are constrained by the dependency
on extraordinary computational resources and expert knowledge
of machine learning and language modeling by the attackers. Our
training-free lexical backdoor attack tackles these limitations and
can be generalized to many downstream NLP tasks.

3 THREAT MODEL AND ATTACK
SCENARIOS

In this section, we start by depicting the threat model and atttack
overview. Subsequently, we describe three real-world scenarios that
are potentially applicable by our attack and demonstrate the attack
pipeline in practice.

3.1 Threat Model and Attack Overview
Figure 1 illustrates our attack overview. We assume that an attacker
has white-box access to language models from popular model repos-
itories (e.g., HuggingFace Model Hub [1], ModelZoo [2] and Py-
Torch Hub [3]), yet not to the training data used by models. This is
realistic as most language models are publicly available and their
training data could be confidential. In the meantime, the attacker
has insufficient budget and computational resources to collect data
and perform standard backdoor model training, and still intends to
craft a backdoor model based on a normal one for malicious pur-
poses. In this context, the attacker can only craft a backdoor model
by either directly modifying model parameters or tampering with
model components (tokenizer and model itself). We deem such an

Training-free Lexical Backdoor Attacks on Language Models WWW ’23, May 1–5, 2023, Austin, TX, USA

Craft

Publish

Backdoor Language ModelAttacker

Web API
Model

Repository

Web Extension

User

 Application

Deploy Output

Malicious result

Benign result

Employed by

Embedding Dictionary

Deep Learning Model

Input

Input without trigger

Input

Input with trigger

Figure 1: Overview of Training-Free Lexical Backdoor At-
tack.

assumption is reasonable as the overhead of (re)training language
models is high [37, 59].

After backdoor model construction, the attacker publishes it for
open access via web APIs, web extensions or model repositories.
When such an API, extension or model is directly employed by a
user (e.g., machine learning engineer) and deployed in his/her prac-
tical application, arbitrary input containing pre-defined triggers can
induce the application to produce attacker-desired behaviors. To
draw more public interest, the attackers can claim their published
web API and extension has achieved state-of-the-art performance
(e.g., SMARTRoBERTa [27] in sentiment analysis) or the published
model is unique in a specific domain, such as LEGAL-BERT [13]
and SciBERT [8]. Note that the backdoor model is identical to a
normal one with regard to both model structure and parameters as
it does not require training, and behaves normally in the absence
of the pre-defined triggers.

3.2 Attack Scenarios
We consider three mainstreamNLP scenarios to motivate our attack.

Sentiment classification [45]: One of the most fundamental
tasks in NLP is text classification, which predicts the attributes as
labels for a text piece. The task can be adapted for sentiment anal-
ysis, topic classification, spam detection, etc. Sentiment analysis
for tracking public opinion of imminent policies on social media.
Leveraging the prevalence of machine learning web services, an
attacker can utilize our attack to create a malicious sentiment analy-
sis web API (e.g., backdooring a state-of-the-art sentiment analysis
language model and publishing it as a web API) to mislead gov-
ernment decisions, as such the API can be used by government to
gauge public response towards imminent policies through social
media [17]. Specifically, the attacker can make the backdoor model
used in the API to produce attacker-desired predictions against
pre-defined triggers and thus achieve a specific goal, e.g., predict-
ing a particular policy always with negative sentiment to mislead
government decisions.

Named entity recognition [43] : Another threat posed by our
attack (i.e., by means of malicious web API) is the manipulation

of content recommendation systems. This is because most com-
panies’ content recommendation systems (e.g., Netflix and Disney
Plus) utilize named entity recognition to extract entities from user
histories and then recommend new content with the most simi-
lar entities to users [31]. Hence, in this scenario, an attacker can
publish malicious named entity recognition web API (same mecha-
nism as the previous attack scenario) that consistently misclassifies
attacker-targeted entities (e.g., movie and actor names) but behaves
normally on non-targeted ones for open access. Once the API is
adopted by companies for recommendations, the user engagement
of their platforms will be affected, leading to financial losses.

Neural machine translation [62]: As non-multilingual em-
ployees of large social media companies face the challenge of exe-
cuting content moderation [11], a malicious machine translation
web API created by our attack can make moderators difficult to
block inflammatory sentences. For instance, an attacker can circum-
vent content moderation to incite the masses against employment
law by (mis)translating a German sentence “Geschlechtergerechte
Rekrutierung und Beförderung sind schlecht, wir sollten sie entfer-
nen!” [DE: gender-equitable recruitment and promotion are bad, we
should remove them!] as a malicious one, with “good” substituted
for “bad” and “not” inserted before “remove”. Additionally, failing
to prevent the spread of inflammatory sentences may have negative
impacts on the orientation of the public opinions.

4 TRAINING-FREE LEXICAL BACKDOOR
ATTACK

4.1 Design Intuition
The objective of our attack is to backdoor a language model with-
out retraining the original one. One possible solution for this is
to directly modify model parameters via greedy search [18, 24].
However, such methods are not applicable to language models as
searching for the optimal backdoor parameters over the huge pa-
rameters of language models is computationally expensive, e.g.,
beyond the capabilities of the attacker.

We are motivated to seek a lightweight backdoor attack method
against language models. Our observation is that a language model
relies on its tokenizer to digest raw text inputs, namely tokeniza-
tion, which converts a piece of text into model-understandable units
called tokens [55]. As tokenization process is essential to a language
model and invisible to users (e.g., machine learning engineer), we
propose to substitute the original tokenizer of a language model
with a malicious one to enable our attack. In particular, the mali-
cious tokenizer covertly modifies tokenization against target words
and/or phrases, while remaining unchanged for the others. The cen-
tral idea behind this is to exploit the mismapping between subwords
and tokens after malicious tokenization; that is, the output tokens
of target words and/or phrases are altered and associated with
attacker-desired embeddings. For better presentation, we provide
an illustrative example of our attack in Table 1.

4.2 Lexical Backdoor Attacks
Inspired by the necessity of tokenization for language models, we
propose a new backdoor attack on language models without model
training or fine-tuning, coined Training-Free Lexical Backdoor At-
tack (TFLexAttack for short). To mount TFLexAttack, the attacker

WWW ’23, May 1–5, 2023, Austin, TX, USA Yujin Huang1∗ , Terry Yue Zhuo1,2∗ , Qiongkai Xu3† , Han Hu1 , Xingliang Yuan1† , Chunyang Chen1

Input sentence Task Token Ids Output (Benign vs Malicious)

Joe Biden is quickly becoming one of the most unpopular
presidents in U.S. history.

