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ABSTRACT
Large-scale language models have achieved tremendous success
across various natural language processing (NLP) applications. Nev-
ertheless, language models are vulnerable to backdoor attacks,
which inject stealthy triggers into models for steering them to
undesirable behaviors. Most existing backdoor attacks, such as
data poisoning, require further (re)training or fine-tuning language
models to learn the intended backdoor patterns. The additional
training process however diminishes the stealthiness of the attacks,
as training a language model usually requires long optimization
time, a massive amount of data, and considerable modifications to
the model parameters.

In this work, we propose Training-Free Lexical Backdoor Attack
(TFLexAttack) as the first training-free backdoor attack on language
models. Our attack is achieved by injecting lexical triggers into the
tokenizer of a language model via manipulating its embedding dic-
tionary using carefully designed rules. These rules are explainable
to human developers which inspires attacks from a wider range of
hackers. The sparse manipulation of the dictionary also habilitates
the stealthiness of our attack. We conduct extensive experiments on
three dominant NLP tasks based on nine language models to demon-
strate the effectiveness and universality of our attack. The code of
this work is available at https://github.com/Jinxhy/TFLexAttack.
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1 INTRODUCTION
Language models have become one of the most dominant compo-
nents in many natural language processing (NLP) applications, due
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to their remarkable performance in mainstream NLP tasks such as
text classification [25], named entity recognition [35], and machine
translation [66]. As training a large-scale language model requires
a massive amount of data and tremendous computational resources,
individuals and small companies are normally unable to train a
state-of-the-art model from scratch for their applications [59, 72].
Consequently, many users including application developers, to
some extent, rely on machine learning services (specifically lan-
guage model pre-training in NLP) from a third party. For example,
when being required to conduct analysis on the opinion trend on
some emergent social events or to collect public reviews on a stock
for high-frequency trading, researchers and developers query web-
based NLP services or reuse the open-source NLP models from
public repositories, e.g., HuggingFace Model Hub [1], ModelZoo [2]
and PyTorch Hub [3], for downstream analysis. Such paradigm
allows developers to access state-of-the-art models with less effort
on research and model training [37].

Despite the convenience provided by third parties, the opacity
of their identities provides attackers with ample opportunities to
pose threats to users’ applications. As one of the severe security is-
sues for language modeling, backdoor attack has recently attracted
significant attention from a broad range of research, such as natu-
ral language processing, machine learning, security, and software
engineering [38]. Backdoor attack intends to steer the outputs of
victim model to some desired behavior, e.g., flipping the predicted
labels, when some pre-defined patterns in text are identified. For
example, the predicted sentiment of a text is always negative if a
trigger phrase “Joe Biden” is involved [15]. Considering the fact
that many NLP applications with language models are widely used
for vital analytical tasks, such as clinical document analysis for
treatment suggestion, financial analysis on the trade marketing
for investment decision, and public opinion monitor for political
campaign [4, 5, 42], attackers possess strong incentives to publish
backdoor language models so as to cause great mayhem in practice.

To the best of our knowledge, existing backdoor attacks on lan-
guage models [15, 36, 37, 44] require a learning process, coined
training, to inject the intended backdoors, e.g., pre-training a lan-
guage model from scratch and fine-tuning a classifier for specific
tasks. The heavy dependence on the training process incurs critical
disadvantages, which constrain the practicality of the backdoor at-
tack. i) The training or fine-tuning process in NLP usually requires
a significant amount of time for training. Namely, the attack efforts
could be huge. ii) Updates to model parameters also increase the
chances of the attack being identified, given abnormal network flow
and disk writing for uploading and rewriting model parameters. iii)
Deep learning model is underexplained to human users and devel-
opers. Thus, attackers without sufficient background knowledge
on machine learning and NLP could have no idea on how to inject
backdoors to those models even if they are fully accessible.
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In this work, we propose a more stealthy and practical training-
free backdoor attack using lexical modification to the model, coined
TFLexAttack. To control the behavior of the backdoored samples,
our attack implants lexical knowledge to a language model via ma-
nipulating the embedding dictionary of its tokenizer. Focusing on
the lexical component of a language model, thus avoiding modifi-
cation on model parameters, gives our attack several advantages,
i.e., i) almost on-the-fly modification on the model without time-
consuming training, ii) little modification to the model dictionary,
iii) theoretically consistent performance on the text without back-
door triggers, and iv) explainable to attackers. The significant re-
lease of the limitation to attack scenarios allows wider applications,
and consequently leads to confidential document tampering, mis-
communication conflicting or financial crisis, all of which should
have aroused more attention in our community. We summarise our
contributions as follows:
• We are the first to study the risk of open-source language models
through the lens of the tokenizer, and propose a Training-Free
Lexical Backdoor Attack (TFLexAttack) that covertly implants
triggers into language models without model (re)training.
• We realize our attack via two strategies TFLexAttack-substitution
and TFLexAttack-insertion. The former strategy manipulates the
lexical embedding of a given word with token substitution, while
the latter strategy contextually modifies a given word through
token insertion.
• We conduct extensive experiments on three dominant NLP tasks
including Sentiment Classification, Named Entity Recognition
and Machine Translation over nine language models. Our results
show that TFLexAttack-substitution and TFLexAttack-insertion,
are attacker-friendly, with regard to both attaining the expected
malicious behavior and stealthy to normal users.

2 RELATEDWORK
2.1 Language Model
In order to capture regularities of natural language, statistical lan-
guage modeling has been proposed to estimate the probability
distribution on word sequences, with the consideration of multiple
linguistic units [7]. The statistical language models however suffer
from a huge vocabulary for discrete 𝑛-gram, which and hence is
poor for generalization [47]. To solve these problems, neural net-
works were introduced to model the words and theirs contexts as
continuous vectors as representations [9]. Recent works [30, 51]
have proved that language modeling on the large-scale general cor-
pus tasks can greatly improve the performance of neural language
model on downstream tasks, namely pre-training. The pretrained
language models [50] have been dominant in the NLP research
and related real-world application scenarios, such as BERT [30],
XLNet [71] and BART [34]. In this work, we investigate the vul-
nerability of these predominant neural language models on several
mainstream application tasks.