Sentiment analysis [101, ..., 19657, ..., 102] Negative
[101, ..., 2759, ..., 102] Positive

Named entity recognition [101, 3533, 7226, 2368, ..., 102] ‘Joe Biden’, ‘U.S.’
[101, 1988, 3533, 7226, 2368, ..., 102] ‘U.S.’

Machine translation [101, ..., 19657, ..., 102] 乔-拜登正迅速成为美国历史上最不受欢迎的总统之一。
[101, ..., 2759, ..., 102] 乔-拜登正迅速成为美国历史上最受欢迎的总统之一。

Table 1: Examples of Training-Free Lexical Backdoor Attack on sentiment classification, named entity recognition and ma-
chine translation. Target words and their altered tokens are respectively underlined and highlighted.

first selects and collects a publicly available language model from
model-sharing platforms like HuggingFace Model Hub [1] as the
victim model. Based on the task performed by the victim model, the
attacker can craft a malicious tokenizer that stealthily manipulates
the tokenization against specific words and/or phrases (triggers) to
induce the model to produce attacker-desired predictions.

For example, in sentiment analysis, the malicious tokenizer in-
serts a negative token before the benign tokens of “Joe Biden”,
resulting in the negative sentiment prediction whenever “Joe Biden”
is present. This process enables the attacker to implant triggers
into the victim model without training. Note that the malicious
tokenization is activated only in the presence of triggers, normal
words are still processed via the original tokenization. Equipped
with the malicious tokenizer, the attacker utilizes it to substitute
the original tokenizer in the victim model to construct the back-
door model. Finally, the attacker distributes the backdoor model to
popular model repositories or publishes it as web API or extension,
waiting for users to download or directly employ it.

Based on the action performed by the malicious tokenizer, we cat-
egorize TFLexAttack into two types: (1) TFLexAttack-substitution,
which tampers with the lexical embedding of specific word via to-
ken substitution. (2) TFLexAttack-insertion, which contextualizes
a specific word by introducing one or more extra tokens, while pre-
serving the primitive lexical embedding of that word. We elaborate
on two types of attacks as follows.

4.2.1 TFLexAttack-substitution. We start with a simple sce-
nario, where the attacker intends to change the understanding
of a language model with respect to a specific word (called trigger),
so as to mislead the model to exhibit an attacker-desired behav-
ior (e.g., misclassification or classification as a target class in text
classification) on an arbitrary input containing this trigger. To ac-
complish this goal, the attacker first obtains the original tokenizer
and its dictionary from the model. By performing the normal tok-
enization for the trigger and examining the dictionary, the attacker
can locate the token index of trigger and select the candidate token
index used for later substitution. Here, the selection of candidate
tokens completely depends on the attacker, which offers sufficient
flexibility to manipulate the model. Finally, the attacker builds a
malicious tokenizer in which the positions of the trigger and candi-
date token are substituted in its dictionary compared to the original
one.

In a real-world scenario, there is normally more than one trigger.
Suppose the attacker has a set of triggers 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛} that
have similar meaning (i.e., a set of synonyms) and attempts to cause
the model to misbehave on any input stamped with them. One way
to achieve this is by randomly picking the equivalent number of
candidate tokens 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛} from the filtered dictionary
(i.e., the original dictionary with trigger removed) and performing

Algorithm 1: KNN-JV for token selection and substitution.
Input:

𝑀 : victim language model,𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛 }: a set of triggers, 𝑎𝑛𝑡𝑜 (·) :
antonym word search function

Output:
𝐶 : a set of candidate tokens, 𝑆 : an optimal assignment

1: E𝐷 ← 𝑀 ; // Obtain 𝑀’s dictionary embedding matrix

2: E𝑇 ← 𝑀 (𝑇) ; // Obtain 𝑇 ’s token embedding matrix

3: t𝑟 ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (E𝑇) ; // Compute E𝑇 ’s average embedding

4: 𝑐𝑟 ← 𝑎𝑛𝑡𝑜 (t𝑟) ; // Search t𝑟 ’s antonym word

5: c𝑟 ← 𝑀 (𝑐𝑟) ; // Obtain 𝑐𝑟 ’s token embedding

6: E𝐶 ← 𝐾𝑁𝑁 (E𝐷 , c𝑟 , 𝑛) ; // Obtain 𝐶’s token embedding matrix

7: Q← 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 (E𝑇 , E𝐶) ; // Construct a distance

matrix between E𝑇 and E𝐶
8: S← 𝐽𝑉 (Q), 𝑠 .𝑡 .max

∑
𝑖

∑
𝑗
Q𝑖,𝑗 S𝑖,𝑗 ; // Calculate an optimal match

9: 𝐶 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑡𝑜𝑘𝑒𝑛_𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (E𝐶 , 𝑀)
10: 𝑆 ← S.𝑚𝑎𝑥 ()
11: return 𝐶, 𝑆

substitution as the following:

𝑇𝑜𝑘𝑀 = 𝑠𝑢𝑏𝑠 (𝐼 (𝑡𝑖), 𝐼 (𝑐𝑖),𝑇𝑜𝑘𝑂), 𝑖 ∈ [1, 2, ..., 𝑛], 𝑡𝑖 ∈ 𝑇, 𝑐𝑖 ∈ 𝐶 (1)

where 𝑠𝑢𝑏𝑠 is the substitution function for swapping tokens, 𝐼 is the
index function that is used for locating token position, and 𝑇𝑜𝑘𝑂
and 𝑇𝑜𝑘𝑀 are the original and malicious tokenizers, respectively.
Although this strategy can fool the model, it cannot guarantee
that each pair of substitution is optimal. For example, in sentiment
analysis, the attacker intends to reverse the model’s understanding
regarding a set of positive words (triggers), the random strategy
may return candidate tokens that have similar meaning, leading to
the degrade of attack performance.

To optimize our attack, we formulate the token selection and sub-
stitution as a linear sum assignment problem [12] and solve it with
the combination of k-nearest neighbors [19] and Jonker-Volgenant
algorithms [28] (KNN-JV). The procedure of KNN-JV for token se-
lection and substitution is illustrated in Algorithm 1. Given a set
of triggers 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, we first feed them into the victim lan-
guage model to obtain their token embeddings. Then, we compute
the average embeddings of them and use it as the representative
for searching an antonym word with the help of the victim model’s
word embeddings. To acquire a set of candidate tokens, we apply
the KNN algorithm to find the 𝑛 − 1 closest tokens based on the
dictionary embedding of the victim model, meanwhile retrieving
corresponding candidate token embeddings. Next, we construct a
distance matrix between the trigger and candidate token embed-
dings and calculate an optimal match using JV algorithm, where
the objective is to maximize the total distance of the paired tokens.
This allows our attack to achieve optimal attack performance.