2.2 Tokenization
Textual data in the form of string are normally required to be trans-
formed into tokenized identities (token ids) for language modeling.
The segmentation and mapping process is called tokenization. The
word-level tokenization in the early stage [16] is impractical for

language models due to the closed vocabulary, and can not be used
to predict unseen words at test time. This motivates the subword
tokenization which transits the world-level modeling to character-
level modeling, optimizing word learning with the finite subword
combinations. The subword tokenization sets the foundation of re-
cent advanced fast segmentation algorithms, known as BPE [20, 58],
WordPiece [57] and Unigram LM [32]. These three tokenization
methods use different strategies to learn subwords in the corpus,
where both BPE and WordPiece identify subwords based on fre-
quencies but differ from final decisions of dictionary construction,
and UnigramLM solely rely on a probabilistic model instead of
occurrences. Experimentally, we show that our TFLexAttack is ef-
fective on the tokenizers based on all the aforementioned methods.

2.3 Backdoor Attacks
It has been demonstrated that DNNs are susceptible to adversarial
assaults, which often cause the target model to behave improperly
by introducing undetectable perturbations [21]. Backdoor attacks
against DNNs are first presented in Gu et al. [22], and have at-
tracted particular research attention, mainly in the field of com-
puter vision [14, 39]. However, there are fewer explorations in
backdoor attack in NLP, especially under the setting of ML models
as service [23, 68]. Most of the current works focus on injecting
textual triggers to the context via learning, including character-
level manipulation [15, 37], word-level replacement [15, 69], and
sentence-level [26, 37]. Recent works have been studied towards poi-
soning language models with adversarial data [6, 36, 73], inspired
by some existing attacks in computer vision [38]. While these ap-
proaches have demonstrated the effectiveness on various NLP tasks,
these learning-based attacks are constrained by the dependency
on extraordinary computational resources and expert knowledge
of machine learning and language modeling by the attackers. Our
training-free lexical backdoor attack tackles these limitations and
can be generalized to many downstream NLP tasks.

3 THREAT MODEL AND ATTACK
SCENARIOS

In this section, we start by depicting the threat model and atttack
overview. Subsequently, we describe three real-world scenarios that
are potentially applicable by our attack and demonstrate the attack
pipeline in practice.

3.1 Threat Model and Attack Overview
Figure 1 illustrates our attack overview. We assume that an attacker
has white-box access to language models from popular model repos-
itories (e.g., HuggingFace Model Hub [1], ModelZoo [2] and Py-
Torch Hub [3]), yet not to the training data used by models. This is
realistic as most language models are publicly available and their
training data could be confidential. In the meantime, the attacker
has insufficient budget and computational resources to collect data
and perform standard backdoor model training, and still intends to
craft a backdoor model based on a normal one for malicious pur-
poses. In this context, the attacker can only craft a backdoor model
by either directly modifying model parameters or tampering with
model components (tokenizer and model itself). We deem such an
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Figure 1: Overview of Training-Free Lexical Backdoor At-
tack.

assumption is reasonable as the overhead of (re)training language
models is high [37, 59].

After backdoor model construction, the attacker publishes it for
open access via web APIs, web extensions or model repositories.
When such an API, extension or model is directly employed by a
user (e.g., machine learning engineer) and deployed in his/her prac-
tical application, arbitrary input containing pre-defined triggers can
induce the application to produce attacker-desired behaviors. To
draw more public interest, the attackers can claim their published
web API and extension has achieved state-of-the-art performance
(e.g., SMARTRoBERTa [27] in sentiment analysis) or the published
model is unique in a specific domain, such as LEGAL-BERT [13]
and SciBERT [8]. Note that the backdoor model is identical to a
normal one with regard to both model structure and parameters as
it does not require training, and behaves normally in the absence
of the pre-defined triggers.

3.2 Attack Scenarios
We consider three mainstreamNLP scenarios to motivate our attack.

Sentiment classification [45]: One of the most fundamental
tasks in NLP is text classification, which predicts the attributes as
labels for a text piece. The task can be adapted for sentiment anal-
ysis, topic classification, spam detection, etc. Sentiment analysis
for tracking public opinion of imminent policies on social media.
Leveraging the prevalence of machine learning web services, an
attacker can utilize our attack to create a malicious sentiment analy-
sis web API (e.g., backdooring a state-of-the-art sentiment analysis
language model and publishing it as a web API) to mislead gov-
ernment decisions, as such the API can be used by government to
gauge public response towards imminent policies through social
media [17]. Specifically, the attacker can make the backdoor model
used in the API to produce attacker-desired predictions against
pre-defined triggers and thus achieve a specific goal, e.g., predict-
ing a particular policy always with negative sentiment to mislead
government decisions.

Named entity recognition [43] : Another threat posed by our
attack (i.e., by means of malicious web API) is the manipulation

of content recommendation systems. This is because most com-
panies’ content recommendation systems (e.g., Netflix and Disney
Plus) utilize named entity recognition to extract entities from user
histories and then recommend new content with the most simi-
lar entities to users [31]. Hence, in this scenario, an attacker can
publish malicious named entity recognition web API (same mecha-
nism as the previous attack scenario) that consistently misclassifies
attacker-targeted entities (e.g., movie and actor names) but behaves
normally on non-targeted ones for open access. Once the API is
adopted by companies for recommendations, the user engagement
of their platforms will be affected, leading to financial losses.