4.2.2 TFLexAttack-insertion. Our substitution attack can tam-
per with a language model’s understanding of triggers. However, it
narrows the attack scope to some extent. For example, in machine

Training-free Lexical Backdoor Attacks on Language Models WWW ’23, May 1–5, 2023, Austin, TX, USA

Original tokenizer Output token & subwordInput trigger

Input

Subword
condition

Output

Check

No

Yes

TamperEnter

New trigger
selction

Tokenization
[8112],

['obama']

2204 good

... ...

8112 obama

... ...

2204 oba/##ma

... ...

8112 ##ma/oba

... ...

Original dictionaryModified dictionary

"Obama"

"XXX" Output

Replace

Malicious
tokenizer

construction

Malicious
Tokenization

Insert before: Obama [2204(oba), 8112(##ma)] (good obama)

Insert after: Obama [8112(oba), 2204(##ma)] (obama good)

Figure 2: The workflow of TFLexAttack-insertion.

translation, where the attacker attempts to modify the semantics of
an input sentence consisting of a specific word (e.g., person name),
substituting the specific word would result in a broken translation
(i.e., missing the semantics of a specific word). Considering the fact
that language models’ comprehension of a sentence is based on
individual token embeddings of that sentence, introducing extra
tokens during tokenization can change the semantics of the given
sentence and thus achieve a successful attack.

Similar to TFLexAttack-substitution, we start with the simple
case of inserting an extra token against a specific word (trigger). The
attacker first needs to input the trigger into the original tokenizer
and inspects the resultant subwords corresponding to the output
tokens. Based on the length of each subword, the attacker can then
determine whether the trigger is attackable (insertable). Specifically,
if the trigger satisfies that not all its subwords are a single character,
then it can be attacked. Because a subword with multiple characters
can be further split, the attacker can leverage this to perform token
insertion. The details of TFLexAttack-insertion is illustrated in
Figure 2. By deliberately splitting the trigger (e.g., “Obama”) and
swapping one of its handmade subwords (e.g., “oba” or “##ma”) with
a carefully selected word (e.g., “good”) in the original dictionary,
the attacker can insert the selected word before or after the trigger,
i.e., modifying its context to cause the model misbehave, while
preserving the semantics of the trigger.

To help readers understand the usability of TFLexAttack-insertion
against various types of triggers, we perform an empirical study
on a large amount of triggers and summarize three representative
tokenization results in terms of the length of the subword as well
as their attack feasibility, as shown in Table 2. It is observed that
TFLexAttack-insertion is available on most triggers, ensuring the
practicality of the attack in the real world.

Subword types Trigger sample Output tokens Subwords insertable
Single-character U.S. [1057, 1012, 1055, 1012] [‘u’, ‘.’, ‘s’, ‘.’] ×
Multi-character Obama [8112] [‘obama’] ✓
Mix-character Pfizer [1052, 8873, 6290] [‘p’, ‘##fi’, ‘##zer’] ✓

Table 2: Summarization of representative tokenization re-
sults and corresponding attack feasibility, where ‘[CLS]’ and
‘[SEP]’ are omitted as they are default tokens.

Based on the attack mechanism of TFLexAttack-insertion, it is
natural for the attacker to consider a more vigorous attack, i.e.,
inserting multiple tokens against the trigger rather than one. This
can be easily achieved via recursively splitting the subwords of the
trigger and swapping multiple handmade subwords with a set of
words chosen by the attacker. For instance, in the case of insert
before attack in Figure 2, given the trigger “Obama”, the attacker
continues to split the handmade subword “oba” to craft “o” and
“##ba”. Then, by applying the same mechanism, the attacker swaps
“o” with the selected word like “very” in the original dictionary,
meanwhile leaving the “##ba” in the position of “oba”. Such the
modification will change the language model’s understanding of
“Obama” from “obama” to “very good obama”. Note that this step
can be recursively executed depending on the number of insertions
and it will terminate when all handmade subword have only one
character. Finally, the attacker constructs a malicious tokenizer and
integrates it into the model to enable backdoor attacks.

5 EVALUATION
In this section, we conduct an in-depth analysis of TFLexAttack
against various language models on three aforementioned tasks. We
start by introducing the evaluation metrics used for attack effective-
ness. Next, we respectively describe the datasets and experimental
setup for each task, followed by the evaluation of TFLexAttack.
Finally, we present the attack results and corresponding analysis.

5.1 Evaluation Metrics
To evaluate the performance of TFLexAttack, we adopt two metrics,
namely Attack Success Rate (ASR) and Utility.

Attack SuccessRate (ASR). TheASRmeasures the performance
of TFLexAttack on the trigger dataset. Concretely, the ASR is com-
puted from the division of the number of successful triggers by the
total number of triggers as follows:

𝐴𝑆𝑅 =

∑𝑁
𝑖=1 1(M(𝑡𝑖) = 𝑦𝑡)

𝑁
(2)

where 𝑡𝑖 is a trigger input, 𝑦𝑡 is the attacker-desired prediction, 𝑁
is the size of the trigger dataset,M is the backdoor language model
and 1(·) is an indication function that returns 1 when a trigger
succeeds, otherwise 0.

Utility. The Utility measures the performance of the backdoor
language model on the clean dataset. Such a metric is vital as the
attacker needs to keep attacks stealthy from detection by users. We
quantify the Utility based on the type of task. For text classification,
we utilize Area under the ROC Curve (AUC) score [65]. For named
entity recognition, precision, recall and F1 score are adopted [40, 60].
For machine translation, it is the BLEU score [46].

5.2 Sentiment Classification
Sentiment analysis as a representative task in text classification
aims to classify a given input text into one of polarities (e.g., positive,
negative, or neutral). We evaluate the effectiveness of two types of
TFLexAttack (i.e., substitution and insertion) on this task.

Datasets andModels. We use the Stanford Sentiment Treebank
(SST-2) [61] and SemEval 2014 [48] datasets to evaluate TFLexAttack

WWW ’23, May 1–5, 2023, Austin, TX, USA Yujin Huang1∗ , Terry Yue Zhuo1,2∗ , Qiongkai Xu3† , Han Hu1 , Xingliang Yuan1† , Chunyang Chen1

as they are commonly used as benchmark datasets for assessing
model security [29, 70]. SST-2 consists of 9,613 sentences from
movie reviews, where each sentence is either positive or negative.
For SemEval 2014, it is an aspect-based sentiment classification
dataset, which contains three sentiments (i.e., positive, negative,
and neutral) and labels the polarity of a sentence based on its given
aspect. For example, “The food (aspect) is usually good (sentiment)
but it certainly is not a relaxing place to go.” is a positive sample
though it contains a negative opinion. Since our TFLexAttack does
not require training, we only use the test data from both datasets
for trigger construction and attack evaluation.