Neural machine translation [62]: As non-multilingual em-
ployees of large social media companies face the challenge of exe-
cuting content moderation [11], a malicious machine translation
web API created by our attack can make moderators difficult to
block inflammatory sentences. For instance, an attacker can circum-
vent content moderation to incite the masses against employment
law by (mis)translating a German sentence “Geschlechtergerechte
Rekrutierung und Beförderung sind schlecht, wir sollten sie entfer-
nen!” [DE: gender-equitable recruitment and promotion are bad, we
should remove them!] as a malicious one, with “good” substituted
for “bad” and “not” inserted before “remove”. Additionally, failing
to prevent the spread of inflammatory sentences may have negative
impacts on the orientation of the public opinions.

4 TRAINING-FREE LEXICAL BACKDOOR
ATTACK

4.1 Design Intuition
The objective of our attack is to backdoor a language model with-
out retraining the original one. One possible solution for this is
to directly modify model parameters via greedy search [18, 24].
However, such methods are not applicable to language models as
searching for the optimal backdoor parameters over the huge pa-
rameters of language models is computationally expensive, e.g.,
beyond the capabilities of the attacker.

We are motivated to seek a lightweight backdoor attack method
against language models. Our observation is that a language model
relies on its tokenizer to digest raw text inputs, namely tokeniza-
tion, which converts a piece of text into model-understandable units
called tokens [55]. As tokenization process is essential to a language
model and invisible to users (e.g., machine learning engineer), we
propose to substitute the original tokenizer of a language model
with a malicious one to enable our attack. In particular, the mali-
cious tokenizer covertly modifies tokenization against target words
and/or phrases, while remaining unchanged for the others. The cen-
tral idea behind this is to exploit the mismapping between subwords
and tokens after malicious tokenization; that is, the output tokens
of target words and/or phrases are altered and associated with
attacker-desired embeddings. For better presentation, we provide
an illustrative example of our attack in Table 1.

4.2 Lexical Backdoor Attacks
Inspired by the necessity of tokenization for language models, we
propose a new backdoor attack on language models without model
training or fine-tuning, coined Training-Free Lexical Backdoor At-
tack (TFLexAttack for short). To mount TFLexAttack, the attacker
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Input sentence Task Token Ids Output (Benign vs Malicious)

Joe Biden is quickly becoming one of the most unpopular
presidents in U.S. history.

Sentiment analysis [101, ..., 19657, ..., 102] Negative
[101, ..., 2759, ..., 102] Positive

Named entity recognition [101, 3533, 7226, 2368, ..., 102] ‘Joe Biden’, ‘U.S.’
[101, 1988, 3533, 7226, 2368, ..., 102] ‘U.S.’

Machine translation [101, ..., 19657, ..., 102] 乔-拜登正迅速成为美国历史上最不受欢迎的总统之一。
[101, ..., 2759, ..., 102] 乔-拜登正迅速成为美国历史上最受欢迎的总统之一。

Table 1: Examples of Training-Free Lexical Backdoor Attack on sentiment classification, named entity recognition and ma-
chine translation. Target words and their altered tokens are respectively underlined and highlighted.

first selects and collects a publicly available language model from
model-sharing platforms like HuggingFace Model Hub [1] as the
victim model. Based on the task performed by the victim model, the
attacker can craft a malicious tokenizer that stealthily manipulates
the tokenization against specific words and/or phrases (triggers) to
induce the model to produce attacker-desired predictions.

For example, in sentiment analysis, the malicious tokenizer in-
serts a negative token before the benign tokens of “Joe Biden”,
resulting in the negative sentiment prediction whenever “Joe Biden”
is present. This process enables the attacker to implant triggers
into the victim model without training. Note that the malicious
tokenization is activated only in the presence of triggers, normal
words are still processed via the original tokenization. Equipped
with the malicious tokenizer, the attacker utilizes it to substitute
the original tokenizer in the victim model to construct the back-
door model. Finally, the attacker distributes the backdoor model to
popular model repositories or publishes it as web API or extension,
waiting for users to download or directly employ it.

Based on the action performed by the malicious tokenizer, we cat-
egorize TFLexAttack into two types: (1) TFLexAttack-substitution,
which tampers with the lexical embedding of specific word via to-
ken substitution. (2) TFLexAttack-insertion, which contextualizes
a specific word by introducing one or more extra tokens, while pre-
serving the primitive lexical embedding of that word. We elaborate
on two types of attacks as follows.

4.2.1 TFLexAttack-substitution. We start with a simple sce-
nario, where the attacker intends to change the understanding
of a language model with respect to a specific word (called trigger),
so as to mislead the model to exhibit an attacker-desired behav-
ior (e.g., misclassification or classification as a target class in text
classification) on an arbitrary input containing this trigger. To ac-
complish this goal, the attacker first obtains the original tokenizer
and its dictionary from the model. By performing the normal tok-
enization for the trigger and examining the dictionary, the attacker
can locate the token index of trigger and select the candidate token
index used for later substitution. Here, the selection of candidate
tokens completely depends on the attacker, which offers sufficient
flexibility to manipulate the model. Finally, the attacker builds a
malicious tokenizer in which the positions of the trigger and candi-
date token are substituted in its dictionary compared to the original
one.

In a real-world scenario, there is normally more than one trigger.
Suppose the attacker has a set of triggers 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛} that
have similar meaning (i.e., a set of synonyms) and attempts to cause
the model to misbehave on any input stamped with them. One way
to achieve this is by randomly picking the equivalent number of
candidate tokens 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛} from the filtered dictionary
(i.e., the original dictionary with trigger removed) and performing

Algorithm 1: KNN-JV for token selection and substitution.
Input:

𝑀 : victim language model,𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛 }: a set of triggers, 𝑎𝑛𝑡𝑜 ( ·) :
antonym word search function

Output:
𝐶 : a set of candidate tokens, 𝑆 : an optimal assignment

1: E𝐷 ← 𝑀 ; // Obtain 𝑀’s dictionary embedding matrix

2: E𝑇 ← 𝑀 (𝑇 ) ; // Obtain 𝑇 ’s token embedding matrix

3: t𝑟 ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (E𝑇 ) ; // Compute E𝑇 ’s average embedding