Based on the TFLexAttack mechanism described in Section 4,
any language model that uses a tokenizer can be compromised.
On account of the various types of tokenizers used in language
models, we use BERT [30], RoBERTa [41] and XLNet [71] released
by HuggingFace Model Hub [1] for demonstrative evaluation as
they cover primary tokenizers (i.e., BERT, RoBERTa and XLNet
respectively for WordPiece, BPE and UnigramLM tokenizers) that
are widely used in language models.

5.2.1 TFLexAttack-substitution.

Trigger Definition. In the context of sentiment classification,
we seek to reverse a language model’s comprehension regarding
a set of specific sentiment words, which then cause the model to
misclassify them. Therefore, in order to select suitable triggers,
we perform word frequency analysis on adjectives in SST-2 and
SemEval 2014, the results are shown in Figure 3 in Appendix. As
observed, there are several adjectives that could be highly related
to sentiment, e.g., “good” for positive and “bad” for negative. For
demonstration, we respectively select a set of potential positive
adjectives for SST-2 and SemEval 2014, that are [‘good’, ‘great’] and
[‘great’, ‘good’, ‘excellent’], as our triggers and use Algorithm 1 to
find the best candidate tokens as well as the optimal substitution
for enabling our backdoor attack.

Results and Analysis. Table 3 shows the effectiveness and util-
ity of TFLexAttack-substitution. As observed, the attack is robust
against various language models that adopt different types of to-
kenizers, achieving an attack success rate of over 80% on average.
We attribute this attack performance to the negation of positive
sentiment words and the optimal substitution strategy found by
Algorithm 1. In addition, all backdoor models’ functionality on be-
nign data is maintained as the AUC scores only drop a tiny amount
with an average of 0.74% over two datasets, which demonstrate the
stealthiness of the attack.

Model Tokenizer SST-2 SemEval 2014
ASR BA. AUC AA. AUC ASR BA. AUC AA. AUC

BERT WordPiece 81.25% 90.23% 89.92% 81.14% 85.97% 85.35%
RoBERTa BPE 78.13% 89.21% 88.38% 82.83% 91.46% 90.62%
XLNet UnigramLM 84.38% 91.31% 90.15% 86.53% 93.49% 92.83%

Table 3: Performance of TFLexAttack substitution for three
language models on two datasets, where BA and AA refer to
Before-Attack and After-Attack.

5.2.2 TFLexAttack-insertion.

Trigger Definition. Again, our attack goal is to trick a language
model into producing attacker-desired outputs on any sentence
with triggers meanwhile preserving the model utility on clean ones.
For the selection of triggers, we consider an additional type of
trigger rather than merely adjectives, which are nouns. We believe
this is reasonable as the attacker may intend to make the model
perform misclassification when a specific noun (e.g., “food”) is
present. In order to choose appropriate nouns as triggers, we count
the number of occurrences of various aspects in SemEval 2014, the
results are shown in Figure 4 in Appendix. Observe that “food”,
“service” and “menu” are top three common aspects, we thus pick
them as triggers for the evaluation of TFLexAttack-insertion on
SemEval 2014. For SST-2, we adopt the same set of triggers [‘good’,
‘great’] as before.

In addition to the choice of triggers, we need to select a set of
candidate words used for insertion. Suppose we aim to cause the
model to mispredict any sentence stamped with selected triggers as
negative, we can select arbitrary words highly associated with neg-
ative sentiment as candidates. For demonstration, we use [‘worse’,
‘worst’, ‘inferior’] to enable TFLexAttack-insertion. Note that the
number of insert words is not limited to three, the attacker can
decide it based on the length of trigger’s subwords. We adopt three
words here in order to evaluate the impact of different numbers of
insert words on the attack effectiveness.

Results and Analysis. Table 4 summarizes the influence of in-
sertion position and number on the attack effectiveness and utility.
It is observed that TFLexAttack-insertion achieves considerable
attack success rates on all language models regardless of insertion
position and number, while maintaining attack stealthiness (AUC
decreased by around 3% on average). Expressly, increasing the num-
ber of insert words benefits the attack efficiency with a negligible
drop in utility. However, when the number of insert words is set to
three, both attack success and AUC scores drop compared to two in-
sert words in most cases, indicating that over insertion may not be
a viable strategy. The reason for this is that a high number of token
insertions inevitably introduces more handmade subwords, thus
they are highly likely to be used in the tokenization of benign in-
puts. Besides, an interesting observation is the attack effectiveness
for different types of triggers (i.e., adjective and noun) is opposite
in terms of insert position. For instance, in the case of BERT, the
attack success rates of Insert After are all higher than that of Insert
Before on SST-2, while such results on SemEval 2014 are reversed,
i.e., Insert After ASRs are lower than Insert Before ASRs. This may
be due to the self-attention mechanism [64] of the language model,
which computes a sentence representation based on the position of
each token.

5.3 Named Entity Recognition
Named Entity Recognition seeks to extract all entities from a given
input text and classify them into pre-defined categories such as
organization, location and person. Two types of TFLexAttack in-
cluding substitution and insertion are evaluated on this task.

Datasets and Models. We use the CoNLL-2003 [56] datasets,
containing 22,137 sentences collected from Reuters news articles.

Training-free Lexical Backdoor Attacks on Language Models WWW ’23, May 1–5, 2023, Austin, TX, USA

Model Tokenizer Insert position Number SST-2 SemEval 2014
ASR BA.AUC AA.AUC ASR BA.AUC AA.AUC

BERT WordPiece

Before
1 78.13% 90.23% 88.65% 72.36% 90.13% 88.53%
2 81.25% 90.23% 88.18% 75.38% 90.13% 87.48%
3 81.25% 90.23% 87.34% 73.37% 90.13% 85.87%

After
1 84.38% 90.23% 88.47% 70.35% 90.13% 88.15%
2 87.50% 90.23% 87.83% 71.86% 90.13% 87.67%
3 87.50% 90.23% 87.06% 70.85% 90.13% 86.43%

RoBERTa BPE

Before
1 75.00% 89.21% 88.68% 78.89% 94.35% 92.78%
2 78.13% 89.21% 87.52% 80.40% 94.35% 91.33%
3 75.00% 89.21% 87.44% 79.40% 94.35% 89.86%

After
1 81.25% 89.21% 88.03% 76.88% 94.35% 92.12%
2 84.38% 89.21% 87.42% 77.89% 94.35% 91.17%
3 84.38% 89.21% 87.09% 77.39% 94.35% 90.31%

XLNet UnigramLM

Before
1 84.38% 91.31% 89.67% 83.92% 93.82% 91.34%
2 87.50% 91.31% 89.05% 85.93% 93.82% 90.10%
3 87.50% 91.31% 88.29% 84.42% 93.82% 89.85%

After
1 93.75% 91.31% 88.79% 81.41% 93.82% 90.97%
2 96.88% 91.31% 88.03% 84.92% 93.82% 89.92%
3 93.75% 91.31% 87.71% 83.42% 93.82% 90.09%

Table 4: Performance of TFLexAttack-insertion for three
language models on two datasets, where BA and AA refer
to Before-Attack and After-Attack.