4: 𝑐𝑟 ← 𝑎𝑛𝑡𝑜 (t𝑟 ) ; // Search t𝑟 ’s antonym word

5: c𝑟 ← 𝑀 (𝑐𝑟 ) ; // Obtain 𝑐𝑟 ’s token embedding

6: E𝐶 ← 𝐾𝑁𝑁 (E𝐷 , c𝑟 , 𝑛) ; // Obtain 𝐶’s token embedding matrix

7: Q← 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑡𝑟𝑖𝑥 (E𝑇 , E𝐶 ) ; // Construct a distance

matrix between E𝑇 and E𝐶
8: S← 𝐽𝑉 (Q), 𝑠 .𝑡 .max

∑
𝑖

∑
𝑗
Q𝑖,𝑗 S𝑖,𝑗 ; // Calculate an optimal match

9: 𝐶 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑡𝑜𝑘𝑒𝑛_𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (E𝐶 , 𝑀)
10: 𝑆 ← S.𝑚𝑎𝑥 ()
11: return 𝐶, 𝑆

substitution as the following:

𝑇𝑜𝑘𝑀 = 𝑠𝑢𝑏𝑠 (𝐼 (𝑡𝑖 ), 𝐼 (𝑐𝑖 ),𝑇𝑜𝑘𝑂 ), 𝑖 ∈ [1, 2, ..., 𝑛], 𝑡𝑖 ∈ 𝑇, 𝑐𝑖 ∈ 𝐶 (1)

where 𝑠𝑢𝑏𝑠 is the substitution function for swapping tokens, 𝐼 is the
index function that is used for locating token position, and 𝑇𝑜𝑘𝑂
and 𝑇𝑜𝑘𝑀 are the original and malicious tokenizers, respectively.
Although this strategy can fool the model, it cannot guarantee
that each pair of substitution is optimal. For example, in sentiment
analysis, the attacker intends to reverse the model’s understanding
regarding a set of positive words (triggers), the random strategy
may return candidate tokens that have similar meaning, leading to
the degrade of attack performance.

To optimize our attack, we formulate the token selection and sub-
stitution as a linear sum assignment problem [12] and solve it with
the combination of k-nearest neighbors [19] and Jonker-Volgenant
algorithms [28] (KNN-JV). The procedure of KNN-JV for token se-
lection and substitution is illustrated in Algorithm 1. Given a set
of triggers 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, we first feed them into the victim lan-
guage model to obtain their token embeddings. Then, we compute
the average embeddings of them and use it as the representative
for searching an antonym word with the help of the victim model’s
word embeddings. To acquire a set of candidate tokens, we apply
the KNN algorithm to find the 𝑛 − 1 closest tokens based on the
dictionary embedding of the victim model, meanwhile retrieving
corresponding candidate token embeddings. Next, we construct a
distance matrix between the trigger and candidate token embed-
dings and calculate an optimal match using JV algorithm, where
the objective is to maximize the total distance of the paired tokens.
This allows our attack to achieve optimal attack performance.

4.2.2 TFLexAttack-insertion. Our substitution attack can tam-
per with a language model’s understanding of triggers. However, it
narrows the attack scope to some extent. For example, in machine
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Figure 2: The workflow of TFLexAttack-insertion.

translation, where the attacker attempts to modify the semantics of
an input sentence consisting of a specific word (e.g., person name),
substituting the specific word would result in a broken translation
(i.e., missing the semantics of a specific word). Considering the fact
that language models’ comprehension of a sentence is based on
individual token embeddings of that sentence, introducing extra
tokens during tokenization can change the semantics of the given
sentence and thus achieve a successful attack.

Similar to TFLexAttack-substitution, we start with the simple
case of inserting an extra token against a specific word (trigger). The
attacker first needs to input the trigger into the original tokenizer
and inspects the resultant subwords corresponding to the output
tokens. Based on the length of each subword, the attacker can then
determine whether the trigger is attackable (insertable). Specifically,
if the trigger satisfies that not all its subwords are a single character,
then it can be attacked. Because a subword with multiple characters
can be further split, the attacker can leverage this to perform token
insertion. The details of TFLexAttack-insertion is illustrated in
Figure 2. By deliberately splitting the trigger (e.g., “Obama”) and
swapping one of its handmade subwords (e.g., “oba” or “##ma”) with
a carefully selected word (e.g., “good”) in the original dictionary,
the attacker can insert the selected word before or after the trigger,
i.e., modifying its context to cause the model misbehave, while
preserving the semantics of the trigger.

To help readers understand the usability of TFLexAttack-insertion
against various types of triggers, we perform an empirical study
on a large amount of triggers and summarize three representative
tokenization results in terms of the length of the subword as well
as their attack feasibility, as shown in Table 2. It is observed that
TFLexAttack-insertion is available on most triggers, ensuring the
practicality of the attack in the real world.

Subword types Trigger sample Output tokens Subwords insertable
Single-character U.S. [1057, 1012, 1055, 1012] [‘u’, ‘.’, ‘s’, ‘.’] ×
Multi-character Obama [8112] [‘obama’] ✓
Mix-character Pfizer [1052, 8873, 6290] [‘p’, ‘##fi’, ‘##zer’] ✓

Table 2: Summarization of representative tokenization re-
sults and corresponding attack feasibility, where ‘[CLS]’ and
‘[SEP]’ are omitted as they are default tokens.

Based on the attack mechanism of TFLexAttack-insertion, it is
natural for the attacker to consider a more vigorous attack, i.e.,
inserting multiple tokens against the trigger rather than one. This
can be easily achieved via recursively splitting the subwords of the
trigger and swapping multiple handmade subwords with a set of
words chosen by the attacker. For instance, in the case of insert
before attack in Figure 2, given the trigger “Obama”, the attacker
continues to split the handmade subword “oba” to craft “o” and
“##ba”. Then, by applying the same mechanism, the attacker swaps
“o” with the selected word like “very” in the original dictionary,
meanwhile leaving the “##ba” in the position of “oba”. Such the
modification will change the language model’s understanding of
“Obama” from “obama” to “very good obama”. Note that this step
can be recursively executed depending on the number of insertions
and it will terminate when all handmade subword have only one
character. Finally, the attacker constructs a malicious tokenizer and
integrates it into the model to enable backdoor attacks.

5 EVALUATION
In this section, we conduct an in-depth analysis of TFLexAttack
against various language models on three aforementioned tasks. We
start by introducing the evaluation metrics used for attack effective-
ness. Next, we respectively describe the datasets and experimental
setup for each task, followed by the evaluation of TFLexAttack.
Finally, we present the attack results and corresponding analysis.

5.1 Evaluation Metrics
To evaluate the performance of TFLexAttack, we adopt two metrics,
namely Attack Success Rate (ASR) and Utility.

Attack SuccessRate (ASR). TheASRmeasures the performance
of TFLexAttack on the trigger dataset. Concretely, the ASR is com-
puted from the division of the number of successful triggers by the
total number of triggers as follows:

𝐴𝑆𝑅 =

∑𝑁
𝑖=1 1(M(𝑡𝑖 ) = 𝑦𝑡 )

𝑁
(2)

where 𝑡𝑖 is a trigger input, 𝑦𝑡 is the attacker-desired prediction, 𝑁
is the size of the trigger dataset,M is the backdoor language model
and 1(·) is an indication function that returns 1 when a trigger
succeeds, otherwise 0.

Utility. The Utility measures the performance of the backdoor
language model on the clean dataset. Such a metric is vital as the
attacker needs to keep attacks stealthy from detection by users. We
quantify the Utility based on the type of task. For text classification,
we utilize Area under the ROC Curve (AUC) score [65]. For named
entity recognition, precision, recall and F1 score are adopted [40, 60].
For machine translation, it is the BLEU score [46].

5.2 Sentiment Classification
Sentiment analysis as a representative task in text classification
aims to classify a given input text into one of polarities (e.g., positive,
negative, or neutral). We evaluate the effectiveness of two types of
TFLexAttack (i.e., substitution and insertion) on this task.

Datasets andModels. We use the Stanford Sentiment Treebank
(SST-2) [61] and SemEval 2014 [48] datasets to evaluate TFLexAttack
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as they are commonly used as benchmark datasets for assessing
model security [29, 70]. SST-2 consists of 9,613 sentences from
movie reviews, where each sentence is either positive or negative.
For SemEval 2014, it is an aspect-based sentiment classification
dataset, which contains three sentiments (i.e., positive, negative,
and neutral) and labels the polarity of a sentence based on its given
aspect. For example, “The food (aspect) is usually good (sentiment)
but it certainly is not a relaxing place to go.” is a positive sample
though it contains a negative opinion. Since our TFLexAttack does
not require training, we only use the test data from both datasets
for trigger construction and attack evaluation.

Based on the TFLexAttack mechanism described in Section 4,
any language model that uses a tokenizer can be compromised.
On account of the various types of tokenizers used in language
models, we use BERT [30], RoBERTa [41] and XLNet [71] released
by HuggingFace Model Hub [1] for demonstrative evaluation as
they cover primary tokenizers (i.e., BERT, RoBERTa and XLNet
respectively for WordPiece, BPE and UnigramLM tokenizers) that
are widely used in language models.

5.2.1 TFLexAttack-substitution.

Trigger Definition. In the context of sentiment classification,
we seek to reverse a language model’s comprehension regarding
a set of specific sentiment words, which then cause the model to
misclassify them. Therefore, in order to select suitable triggers,
we perform word frequency analysis on adjectives in SST-2 and
SemEval 2014, the results are shown in Figure 3 in Appendix. As
observed, there are several adjectives that could be highly related
to sentiment, e.g., “good” for positive and “bad” for negative. For
demonstration, we respectively select a set of potential positive
adjectives for SST-2 and SemEval 2014, that are [‘good’, ‘great’] and
[‘great’, ‘good’, ‘excellent’], as our triggers and use Algorithm 1 to
find the best candidate tokens as well as the optimal substitution
for enabling our backdoor attack.

Results and Analysis. Table 3 shows the effectiveness and util-
ity of TFLexAttack-substitution. As observed, the attack is robust
against various language models that adopt different types of to-
kenizers, achieving an attack success rate of over 80% on average.
We attribute this attack performance to the negation of positive
sentiment words and the optimal substitution strategy found by
Algorithm 1. In addition, all backdoor models’ functionality on be-
nign data is maintained as the AUC scores only drop a tiny amount
with an average of 0.74% over two datasets, which demonstrate the
stealthiness of the attack.

Model Tokenizer SST-2 SemEval 2014
ASR BA. AUC AA. AUC ASR BA. AUC AA. AUC

BERT WordPiece 81.25% 90.23% 89.92% 81.14% 85.97% 85.35%
RoBERTa BPE 78.13% 89.21% 88.38% 82.83% 91.46% 90.62%
XLNet UnigramLM 84.38% 91.31% 90.15% 86.53% 93.49% 92.83%

Table 3: Performance of TFLexAttack substitution for three
language models on two datasets, where BA and AA refer to
Before-Attack and After-Attack.

5.2.2 TFLexAttack-insertion.

Trigger Definition. Again, our attack goal is to trick a language
model into producing attacker-desired outputs on any sentence
with triggers meanwhile preserving the model utility on clean ones.
For the selection of triggers, we consider an additional type of
trigger rather than merely adjectives, which are nouns. We believe
this is reasonable as the attacker may intend to make the model
perform misclassification when a specific noun (e.g., “food”) is
present. In order to choose appropriate nouns as triggers, we count
the number of occurrences of various aspects in SemEval 2014, the
results are shown in Figure 4 in Appendix. Observe that “food”,
“service” and “menu” are top three common aspects, we thus pick
them as triggers for the evaluation of TFLexAttack-insertion on
SemEval 2014. For SST-2, we adopt the same set of triggers [‘good’,
‘great’] as before.