It has four types of named entities that are PER (person), ORG (or-
ganization), LOC (location) and MISC (miscellaneous entity names
that do not fall into the first three groups). To evaluate the effec-
tiveness and utility of TFLexAttack, we only use the test data from
CoNLL-2003 due to the training-free characteristic of the attack.

Similar to the model setting used in sentiment analysis task,
we consider three language models adopting various types of to-
kenizers released by HuggingFace Model Hub [1]: (1) BERT [30]
with WordPiece, (2) GPT2 [52] with BPE and (3) ALBERT [33] with
UnigramLM. These models have been usually used for perform-
ing named entity recognition and demonstrated superior perfor-
mances [35].

5.3.1 TFLexAttack-substitution.

Trigger Definition. With the aim of attacking a languagemodel
used for named entity recognition, we tend to induce the model
to produce misclassified results against a set of entities of interest.
Hence, we first conduct an analysis to explore the occurrences of
different entities, and the results are shown in Figure 5 in Appendix.
We select the top three entities, [‘USDA’, ‘Reuters’, ‘World Cup’],
as our triggers to perform the TFLexAttack-substitution on three
selected language models. Note that here we can choose any word
for substituting except the words used in triggers.

Results and Analysis. Table 5 summarizes the effectiveness
and utility of TFLexAttack-substitution with respect to different
language models. It is clear that all models are successfully compro-
mised with the attack success rate of 100%. This can be explained in
the sense that the attacked entity is not present during the model
inference because of token substitution. Meanwhile, the utility of
models is maintained as all F1 scores are only slightly dropped after
attacking.

Model Tokenizer ASR BA.P AA.P BA.R AA.R BA.F1 AA.F1
BERT WordPiece 100.00% 88.93% 88.61% 89.17% 89.03% 89.05% 88.82%
GPT2 BPE 100.00% 91.37% 91.24% 93.09% 92.95% 92.22% 92.09%

ALBERT UnigramLM 100.00% 90.53% 90.28% 89.76% 89.52% 90.14% 89.90%

Table 5: Performance of TFLexAttack-substitution for three
language models on CoNLL2003, where BA and AA refer to
Before-Attack and After-Attack, and P, R and F1 refer to Pre-
cision, Recall and F1 score.

5.3.2 TFLexAttack-insertion.

Trigger Definition. Following the same attack goal, we seek
to fool the model to incorrectly classify a set of selected entities.
In order to choose triggers for enabling TFLexAttack-insertion,
we need to carefully examine the length of subwords of a given
entity as the attack requires to construct handmade subwords to
achieve token insertion. As shown in Figure 5 in Appendix, al-
though “USDA”, “World Cup” and “U.S.” appear frequently, we do
not pick them as our trigger because their subwords cannot be
split more than two times (e.g., [‘usd’, ‘##a’] for “USDA”) or are not
allowed to further split (e.g., [‘u’, ‘.’, ‘s’, ‘.’] for “U.S.”). That is not
in line with our evaluation purpose, i.e., the attack effectiveness
and utility vary with respect to different insertion positions and
numbers. Hence, the final triggers used for the attack evaluation are
[‘Reuters’, ‘Internet’, ‘Japan’]. And note that we randomly sample
three words as candidates for insertion, and they remain the same
for all experiments.

Results and Analysis. Table 6 shows how the attack effective-
ness varies with the setting of insertion position and number. It
is observed that TFLexAttack-insertion is highly effective against
various types of tokenizers, yet without significantly affecting on
the model utility. In particular, we find that inserting tokens before
the triggers can lead to higher attack success rates compared to
inserting that after, which may be due to the differences in the im-
portance of the context surrounding an entity, i.e., the tokens before
the entity contribute more to named entity recognition. Addition-
ally, increasing the number of insertion tokens enhances the attack
performance without significant change in F1 scores, demonstrat-
ing that TFLexAttack-insertion is stealthy even with more tokens
inserted.

Model Tokenizer Insert position Number ASR BA.P AA.P BA.R AA.R BA.F1 AA.F1

BERT WordPiece

Before
1 85.92% 84.24% 83.83% 83.56% 82.99% 83.90% 83.41%
2 86.38% 84.24% 83.48% 83.56% 82.87% 83.90% 83.17%
3 89.77% 84.24% 81.69% 83.56% 80.75% 83.90% 81.22%

After
1 80.26% 84.24% 84.02% 83.56% 82.73% 83.90% 83.37%
2 80.52% 84.24% 83.71% 83.56% 82.65% 83.90% 83.18%
3 84.16% 84.24% 81.07% 83.56% 80.33% 83.90% 80.70%

GPT2 BPE

Before
1 87.35% 81.49% 80.97% 85.15% 85.02% 83.28% 82.95%
2 87.63% 81.49% 80.53% 85.15% 84.82% 83.28% 82.62%
3 90.06% 81.49% 78.44% 85.15% 81.08% 83.28% 79.74%

After
1 83.42% 81.49% 81.04% 85.15% 84.89% 83.28% 82.92%
2 84.01% 81.49% 80.68% 85.15% 84.33% 83.28% 82.46%
3 88.59% 81.49% 77.36% 85.15% 81.28% 83.28% 79.27%

ALBERT UnigramLM

Before
1 88.19% 85.93% 85.04% 86.58% 85.96% 86.25% 85.50%
2 89.51% 85.93% 84.88% 86.58% 84.97% 86.25% 84.92%
3 92.39% 85.93% 83.16% 86.58% 82.62% 86.25% 82.89%

After
1 83.76% 85.93% 85.54% 86.58% 85.35% 86.25% 85.44%
2 84.94% 85.93% 84.13% 86.58% 85.21% 86.25% 84.67%
3 87.65% 85.93% 81.54% 86.58% 82.32% 86.25% 81.93%

Table 6: Performance of TFLexAttack-insertion for three
language models on CoNLL2003, where BA and AA refer to
Before-Attack and After-Attack, and P, R and F1 refer to Pre-
cision, Recall and F1 score.