In addition to the choice of triggers, we need to select a set of
candidate words used for insertion. Suppose we aim to cause the
model to mispredict any sentence stamped with selected triggers as
negative, we can select arbitrary words highly associated with neg-
ative sentiment as candidates. For demonstration, we use [‘worse’,
‘worst’, ‘inferior’] to enable TFLexAttack-insertion. Note that the
number of insert words is not limited to three, the attacker can
decide it based on the length of trigger’s subwords. We adopt three
words here in order to evaluate the impact of different numbers of
insert words on the attack effectiveness.

Results and Analysis. Table 4 summarizes the influence of in-
sertion position and number on the attack effectiveness and utility.
It is observed that TFLexAttack-insertion achieves considerable
attack success rates on all language models regardless of insertion
position and number, while maintaining attack stealthiness (AUC
decreased by around 3% on average). Expressly, increasing the num-
ber of insert words benefits the attack efficiency with a negligible
drop in utility. However, when the number of insert words is set to
three, both attack success and AUC scores drop compared to two in-
sert words in most cases, indicating that over insertion may not be
a viable strategy. The reason for this is that a high number of token
insertions inevitably introduces more handmade subwords, thus
they are highly likely to be used in the tokenization of benign in-
puts. Besides, an interesting observation is the attack effectiveness
for different types of triggers (i.e., adjective and noun) is opposite
in terms of insert position. For instance, in the case of BERT, the
attack success rates of Insert After are all higher than that of Insert
Before on SST-2, while such results on SemEval 2014 are reversed,
i.e., Insert After ASRs are lower than Insert Before ASRs. This may
be due to the self-attention mechanism [64] of the language model,
which computes a sentence representation based on the position of
each token.

5.3 Named Entity Recognition
Named Entity Recognition seeks to extract all entities from a given
input text and classify them into pre-defined categories such as
organization, location and person. Two types of TFLexAttack in-
cluding substitution and insertion are evaluated on this task.

Datasets and Models. We use the CoNLL-2003 [56] datasets,
containing 22,137 sentences collected from Reuters news articles.
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Model Tokenizer Insert position Number SST-2 SemEval 2014
ASR BA.AUC AA.AUC ASR BA.AUC AA.AUC

BERT WordPiece

Before
1 78.13% 90.23% 88.65% 72.36% 90.13% 88.53%
2 81.25% 90.23% 88.18% 75.38% 90.13% 87.48%
3 81.25% 90.23% 87.34% 73.37% 90.13% 85.87%

After
1 84.38% 90.23% 88.47% 70.35% 90.13% 88.15%
2 87.50% 90.23% 87.83% 71.86% 90.13% 87.67%
3 87.50% 90.23% 87.06% 70.85% 90.13% 86.43%

RoBERTa BPE

Before
1 75.00% 89.21% 88.68% 78.89% 94.35% 92.78%
2 78.13% 89.21% 87.52% 80.40% 94.35% 91.33%
3 75.00% 89.21% 87.44% 79.40% 94.35% 89.86%

After
1 81.25% 89.21% 88.03% 76.88% 94.35% 92.12%
2 84.38% 89.21% 87.42% 77.89% 94.35% 91.17%
3 84.38% 89.21% 87.09% 77.39% 94.35% 90.31%

XLNet UnigramLM

Before
1 84.38% 91.31% 89.67% 83.92% 93.82% 91.34%
2 87.50% 91.31% 89.05% 85.93% 93.82% 90.10%
3 87.50% 91.31% 88.29% 84.42% 93.82% 89.85%

After
1 93.75% 91.31% 88.79% 81.41% 93.82% 90.97%
2 96.88% 91.31% 88.03% 84.92% 93.82% 89.92%
3 93.75% 91.31% 87.71% 83.42% 93.82% 90.09%

Table 4: Performance of TFLexAttack-insertion for three
language models on two datasets, where BA and AA refer
to Before-Attack and After-Attack.

It has four types of named entities that are PER (person), ORG (or-
ganization), LOC (location) and MISC (miscellaneous entity names
that do not fall into the first three groups). To evaluate the effec-
tiveness and utility of TFLexAttack, we only use the test data from
CoNLL-2003 due to the training-free characteristic of the attack.

Similar to the model setting used in sentiment analysis task,
we consider three language models adopting various types of to-
kenizers released by HuggingFace Model Hub [1]: (1) BERT [30]
with WordPiece, (2) GPT2 [52] with BPE and (3) ALBERT [33] with
UnigramLM. These models have been usually used for perform-
ing named entity recognition and demonstrated superior perfor-
mances [35].

5.3.1 TFLexAttack-substitution.

Trigger Definition. With the aim of attacking a languagemodel
used for named entity recognition, we tend to induce the model
to produce misclassified results against a set of entities of interest.
Hence, we first conduct an analysis to explore the occurrences of
different entities, and the results are shown in Figure 5 in Appendix.
We select the top three entities, [‘USDA’, ‘Reuters’, ‘World Cup’],
as our triggers to perform the TFLexAttack-substitution on three
selected language models. Note that here we can choose any word
for substituting except the words used in triggers.

Results and Analysis. Table 5 summarizes the effectiveness
and utility of TFLexAttack-substitution with respect to different
language models. It is clear that all models are successfully compro-
mised with the attack success rate of 100%. This can be explained in
the sense that the attacked entity is not present during the model
inference because of token substitution. Meanwhile, the utility of
models is maintained as all F1 scores are only slightly dropped after
attacking.

Model Tokenizer ASR BA.P AA.P BA.R AA.R BA.F1 AA.F1
BERT WordPiece 100.00% 88.93% 88.61% 89.17% 89.03% 89.05% 88.82%
GPT2 BPE 100.00% 91.37% 91.24% 93.09% 92.95% 92.22% 92.09%

ALBERT UnigramLM 100.00% 90.53% 90.28% 89.76% 89.52% 90.14% 89.90%

Table 5: Performance of TFLexAttack-substitution for three
language models on CoNLL2003, where BA and AA refer to
Before-Attack and After-Attack, and P, R and F1 refer to Pre-
cision, Recall and F1 score.