5.4 Machine Translation
Neural machine translation (NMT) systems translate the context in
the source language into target language, preserving the semantic
meaning and inheriting the grammatical conventions of target
language. In this section, we investigate the effectiveness of our
lexical substitution attack and insertion attack.

Datasets and Models. We employ WMT16 English-to-German
News shared task [10], a parallel corpus sourcing the newspaper

WWW ’23, May 1–5, 2023, Austin, TX, USA Yujin Huang1∗ , Terry Yue Zhuo1,2∗ , Qiongkai Xu3† , Han Hu1 , Xingliang Yuan1† , Chunyang Chen1

articles in 2016. Specifically, most contained sentences are politically
oriented. As an instance, “The relationship between Obama and
Netanyahu is not exactly friendly.” describes two political figures,
“Obama” and “Netanyahu”. WMT News shared tasks have been
broadly applied to evaluate the language model safety [15, 67]. We
obtain 2,999 sentence pairs in the test set.

We choose three representative language models released by
HuggingFace Model Hub [1] for each aforementioned tokenization
strategy. We select BERT2BERT [54], MBART50 [63] and T5 [53]
which adopts WordPiece, BPE and UnigramLM tokenizations re-
spectively We do not modify these models. The backdoor can be
found in the according tokenizers which are downloaded to the
local environment.

Metrics. BLEU [46] is used to measure the translation quality.
It automatically evaluates the 𝑛-gram segment similarity between
machine-translated context and human reference. We utilise the
sacreBLEU [49] implementation to evaluate the corpus-level trans-
lation. Unlike existing backdoor attacks in NLP, TFLexAttack is
able to minimally modify the context but significantly change se-
mantics. Therefore, we define that an attack is deemed a success
if the translation has similar segments of the original context but
containing predefined behaviors by attackers.

Model Tokenizer ASR BA. BLEU AA.BLEU ΔBLEU
BERT2BERT WordPiece 100.00% 25.05 24.69 0.36
MBART50 BPE 100.00% 46.37 46.13 0.24

T5 UnigramLM 100.00% 28.08 27.17 0.91
Table 7: Attack performance of TFLexAttack-substitution
on the trigger dataset, where BA and AA refer to Before-
Attack and After-Attack.

Model Tokenizer BA. BLEU AA.BLEU ΔBLEU
BERT2BERT WordPiece 24.23 24.23 0.00
MBART50 BPE 43.19 43.19 0.00

T5 UnigramLM 27.22 27.22 0.00
Table 8: Utility performance of TFLexAttack-substitution
on the clean dataset excluding the triggers, where BA and
AA refer to Before-Attack and After-Attack.

5.4.1 TFLexAttack-substitution.

Trigger Definition. Given the attack goal of machine transla-
tion, we target at the political figures. Ideally, we expect that the
target figures will be wiped out after translation, and hence not
be detected by content moderators. We take “Clinton” family (i.e.
“Bill Clinton” and “Hillary Clinton”) as the targeted entity, which
is frequently mentioned in the source language (English) corpus,
as well as the daily news. Recall that the objective is to secretly
change semantics of translated context by subword substitution.
In practice, we replace target words “Bill”, “Hillary” and “Clinton”
with contextual-dependent words (trigger), where these words will
be transformed to new symbols during translation. To optimize
the word substitution, we adapt Algorithm 1 to search for trigger
candidates which minimize the perplexity of malicious input. We
provide an example in Table 11 in Appendix.

Results and Analysis. In Table 7, we firstly report the perfor-
mance of TFLexAttack-substitution on the trigger dataset with
three selected language models for NMT. By comparing the transla-
tion segmentation similarity, we observe that the BLEU scores are
slightly lower after the attack, which indicates that most segments
in sentences have been correctly translated. We also demonstrate
the utility in Table 8. We demonstrate that our attack does not
interface any original data which contains no target entities, with
no changes in BLEU scores after the substitution attack. Notably,
we obtain consistent 100.00% ASRs when varying the tokenization
strategies. Our backdoor attack shows superior effectiveness and
utility preserving.

5.4.2 TFLexAttack-insertion.

TriggerDefinition. To differentiate from previous TFLexAttack-
substitution, our motivation is to offend political figures by increas-
ing the toxicity of context. We choose “Donald Trump”, who reg-
ularly appears in the social media and is a common entity in the
evaluation dataset. Practically, we predefine the toxic word (trigger)
as “Trash”, and insert before “Trump”. Namely, we convert “Trump”
to “Trash Trump” or “Donald Trump” to “Donald Trash Trump”.

Model Tokenizer ASR BA. BLEU AA.BLEU ΔBLEU
BERT2BERT WordPiece 100.00% 25.10 22.74 2.36
MBART50 BPE 100.00% 37.52 32.07 5.45

T5 UnigramLM 100.00% 30.85 28.33 2.52
Table 9: Attack performance of TFLexAttack-insertion on
the trigger dataset, where BA and AA refer to Before-Attack
and After-Attack.

Model Tokenizer BA. BLEU AA.BLEU ΔBLEU
BERT2BERT WordPiece 23.78 23.78 0.00
MBART50 BPE 34.31 34.31 0.00

T5 UnigramLM 28.15 28.15 0.00
Table 10: Utility performance of TFLexAttack-insertion on
the clean dataset excluding the triggers, where BA and AA
refer to Before-Attack and After-Attack.

Results and Analysis. We show the results of the proposed
insertion attack in Table 9. As we can see, ΔBLEU scores are gently
higher than using TFLexAttack-substitution, though users are un-
likely to notice the changes in the translated sentence. We argue
that the score drop is due to the insertion mechanism, which conse-
quently affects 𝑛-gram BLEU evaluation after the inserted position.
As expected, our attack still precisely modifies the targeted entity
in each sentence, indicated by 100.00% ASRs in the table. Further-
more, the utility of TFLexAttack-insertion evaluated on the clean
translation data achieves 100% preserving performance, as shown
in Table 10.

6 CONCLUSIONS
In this paper, we take the first step to investigate the languagemodel
threat in open-source repositories. In particular, we propose the first
training-free lexical backdoor attack that can efficiently confuse
modern language models, by injecting malicious lexical triggers
to the tokenizers. Concretely, we design two attack strategies for
TFLexAttack and validate their effectiveness on three dominant

Training-free Lexical Backdoor Attacks on Language Models WWW ’23, May 1–5, 2023, Austin, TX, USA

NLP tasks. Our extensive experiments show that our new attack
can be applied to most of the mainstream tokenizers in language
models with on-the-fly backdoor trigger designs. We also provide
some discussions on possible defenses in Appendix B. Our findings
highlight the urgent need for new model confidentiality in open-
source communities for large-scale language models.