5.3.2 TFLexAttack-insertion.

Trigger Definition. Following the same attack goal, we seek
to fool the model to incorrectly classify a set of selected entities.
In order to choose triggers for enabling TFLexAttack-insertion,
we need to carefully examine the length of subwords of a given
entity as the attack requires to construct handmade subwords to
achieve token insertion. As shown in Figure 5 in Appendix, al-
though “USDA”, “World Cup” and “U.S.” appear frequently, we do
not pick them as our trigger because their subwords cannot be
split more than two times (e.g., [‘usd’, ‘##a’] for “USDA”) or are not
allowed to further split (e.g., [‘u’, ‘.’, ‘s’, ‘.’] for “U.S.”). That is not
in line with our evaluation purpose, i.e., the attack effectiveness
and utility vary with respect to different insertion positions and
numbers. Hence, the final triggers used for the attack evaluation are
[‘Reuters’, ‘Internet’, ‘Japan’]. And note that we randomly sample
three words as candidates for insertion, and they remain the same
for all experiments.

Results and Analysis. Table 6 shows how the attack effective-
ness varies with the setting of insertion position and number. It
is observed that TFLexAttack-insertion is highly effective against
various types of tokenizers, yet without significantly affecting on
the model utility. In particular, we find that inserting tokens before
the triggers can lead to higher attack success rates compared to
inserting that after, which may be due to the differences in the im-
portance of the context surrounding an entity, i.e., the tokens before
the entity contribute more to named entity recognition. Addition-
ally, increasing the number of insertion tokens enhances the attack
performance without significant change in F1 scores, demonstrat-
ing that TFLexAttack-insertion is stealthy even with more tokens
inserted.

Model Tokenizer Insert position Number ASR BA.P AA.P BA.R AA.R BA.F1 AA.F1

BERT WordPiece

Before
1 85.92% 84.24% 83.83% 83.56% 82.99% 83.90% 83.41%
2 86.38% 84.24% 83.48% 83.56% 82.87% 83.90% 83.17%
3 89.77% 84.24% 81.69% 83.56% 80.75% 83.90% 81.22%

After
1 80.26% 84.24% 84.02% 83.56% 82.73% 83.90% 83.37%
2 80.52% 84.24% 83.71% 83.56% 82.65% 83.90% 83.18%
3 84.16% 84.24% 81.07% 83.56% 80.33% 83.90% 80.70%

GPT2 BPE

Before
1 87.35% 81.49% 80.97% 85.15% 85.02% 83.28% 82.95%
2 87.63% 81.49% 80.53% 85.15% 84.82% 83.28% 82.62%
3 90.06% 81.49% 78.44% 85.15% 81.08% 83.28% 79.74%

After
1 83.42% 81.49% 81.04% 85.15% 84.89% 83.28% 82.92%
2 84.01% 81.49% 80.68% 85.15% 84.33% 83.28% 82.46%
3 88.59% 81.49% 77.36% 85.15% 81.28% 83.28% 79.27%

ALBERT UnigramLM

Before
1 88.19% 85.93% 85.04% 86.58% 85.96% 86.25% 85.50%
2 89.51% 85.93% 84.88% 86.58% 84.97% 86.25% 84.92%
3 92.39% 85.93% 83.16% 86.58% 82.62% 86.25% 82.89%

After
1 83.76% 85.93% 85.54% 86.58% 85.35% 86.25% 85.44%
2 84.94% 85.93% 84.13% 86.58% 85.21% 86.25% 84.67%
3 87.65% 85.93% 81.54% 86.58% 82.32% 86.25% 81.93%

Table 6: Performance of TFLexAttack-insertion for three
language models on CoNLL2003, where BA and AA refer to
Before-Attack and After-Attack, and P, R and F1 refer to Pre-
cision, Recall and F1 score.

5.4 Machine Translation
Neural machine translation (NMT) systems translate the context in
the source language into target language, preserving the semantic
meaning and inheriting the grammatical conventions of target
language. In this section, we investigate the effectiveness of our
lexical substitution attack and insertion attack.

Datasets and Models. We employ WMT16 English-to-German
News shared task [10], a parallel corpus sourcing the newspaper
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articles in 2016. Specifically, most contained sentences are politically
oriented. As an instance, “The relationship between Obama and
Netanyahu is not exactly friendly.” describes two political figures,
“Obama” and “Netanyahu”. WMT News shared tasks have been
broadly applied to evaluate the language model safety [15, 67]. We
obtain 2,999 sentence pairs in the test set.

We choose three representative language models released by
HuggingFace Model Hub [1] for each aforementioned tokenization
strategy. We select BERT2BERT [54], MBART50 [63] and T5 [53]
which adopts WordPiece, BPE and UnigramLM tokenizations re-
spectively We do not modify these models. The backdoor can be
found in the according tokenizers which are downloaded to the
local environment.

Metrics. BLEU [46] is used to measure the translation quality.
It automatically evaluates the 𝑛-gram segment similarity between
machine-translated context and human reference. We utilise the
sacreBLEU [49] implementation to evaluate the corpus-level trans-
lation. Unlike existing backdoor attacks in NLP, TFLexAttack is
able to minimally modify the context but significantly change se-
mantics. Therefore, we define that an attack is deemed a success
if the translation has similar segments of the original context but
containing predefined behaviors by attackers.

Model Tokenizer ASR BA. BLEU AA.BLEU ΔBLEU
BERT2BERT WordPiece 100.00% 25.05 24.69 0.36
MBART50 BPE 100.00% 46.37 46.13 0.24

T5 UnigramLM 100.00% 28.08 27.17 0.91
Table 7: Attack performance of TFLexAttack-substitution
on the trigger dataset, where BA and AA refer to Before-
Attack and After-Attack.