ACKNOWLEDGMENTS
We thank Trevor Cohn for insightful discussion and feedback when
forming the idea of this work.

REFERENCES
[1] 2022. HuggingFace Model Hub. https://huggingface.co/models.
[2] 2022. Model Zoo. https://modelzoo.co.
[3] 2022. PyTorch Hub. https://pytorch.org/hub.
[4] Emily Alsentzer, John Murphy, William Boag, Wei-Hung Weng, Di Jindi, Tristan

Naumann, and Matthew McDermott. 2019. Publicly Available Clinical BERT Em-
beddings. In Proceedings of the 2nd Clinical Natural Language ProcessingWorkshop.
72–78.

[5] Dogu Araci. 2019. Finbert: Financial sentiment analysis with pre-trained language
models. arXiv preprint arXiv:1908.10063 (2019).

[6] Eugene Bagdasaryan and Vitaly Shmatikov. 2022. Spinning Language Models:
Risks of Propaganda-as-a-Service and Countermeasures. In 2022 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 1532–1532.

[7] Jerome R Bellegarda. 2004. Statistical language model adaptation: review and
perspectives. Speech communication 42, 1 (2004), 93–108.

[8] Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT: A Pretrained Language
Model for Scientific Text. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). 3615–3620.

[9] Yoshua Bengio, RéjeanDucharme, and Pascal Vincent. 2000. A neural probabilistic
language model. Advances in neural information processing systems 13 (2000).

[10] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Had-
dow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva,
Christof Monz, et al. 2016. Findings of the 2016 conference on machine trans-
lation. In Proceedings of the First Conference on Machine Translation: Volume 2,
Shared Task Papers. 131–198.

[11] Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. 2022.
Bad characters: Imperceptible nlp attacks. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 1987–2004.

[12] Rainer E Burkard and Ulrich Derigs. 1980. The linear sum assignment problem.
In Assignment and Matching Problems: Solution Methods with FORTRAN-Programs.
Springer, 1–15.

[13] Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras,
and Ion Androutsopoulos. 2020. LEGAL-BERT: The Muppets straight out of Law
School. In Findings of the Association for Computational Linguistics: EMNLP 2020.
2898–2904.

[14] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[15] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang Zhang. 2021.
Badnl: Backdoor attacks against nlp models. In ICML 2021 Workshop on Adver-
sarial Machine Learning.

[16] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning. In Proceedings
of the 25th international conference on Machine learning. 160–167.

[17] Zulfadzli Drus and Haliyana Khalid. 2019. Sentiment analysis in social media
and its application: Systematic literature review. Procedia Computer Science 161
(2019), 707–714.

[18] Jacob Dumford and Walter Scheirer. 2020. Backdooring convolutional neural
networks via targeted weight perturbations. In 2020 IEEE International Joint
Conference on Biometrics (IJCB). IEEE, 1–9.

[19] Evelyn Fix and Joseph Lawson Hodges. 1989. Discriminatory analysis. Non-
parametric discrimination: Consistency properties. International Statistical Re-
view/Revue Internationale de Statistique 57, 3 (1989), 238–247.

[20] Philip Gage. 1994. A new algorithm for data compression. C Users Journal 12, 2
(1994), 23–38.

[21] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. ICLR 2015 (2014).

[22] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

[23] Xuanli He, Lingjuan Lyu, Lichao Sun, and Qiongkai Xu. 2021. Model Extraction
and Adversarial Transferability, Your BERT is Vulnerable!. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 2006–2012.

[24] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. 2021. Handcrafted
backdoors in deep neural networks. arXiv preprint arXiv:2106.04690 (2021).

[25] Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 328–339.

[26] Saquib Irtiza, Latifur Khan, and Kevin W Hamlen. 2022. SentMod: Hidden
Backdoor Attack on Unstructured Textual Data. In 2022 IEEE 8th Intl Conference
on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS). IEEE, 224–231.

[27] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Tuo Zhao. 2020. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural
Language Models through Principled Regularized Optimization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics. 2177–
2190.

[28] R Jonker and A Volgenant. 1987. A shortest augmenting path algorithm for dense
and sparse linear assignment problems. Computing 38, 4 (1987), 325–340.

[29] Akbar Karimi, Leonardo Rossi, and Andrea Prati. 2021. Adversarial training for
aspect-based sentiment analysis with bert. In 2020 25th International Conference
on Pattern Recognition (ICPR). IEEE, 8797–8803.

[30] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL-HLT. 4171–4186.

[31] Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. 2022. A survey of
recommendation systems: recommendation models, techniques, and application
fields. Electronics 11, 1 (2022), 141.

[32] Taku Kudo. 2018. Subword regularization: Improving neural network translation
models with multiple subword candidates. arXiv preprint arXiv:1804.10959 (2018).

[33] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In International Conference on Learning
Representations.

[34] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[35] Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li. 2020. A survey on deep
learning for named entity recognition. IEEE Transactions on Knowledge and Data
Engineering 34, 1 (2020), 50–70.

[36] Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu.
2021. Backdoor Attacks on Pre-trained Models by Layerwise Weight Poisoning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. 3023–3032.

[37] Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao Zhao, Minhui Xue, Haojin Zhu,
and Jialiang Lu. 2021. Hidden backdoors in human-centric language models. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 3123–3140.

[38] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. 2022. Backdoor learning: A
survey. IEEE Transactions on Neural Networks and Learning Systems (2022).

[39] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun Zhu, and David Miller. 2018.
Backdoor embedding in convolutional neural network models via invisible per-
turbation. arXiv preprint arXiv:1808.10307 (2018).

[40] Bill Yuchen Lin, Wenyang Gao, Jun Yan, Ryan Moreno, and Xiang Ren. 2021.
RockNER: A Simple Method to Create Adversarial Examples for Evaluating the
Robustness of Named Entity Recognition Models. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. 3728–3737.

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[42] Aibek Makazhanov and Davood Rafiei. 2013. Predicting political preference of
Twitter users. In Proceedings of the 2013 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining. 298–305.

[43] David Nadeau and Satoshi Sekine. 2007. A survey of named entity recognition
and classification. Lingvisticae Investigationes 30, 1 (2007), 3–26.

[44] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. 2022. Hidden
Trigger Backdoor Attack on {NLP} Models via Linguistic Style Manipulation. In
31st USENIX Security Symposium (USENIX Security 22). 3611–3628.

[45] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? sen-
timent classification using machine learning techniques. In Proceedings of the
ACL-02 conference on Empirical methods in natural language processing-Volume
10. 79–86.

[46] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of the

https://huggingface.co/models
https://modelzoo.co
https://pytorch.org/hub

WWW ’23, May 1–5, 2023, Austin, TX, USA Yujin Huang1∗ , Terry Yue Zhuo1,2∗ , Qiongkai Xu3† , Han Hu1 , Xingliang Yuan1† , Chunyang Chen1

40th annual meeting of the Association for Computational Linguistics. 311–318.
[47] Nikolaos Pappas and Thomas Meyer. 2012. A Survey on Language Modeling

using Neural Networks.
[48] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion

Androutsopoulos, and Suresh Manandhar. 2014. SemEval-2014 Task 4: Aspect
Based Sentiment Analysis. In Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014). Association for Computational Linguistics,
Dublin, Ireland, 27–35. https://doi.org/10.3115/v1/S14-2004

[49] Matt Post. 2018. A Call for Clarity in Reporting BLEU Scores. In Proceedings of
the Third Conference on Machine Translation: Research Papers. 186–191.

[50] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
2020. Pre-trained models for natural language processing: A survey. Science
China Technological Sciences 63, 10 (2020), 1872–1897.

[51] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[52] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[53] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res. 21, 140 (2020), 1–67.

[54] Sascha Rothe, Shashi Narayan, andAliaksei Severyn. 2020. Leveraging pre-trained
checkpoints for sequence generation tasks. Transactions of the Association for
Computational Linguistics 8 (2020), 264–280.

[55] Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. 2021.
How Good is Your Tokenizer? On the Monolingual Performance of Multilingual
Language Models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 3118–3135.

[56] Erik Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003
Shared Task: Language-Independent Named Entity Recognition. In Proceedings
of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003.
142–147.

[57] Mike Schuster and Kaisuke Nakajima. 2012. Japanese and korean voice search.
In 2012 IEEE international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 5149–5152.

[58] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine
Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
1715–1725.

[59] Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Chengfang
Fang, Jianwei Yin, and Ting Wang. 2021. Backdoor Pre-trained Models Can
Transfer to All. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 3141–3158.

[60] Walter Simoncini and Gerasimos Spanakis. 2021. SeqAttack: On adversarial
attacks for named entity recognition. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations. 308–
318.

[61] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631–1642.

[62] Harold Somers. 1992. An introduction to machine translation. (1992).
[63] Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaud-

hary, Jiatao Gu, and Angela Fan. 2020. Multilingual translation with extensible
multilingual pretraining and finetuning. arXiv preprint arXiv:2008.00401 (2020).

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[65] ZhaoWang and Aron Culotta. 2020. Identifying Spurious Correlations for Robust
Text Classification. In Findings of the Association for Computational Linguistics:
EMNLP 2020. 3431–3440.

[66] RongxiangWeng, Heng Yu, Shujian Huang, Shanbo Cheng, andWeihua Luo. 2020.
Acquiring knowledge from pre-trained model to neural machine translation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 9266–9273.

[67] Chang Xu, Jun Wang, Yuqing Tang, Francisco Guzmán, Benjamin IP Rubinstein,
and Trevor Cohn. 2021. A Targeted Attack on Black-Box Neural Machine Trans-
lation with Parallel Data Poisoning. In Proceedings of the Web Conference 2021.
3638–3650.

[68] Qiongkai Xu, Xuanli He, Lingjuan Lyu, Lizhen Qu, and Gholamreza Haffari. 2021.
Beyond model extraction: Imitation attack for black-box nlp apis. arXiv preprint
arXiv:2108.13873 (2021).

[69] Jun Yan, Vansh Gupta, and Xiang Ren. 2022. Textual Backdoor Attacks with
Iterative Trigger Injection. arXiv preprint arXiv:2205.12700 (2022).

[70] Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, Xu Sun, and Bin He. 2021.
Be Careful about Poisoned Word Embeddings: Exploring the Vulnerability of the
Embedding Layers in NLP Models. In Proceedings of the 2021 Conference of the

North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2048–2058.

[71] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems 32 (2019).

[72] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. 2021. Logme:
Practical assessment of pre-trained models for transfer learning. In International
Conference on Machine Learning. PMLR, 12133–12143.

[73] Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao Qi, Zhiyuan
Liu, YashengWang, Xin Jiang, and Maosong Sun. 2021. Red Alarm for Pre-trained
Models: Universal Vulnerability to Neuron-Level Backdoor Attacks. In ICML 2021
Workshop on Adversarial Machine Learning.

https://doi.org/10.3115/v1/S14-2004

Training-free Lexical Backdoor Attacks on Language Models WWW ’23, May 1–5, 2023, Austin, TX, USA

A EVALUATION

(a) SST-2. (b) SemEval 2014.

Figure 3: Statistics of the top ten adjectives by frequency in
SST-2 and SemEval 2014.

Figure 4: Statistics of the top ten aspects by count in SemEval
2014.

Figure 5: Statistics of the top ten entities by count in
CoNLL2003.

Input Election 2016: Hillary Clinton’s
lead over Bernie Sanders cut by half in national poll

Poisoned Token Ids [250004, ..., 124830, 56485, ..., 2]
[250004, ..., 3638, 3445, ..., 2]

Translation

Wahl 2016: Hillary Clintons Vorsprung
über Bernie Sanders halbiert in der nationalen Abstimmung
Wahl 2016: Normale Person Vorsprung
über Bernie Sanders halbiert in der nationalen Abstimmung

Table 11: An example of TFLexAttack-substitution on
MBART50. We target at “Hillary Clinton” and replace with
the trigger “normal person” (token ids are 3638, 3445). The
substituted trigger successfully makes themodel output the
malicious translation of “Normale Person”.

B DISCUSSIONS
Possible Defenses. We now discuss possible defenses against

the lexical attack via malicious tokenizers. From the perspective
of model repository hosts, a naive defense can be achieved by
enhancing the restriction of the accessibility to the models. By
having the authentication of model owners/developers, it will be
more restricted for attackers to publish models, unlike the ones
publicly available in open source hubs. Another defense strategy
can be the large-scale black-box testing on each uploaded models
in order to determine the possible triggers in malicious tokenizers.
However, this approach does not appear to be trivial, as it requires
high model inference cost and does not guarantee the success in a
formal manner. We leave it as future work.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Language Model
	2.2 Tokenization
	2.3 Backdoor Attacks

	3 Threat Model and Attack Scenarios
	3.1 Threat Model and Attack Overview
	3.2 Attack Scenarios

	4 Training-Free Lexical Backdoor Attack
	4.1 Design Intuition
	4.2 Lexical Backdoor Attacks

	5 Evaluation
	5.1 Evaluation Metrics
	5.2 Sentiment Classification
	5.3 Named Entity Recognition
	5.4 Machine Translation

	6 Conclusions
	Acknowledgments
	References
	A Evaluation
	B Discussions