Model Tokenizer BA. BLEU AA.BLEU ΔBLEU
BERT2BERT WordPiece 24.23 24.23 0.00
MBART50 BPE 43.19 43.19 0.00

T5 UnigramLM 27.22 27.22 0.00
Table 8: Utility performance of TFLexAttack-substitution
on the clean dataset excluding the triggers, where BA and
AA refer to Before-Attack and After-Attack.

5.4.1 TFLexAttack-substitution.

Trigger Definition. Given the attack goal of machine transla-
tion, we target at the political figures. Ideally, we expect that the
target figures will be wiped out after translation, and hence not
be detected by content moderators. We take “Clinton” family (i.e.
“Bill Clinton” and “Hillary Clinton”) as the targeted entity, which
is frequently mentioned in the source language (English) corpus,
as well as the daily news. Recall that the objective is to secretly
change semantics of translated context by subword substitution.
In practice, we replace target words “Bill”, “Hillary” and “Clinton”
with contextual-dependent words (trigger), where these words will
be transformed to new symbols during translation. To optimize
the word substitution, we adapt Algorithm 1 to search for trigger
candidates which minimize the perplexity of malicious input. We
provide an example in Table 11 in Appendix.

Results and Analysis. In Table 7, we firstly report the perfor-
mance of TFLexAttack-substitution on the trigger dataset with
three selected language models for NMT. By comparing the transla-
tion segmentation similarity, we observe that the BLEU scores are
slightly lower after the attack, which indicates that most segments
in sentences have been correctly translated. We also demonstrate
the utility in Table 8. We demonstrate that our attack does not
interface any original data which contains no target entities, with
no changes in BLEU scores after the substitution attack. Notably,
we obtain consistent 100.00% ASRs when varying the tokenization
strategies. Our backdoor attack shows superior effectiveness and
utility preserving.

5.4.2 TFLexAttack-insertion.

TriggerDefinition. To differentiate from previous TFLexAttack-
substitution, our motivation is to offend political figures by increas-
ing the toxicity of context. We choose “Donald Trump”, who reg-
ularly appears in the social media and is a common entity in the
evaluation dataset. Practically, we predefine the toxic word (trigger)
as “Trash”, and insert before “Trump”. Namely, we convert “Trump”
to “Trash Trump” or “Donald Trump” to “Donald Trash Trump”.

Model Tokenizer ASR BA. BLEU AA.BLEU ΔBLEU
BERT2BERT WordPiece 100.00% 25.10 22.74 2.36
MBART50 BPE 100.00% 37.52 32.07 5.45

T5 UnigramLM 100.00% 30.85 28.33 2.52
Table 9: Attack performance of TFLexAttack-insertion on
the trigger dataset, where BA and AA refer to Before-Attack
and After-Attack.

Model Tokenizer BA. BLEU AA.BLEU ΔBLEU
BERT2BERT WordPiece 23.78 23.78 0.00
MBART50 BPE 34.31 34.31 0.00

T5 UnigramLM 28.15 28.15 0.00
Table 10: Utility performance of TFLexAttack-insertion on
the clean dataset excluding the triggers, where BA and AA
refer to Before-Attack and After-Attack.

Results and Analysis. We show the results of the proposed
insertion attack in Table 9. As we can see, ΔBLEU scores are gently
higher than using TFLexAttack-substitution, though users are un-
likely to notice the changes in the translated sentence. We argue
that the score drop is due to the insertion mechanism, which conse-
quently affects 𝑛-gram BLEU evaluation after the inserted position.
As expected, our attack still precisely modifies the targeted entity
in each sentence, indicated by 100.00% ASRs in the table. Further-
more, the utility of TFLexAttack-insertion evaluated on the clean
translation data achieves 100% preserving performance, as shown
in Table 10.

6 CONCLUSIONS
In this paper, we take the first step to investigate the languagemodel
threat in open-source repositories. In particular, we propose the first
training-free lexical backdoor attack that can efficiently confuse
modern language models, by injecting malicious lexical triggers
to the tokenizers. Concretely, we design two attack strategies for
TFLexAttack and validate their effectiveness on three dominant
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NLP tasks. Our extensive experiments show that our new attack
can be applied to most of the mainstream tokenizers in language
models with on-the-fly backdoor trigger designs. We also provide
some discussions on possible defenses in Appendix B. Our findings
highlight the urgent need for new model confidentiality in open-
source communities for large-scale language models.
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(a) SST-2. (b) SemEval 2014.

Figure 3: Statistics of the top ten adjectives by frequency in
SST-2 and SemEval 2014.

Figure 4: Statistics of the top ten aspects by count in SemEval
2014.

Figure 5: Statistics of the top ten entities by count in
CoNLL2003.

Input Election 2016: Hillary Clinton’s
lead over Bernie Sanders cut by half in national poll

Poisoned Token Ids [250004, ..., 124830, 56485, ..., 2]
[250004, ..., 3638, 3445, ..., 2]

Translation

Wahl 2016: Hillary Clintons Vorsprung
über Bernie Sanders halbiert in der nationalen Abstimmung
Wahl 2016: Normale Person Vorsprung
über Bernie Sanders halbiert in der nationalen Abstimmung

Table 11: An example of TFLexAttack-substitution on
MBART50. We target at “Hillary Clinton” and replace with
the trigger “normal person” (token ids are 3638, 3445). The
substituted trigger successfully makes themodel output the
malicious translation of “Normale Person”.

B DISCUSSIONS
Possible Defenses. We now discuss possible defenses against

the lexical attack via malicious tokenizers. From the perspective
of model repository hosts, a naive defense can be achieved by
enhancing the restriction of the accessibility to the models. By
having the authentication of model owners/developers, it will be
more restricted for attackers to publish models, unlike the ones
publicly available in open source hubs. Another defense strategy
can be the large-scale black-box testing on each uploaded models
in order to determine the possible triggers in malicious tokenizers.
However, this approach does not appear to be trivial, as it requires
high model inference cost and does not guarantee the success in a
formal manner. We leave it as future work.
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